WO1999002584A1 - Film polyester a orientation bi-axiale pour supports d'enregistrement magnetiques - Google Patents

Film polyester a orientation bi-axiale pour supports d'enregistrement magnetiques Download PDF

Info

Publication number
WO1999002584A1
WO1999002584A1 PCT/JP1998/003030 JP9803030W WO9902584A1 WO 1999002584 A1 WO1999002584 A1 WO 1999002584A1 JP 9803030 W JP9803030 W JP 9803030W WO 9902584 A1 WO9902584 A1 WO 9902584A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
particles
silicone resin
particle size
film according
Prior art date
Application number
PCT/JP1998/003030
Other languages
English (en)
French (fr)
Inventor
Tatsuya Ogawa
Hideaki Watanabe
Manabu Kimura
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23571997A external-priority patent/JPH10120886A/ja
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE1998614327 priority Critical patent/DE69814327T2/de
Priority to EP19980929845 priority patent/EP0931808B1/en
Priority to JP50843599A priority patent/JP3361105B2/ja
Priority to US09/254,201 priority patent/US6258442B1/en
Publication of WO1999002584A1 publication Critical patent/WO1999002584A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73929Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73935Polyester substrates, e.g. polyethylene terephthalate characterised by roughness or surface features, e.g. by added particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a biaxially oriented polyester film for a magnetic recording medium, and more particularly, to a magnetic recording medium capable of being produced at a low production cost, having very few coarse projections, excellent winding property, abrasion resistance and running durability.
  • a biaxially oriented polyester film for a magnetic recording medium, and more particularly, to a magnetic recording medium capable of being produced at a low production cost, having very few coarse projections, excellent winding property, abrasion resistance and running durability.
  • Biaxially oriented polyester films typified by polyethylene terephthalate films are used for various applications, especially for magnetic recording media, because of their excellent physical and chemical properties.
  • biaxially oriented polyester films their slipperiness and abrasion resistance are major factors that affect the quality of workability in the film manufacturing and processing steps, and further, the product quality. If these are insufficient, for example, when a magnetic layer is applied to the surface of a biaxially oriented polyester film and used as a magnetic tape, friction and abrasion between the coating roll and the film surface are severe, and wrinkles and scratches on the film surface occur. It's easy to do. Also, when used for VTR ⁇ cartridges, friction occurs between many guides and playback heads during pulling out, winding up, and other operations from cassettes, etc., causing scratches and distortion.
  • Japanese Patent Application Laid-Open No. 62-17231 proposes a method of adding silicone resin fine particles. This method has a large improvement effect and is expected to develop as a future technology.
  • An object of the present invention is to provide a biaxially oriented polyester film for a magnetic recording medium.
  • Another object of the present invention is to provide a biaxially oriented polyester film for a magnetic recording medium, which has very few coarse protrusions, and is excellent in winding property, sliding property, abrasion resistance and running durability.
  • Still another object of the present invention is to provide a biaxially oriented polyester film for a magnetic recording medium, which can be manufactured at a low manufacturing cost.
  • Still another object of the present invention is to provide a biaxially oriented polyester film for a magnetic recording medium, which contains other inert particles together with specific silicone resin particles.
  • R 1 is an alkyl group having 1 to 6 carbon atoms or a phenyl group
  • R 2 is an alkyl group having 1 to 4 carbon atoms
  • Occupies at least 80% by weight of (b) is substantially spherical and
  • the average particle size is in the range of 0.1 to 1.0 / m
  • Silicone resin particles 0.01 to 0.3% by weight
  • Other inert fine particles having an average particle size in the range of 0.01 to 0.5 zm and having an average particle size smaller than the average particle size of the silicone resin particles described above are 0.05 to 1.0 weights.
  • the present invention is achieved by a biaxially oriented polyester film for a magnetic recording medium (hereinafter, sometimes referred to as a first polyester film of the present invention) characterized by comprising an aromatic polyester resin composition.
  • R 1 is an alkyl group having 1 to 6 carbon atoms or a phenyl group
  • R 2 is an alkyl group having 1 to 4 carbon atoms
  • the average particle size is in the range of 0.8 to 1.6 m
  • a magnetic recording medium comprising an aromatic polyester resin composition containing This is similarly achieved by a biaxially oriented polyester film for body (hereinafter, sometimes referred to as the second polyester film of the present invention).
  • first polyester film of the present invention will be described first, followed by the second polyester film of the present invention.
  • the aromatic polyester in the present invention is a polyester containing an aromatic dicarboxylic acid as a main acid component and an aliphatic glycol as a main glycol component.
  • the polyester is substantially linear and has film forming properties, especially film forming properties by melt molding.
  • aromatic dicarboxylic acids include terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, diphenoxenedicarboxylic acid, biphenyldicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, and diphenylsulfonic acid. Dilketone dicarboxylic acid, anthracene dicarboxylic acid and the like can be mentioned.
  • aliphatic glycol examples include polymethylene glycol having 1 to 10 carbon atoms, such as ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, and decamethylene glycol. And alicyclic diols such as 1,4-cyclohexanedimethanol.
  • polyesters containing alkylene terephthalate and Z or alkylene naphthylene dicarboxylate as main repeating components are preferably used.
  • polyesters include polyethylene terephthalate and polyethylene-1,6-naphthalenedicarboxylate, and more than 80 mol% of all dicarboxylic acid components, for example, are terephthalic acid and / or 2,6-naphthalene dicarboxylic acid.
  • Copolymers which are acids and in which at least 80 mol% of all glycol components are ethylene glycol are preferred.
  • 20 mol% or less of the total acid component can be the above-mentioned aromatic dicarboxylic acids other than terephthalic acid and / or 2,6-naphthalenedicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid and sebacic acid.
  • Acids and alicyclic dicarboxylic acids such as cyclohexane-1,4-dicarboxylic acid can be used.
  • 20% by mole or less of all glycol components is ethylene glycol.
  • daricols, and aromatic diols such as hydroquinone, resorcinol, 2,2-bis (4-hydroxyphenyl) propane and the like;
  • Aliphatic diols having an aromatic ring such as 1,4-dihydroxydimethylbenzene, polyalkylene glycols (polyoxyalkylene glycols) such as polyethylene glycol, polypropylene glycol, polytetramethylene diol, and the like can also be used. .
  • a component derived from an oxycarboxylic acid such as an aromatic oxyacid such as hydroxybenzoic acid or an aliphatic oxyacid such as ⁇ -hydroxycaproic acid may be used as a dicarboxylic acid component or an oxycarboxylic acid.
  • an aromatic oxyacid such as hydroxybenzoic acid or an aliphatic oxyacid such as ⁇ -hydroxycaproic acid
  • Those which are copolymerized or bonded at not more than 20 mol% based on the total amount of the components are also included.
  • the silicone resin particles have the following formula (2)
  • R 1 contains at least 80% by weight of a repeating unit represented by the following formula selected from an alkyl group having 1 to 4 carbon atoms and a phenyl group.
  • the silicone resin composed of the above repeating units, when focused on one silicon atom (S i), has the following formula:
  • R 1 in the above formula is selected from an alkyl group having 1 to 4 carbon atoms and a phenyl group.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. These can be one or more.
  • silicone resin particles silicone resin (polymethylsilsesquioxane) particles in which R is a methyl group are preferred.
  • the silicone resin particles used in the present invention have the following formula (1)
  • R 1 is the same as above, and R 2 is an alkyl group having 1 to 4 carbon atoms.
  • R 1 is the same as described above.
  • R 2 is an alkyl group having 1 to 4 carbon atoms, for example, methyl, ethyl, n-propyl, iso-butyl, n-butyl and the like.
  • Examples of such a compound include methyltrimethoxysilane, phenyltrimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, and butyltrimethoxysilane.
  • the surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sorbitan alkyl ester, and alkylbenzene sulfonate. Among them, polyoxyethylene alkyl phenyl ether and alkyl benzene sulfonate are preferably used.
  • Preferred examples of the polyoxyethylene alkylphenol include ethylene oxide adducts of nonylphenol, and examples of the alkylbenzene sulfonate include sodium dodecylbenzenesulfonate.
  • the silicone resin particles used in the present invention are substantially spherical, and The product shape factor is in the range of 0.4 to 0.52.
  • the average particle size of the silicone resin particles is in the range of 0.1 to: 1. O ⁇ m. If the average particle size is less than 0.1 / m, it is contained in the film and it is difficult to impart slipperiness and abrasion resistance to the film, while if it exceeds 1.0 / m, it is contained in the film and impairs the surface flatness of the film. It will be easier.
  • the average particle size is in the range of 0.2 to 0.6 m.
  • the content of the silicone resin fine particles is 0.01 to 0.3% by weight, preferably 0.01 to 0.2% by weight, and more preferably 0.01 to 0.1% by weight. If the content is less than 0.01% by weight, the slipperiness of the film deteriorates. On the other hand, if the content exceeds 0.3% by weight, the film surface becomes rough, the electromagnetic conversion characteristics deteriorate, and the abrasion resistance decreases. Problems such as deterioration occur.
  • the silicone resin particles preferably have a particle size distribution with a relative standard deviation of 0.3 or less.
  • the silicone resin particles preferably contain no more than 30 particles per million of particles having a particle size that is at least three times the average particle size.
  • the silicone resin particles used in the present invention preferably have a value of 3 to 4 OKOH mg / g as a hydroxyl value on the particle surface.
  • silicone resin particles can be used after being surface-treated with a silane coupling agent. By performing this surface treatment, the abrasion resistance of the film can be significantly improved.
  • silane coupling agent examples include N-3 (aminoethyl) aminoaminopropyl of amino silane, such as vinyltriethoxysilane, vinyltrichlorosilane, and vinyltris (; 3-methoxyethoxy) silane having an unsaturated bond.
  • Methyldimethoxysilane N-3 (aminoethyl) aminopropyltrimethoxysilane, r-aminopropyltrimethoxysilane, aminopropyltriethoxysilane, N-phenyl-1-aminopropyl 3 (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 7 "-glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyl pyrmethyljetoxy silane, etc.
  • -Dalicidoxypropyltriethoxysila Methacrylate silanes such as r-methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyljetoxysilane, and ⁇ -methacryloxypropyltriethoxysilane.
  • silanes such as r-methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyljetoxysilane, and ⁇ -methacryloxypropyltriethoxysilane.
  • a-mercaptoprovir trimethoxysilane, isopropyl trimethoxysilane and the like are exemplified.
  • epoxy silane coupling agents are preferred because they are easy to handle, have difficulty in coloring the film when added to polyester, and have a large effect on
  • surface treatment with a silane coupling agent is performed by filtering or centrifuging the silicone resin particle slurry (water slurry or organic solvent slurry) immediately after synthesis to separate the silicone resin particles, and then drying the silane before drying.
  • the slurry is again slurried with water or an organic solvent in which the force coupling agent is dispersed, and after heat treatment, the particles are separated again, and then the separated particles are dried.
  • a method of further performing a heat treatment is practical and preferable.
  • the once dried silicone resin fine particles may be re-slurried by the same method, and the treatment method is not particularly limited.
  • the silicone resin particles surface-treated with a silane coupling agent preferably have a hydroxyl value on the particle surface of 3 to 1 O KOH mg g g.
  • the silicone resin particles surface-treated with the silane coupling agent in the present invention are particularly excellent, prevent generation of white powder and the like, and improve abrasion resistance.
  • the mechanism is that one is in the silicone resin particles, for example, starting material components, unreacted materials such as hydrolyzate of organotrialkoxysilane, which is one of the raw materials, or terminal silanol groups in silicone resin.
  • the first polyester film of the present invention further contains other inert fine particles.
  • the other inert fine particles need to have an average particle diameter in the range of 0.01 to 0.5 am and smaller than the average particle diameter of the silicone resin fine particles.
  • the slipperiness and scratch resistance are deteriorated, while if the average particle size exceeds 0.5 / m, the abrasion resistance and scratch resistance are deteriorated, and the film is deteriorated. The surface becomes rough and the electromagnetic conversion characteristics deteriorate.
  • the average particle size of the other inert fine particles is larger than the average particle size of the silicone resin fine particles, the effect of containing the silicone resin fine particles is reduced, and the slipperiness, abrasion resistance and the like are deteriorated.
  • the average particle size of the other inert fine particles is preferably 0.01 to 0.3 m, and more preferably 0.01 to 0.15 m.
  • the content of other inert fine particles must be 0.05 to 1.0% by weight. If the content is less than 0.05% by weight, the slipperiness and scratch resistance deteriorate, whereas if it exceeds 1.0% by weight, the abrasion resistance deteriorates.
  • This content is preferably from 0.1 to 0.6% by weight, more preferably from 0.2 to 0.4% by weight.
  • inert fine particles include, for example, (1) silicon dioxide (including hydrates, gay sands, stones, etc.); (2) alumina in various crystalline forms; (3) 310 containing at least 30% by weight of two components.
  • Silicates eg, amorphous or crystalline clay minerals, aluminosilicates (including calcined and hydrated products), hot asbestos, zircon, fly ash, etc.
  • Phosphates of Li, Ba and Ca including mono- and di-hydrogen salts
  • the first polyester film of the present invention is preferable when the center line average roughness Ra of the film surface is 1 O nm or less, since particularly excellent electromagnetic conversion characteristics can be obtained.
  • Particularly preferred Ra is in the range of 3 to 10 nm.
  • the first polyester film of the present invention has excellent properties as a single-layer film as described above, the first polyester film has excellent flatness and is inexpensive by adopting a laminated structure with other film layers. It is a biaxially oriented laminated polyester film that can be manufactured at manufacturing costs.
  • a biaxially oriented polyester film for a magnetic recording medium is also provided.
  • the first polyester film of the present invention is used as the A layer, and the other polyester film B layer is laminated with the A layer on at least one side.
  • the lamination form is preferably a two-layer structure of A layer and ZB layer, and a three-layer structure of A layer and ZB layer / A layer.
  • the three-layer structure is more preferable in terms of manufacturing cost because the waste film generated in the polyester film manufacturing process can be collected, used or blended in the polyester film B layer, and reused.
  • polyester constituting the polyester film B layer the same polyester as that described and exemplified as the polyester constituting the polyester film A layer is described and exemplified, but it is preferably the same as the polyester film A layer. Les ⁇
  • the polyester film B layer may or may not contain inert fine particles, but if it contains inert fine particles, the content of the polyester film A layer Is preferably less than 50%. With a content of 50% or more based on the content of the polyester film A layer If it is, the properties of the polyester film A layer are affected, which is not preferable.
  • the thickness of the polyester film A layer in the laminated film is 0.1 to 2.0 m. If the thickness exceeds 2.0, the properties are the same as those of a single-layer film.If the thickness is less than 1, the particles easily fall off, the abrasion resistance deteriorates, and the surface becomes too flat, and the slipperiness also deteriorates. It is not preferable.
  • the first polyester film of the present invention is excellent in abrasion resistance, and preferably exhibits only the blade abrasion resistance in which the width of the shaving powder adhering to the blade edge is less than 0.5 mm.
  • the first polyester film of the present invention preferably has 1.5 or less Z cm 2 projections due to secondary or higher order interference fringes on the surface.
  • Such a polyester film is preferable because the aperture at the time of use as a magnetic recording medium is extremely small.
  • the second polyester film of the present invention as described above, (A) aromatic polyester, (B) silicone resin particles, and (C) inert fine particles having an average particle size of 0.4 to 0.7 / im (hereinafter referred to as inactive particles). And (D) an aromatic polyester composition containing inert fine particles having an average particle size of 0.01 to 0.3 m and a Mohs hardness of 7 or more (hereinafter referred to as inert fine particles C). Things.
  • aromatic polyester (A) the same polyester as described for the first polyester film can be used. It should be understood that items not described herein for the aromatic polyester are applied as they are for the first polyester film.
  • the silicone resin particles (B) have the same composition as the silicone resin particles used in the first polyester film and are preferably produced in the same manner.
  • the average particle size of the silicone resin particles used here is in the range of 0.8 to 1.6 m.
  • the average particle size is less than 0.8 / xm, the effect of improving the slipperiness and winding property of the film is small.
  • the average particle size exceeds 1.6 m, the surface flatness of the film is hardly obtained, which is not preferable.
  • the average particle size is preferably between 0.9 and 1.2 m.
  • the content of silicone resin particles is 0.001 to 0.03% by weight, which is extremely low.
  • Preferably it is 0.001 to 0.02% by weight, more preferably 0.001 to 0.01% by weight. If the content is too small, the slipperiness and winding properties deteriorate, while if the content is too large, the film surface becomes rough, causing problems such as deterioration of electromagnetic conversion characteristics and machinability. Therefore, it is not preferable.
  • the second polyester film further contains inert fine particles B and C.
  • the inert fine particles B are particles having an average particle diameter d B in the range of 0.4 to 0.7 m, and the content thereof is in the range of 0.1 to 0.6% by weight.
  • the average particle diameter d B and the content of the inert fine particles B are smaller than the above ranges, the film has poor slipperiness, becomes difficult to wind up, and the tape running becomes unstable. On the other hand, if it is larger than the above range, the abrasion resistance of the film deteriorates.
  • the average particle diameter d B of the inert fine particles B is in the range of 0. 4 ⁇ 0. 65 m, and still more preferably in the range of 0. 4 ⁇ 0. 6 m.
  • the content of the inert fine particles B is preferably in the range of 0.15 to 0.5% by weight, and more preferably in the range of 0.2 to 0.4% by weight.
  • the type of the inert fine particles B is not particularly limited, but includes, for example, (1) silicon dioxide (including hydrate, calcium sand, quartz, etc.); (2) alumina in various crystal forms; (3) Si (4) A silicate containing 30% by weight or more of 2 minutes (for example, amorphous or crystalline clay mineral, aluminosilicate (including calcined product and hydrate), hot asbestos, zircon, fly ash, etc.); ) Oxides of Mg, Zn, Zr, and Ti; (5) Sulfates of Ca, and Ba; (6) Phosphates of Li, Ba, and Ca (mono- and di-hydrogen salts) ): (7) Benzoates of Li, Na, and K; (8) Terephthalates of Ca, Ba, Zn, and Mn; (9) Mg, Ca, Ba, Zn, Cd, Pb, S r, Mn, Fe, Co, and Ni titanates; (10) Ba and Pb chromates; (11) carbon (eg, pump rack
  • the inert fine particles C are inert inorganic fine particles having a Mohs hardness of 7 or more, and have an average particle diameter d c in the range of 0.01 to 0.3 m, and a content of 0.05 to ⁇ .
  • the inactive inorganic fine particles having a Mohs hardness of 7 or more are preferably particles made of aluminum oxide (alumina) or a spinel-type oxide.
  • the inert inorganic fine particles C are particles made of aluminum oxide (alumina), it is preferable that the crystal structure is a 0-type crystal because the effect of improving the scratch resistance of the film is greater. Further, if the inert inorganic particles C are particles consisting of a spinel type oxide, if it is MGA l 2 ⁇ 4, since a larger listening effect of improving the scratch resistance of the film preferred.
  • the average particle size d c of the inert inorganic particles C is in the range of 0. 03 ⁇ 0. 25 m, 0. 05 ⁇ 0 . It is a further preferably in the range of 2 zm. Further, this content is preferably in the range of 0.1 to 0.7% by weight, more preferably in the range of 0.15 to 0.4% by weight, and 0.2% by weight. Most preferably, it is in the range of not less than 0.2% and less than 0.25% by weight.
  • the second polyester film of the present invention preferably has a center line average roughness Ra of 10 to 25 nm, more preferably 12 to 24 nm, particularly preferably 14 to 23 nm. If the center line average roughness Ra is less than 1 Onm, the surface is too flat, and the effect of improving windability and running durability is small, while if it is larger than 25 nm, the surface is too rough. Therefore, it is not preferable because the electromagnetic conversion characteristics of a magnetic tape deteriorate.
  • the second polyester film of the present invention has excellent properties as a single-layer film as described above, the second polyester film adopts a laminated structure with other film layers, so that it is further excellent in flatness and inexpensive.
  • This is a biaxially oriented laminated polyester film that can be manufactured at low cost.
  • a biaxially oriented polyester film for a magnetic recording medium is provided.
  • the second polyester film of the present invention is used as the A layer, and the other polyester film B layer is laminated on at least one side.
  • the lamination form it is preferable to have a two-layer structure of A layer / B layer and a three-layer structure of A layer, ZB layer, and ZA layer.
  • it can be used or blended in the polyester film B layer and reused, which is more preferable in terms of production cost.
  • the polyester constituting the polyester film B layer is the same as that described and exemplified as the polyester constituting the polyester film A layer described above, but may be the same as the polyester film A layer. I like it.
  • the polyester film B layer may not contain inactive particles, but in the B layer, inactive particles having an average particle diameter of 0.4 or more, for example, the silicone resin fine particles A If the content (w B ) of the inert fine particles B and the like satisfy the following formula, the waste film generated in the polyester film manufacturing process can be collected and used in the B layer. preferable.
  • W B is an average particle size of 0. 4 m or more inert particles of the polyester film layer B containing Yuryou (wt%),
  • L A is the total thickness of the polyester film A layer (/ m)
  • L B is the thickness ( ⁇ ) of the polyester film B layer
  • R is a number between 0.3 and 0.7
  • R (value) in the above formula is more than 0.7 or less than 0.3
  • the average particle size of the polyester film layer when the recovered film is used is 0.4 m or more.
  • the fluctuation of the content increases, and as a result, the fluctuation of the surface roughness of the polyester film A layer also increases, which is not preferable.
  • Preferred R (value) is 0.4 to 0.6.
  • small particles having an average particle size of less than 0.4 m have little effect on the surface of the polyester film A layer even if they are contained in the polyester B layer.
  • the surface property of the A layer surface can be controlled to a specific range, but the polyester film A layer has a thickness of 0.5 to 2. Must be within 0 m. If the thickness is greater than 2.0 / m, the characteristics are the same as those of a single-layer film.On the other hand, if it is less than 0.50 m, the particles are likely to fall off, and the abrasion resistance deteriorates and the surface becomes flat Too long, the running durability and the winding property also deteriorate.
  • the second polyester film of the present invention has excellent abrasion resistance similarly to the first polyester film, and exhibits blade abrasion resistance in which a shaving powder adherence width to the blade tip is less than 0.5 mm.
  • the second polyester film of the present invention preferably has a projection of 1.0 or less Zcm 2 due to tertiary or higher interference fringes on the surface.
  • the second biaxially oriented polyester film of the present invention preferably has a take-up index of 100 or less at a take-up speed of 200 m / min for both the single-layer film and the laminated film. It is preferable that the winding property index is 100 or less because the effect of improving the winding property is remarkable. On the other hand, if the winding index is larger than 100, the winding shape will be poor due to irregular end faces when winding at high speed, or the winding will be lost during winding if it is severe. Not preferred.
  • the winding property index at a winding speed of 20 OmZ is more preferably 85 or less, and particularly preferably 70 or less.
  • the biaxially oriented polyester film of the present invention can be obtained basically by a conventionally known method or a method accumulated in the art. For example, it can be obtained by first producing an unstretched film and then biaxially orienting the film.
  • the unstretched film is, for example, melt-extruded into a film at a temperature of melting point (Tm: C) to (Tm + 70) ° C, quenched and solidified, and has an intrinsic viscosity of 0.35 to 0.9 d1 Zg. Can be obtained as an unstretched film.
  • This unstretched film can be further made into a biaxially oriented film according to a conventionally accumulated method for producing a biaxially oriented film.
  • the unstretched film is uniaxially (vertically or horizontally) at a temperature of (Tg-10) to (Tg + 70) ° C (where Tg is the glass transition temperature of the polyester) and is 2.5 to 7.0.
  • the film is stretched by a factor of 2 times, and then in a direction perpendicular to the above stretching direction (when the first stage stretching is longitudinal, the second stage stretching is transverse) at a temperature of Tg CO ⁇ (Tg + 70) ° C. It can be manufactured by stretching at a ratio of 2.5 to 7.0 times.
  • the area stretching ratio is preferably 9 to 32 times, more preferably 12 to 32 times.
  • the stretching means may be either simultaneous biaxial stretching or sequential biaxial stretching.
  • the biaxially oriented film can be heat set at a temperature of (Tg + 70) ° C to Tm (° C).
  • Tg + 70 ° C
  • Tm ° C
  • the polyethylene terephthalate film is heat-set at 190 to 230 ° C.
  • the heat fixing time is, for example :! ⁇ 60 seconds.
  • a laminated film it can be obtained by first producing a laminated unstretched film, and then biaxially orienting the laminated unstretched film in the same manner as described above. it can.
  • This laminated unstretched film can be produced by a conventionally accumulated method for producing a laminated film.
  • a method of laminating a film layer (polyester A layer) forming a surface and a film layer (polyester B layer) forming a core layer in a molten state or a state solidified by cooling can be used. More specifically, it can be manufactured by a method such as co-extrusion or extrusion lamination.
  • the biaxially oriented polyester film of the present invention can have a film thickness preferably in the range of 3 to 20 m.
  • the biaxially oriented polyester film of the present invention contains a combination of specific silicone resin fine particles and other specific inert particles, has extremely few coarse projections, and has a winding property, abrasion resistance, and running durability. It is useful as a base film for magnetic recording media.
  • a small piece of the sample film was fixed on a sample table for a scanning electron microscope, and ion etching was performed on the film surface under the following conditions using a J-Electronics Co., Ltd. sputter ring apparatus (JFC-1100 type ion etching apparatus). Perform processing. Conditions, the sample was placed in Perugia in one, increase the degree of vacuum to a vacuum state of about 10- 3 the To rr, voltage 0. 2 5 kV, performed for about 10 minutes ion etching at a current 12. 5 mA.
  • V represents the volume of the particle (im 3 )
  • D represents the maximum diameter of the particle (zm).
  • the difference particle size distribution is obtained from the integrated curve in the above item (1), and the relative standard deviation is calculated based on the following formula for defining the relative standard deviation.
  • polymer containing particles An appropriate amount of polymer containing particles is sampled, and ethylene glycol (polymer —If components remain, use triethylene dalicol or tetraethylene dalicol) in excess to depolymerize.
  • ethylene glycol polymer —If components remain, use triethylene dalicol or tetraethylene dalicol
  • the particles are removed by centrifugation or filtration, and the particles are sufficiently washed with ethanol.
  • the extracted particles are diluted and dispersed in ethanol, and filtered using a straight-pore membrane filter with openings three times the average particle size. When the filtration is completed, the filter surface is further washed with ethanol and filtered.
  • the filter After filtration, the filter is dried, the filter is subjected to gold sputtering, and observed with a scanning electron microscope at a magnification of 500-10000, and coarse particles on the filter are counted.
  • the weight of the powder used for the filtration is converted into a number from the average particle diameter and density of the particles to determine the number of all particles, and the number of coarse particles is converted to the number per 100,000 particles, and the number of coarse particles is calculated.
  • cool the heated Esol solution once, and then perform the dissolution work again.
  • remove the particles by centrifugation or filtration remove the polymer component remaining in the particles with E-sol 1 solution, dilute and disperse in an organic solvent, and open the pores three times the average particle size. Filtration is performed using a membrane filter.
  • the filter surface is further washed and filtered with an organic solvent. After filtration, the filter is dried, the filter is subjected to gold sputtering, and observed with a scanning electron microscope at a magnification of 500 to 1000, and coarse particles on the filter are counted. Then, the number of coarse particles is obtained by the same method as in (i) above.
  • silicone resin particle powder (hereafter referred to as “silicone powder”) that has been dried in advance to remove adhering water as much as possible.
  • bromphenol blue solution as the indicator, titrate excess di-n-butylamine with 3 hydrochloric acid solution whose titer has been measured.
  • the titer is determined by titration using potassium orange as a standard solution and a methyl orange solution.
  • the center line average roughness (Ra) is a value defined by JIS B0601. In the present invention, it is measured using a stylus-type surface roughness meter (SURFCORDER SE-30C) of Kosaka Laboratory Co., Ltd.
  • the measurement conditions and the like are as follows.
  • the calender is a three-stage calender consisting of nylon rolls and steel rolls.
  • the processing temperature is 80 ° C
  • the linear pressure applied to the film is 200 kg./cm
  • the film speed is 100m / min.
  • the abrasion of the base film is evaluated by the dirt attached to the top roll of the force renderer. (Indicated in Table 2 as "Calendar sharpness")
  • the edge of a blade (blade for an industrial force razor testing machine manufactured by GKI in the United States) is vertically applied to the film cut to 1Z2 inch width, and further pressed in by 2 mm to make contact.
  • a speed of 10 Om per minute and an inlet tension of 1 ⁇ 5 Og. After the film has run for 10 Om, the amount of shavings adhering to the blade is evaluated.
  • the width of the shaving powder adhering to the blade tip is less than 0.5 mm
  • the width of the swarf adhering to the blade tip is 0.5 mm or more and less than 1.
  • Omm ⁇ The swarf adhering width of the swarf adhering to the blade tip is 1.0 mm or more and less than 2.0 mm
  • X The swarf adhering to the blade tip Powder adhesion width is 2. Omm or more.
  • the measurement is performed as follows using the apparatus shown in FIG.
  • Fig. 1 is an unwinding reel
  • 2 is a tension controller
  • 3, 5, 6, 8, 9 and 11 are free ports
  • 4 is a tension detector (entrance)
  • 7 is a fixed rod
  • 10 is Tension detector (exit)
  • 12 is a guide opening
  • 13 is a take-up reel Are respectively shown.
  • the measurement is performed as follows using the apparatus shown in FIG.
  • the running friction coefficient (k) is 0.25 or more, the running becomes unstable when repeatedly running in a VTR. Therefore, if the running friction coefficient (k) is more than this value, it is judged as poor running durability.
  • Scratchability is determined for non-magnetic surface scratches on the tape after running according to the following criteria.
  • the manufacturing method of the magnetic tape is as follows.
  • Fatty acid 1 part of oleic acid
  • a film with a width of 1Z2 inches is passed through a film with a width of 1Z2 without passing through the fixing bar 7, and is run at a speed of 200m / min.
  • the end position is detected by the CCD camera at a position immediately before being wound by the reel 13.
  • the amount of change in the end surface position is represented as a waveform with respect to the time axis, and the waveform is calculated as a winding index by the following equation. Winding index f (x) 2 dx where t is the measurement time (seconds)
  • the magnetic tape manufactured by the method described above is passed through the magnetic tape manufactured by the above-mentioned method so as not to pass through the fixing bar 7, and is run at 50 m at a speed of 400 m / min.
  • the evaluation is made based on the roll shape of the wound magnetic tape.
  • Aluminum was deposited on the film surface, using a two-beam interference microscope, measuring wave length 0.54 to measure the number of projections indicating the n-th or more interference fringes by m, n order or number of protrusions in the measurement area 5 cm 2 Is converted to the number per 1 cm 2 . This measurement was performed five times, and the average value was evaluated as the number of protrusions of the nth order or more of interference fringes.
  • Magnetic tape (1Z2 inch width, manufactured by the method described in (10)) was counted with a commercially available dropout counter (for example, Shibasoku VH01BZ type) for 5 sec xi OdB dropout for 1 minute. Is calculated.
  • a VHS VTR (BR6400, manufactured by VIC Yuichi Co., Ltd.) was modified.
  • a 4MHz sine wave was input to the recording / playback head through an amplifier, recorded on a magnetic tape, played back, and the playback signal was used as a spectrum analyzer. Enter one.
  • Carrier signal 4M Measures noise generated at a distance of 0.1 MHz from 112, and expresses the ratio of carrier to noise (C / N) in dB.
  • the above-described magnetic tape was measured, and Examples 1 to 8 and Comparative Examples:! 6 to 6, and those of Examples 9 to 16 and Comparative Examples 7 to 18 based on Comparative Example 15 ( ⁇ OdB). The difference is regarded as the electromagnetic conversion characteristic.
  • the present invention will be described in more detail with reference to Examples.
  • the entire cake was added to 6000 g of pure water to form a slurry again, and the mixture was stirred at room temperature and 60 rpm for 1 hour, and then again for 1 hour under reduced pressure.
  • a cake having a water content of 40% from which excess emulsifier and silane coupling agent were removed was obtained.
  • the cake was subjected to a reduced pressure treatment at 100 ° C. and 15 torr for 10 hours to obtain about 400 g of silicon resin fine particle powder having little aggregated particles.
  • the amounts of the catalyst and the surfactant were adjusted to adjust the average particle diameter to 0.5 ⁇ , 0.6 m, 0.7 m, 1.2 / im, 1.5 m, 2.0 m m fine particles were obtained.
  • the polyethylene terephthalate pellets After drying the polyethylene terephthalate pellets at 170 ° C for 3 hours, it is supplied to an extruder hopper and melted at a melting temperature of 280 to 300 ° C.
  • the obtained biaxially oriented film was heat-set at a temperature of 205 ° C for 5 seconds to obtain a heat-set biaxially oriented polyester film having a thickness of 14.
  • Table 1 shows the measurement results of the average particle size, volume shape factor, relative standard deviation, and number of coarse particles of the silicone resin particles in the obtained film. The average particle size was the same as the value determined by the centrifugal sedimentation method.
  • Table 2 shows the properties of the obtained film.
  • polyethylene terephthalate for the polyester layer A was obtained by the same production method. Further, for the layer B of the polyester film, polyethylene terephthalate was obtained by the same production method as in Example 1 without adding any fine particles.
  • Each of these polyethylene terephthalate pellets was dried at 170 ° C for 3 hours, then fed to two extruder hoppers, melted at a melting temperature of 280 to 300 ° C, and mixed with a multi-manifold type.
  • Layer A is laminated on both sides of layer B using an extrusion die, and extruded on a rotating cooling drum with a surface finish of about 0.3 s and a surface temperature of 20 ° C. Obtained.
  • the unstretched laminated film thus obtained was stretched and heated in the same manner as in Example 1. It was fixed to obtain a heat-fixed biaxially oriented laminated polyester film having a thickness of 14 m.
  • the thickness of each layer was adjusted by changing the discharge rates of the two extruders.
  • the thickness of each layer was determined by a combination of the fluorescent X-ray method and a method in which a film was cut into thin slices and a boundary surface was searched with a transmission electron microscope.
  • Table 2 shows the properties of the film thus obtained.
  • the film according to the present invention has very few coarse protrusions, little dropout, excellent electromagnetic conversion characteristics, and excellent characteristics of abrasion resistance and scratch resistance.
  • the polyethylene terephthalate pellets After drying the polyethylene terephthalate pellets at 170 ° C for 3 hours, it is supplied to an extruder hopper and melted at a melting temperature of 280 to 300 ° C. Through a slit die, and extruded onto a rotary cooling drum having a surface finish of about 0.3 s and a surface temperature of 20 ° C. to obtain an unstretched film having a thickness of 200 m.
  • the unstretched film obtained in this way is preheated at 75 ° C, and further heated between three low-speed and high-speed rolls by three IR heaters with a surface temperature of 800 ° C from 15 mm above. Then, it was stretched 3.2 times, quenched, and then supplied to stainless steel overnight, and stretched 4.3 times in the transverse direction at 120 ° C.
  • the obtained biaxially oriented film was heat set at a temperature of 205 ° C. for 5 seconds to obtain a heat fixed biaxially oriented polyester film having a thickness of 14 m.
  • Table 3 shows the results of measuring the average particle size, volume shape factor, relative standard deviation, etc. of the silicone resin particles A, inert fine particles B, and inert fine particles C in the film.
  • Table 4 shows the physical property values of the obtained heat-set biaxially oriented polyester film.
  • Example 2 Using the same inert fine particles as in Example 1, and using the same manufacturing method A polyethylene terephthalate for a layer A layer was obtained.
  • polyethylene terephthalate was obtained for the polyester film B layer by the same production method as in Example 1 without adding any fine particles.
  • these polyethylene terephthalate pellets After drying these polyethylene terephthalate pellets at 170 ° C for 3 hours, they are fed to two extruder hoppers, melted at a melting temperature of 280 to 300 ° C, and Layer A was laminated on both sides of layer B using an extrusion die, and extruded onto a rotating cooling drum with a surface finish of about 0.3 s and a surface temperature of 20 ° C to obtain an unstretched film with a thickness of 200 m. .
  • the unstretched laminated film thus obtained was stretched and heat-set in the same manner as in Example 1 to obtain a heat-set biaxially oriented laminated polyester film having a thickness of 14 im.
  • each layer was adjusted by changing the discharge rates of the two extruders.
  • the thickness of each layer was determined by the combined use of a fluorescent X-ray method and a method of cutting a film into thin slices and searching for a boundary surface with a transmission electron microscope.
  • Table 3 shows the average particle size, volume shape factor, etc. of the particles A, B, and C in the obtained film.
  • Table 4 shows the characteristics of the obtained film.
  • the one according to the present invention has very few coarse projections, excellent dropout and electromagnetic conversion characteristics, and excellent winding and scraping properties. It shows excellent overall properties with excellent abrasion and running durability.
  • Example 1 14. 0 7 1 ⁇ 0.2 ⁇ ⁇ 0.6 0.2 + 2.1
  • Example 2 14. 0 14 2 ⁇ 0.6 ⁇ ⁇ 1. 0 29 0
  • Example 3 14. 0 5 +2 . 8
  • Example 4 14. 0-5 1 ⁇ 0.1 ⁇ ⁇ 0.412 +2.7
  • Example 5 14.0.5! ⁇ 0.1 ⁇ ⁇ 0.3 11 +2.7
  • Example 6 14.0 5 1 ⁇ 0.1 ⁇ ⁇ 0.5 5 +2.6
  • Example 7 1.1.5 11.06 ⁇ 0.2 ⁇ ⁇ 0.6.18 +2.4
  • Example 8 1.0 12.0 5 ⁇ 0.2 ⁇ ⁇ 0.5 17 +2.9 Comparative Example 1 14.0 7 +1.9
  • Comparative Example 2 14. 0 7 3 ⁇ 1.2 ⁇ ⁇ 3.5 90 +2.0 Comparative Example 3 14.0 27 5 X2.8 X ⁇ 1.863 -3.5 Comparative Example 4 14.0 20 4 X 2.2 X ⁇ 2.7 7 75 -3.2 Comparative example 5 14.0 14 3 ⁇ 1.5 ⁇ ⁇ 0.99 28 -0.6 Comparative example 6 14.0 6 1 ⁇ 0.2 ⁇ X 0.5 18 +2.2
  • a layer containing particles A layer float B layer thickness Inert fine particles B Inactive fine particles C ( ⁇ m)
  • Example 9 15 1 ⁇ 0.3 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 10 16 2 ⁇ 0.8 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 11 15 1 ⁇ 0.1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 12 16 2 ⁇ 0.4 ⁇ ⁇ ⁇ ⁇ ⁇ Example 13 15 1 ⁇ 0.3 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 14 15 1 ⁇ 0.3 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 15 13 1 ⁇ 0.3 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 16 11 1 ⁇ 0.3. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 10 11 1 ⁇ 0.3. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

明 細 書 磁気記録媒体用二軸配向ポ 技術分野
本発明は磁気記録媒体用二軸配向ポリエステルフィルムに関し、 更に詳しくは 粗大突起が極めて少なく、 巻き取り性、 耐削れ性、 走行耐久性に優れ、 また安価 な製造コストで製造し得る磁気記録媒体用二軸配向ポリエステルフィルムに関す る。
背景技術
ポリエチレンテレフタレ一トフイルムに代表される二軸配向ポリエステルフィ ルムは、 その優れた物理的、 化学的特性の故に、 種々の用途、 特に磁気記録媒体 用として用いられている。
二軸配向ポリエステルフィルムにおいては、 その滑り性ゃ耐削れ性がフィルム の製造工程及び加工工程の作業性の良否、 さらにはその製品品質を左右する大き な要因となっている。 これらが不足すると、 例えば二軸配向ポリエステルフィル ム表面に磁性層を塗布し磁気テープとして用いる場合に、 コ一ティングロールと フィルム表面との摩擦及び磨耗が激しく、 フィルム表面へのしわおよび擦り傷が 発生しやすい。 また V T Rゃデ一夕カートリッジ用として用いる場合にも、 カセ ット等からの引き出し、 巻き上げその他の操作の際に多くのガイド部、 再生へッ ド等の間で摩擦が生じ、 擦り傷、 歪の発生、 さらにはベースフィルム表面の削れ 等による白粉の発生により、 ドロップアゥトの発生原因となることが多い。 こうした問題に対して特開昭 6 2 _ 1 7 2 0 3 1号公報には、 シリコーン樹脂 微粒子を添加する方法が提案されている。 この方法は改良効果が大きく、 これか らの技術として発展が期待される。
しかしながら、 こうした方法においても、 最近のビデオテープ製造工程におけ る磁性層塗布あるいは力レンダー工程などの生産性向上のための高速化処理や、 ソフトテープの高速ダビング、 更には繰り返し走行 ·巻き戻しなどと云った過酷 な条件下において白粉の発生量が増加するなどの問題が新たに指摘されている。 また、 これまでのシリコーン樹脂微粒子では、 粗大粒子や凝集粒子が多く、 例 えば、 更に高い電磁変換特性が要求されるべ一スフイルムへ使用する場合、 フラ イスペックと称される粗突起が多発し、 問題となっていた。
発明の開示
本発明の目的は、 磁気記録媒体用二軸配向ポリエステルフィルムを提供するこ とにある。
本発明の他の目的は、 粗大突起が極めて少なく、 巻き取り性、 滑り性、 耐削れ 性および走行耐久性に優れた、 磁気記録媒体用二軸配向ポリエステルフィルムを 提供することにある。
本発明のさらに他の目的は、 低い製造コストで製造可能な、 磁気記録媒体用二 軸配向ポリエステルフィルムを提供することにある。
本発明のさらに他の目的は、 特定のシリコ一ン樹脂粒子とともに他の不活性粒 子を含有する、 磁気記録媒体用二軸配向ポリエステルフィルムを提供することに ある。
本発明のさらに他の目的および利点は、 以下の説明から明らかになろう。 本発明によれば、 本発明の上記目的および利点は、 第 1に、
(A) 芳香族ポリエステル
(B) (a) 下記式 (1)
RXS i (OR2) 3 … (1)
ここで R1は炭素数 1〜6のアルキル基またはフエニル基でありそして R 2は 炭素数 1〜 4のアルキル基である、
で表わされるトリアルコキシシランを含むシラン化合物を界面活性剤および水の 存在下で重合しめて得られうる、 下記式 (2)
R1 S i〇3/2 … (2)
ここで R1の定義は上記に同じである、
で表わされる繰返し単位が少なくとも 80重量%を占め、 (b) 実質的に球状でありそして
(c) 平均粒径が 0. 1〜1. 0 /mの範囲にある、
シリコーン樹脂粒子 0. 01〜0. 3重量%、 並びに
(C) 平均粒径が 0. 01〜0. 5 zmの範囲にありそして上記シリコーン樹 脂粒子の平均粒径よりも小さい平均粒径の他の不活性微粒子 0. 05〜1. 0重 を含有する芳香族ポリエステル樹脂組成物よりなることを特徴とする磁気記録媒 体用二軸配向ポリエステルフィルム (以下、 本発明の第 1ポリエステルフィルム ということがある) によって達成される。
また、 本発明によれば、 本発明の上記目的および利点は、 第 2に、
(A) 芳香族ポリエステル
(B) (a) 下記式 (1)
RXS i (OR2) 3 … (1)
ここで R1は炭素数 1〜6のアルキル基またはフエニル基でありそして R 2は 炭素数 1〜4のアルキル基である、
で表わされるトリアルコキシシランを含むシラン化合物を界面活性剤および水の 存在下で重合せしめて得られうる、 下記式 (2)
R1 S i 03/2 … (2)
ここで R 1の定義は上記に同じである、
で表わされる繰返し単位が少なくとも 80重量%を占め、
(b) 実質的に球状でありそして
(c) 平均粒径が 0. 8〜1. 6 mの範囲にある、
シリコーン樹脂粒子 0. 001〜0. 03重量%
( C ) 平均粒径が 0. 4〜 0. Ί mの不活性微粒子 B 0. 1〜 0. 6重量% 並びに
(D) 平均粒径が 0. 01〜0. 3 mでありそしてモース硬度が 7以上の不 活性微粒子 C 0. 05〜 1. 0重量%
を含有する芳香族ポリエステル樹脂組成物よりなることを特徴とする磁気記録媒 体用二軸配向ポリエステルフィルム (以下、 本発明の第 2ポリエステルフィルム ということがある) によって同様に達成される。
以下、 先ず、 本発明の第 1ポリエステルフィルムについて説明し、 つづいて本 発明の第 2ポリエステルフィルムについて説明する。
本発明における芳香族ポリエステルとは、 芳香族ジカルボン酸を主たる酸成分 とし、 脂肪族グリコールを主たるグリコール成分とするポリエステルである。 か 力、るポリエステルは実質的に線状であり、 そしてフィルム形成性、 特に溶融成形 によるフィルム形成性を有する。 芳香族ジカルボン酸としては、 例えばテレフ夕 ル酸、 2, 6—ナフ夕レンジカルボン酸、 イソフタル酸、 ジフエノキシェ夕ンジ カルボン酸、 ビフエニルジカルボン酸、 ジフエ二ルエーテルジカルボン酸、 ジフ ェニルスルホンジカルボン酸、 ジフエ二ルケトンジカルボン酸、 アンスラセンジ カルボン酸等を挙げることができる。 脂肪族グリコールとしては、 例えばェチレ ングリコール、 トリメチレングリコール、 テトラメチレングリコール、 ペンタメ チレングリコ一ル、 へキサメチレングリコール、 デカメチレングリコール等の如 き炭素数 2〜1 0のポリメチレングリコ一ルあるいは 1 , 4—シクロへキサンジ メタノ一ルの如き脂環族ジォ一ル等を挙げることができる。
本発明においては、 ポリエステルとしてアルキレンテレフ夕レート及び Z又は アルキレンナフ夕レンジカルポキシレートを主たる繰返し成分とするものが好ま しく用いられる。
かかるポリエステルのうちでも、 特にポリエチレンテレフタレート、 ポリェチ レン一 2, 6—ナフタレンジカルボキシレートの如きホモポリマ一及び例えば全 ジカルボン酸成分の 8 0モル%以上がテレフタル酸及び/又は 2, 6—ナフタレ ンジカルボン酸であり、 全グリコール成分の 8 0モル%以上がエチレングリコ一 ルであるコポリマ一が好ましい。 その際全酸成分の 2 0モル%以下はテレフタル 酸及び/又は 2, 6—ナフタレンジカルボン酸以外の上記芳香族ジカルボン酸で あることができ、 また例えばアジピン酸、 セバシン酸等の如き脂肪族ジカルボン 酸、 シクロへキサン一 1 , 4—ジカルボン酸の如き脂環族ジカルボン酸等である ことができる。 また、 全グリコ一ル成分の 2 0モル%以下はエチレングリコール 以外の上記ダリコールであることができ、 また例えばハイドロキノン、 レゾルシ ン、 2 , 2 _ビス (4—ヒドロキシフエニル) プロパン等の如き芳香族ジオール、
1 , 4ージヒドロキシジメチルベンゼンの如き芳香環を有する脂肪族ジオール、 ポリエチレングリコ一ル、 ポリプロピレングリコール、 ポリテトラメチレンダリ コール等の如きポリアルキレングリコール (ポリオキシアルキレングリコ一ル) 等であることもできる。
また、 本発明におけるポリエステルには、 例えばヒドロキシ安息香酸の如き芳 香族ォキシ酸、 ω—ヒドロキシカブロン酸の如き脂肪族ォキシ酸等のォキシ力 ルボン酸に由来する成分を、 ジカルボン酸成分およびォキシカルボン酸成分の総 量に対し、 2 0モル%以下で共重合或いは結合するものも包含される。
本発明においてシリコーン樹脂粒子は、 下記式 (2 )
i〇3/2 ··· ( 2 )
ここで、 R 1は炭素数 1〜 4のアルキル基及びフエ二ル基から選ばれる、 で表わされる繰返し単位を少なくとも 8 0重量%で含有する。
上記繰返し単位からなるシリコーン樹脂は、 1つのシリコン原子 (S i ) に着 目すると、 下記式、
R1
一 0 - Si - 0 - 0
I
で表わされる結合単位を有する。 この式において、 3個の酸素原子 (O) のそ れぞれは隣接するシリコン原子(式中に示されていない) とも結合しているから、 結局 2個のシリコン原子によって共有されていることになる。 従って、 繰返し単 位としては、 上記のとおり、 i〇3/2で表現されることになる。
前記式における R 1は炭素数 1〜4のアルキル基およびフエニル基から選ば れる。 該アルキル基としては、 例えばメチル基、 ェチル基、 n—プロピル基、 n 一ブチル基等を挙げることができる。 これらは一種以上であることができる。 シ リコーン樹脂粒子としては、 Rがメチル基のシリコーン樹脂 (ポリメチルシルセ スキォキサン) 粒子が好ましい。 本発明で用いられる上記シリコーン樹脂粒子は、 下記式 (1 )
R X S i (O R 2) 3 … ( 1 )
ここで、 R 1の定義は上記に同じであり、 そして R 2は炭素数 1〜4のアルキ ル基である、
で表わされるトリアルコキシシランを含むシラン化合物を触媒界面活性剤および 水の存在下で重合せしめて製造することができる。 この方法により製造したシリ コーン樹脂粒子を用いると、粗大突起の少ない、品質の良好なフィルムを与える。 上記式 (1 ) 中において、 R 1の定義は前記と同じである。 R 2は炭素数 1〜 4のアルキル基であり、 例えば、 メチル、 ェチル、 n—プロピル、 i s o—ブチ ル、 n _ブチル等である。
かかる化合物としては、 例えばメチルトリメトキシシラン、 フエニルトリメト キシシラン、 ェチル卜リメトキシシラン、 ェチルトリエトキシシラン、 プロピル トリメトキシシラン、 プチルトリメトキシシラン等を挙げることができる。
これらの化合物は単独であるいは 2種以上一緒に併用することができる。 例え ばメチルトリメトキシシランとェチルトリメトキシシランとを併用した場合には、 上記式で表わされる繰返し単位中の R 1がメチル基であるものとェチル基である ものを含む共重合シリコーン樹脂粒子が得られる。
界面活性剤としては、 例えば、 ポリオキシエチレンアルキルェ一テル、 ポリオ キシエチレンアルキルフエニルエーテル、 ポリオキシエチレンソルビタンアルキ ルエステル、 アルキルベンゼンスルホン酸塩等が挙げられる。 中でもポリオキシ エチレンアルキルフエニルエーテル、 アルキルベンゼンスルホン酸塩が好ましく 用いられる。 ポリオキシエチレンアルキルフエ二ルェ一テルとしてはノニルフエ ノールのエチレンォキシド付加物が、 アルキルベンゼンスルホン酸塩としてはド デシルベンゼンスルホン酸ナトリゥム等が好ましい具体例として挙げられる。 このような界面活性剤を用いずにシリコーン樹脂粒子を重合した場合、 実質的 に球状でない不定形の粗大粒子数が多くなり、 例えばフィルムにした時の粗大突 起の原因となってしまう。
本発明で用いられるシリコーン樹脂粒子は実質的に球状であり、 好ましくは体 積形状係数が 0.4〜0. 52の範囲にある。 また、 かかるシリコーン樹脂粒子の 平均粒径は 0. 1〜: 1. O^mの範囲にある。 平均粒径が 0. 1 / m未満ではフィ ルムに含有されてフィルムに滑り性ゃ耐削れ性を付与し難く、 一方 1.0/ mを 超えるとフィルムに含有されてフィルムの表面平坦性を阻害し易くなる。 好まし くは、 平均粒径は 0.2〜0.6 mの範囲にある。
また、 かかるシリコーン樹脂微粒子の含有量は 0. 01〜0. 3重量%、 好ま しくは 0. 01〜0. 2重量%、 さらに好ましくは 0. 01〜0. 1重量%であ る。 この含有量が 0. 01重量%未満ではフィルムの滑り性が悪くなり、 一方、 含有量が 0. 3重量%を超えるとフィルム表面が粗くなり、 電磁変換特性が悪化 したり、 耐削れ性が悪化する等の問題が生じる。
シリコーン樹脂粒子は、 好ましくは、 相対標準偏差値が 0. 3以下である粒径 分布を有する。
シリコーン樹脂粒子は、 好ましくは、 平均粒径の 3倍以上の粒径を持つ粒子を、 粒子 100万ケ当り 30ケ以下でしか含有しない。
また、 本発明で用いられるシリコーン樹脂粒子は、 好ましくは、 粒子表面の水 酸基価として 3〜4 OKOHmg/gの値を持つ。
さらに、 かかるシリコーン樹脂粒子は、 シランカップリング剤で表面処理して 用いることができる。 この表面処理を施すことにより、 フィルムの耐削れ性を大 巾に向上させることができる。
シランカップリング剤としては、 不飽和結合を有するビニルトリエトキシシラ ン、 ビニルトリクロルシラン、 ビニルトリス (;3—メトキシェトキシ) シラン など、 アミノ系シランの N— 3 (アミノエチル) ァ一ァミノプロピルメチルジ メトキシシラン、 N— 3 (アミノエチル) ア一ァミノプロピルトリメトキシシ ラン、 r—アミノプロビルトリメトキシシラン、 ァ一ァミノプロピルトリエト キシシラン、 N—フエニル一ァ一ァミノプロビルトリメトキシシランなど、 ェ ポキシ系シランの) 3 (3, 4 _エポキシシクロへキシル) ェチル卜リメトキシ シラン、 7"—グリシドキシブロピルトリメトキシシラン、 ァ一グリシドキシプ 口ピルメチルジェトキシシラン、 ァーダリシドキシプロピルトリエトキシシラ ンなど、 メ夕クリレート系シランの rーメタクリロキシプロピルメチルジメト キシシラン、 ァ一メタクリロキシプロピルトリメトキシシラン、 ァ一メタクリ ロキシプロピルメチルジェトキシシラン、 ァ—メ夕クリロキシプロビルトリエ トキシシランなど、 更にはァ一メルカプトプロビルトリメトキシシラン、 了一 クロ口プロピル卜リメトキシシランなどが例示される。 これらの中、 エポキシ系 シランカップリング剤が取り扱い易さ、 ポリエステルへ添加したときフィルムに おける色の付き難さや耐削れ性の効果が大きいことなどから好ましい。
また、 シランカップリング剤による表面処理は合成直後のシリコ一ン樹脂粒子 スラリー (水スラリー又は有機溶媒スラリー) を濾過又は遠心分離機などで処理 してシリコーン樹脂粒子を分離した後、 乾燥前にシラン力ップリング剤を分散さ せた水又は有機溶媒で再度スラリー化し、 加熱処理後再度粒子を分離し、 次いで 分離した粒子を乾燥する。 シランカツプリング剤の種類によっては更に熱処理を 施す方法が実用的で好ましい。 一旦乾燥されたシリコーン樹脂微粒子を同様の方 法で再度スラリー化処理しても良く、 処理方法については特に限定されるもので はない。
シランカツプリング剤で表面処理されたシリコーン樹脂粒子は、 好ましくは、 粒子表面の水酸基価として 3〜 1 O KOHm gZ gの値を持つ。
本発明におけるシランカツプリング剤で表面処理されたシリコーン樹脂粒子は 特に優れて、 白粉などの発生を防止し、 耐削れ性を向上させる。 そのメカニズム は、 一つはシリコーン樹脂粒子中の、 たとえば出発原料成分や、 原料の一つであ るオルガノトリアルコキシシランの加水分解物などの未反応物、 あるいはシリコ —ン樹脂中の末端シラノール基などがシランカップリング剤と化学的に結合する ことにより安定化することで、 未処理の状態で発生していたこれらの物質のフィ ルム表面への偏折あるいは逃散などの作用を防止すること、 更には、 粒子へのシ ランカップリング剤の吸着により、 もともとポリエステルとの親和性に劣ると見 られるシリコーン樹脂微粒子の親和性が向上し、 削れによる微粒子の脱落や、 微 粒子周辺のポリエステルの削れ粉などの白粉の発生が押さえられるためではない かと思われる。 本発明の第 1ポリエステルフィルムは、 さらに他の不活性微粒子を含有する。 他の不活性微粒子は平均粒径が 0. 01〜 0. 5 a mの範囲であり、 かつ前 記シリコーン樹脂微粒子の平均粒径より小さいものであることが必要である。 こ の不活性微粒子の平均粒径が 0. 01 m未満では滑り性、 耐スクラッチ性が 悪化し、 一方、 0. 5 /mを超えると耐削れ性、 耐スクラッチ性が悪化し、 ま たフィルム表面が粗くなり、 電磁変換特性が悪化する。
この他の不活性微粒子の平均粒径がシリコーン樹脂微粒子の平均粒径より大き いものであると、 シリコーン樹脂微粒子を含有する効果が低下し、 滑り性、 耐削 れ性等が悪化する。
他の不活性微粒子の平均粒径は好ましくは 0. 01〜0. 3 mであり、 さ らに好ましくは 0. 01〜0. 15 mである。
また、 他の不活性微粒子の含有量は 0. 05〜1. 0重量%である必要がある。 この含有量が 0. 05重量%未満では滑り性、耐スクラッチ性が悪化し、 一方 1. 0重量%を超えると削れ性が悪化する。 この含有量は好ましくは 0. 1〜0. 6 重量%であり、 さらに好ましくは 0. 2〜0. 4重量%である。
他の不活性微粒子としては、 例えば (1) 二酸化ケイ素 (水和物、 ゲイ砂、 石 英等を含む) ; (2) 各種結晶形態のアルミナ; (3) 3102成分を30重量% 以上含有するケィ酸塩 (例えば非晶質あるいは結晶質の粘土鉱物、 アルミノシリ ケ一ト (焼成物や水和物を含む) 、温石綿、 ジルコン、 フライアッシュ等) ; (4) Mg、 Zn、 Z r、 および T iの酸化物; (5) C aおよび B aの硫酸塩; (6) L i、 B aおよび C aのリン酸塩 (1水素塩や 2水素塩を含む) ; (7) L i、 N aおよび Kの安息香酸塩; (8) Ca、 Ba、 Z nおよび Mnのテレフタル酸 塩; (9) Mg、 Ca、 Ba、 Zn、 Cd、 Pb、 S r、 Mn、 Fe、 Coおよ び N iのチタン酸塩; (10) B aおよび P bのクロム酸塩; (11) 炭素 (例 えばカーボンブラック、 グラフアイト等) ; (12) ガラス (例えばガラス粉、 ガラスビーズ等) ; (13) Caおよび Mgの炭酸塩; (14) ホ夕ル石; (1 5) スピネル型酸化物等が挙げられる。 これらのうち、 より良好な耐削れ性、 耐 スクラッチ性を与えるという観点から、 酸化アルミニウム、 シリカ粒子およびス ピネル型酸化物の粒子が特に好ましい。
本発明の第 1ポリエステルフィルムは、 フィルム表面の中心線平均粗さ R aが 1 O nm以下である場合に特に優れた電磁変換特性が得られるので好ましい。 特 に好ましい R aは 3〜 1 0 nmの範囲にある。
本発明の第 1ポリエステルフィルムは、 前記のように単層フィルムとしても優 れた特性を有するが、 他のフィルム層との積層構造をとることにより、 さらに平 坦性にも優れ、 かつ安価な製造コストで製造し得る二軸配向積層ポリエステルフ イルムとなる。
すなわち、 本発明によれば、
本発明の第 1ポリエステルフィルムおよびこのフィルムが少なくとも片面に積 層された他の芳香族ポリエステルフィルムからなりそして上記本発明の第 1ポリ エステルフィルムが 0 . 1〜1 . 0 / mの厚みを持つ、 磁気記録媒体用二軸配 向ポリエステルフィルムが同様に提供される。
本発明におけるボリエステルフィルムがこのように積層構造をとる場合、 本発 明の第 1ポリエステルフィルムを A層とし、 他のポリエステルフィルム B層の少 なくとも片面に A層を積層する構造をとる。 積層形態としては A層 ZB層の 2層 構造、 A層 ZB層/ A層の 3層構造であることが好ましい。 このうち 3層構造の 方がポリエステルフィルムの製造工程で発生する屑フイルムを回収し、 ポリエス テルフィルム B層に使用または配合し、 再利用することができるので製造コスト の面でより好ましい。
ポリエステルフィルム B層を構成するポリエステルとしては、 前記ポリエステ ルフィルム A層を構成するポリエステルとして説明、 例示したものと同じものが 説明、 例示されるが、 ポリエステルフィルム A層と同じものであることが好まし レ^
このような積層フィルムにおいては、 ポリエステルフィルム B層は、 不活性微 粒子を含有していても、 含有していなくてもよいが、 不活性微粒子を含有する場 合、 ポリエステルフィルム A層の含有量に対し、 5 0 %未満の含有量であること が好ましい。 ポリエステルフィルム A層の含有量に対し、 5 0 %以上の含有量で あると、 ポリエステルフィルム A層の特性に影響を及ぼすので好ましくない。 積層フィルムにおけるポリエステルフィルム A層の厚みは、 0 . 1〜2 . 0 mである。 この厚みが 2 . 0 を超えると単層フィルムと変わらない特性 となり、 他方 1 未満であると粒子が脱落しやすく、 耐削れ性が悪くな り、 また平坦になりすぎるため、 滑り性も悪化するので好ましくない。
本発明の第 1ポリエステルフィルムは、 耐削れ性に優れており、 好ましくは、 ブレード刃先に付着する削れ粉付着巾が 0 . 5 mm未満である耐ブレード削れ性 しか示さない。
また、 本発明の第 1ポリエステルフィルムは、 好ましくは表面の 2次以上の干 渉縞による突起が 1 . 5ケ Z c m2以下である。 かかるポリエステルフィルムは 磁気記録媒体として使用する際のド口ップアゥトが極めて少なくなるので好まし い。
次に、 本発明の第 2ポリエステルフィルムについて記述する。
本発明の第 2ポリエステルフィルム、 上記のとおり、 (A) 芳香族ポリエステ ル、 (B) シリコーン樹脂粒子、 (C) 平均粒径が 0. 4〜0. 7 /i mの不活性 微粒子 (以下不活性微粒子 Bという) および (D) 平均粒径が 0. 0 1〜0. 3 mでありそしてモース硬度が 7以上の不活性微粒子 (以下不活性微粒子 Cと いう) を含有する芳香族ポリエステル組成物からなる。
芳香族ポリエステル (A) としては、 第 1ポリエステルフィルムについて記載 したものと同じものを使用することができる。 芳香族ポリエステルについてここ に記載のない事項は、 第 1ポリエステルフィルムについて記載した事項がそのま ま適用されると理解されるべきである。
シリコーン樹脂粒子 (B) は、 第 1ポリエステルフィルムにおいて用いられた シリコーン樹脂粒子と同じ組成を有しそして同じ方法で好適に製造される。
し力、しながら、 ここで用いられるシリコーン樹脂粒子は平均粒径が 0. 8〜1. 6 mの範囲にある。 平均粒径が 0 . 8 /x m未満ではフィルムの滑り性や巻き 取り性の向上効果が小さく、 一方 1 . 6 mを超えるとフィルムの表面平坦性 が得られ難いため好ましくない。 平均粒径は好ましくは 0. 9〜1.2 mである。
シリコーン樹脂粒子の含有量は 0.001-0. 03重量%であり、 非常に少な い。
好ましくは 0. 001〜0. 02重量%、 さらに好ましくは 0. 001〜0. 01重量%である。 この含有量が少なすぎると滑り性、 巻き取り性が悪化し、 一 方含有量が多すぎるとフィルム表面が粗くなり、 電磁変換特性が悪化したり、 削 れ性が悪化する等の問題が生じるため、 好ましくない。
シリコーン樹脂粒子およびその製造方法に関して、 ここに記載のない事項は第 1ポリエステルフィルムについて記載した事項がそのまま適用されると理解され るべきである。
第 2ポリエステルフィルムは、 さらに、 不活性微粒子 Bおよび Cを含有する。 不活性微粒子 Bは、 平均粒径 dB が 0. 4〜0. 7 mの範囲内にある粒子 であり、 この含有量は 0. 1〜0. 6重量%の範囲内にある。 不活性微粒子 Bの 平均粒径 d Bおよび含有量がそれぞれ上記範囲より小さいと、 フィルムの滑り性 が悪く、 巻き取りが困難となり、 テープの走行が不安定となる。 他方、 上記範囲 より大きいとフィルムの耐削れ性が悪化する。 不活性微粒子 Bの平均粒径 d Bは 0. 4〜0. 65 mの範囲内にあることが好ましく、 0. 4〜0. 6 mの 範囲内にあることが更に好ましい。 不活性微粒子 Bの含有量は 0. 15〜0. 5 重量%の範囲内にあることが好ましく、 0. 2〜0. 4重量%の範囲内にあるこ とが更に好ましい。
不活性微粒子 Bの種類としては、 特に限定されないが、 例えば (1) 二酸化ケ ィ素 (水和物、 ケィ砂、 石英等を含む) ; (2) 各種結晶形態のアルミナ; (3) S i 02分を 30重量%以上含有するケィ酸塩 (例えば非晶質あるいは結晶質の 粘土鉱物、 アルミノシリケート (焼成物や水和物を含む) 、 温石綿、 ジルコン、 フライアッシュ等) ; (4) Mg、 Zn、 Z r、 及び T iの酸化物; (5) Ca、 及び B aの硫酸塩; (6) L i、 Ba、 及び C aのリン酸塩 (1水素塩や 2水素 塩を含む) : (7) L i、 Na、 及び Kの安息香酸塩; (8) Ca、 Ba、 Zn、 及び Mnのテレフタル酸塩; (9) Mg、 Ca、 Ba、 Zn、 Cd、 Pb、 S r、 Mn、 Fe、 Co、 及び N iのチタン酸塩; (10) Ba、 及び Pbのクロム酸 塩; (1 1) 炭素 (例えば力一ポンプラック、 グラフアイト等) ; (12) ガラ ス (例えばガラス粉、 ガラスビーズ等) ; (13) Ca、 及び Mgの炭酸塩; (1
4) ホタル石; (15) Znなどが好ましく挙げられる。 中でも炭酸カルシウム が最も好ましい。
不活性微粒子 Cはモース硬度が 7以上の不活性無機微粒子であり、 この平均粒 径 dcは 0. 01〜0. 3 mの範囲内にあり、 またこの含有量は 0. 05〜丄.
0重量%の範囲内にある。 不活性無機微粒子 Cのモース硬度が 7未満ではフィル ムの耐スクラッチ性が不十分となり、 好ましくない。 モース硬度が 7以上の不活 性無機微粒子としては、 酸化アルミニウム (アルミナ) 、 スピネル型酸化物から なる粒子であることが好ましい。
不活性無機微粒子 Cが酸化アルミニウム (アルミナ) からなる粒子の場合、 結 晶構造が 0型結晶であると、 フィルムの耐スクラッチ性の改善効果がより大き いので好ましい。 また、 不活性無機微粒子 Cがスピネル型酸化物からなる粒子の 場合、 MgA l 24であると、 フィルムの耐スクラッチ性の改善効果がより大 きいので好ましい。
不活性無機微粒子 Cの平均粒径 d cおよび含有量が上記範囲より小さいと、 耐 スクラッチ性の改善効果が不充分で好ましくない。 他方、 上記範囲より大きいと 耐スクラッチ性の改善効果が不充分であつたり、 耐削れ性が悪化したりするので 好ましくない。 不活性無機微粒子 Cの平均粒径 dcは 0. 03〜0. 25 mの 範囲内にあることが好ましく、 0. 05〜0. 2 zmの範囲内にあることが更 に好ましい。 また、 この含有量は 0. 1〜0. 7重量%の範囲内にあることが好 ましく、 0. 15〜0. 4重量%の範囲内にあることが更に好ましく、 0. 2重 量%以上 0. 25重量%未満の範囲内にあることが最も好ましい。
本発明の第 2ポリエステルフィルムは中心線平均粗さ R aが 10〜25 nm、 更には 12〜24nm、 特に 14〜 23 nmであることが好ましい。 この中心線 平均粗さ R aが 1 Onm未満では、 表面が平坦すぎるため、 巻き取り性、 走行耐 久性に対する改善効果が小さく、 他方 25 nmより大きいと、 表面が粗すぎるた め、 磁気テープとしたときの電磁変換特性が悪化するので好ましくない。
本発明の第 2ポリエステルフィルムは、 上述のように単層フィルムとしても優 れた特性を有するが、 他のフィルム層との積層構造をとることにより、 更に平坦 性にも優れ、 かつ安価な製造コス卜で製造し得る二軸配向積層ポリエステルフィ ルムとなる。
すなわち、 本発明によれば、
本発明の第 2ポリエステルフィルムおよびこのフィルムが少なくとも片面に積 層された他の芳香族ポリエステルフィルムからなりそして上記本発明の第 2ポリ エステルフィルムが 0. 5〜2 . 0 / mの厚みを持つ、 磁気記録媒体用二軸配 向ポリエステルフィルムが提供される。
本発明においてポリエステルフィルムがこのように積層構造をとる場合、 本発 明の第 2ポリエステルフィルムを A層とし、 他のポリエステルフィルム B層の少 なくとも片面に積層する構造をとる。 積層形態としては A層/ B層の 2層構造、 A層 ZB層 ZA層の 3層構造であることが好ましいが、 3層構造の方がポリエス テルフィルムの製造工程で発生する屑フィルムを回収し、 ポリエステルフィルム B層に使用又は配合し、 再利用することができるので製造コス卜の面でより好ま しい。
ポリエステルフィルム B層を構成するポリエステルとしては、 前述のポリエス テルフィルム A層を構成するポリエステルとして説明、 例示したものと同じこと が説明、 例示されるが、 ポリエステルフィルム A層と同じものであることが好ま しい。
本発明の積層フィルムにおいては、 ポリエステルフィルム B層は、 不活性粒子 を含有していなくてもよいが、 B層中に平均粒径 0 . 4 以上の不活性粒子、 例えば前記のシリコーン樹脂微粒子 A、 不活性微粒子 B等を、 この含有量 (wB) が下記式を満足する割合で含有させると、 ポリエステルフィルムの製造工程で生 じる屑フィルムを回収して B層内に使用できるので、 好ましい。
LA R
B = Ax " ~ i_R 但し、 WAはポリエステルフィルム A層中のシリコ一ン樹脂微粒子 A及び不活性 微粒子 Bの総含有量 (重量%) 、
WBはポリエステルフィルム B層中の平均粒径 0. 4 m以上の不活性粒子の含 有量 (重量%) 、
LAはポリエステルフィルム A層の総厚み (/ m) 、
LBはポリエステルフィルム B層の厚み (μπι) 、
Rは 0. 3〜0. 7の数値
である。
上記式において R (値) が 0. 7を超えたり、 0. 3未満であると、 回収フィ ルムを使用したときのポリエステルフィルム Β層の平均粒径が 0. 4 m以上 の不活性粒子の含有量の変動が大きくなり、 その結果ポリエステルフィルム A層 の表面の粗さも変動が大きくなるので、 好ましくない。 好ましい R (値) は 0. 4〜0. 6である。 また平均粒径が 0. 4 m未満の小粒径不活性粒子は、 ポ リエステル B層に含有されていてもポリエステルフィルム A層の表面へ与える影 響は小さい。
上記の積層フィルムは、 ポリエステルフィルム A層の厚みを特定の範囲とする ことにより、 A層表面の表面性を特定の範囲にコントロールできるが、 ポリエス テルフィルム A層の厚みは 0. 5〜2. 0 mの範囲内にある必要がある。 こ の厚みが 2. 0 / mより大きいと、 単層フィルムと変わらない特性となり、 他 方 0. 50 m未満であると粒子が脱落しやすく、 耐削れ性が悪化し、 かつ平 坦になりすぎるため走行耐久性、 巻き取り性も悪化する。
本発明の第 2ポリエステルフィルムは、 第 1ポリエステルフィルムと同様に 耐削れ性に優れており、 ブレード刃先に付着する削れ粉付着巾が 0. 5 mm未満 である耐ブレード削れ性を示す。
また、 本発明の第 2ポリエステルフィルムは、 好ましくは、 表面の 3次以上の 干渉縞による突起が 1. 0ケ Z cm2以下である。
かかるポリエステルフィルムは、 磁気記録媒体として使用する際ド口ップアゥ トが極めて少なくなるので好ましい。 本発明の第 2の二軸配向ポリエステルフィルムは、 単層フィルム及び積層フィ ルムのいずれでも、 巻き取り速度 200m/分における巻き取り性指数が 100 以下であることが好ましい。 巻き取り性指数が 100以下であると、 巻き取り性 に対する改善効果が顕著であるので好ましい。 他方、 巻き取り性指数が 100よ り大きいと、 高速で巻き取った際、 端面が不揃いになるなどして巻き形状が悪ィ匕 したり、 ひどい場合には巻き取り中に巻きくずれたりするので好ましくない。 巻 き取り速度 20 OmZ分における巻き取り性指数は、 より好ましくは 85以下で あり、 特に好ましくは 70以下である。
本発明の二軸配向ポリエステルフィルムは、基本的には従来から知られている、 あるいは当業界に蓄積されている方法で得ることができる。 例えば、 先ず未延伸 フィルムを製造し、次いで該フィルムを二軸配向させることで得ることができる。 未延伸フィルムは、 例えば、 融点 (Tm:。 C) 〜 (Tm+70) °Cの温度でポ リエステルをフィルム状に溶融押出し、 急冷固化して固有粘度 0. 35〜0. 9 d 1 Zgの未延伸フィルムとして得ることができる。
この未延伸フィルムは、 更に従来から蓄積された二軸配向フィルムの製造法に 準じて、 二軸配向フィルムとすることができる。 例えば、 未延伸フィルムを一軸 方向 (縦方向又は横方向) に (Tg— 10) 〜 (Tg + 70) °Cの温度 (但し、 Tg:ポリエステルのガラス転移温度) で 2. 5〜7. 0倍の倍率で延伸し、 次 いで上記延伸方向と直角方向 (一段目延伸が縦方向の場合には、 二段目延伸は横 方向となる) に Tg CO 〜 (Tg+70) °Cの温度で 2. 5〜7. 0倍の倍 率で延伸することで製造できる。 この場合、 面積延伸倍率は 9〜 32倍、 更には 12〜32倍にするのが好ましい。 延伸手段は同時二軸延伸、 逐次二軸延伸のい ずれでも良い。 更に、 二軸配向フィルムは、 (Tg+70) °C〜Tm (°C) の 温度で熱固定することができる。 例えばポリエチレンテレフタレ一トフィルムに ついては 190〜230°Cで熱固定することが好ましい。 熱固定時間は、 例え ば:!〜 60秒である。
また、 積層フィルムの場合は、 先ず積層未延伸フィルムを製造し、 次いで該積 層未延伸フィルムを上述の方法と同様の方法で二軸配向させることで得ることが できる。
この積層未延伸フィルムは、 従来から蓄積された積層フィルムの製造法で製造 することができる。 例えば、 表面を形成するフィルム層 (ポリエステル A層) と、 芯層を形成するフィルム層 (ポリエステル B層) とを、 溶融状態又は冷却固化さ れた状態で積層する方法を用いることができる。 さらに具体的には、 例えば共押 出、 ェクストル一ジョンラミネート等の方法で製造できる。
本発明の二軸配向ポリエステルフィルムは、 好ましくは 3〜20 mの範囲 のフィルム厚を有することができる。
本発明の二軸配向ポリエステルフィルムは、 特定のシリコーン樹脂微粒子と他 の特定の不活性粒子を組み合わせて含有しており、 粗大突起が極めて少なく、 か つ巻き取り性、 耐削れ性、 走行耐久性にも優れているので、 磁気記録媒体用のベ —スフイルムとして有用である。
なお、 本発明における種々の物性値および特性は以下の如く測定されたもので あり、 かつ定義される。
(1) 粒子の平均粒径 (d)
( i) 粒体から平均粒径を求める場合 (遠心沈降法)
島津製作所製 CP— 50型セントリフユダル パーティクル サイズ アナ ライザ一 (Centrifugal Particle Size Analyzer) を用いて測定する。 得られる 遠心沈降曲線を基に算出した粒径とその粒径を有する粒子の存在量との積算曲線 から、 50マスパーセントに相当する粒径を読み取り、 この値を平均粒径とする ( 「粒度測定技術」 日刊工業新聞社発行、 1975年、 頁 242〜 247参照) 。
(ii) フィルム中の粒子の場合
試料フィルム小片を走査型電子顕微鏡用試料台に固定し、 日本電子 (株) 製ス パッ夕一リング装置 ( J FC— 1100型イオンエッチング装置) を用いてフ イルム表面に下記条件にてイオンエッチング処理を施す。 条件は、 ペルジャ一内 に試料を設置し、 約 10— 3To r rの真空状態まで真空度を上げ、 電圧 0. 2 5 kV、 電流 12. 5mAにて約 10分間イオンエッチングを実施する。 更に同 装置にて、 フィルム表面に金スパッ夕一を施し、 走査型電子顕微鏡にて 50, 0 00〜10, 000倍で観察し、 日本レギユレ一ター (株) 製ル一ゼックス 50 0にて少なくとも 100個の粒子の等価球径分布を求め、 その重量積算 50 %の 点より算出する。
(2) 体積形状係数 (f)
走査形電子顕微鏡によりシリコーン樹脂微粒子の写真を 5000倍で 10視野 撮影し、 画像解析処理装置ルーゼックス 500 (日本レギユレ一夕一製) を用い て最大径の平均値を各視野毎に算出し、更に 10視野の平均値を求め、 Dとする。 上記 (1) 項で求めた粒子の平均粒径 (d) を用いて粒子の体積を v=丁 d 3
0 によって算出し、 形状係数 f を次式により算出する。
f =V/D3
式中 Vは粒子の体積 ( im3) 、 Dは粒子の最大径 ( zm) を表わす。
(3) 粒子径の相対標準偏差
上記 (1) 項の積算曲線より差分粒度分布を求め、 次の相対標準偏差の定義式 にもとづいて相対標準偏差を算出する。
相対標準偏差 = n
∑ (Di-DA): ΐ/DA
i =l こで、
D i (1) 項で求めた各々の粒径
DA (1) 項で求めた平均径
n (1) 項での積算曲線を求めたときの分割数
Φ i 各粒径の粒子の存在確率 (マスパーセント)
を表わす。
(4) ポリマー中の粗大粒子数
(i) ポリマ一解重合法
粒子を含有するポリマーを適量サンプリングし、 エチレングリコール (ポリマ —成分が残留する場合にはトリエチレンダリコールまたはテトラエチレンダリコ ールを使用) を過剰に加え解重合を行う。 次に遠心分離又は濾過にて粒子を取出 し、 エタノールにて該粒子の洗浄を十分に行う。 次に取出した粒子をエタノール に希釈分散させ、 平均粒径の 3倍の目開きの直孔性メンブレンフィルターを用い 濾過を行う。 濾過が終了した時点でさらにエタノールでフィルター表面を洗浄濾 過する。 濾過後、 フィル夕一を乾燥しフィルタ一に金スパッ夕一を施し、 走査型 電子顕微鏡にて 5 0 0〜1 0 0 0倍で観察し、 フィルタ一上の粗大粒子をカウン トする。 濾過に使用した粉体重量を該粒子の平均粒径および密度より個数換算し て全粒子数を求め、 上記粗大粒子数を、 粒子 1 0 0万個当たりの数に換算し、 粗 大粒子数とする。
(i i) ポリマー溶解法
球状粒子を含有するポリマーを適量採取して、 これに E- s o 1液 (1, 1, 2, 2テト ラクロルェタン:フエ -ノ-ル =40 : 60wt %比) を過剰に加え撹拌しつつ 1 2 0〜 1 4 0 °Cま で昇温、 約 3〜5 H r保持しポリエステルを溶解させる。 但し、 結晶化部分など が溶解しない場合は、 一度、 加温された E- s o 1液を急冷した後、 再度、 前出 の溶解作業を行う。 次に遠心分離又は濾過にて粒子を取出し、 E- s o 1液にて 粒子に残留するポリマー成分を除去した後、 有機溶媒に希釈分散させ、 平均粒径 の 3倍の目開きの直孔性メンブレンフィルターを用い濾過を行う。 濾過が終了し た時点でさらに有機溶媒でフィルター表面を洗浄濾過する。 濾過後、 フィルター を乾燥しフィルターに金スパッ夕一を施し、 走査型電子顕微鏡にて 5 0 0〜1 0 0 0倍で観察し、 フィルター上の粗大粒子をカウントする。 そして、 前出 (i ) と同様の手法で粗大粒子数を求める。
( 5 ) シリコ一ン樹脂粒子の表面水酸基価
以下の手順で測定する
①予め乾燥し、 付着水分を極力除去したシリコーン樹脂粒子粉末 (以下、 シリ コーン粉末) 1〜3 gを正確に計量する。
②計量したシリコーン粉末にァセチル化剤 (4 -シ'メチルアミノビリシ"ンをキシレンで溶解) と一定量の無水酢酸を過剰に加えてァセチル化を行なう。
③一定量のジー n—プチルァミンを②のァセチル化後の液に過剰に加え、 ②で 過剰の無水酢酸をァセチル化する。
④ブロムフエノールブルー溶液を指示薬とし、 力価測定済みの塩酸溶液にて③ で過剰のジー n—プチルァミンの滴定を行なう。 尚、 力価は水酸化カリウムを標 準液とし、 メチルオレンジ溶液を用い、 滴定にて求めておく。
⑤①〜④の手順につき空実験を行なう。
空実験との比較を行なうことにより、 水酸基で消費された無水酢酸量を求め、 下記式より水酸基量 [KOHmg/g] を計算する。 水酸基価 = ( (A-B) XF) /S
ここで A:本試験の塩酸溶液の使用量 (m 1 )
B :空試験の塩酸溶液の使用量 (m 1 )
F :塩酸溶液の力価 (KOHmg/m 1 )
S :シリコーン粉末の試料採取量 (g)
(6) フィルムの表面粗さ (Ra)
中心線平均粗さ (Ra) として J I S B 060 1で定義される値であり、 本 発明では (株) 小坂研究所の触針式表面粗さ計 (SURFCORDER SE-30C ) を用いて 測定する。 測定条件等は次の通りである。
(a) 触針先端半径 2 xm
(b) 測定圧力 3 Omg
(c) カツトオフ 0. 25 mm
(d) 測定長 2. 5 mm
(e) デ一夕のまとめ方:同一試料について 6回繰り返し測定し、 最も大きい値 を 1つ除き、 残りの 5つのデータの平均値で表示する。
(7) カレンダー削れ性
ベースフィルムの走行面の削れ性を 3段のミニスーパーカレンダ一を使用して 評価する。 カレンダ一はナイロンロールとスチールロールの 3段カレンダ一であ り、 処理温度は 80°C、 フィルムにかかる線圧は 200 k g./cm、 フィルム スピードは 100m/分で走行させる。 走行フィルムを全長 400 Om走行させ た時点で力レンダ一のトップロールに附着する汚れでベースフィルムの削れ性を 評価する。 (表 2中、 カレンダー削れ性と表示する)
ぐ 5段階判定 >
1級 ナイロンロールの汚れ全くなし
2級 ナイロンロールの汚れほとんどなし
3級 ナイロンロールの汚れ少しあるが、 からぶきで簡単にとれる
4級 ナイロンロールの汚れがからぶきでとれにくく、 アセトン等の溶媒でふ きとれる
5級:ナイロンロールがひどく汚れ、 溶媒でもなかなかとれにくい
(8) ブレード削れ性
温度 20°C、 湿度 60%の環境で、 幅 1Z2インチに裁断したフィルムにブ レ一ド (米国 GKI製工業用力ミソリ試験機用ブレード) の刃先を垂直にあて、 更に 2 mm押し込んで接触させて毎分 10 Omの速さ、 入口テンション1\ = 5 O gで走行 (摩擦) させる。 フィルムが 10 Om走行した後ブレードに付着した 削れ粉量を評価する。
<判定 >
◎:ブレード刃先に付着する削れ粉付着幅が 0. 5mm未満
〇:ブレード刃先に付着する削れ粉付着幅が 0. 5mm以上 1. Omm未満 △:ブレード刃先に付着する削れ粉付着幅が 1. 0 mm以上 2. 0 mm未満 X :ブレード刃先に付着する削れ粉付着幅が 2. Omm以上。
(9) 高速走行スクラッチ性、 削れ性
図 1に示した装置を用いて下記のようにして測定する。
図 1中、 1は巻出しリール、 2はテンションコントローラ一、 3、 5、 6、 8、 9および 11はフリー口一ラ一、 4はテンション検出機 (入口) 、 7は固定棒、 10はテンション検出機 (出口) 、 12はガイド口一ラー、 13は巻取りリール をそれぞれ示す。
温度 20°C、 湿度 60%の環境で、 巾 1/2インチに裁断したフィルムを 7 の固定棒に角度 0 = 60° で接触させて、 毎分 300mの速さで、 入口張力が 50 gとなるようにして 200m走行させる。 走行後に固定棒上 7に付着した削 れ粉および走行後フィルムのスクラッチを評価する。
このとき固定棒として、
SUS 304製で表面を十分に仕上げた 6 φのテープガイド (表面粗さ R a =0. 0 1 5 m) を使った場合を A法、
SUS焼結板を円柱形に曲げた表面仕上げが不充分な 6 φのテープガイド (表 面粗さ R a = 0. 1 5 m) を使った場合を B法、
カーボンブラック含有ポリアセタールの 6 φのテープガイドを使った場合を C法
とする。
<削れ性判定 >
◎:削れ粉が全く見られない
〇: うつすらと削れ粉が見られる
△:削れ粉の存在が一見して判る
X :削れ粉がひどく付着している
ぐスクラッチ性判定 >
©:スクラッチが全く見られない
〇: 1〜 5本のスクラッチが見られる
Δ: 6〜 1 5本のスクラッチが見られる
X : 1 6本以上のスクラッチが見られる
(1 0) 低速繰り返し走行摩擦係数 (; k) 、 スクラッチ性
図 1に示した装置を用いて下記のようにして測定する。
温度 20 °C、 湿度 60 %の環境で、 磁気テープの非磁性面を 7の固定棒に角 度 0= (1 52/1 80) πラジアン (1 52° ) で接触させて毎分 200 c mの速さで移動 (摩擦) させる。 入口テンション 1 が 50 gとなるようにテン シヨンコントローラ一 2を調整した時の出口テンション (T2: g) をフィルム が 50往復走行したのちに出口テンション検出機で検出し、 次式で走行摩擦係数 を算出する。
k= (2. 303/Θ) l o g (T2ノ T\)
= 0. 868 1 o g (Τ2/50)
走行摩擦係数 ( k) が 0. 2 5以上であると、 VTR中で繰り返し走行さ せた場合、 走行が不安定となるため、 この値以上のものを走行耐久性不良と判定 する。
このとき固定棒として、
SUS 304製で表面を十分に仕上げた 6 φのテープガイド (表面粗さ R a =0. 0 1 5 fi ) を使った場合を A法、
SUS焼結板を円柱形に曲げた表面仕上げが不充分な 6 φのテープガイド (表 面粗さ R a = 0. 1 5 / m) を使った場合を B法、
カーボンブラック含有ポリアセタールの 6 φのテープガイドを使った場合を C法
とする。
また、 スクラッチ性は走行後テープの非磁性面スクラッチについて、 下記基準 により判定する。
<スクラッチ性判定 >
◎:スクラッチが全く見られない
〇: 1〜 5本のスクラッチが見られる
Δ: 6〜 1 5本のスクラッチが見られる
X : 1 6本以上のスクラッチが見られる
なお、 磁気テープの製造法は次のとおり行なう。
ァー F e 23 l 00重量部 (以下、 単に 「部」 と記す) と下記の組成物をポ ールミルで 1 2時間混練分散する。
ポリエステルウレタン 1 2部
塩化ビニルー酢酸ビニルー 無水マレイン酸共重合体 10部
ひ一アルミナ 5部
力一ポンブラック 1部
酢酸ブチル 70部
メチルェチルケトン 35部
シクロへキサノン 00部
分散後更に
脂肪酸:ォレイン酸 1部
脂肪酸:パルミチン酸 1部
脂肪酸エステル (アミルステアレート) 1部
を添加してなお 10〜30分混練した。更に、トリイソシァネート化合物の 25% 酢酸ェチル溶液 7部を加え、 1時間高速剪断分散して磁性塗布液を調整する。 得られる塗布液をポリエステルフィルム上に乾燥膜厚が 3. 5 ^mとなるよ うに塗布する。
次いで直流磁場中で配向処理した後、 100°Cで乾燥する。 乾燥後、 カレン ダリング処理を施して 1Z2インチ幅にスリットして、 磁気テープを得る。
(1 1) 巻き取り性指数
図 1に示した装置において、 固定棒 7を経由しないように幅 1Z2インチのフ イルムを通し、 温度 20°C、 湿度 60%の環境において、 200m/分の速度 で 20 Om走行させ、 巻き取りリール 13で巻き取られる直前の位置で CCD力 メラにより端面位置を検出する。
この端面位置の変動量を時間軸に対する波形として表し、 その波形について下 記式により巻き取り性指数として算出する。 巻き取り性指数 f (x)2dx こで t :測定時間 (秒)
X :端面変動量 ( m) である。
(12) 巻き取り性
図 1に示した装置において、 固定棒 7を経由しないように前述の方法で製造し た磁気テープを通し、 400m/分の速度で 50 Om走行させ、 巻き取りリール 側での巻き取りの可否及び巻き取られた磁気テ一プのロール形状にて評価する。 <判定>
〇:巻き取られたロールでの端面ずれが lmm以内
△:巻き取られたロールでの端面ずれが lmmを超える
X :巻き取り不可
(13) 干渉縞 n次以上の突起数
フィルム表面にアルミニウムを蒸着し、 二光束干渉顕微鏡を用いて、 測定波 長 0. 54 mで n次以上の干渉縞を示す突起数を測定し、 測定面積 5 cm2中 の n次以上突起数を 1 cm2当たりの数に換算する。 この測定を 5回行い、 その 平均値を干渉縞 n次以上の突起数として評価した。
(14) ドロップアウト
磁気テープ ( 1 Z 2ィンチ幅、 (10) に記載の方法で製造) を市販のド口ッ プアウトカウンター (例えばシバソク VH01BZ型) にて 5 sec x i OdBのド ロップアウトをカウントし、 1分間のカウント数を算出する。
(15) 電磁変換特性
VHS方式 VTR (日本ビク夕一 (株) 製 BR6400) を改造し、 4MHz の正弦波をアンプを通して記録再生へッドに入力し、 磁気テープに記録した後再 生し、 その再生信号をスペクトラムアナライザ一に入力する。 キャリア信号 4M 112から0. 1 MHz離れたところに生ずるノイズを測定し、 キャリアとノイズ の比 (C/N) を dB単位で表わす。 この方法を用いて上記の磁気テープについ て測定し、 実施例 1〜8および比較例:!〜 6については実施例 2で得られたもの を、 また、 実施例 9〜 16および比較例 7〜 18については比較例 15で得られ たものを基準 (±OdB) として、 この磁気テープとの差をもって電磁変換特 性とする。 以下、 実施例をあげて本発明をさらに詳細に説明する。
実施例 1〜 6および比較例 1〜 6
(1) シリコーン樹脂微粒子の製造
攪拌翼付きの 10リットルのガラス容器に 0. 06重量%の水酸化ナトリウム を含む水溶液 7000 gを張込み、 上層へノニルフエノールのエチレンォキシド 付加物 0.01 %を含む 1000 gのメチルトリメトキシシランを静かに注入し、 10〜1 5 °Cでわずかに回転しながら 2時間反応させ、 球状粒子を生成させた。 その後、 系内の温度を 70°Cとして約 1時間熟成させ、 冷却後、 減圧濾過機で 水分率約 40 %のシリコーン樹脂微粒子のケ一ク状物を得た。
次に別のガラス容器にシラン力ップリング剤として r—ダリシドキシプロピ ルトリメトキシシランを 2重量%分散させた水溶液 4000 gを張込み、 そこへ 先の反応で得られたケーク状物を全量加えてスラリー化し、 内温 70°C、 攪拌 下 3時間かけて表面処理を行い、 冷却後、 減圧濾過機で濾過処理し、 ケ一ク状物 を得た。
続いてこのケ一ク状物を純水 6000 gに全量加えて再度スラリー化し、常温、 60 r pmにて 1時間攪拌し、 その後、 再度減圧 1時間攪拌し、 その後、 再度減 圧濾過機にて濾過処理することにより、 余分の乳化剤およびシラン力ップリング 剤が除去された水分率 40%のケ一ク状物を得ることができた。 最後に、 このケ —ク状物を、 100°Cで 15 t o r rにて 10時間減圧処理し、 凝集粒子の少 ないシリコ一ン樹脂微粒子粉末約 400 gを得た。
得られた微粒子は電子顕微鏡で観察したところ、 粒子形状は真球状であり、 さ らにさきに示した遠心沈降法で求めた粒度分布は重量の 90%以上が 0.5〜0. 7 xmに入る粒径の揃った、 平均粒径 0. 6 tmの微粒子であった。
上記とほぼ同様にして、 触媒および界面活性剤の量を調整して平均粒径 0. 5 πι, 0. 6 m, 0. 7 m、 1. 2/im、 1. 5 m、 2. 0 mの微粒 子を得た。
(2) シリコーン樹脂微粒子を含むポリエステルの製造:
ジメチルテレフタレ一トとエチレンダリコールとを、 エステル交換触媒として 酢酸マンガンを、 重合触媒として三酸化アンチモンを、 安定剤として亜燐酸を、 さらに滑剤として表 1に示すシリコーン樹脂粒子及び他の不活性微粒子を添加し て、 常法により重合し、 固有粘度 (オルソクロロフエノール、 3 5 °C) 0 . 5
6のポリエチレンテレフタレ一トを得た。
( 3 ) ポリエステルのフィルム化
このポリエチレンテレフタレー卜のペレットを 1 7 0 °C、 3時間乾燥後、 押 出機ホッパーに供給し、 溶融温度 2 8 0〜3 0 0 °Cで溶解し、 この溶解ポリマ
―を 1 mmのスリット状ダイを通して表面仕上げ 0 . 3 s程度、 表面温度 2 0 °C の回転冷却ドラム上に押し出し、 厚み 2 0 0 mの未延伸フィルムを得た。 このようにして得られた未延伸フィルムを 7 5 °Cにて予熱し、 さらに低速、 高速の口一ル間で 1 5 mm上方より 8 0 0 °Cの表面温度の I Rヒ一夕一 3本に て加熱して 3 . 2倍に延伸し、 急冷し、 続いてステンターに供給し、 1 2 0 °C にて横方向に 4. 3倍に延伸した。 得られた二軸配向フィルムを 2 0 5 °Cの温 度で 5秒間熱固定し、 厚み 1 4 の熱固定二軸配向ポリエステルフィルムを 得た。 得られたフィルム中のシリコーン樹脂粒子の平均粒径、 体積形状係数、 相 対標準偏差、 粗大粒子数を測定した結果を表 1に示す。 平均粒径は、 遠心沈降法 で求めた値と同じであった。 得られたフィルムの特性を表 2に示す。
実施例 7, 8
実施例 1と同じシリコーン樹脂粒子および他の不活性微粒子を使用し同じ製造 方法でポリエステルフィルム A層用のポリエチレンテレフ夕レートを得た。 また、 ポリエステルフィルム B層用として、 いずれも微粒子を添加せずに実施 例 1と同じ製造方法でポリエチレンテレフ夕レートを得た。
これらボリエチレンテレフ夕レートのペレツトをそれぞれ 1 7 0 °Cで 3時間 乾燥後、 2台の押出機ホッパーに供給し、 溶融温度 2 8 0〜3 0 0 °Cで溶融し マルチマ二ホールド型共押出ダイを用いて B層の両側に A層を積層させ、 表面仕 上げ 0 . 3 s程度、 表面温度 2 0 °Cの回転冷却ドラム上に押し出し、 厚み 2 0 0; mの未延伸フィルムを得た。
このようにして得られた未延伸積層フィルムを実施例 1と同じ方法で延伸、 熱 固定し、 厚み 1 4 mの熱固定二軸配向積層ポリエステルフィルムを得た。 各 層の厚みについては、 2台の押出機の吐出量を変えることにより調整した。また、 各層の厚みについては、 蛍光 X線法、 およびフィルムを薄片に切り出し、 透過型 電子顕微鏡にて境界面を捜す方法を併用して求めた。
このようにして得られたフィルムの特性を表 2に示す。
表 2から明らかなように、 本発明によるフィルムは粗大突起が極めて少なく、 ドロップアウトも少なく、 電磁変換特性に優れ、 かつ耐削れ性、 耐スクラッチ性 にも優れた特性を示している。
実施例 9〜 1 4および比較例 7〜 1 7
ジメチルテレフタレートとエチレングリコールとを、 エステル交換触媒として 酢酸マンガンを、 重合触媒として三酸化アンチモンを、 安定剤として亜燐酸を、 さらに滑剤として表 3に示すシリコーン樹脂粒子 A、 不活性微粒子 B、 不活性微 粒子 Cを添加して、 常法により重合し、 固有粘度 (オルソクロロフエノ一ル、 3
5 °C) 0 . 5 6のポリエチレンテレフタレ一トを得た。
このポリエチレンテレフタレ一トのペレットを 1 7 0 °C、 3時間乾燥後、 押 出機ホッパーに供給し、 溶融温度 2 8 0〜 3 0 0 °Cで溶解し、 この溶解ポリマ 一を 1 mmのスリット状ダイを通して表面仕上げ 0 . 3 s程度、 表面温度 2 0 °C の回転冷却ドラム上に押し出し、 厚み 2 0 0 mの未延伸フィルムを得た。
このようにして得られた未延伸フィルムを 7 5 °Cにて予熱し、 更に低速、 高 速のロール間で 1 5 mm上方より 8 0 0 °Cの表面温度の I Rヒーター 3本にて 加熱して 3 . 2倍に延伸し、 急冷し、 続いてステン夕一に供給し、 1 2 0 °Cに て横方向に 4 . 3倍に延伸した。 得られた二軸配向フィルムを 2 0 5 °Cの温度 で 5秒間熱固定し、 厚み 1 4 mの熱固定二軸配向ポリエステルフィルムを得 た。 フィルム中のシリコーン樹脂粒子 A、 不活性微粒子 B、 不活性微粒子 Cの平 均粒径、 体積形状係数、 相対標準偏差等を測定した結果を表 3に示す。 また得ら れた熱固定二軸配向ポリエステルフィルムの物性値を表 4に示す。
実施例 1 5及び 1 6並びに比較例 1 8
実施例 1と同じ不活性微粒子を使用し、 及び同じ製造方法でポリエステルフィ ルム A層用のポリエチレンテレフタレ一トを得た。
また、 ポリエステルフィルム B層用として、 いずれも微粒子を添加させずに実 施例 1と同じ製造方法でポリエチレンテレフ夕レートを得た。
これらポリエチレンテレフ夕レートのペレットを 1 7 0 °Cで 3時間乾燥後、 2台の押出機ホッパーに供給し、 溶融温度 2 8 0〜3 0 0 °Cで溶融し、 マルチ マ二ホールド型共押出ダイを用いて B層の両側に A層を積層させ、表面仕上げ 0 . 3 s程度、 表面温度 2 0 °Cの回転冷却ドラム上に押し出し、 厚み 2 0 0 mの 未延伸フィルムを得た。
このようにして得られた未延伸積層フィルムを実施例 1と同じ方法で延伸、 熱 固定し、 厚み 1 4 i mの熱固定二軸配向積層ポリエステルフィルムを得た。
各層の厚みについては、 2台の押出機の吐出量を変えることにより調整した。 また、 各層の厚みについては、 蛍光 X線法、 およびフィルムを薄片に切り出し、 透過型電子顕微鏡にて境界面を捜す方法を併用して求めた。 得られたフイムル中 の粒子 A、 B、 Cの平均粒径、 体積形状係数等を表 3に示す。 また得られたフィ ルムの特性を表 4に示す。
表 4力 ^ら明らかなように本発明によるものは粗大突起が極めて少なく、 ドロッ プアウト、 電磁変換特性に優れ、 かつ巻き取り性および削れ性にも優れており、 さらに各種テープガイドに対するスクラッチ性、 削れ性、 走行耐久性にも優れた 極めて総合的に優れた特性を示している。
第 1表
Figure imgf000032_0001
第 2表
A層厚み Β層厚み カレンダ一 フ'レ-ド削れ性 咼 走行 干渉縞 Ϊ次 ド口ッフ。アウト 電磁変
/ 、 、 / /
( m 面粗さ 剐れ性 削れ粉 削れ性 スクラッチ性 以上突起数 (個/分) 換特性
Ra (nra) (級) 付着幅 (個/ cm2) C/N (dB)
(mm ) B法 B法
実施例 1 14. 0 7 1 ◎ 0. 2 ◎ ◎ 0. 6 20 +2. 1 実施例 2 14. 0 14 2 〇 0. 6 〇 〇 1. 0 29 0 実施例 3 14. 0 5 +2. 8
1 ◎ 0. 1 ◎ ◎ 0. 3 10
実施例 4 14. 0 - 5 1 ◎ 0. 1 ◎ ◎ 0. 4 12 +2. 7 実施例 5 14. 0 5 ! ◎ 0. 1 ◎ ◎ 0. 3 11 +2. 7 実施例 6 14. 0 5 1 ◎ 0. 1 ◎ ◎ 0. 5 15 +2. 6 実施例 7 1. 5 11. 0 6 ◎ 0. 2 ◎ ◎ 0. 6 18 +2. 4 実施例 8 1. 0 12. 0 5 ◎ 0. 2 ◎ ◎ 0. 5 17 +2. 9 比較例 1 14. 0 7 +1. 9
1 ◎ 0. 3 ◎ ◎ 3. 3 83
比較例 2 14. 0 7 3 Δ 1. 2 Δ 〇 3. 5 90 +2. 0 比較例 3 14. 0 27 5 X 2. 8 X Δ 1. 8 63 -3. 5 比較例 4 14. 0 20 4 X 2. 2 X △ 2. 7 75 -3. 2 比較例 5 14. 0 14 3 △ 1. 5 Δ 〇 0. 9 28 -0. 6 比較例 6 14. 0 6 1 ◎ 0. 2 ◎ X 0. 5 18 +2. 2
第 3表-
A層含有粒子
シリコーン樹脂微粒子 A
平觸圣 シランカップ
界面活性剤種 体 、 積形 相対標 粗大粒子数 表面水酸基 含有量
(llW リング剤種 状係数 準偏差 誰 00万個) 価 (KOHmg/g) (wt¾)
ア-ク'リシト'キシァ
赚 1. 2 ノニルフエノ-ルエチレン
5 9. 1 0. 01 才 寸カロ ロドルト1 Uトキシシラン 0. 46 0. 16
キントイ
1, 2 ノニルフエノ-ルエチレン ア-ク'リシト'キシプ'
0. 44 0. 15 4 8. 5
ォキント トり トキシシラン 0. 02 ί寸カロ ¾1 ロドル
-ダリシドキシフ。
1. 2 ノニルフエノ-ルエチレン r
\ j 0. 46 0. 16 4 9. 3 0. 005 才キント ィ寸カロ #1 )
ノニルフエノ-ルエチレン ア-ク'リシト'キシフ"
1. 5
ォ千ン卜 T刀口 口ヒ°ルトリメトキシシラン 0. 46 0. 14 2 8. 3 0. 01 鎌 !]13 1. 2 ノニルフエ ルエチレン τ一ダリシドキシフ"
シド付加物 ロピルトリメトキシシラン 0. 45 0. 16 5 7. 1 0. 01
ゲリシト'キシフ。
1. 2 ド ΐ'シルへ'ンセ'ン r- スルホン酸ナトリウム 口ピルトリメトキシシラン 0. 46 0. 15 5 6. 5 0. 01
-ク 'リシト'キシフ"
¾^Ί15 1. 2 ノニルフエノ-ルエチレン ア
才キシト'付加物 口ピルトリメトキシシラン 0. 46 0. 16 7 8. 9 0. 01 ノ-ルエチレン ア-ク'リシト'キシフ。
^5W6 1. 2 ノニルフエ
6 6 8. 8 0. 01 ォキシト'付加物 口ピルトリ トキシシラン 0. 45 0. 1
第 3表一 2
A層含有粒子 A層浮み B層厚み 不活性微粒子 B 不活性微粒子 C (^ m)
十 J¾¾t 3 fl虽
粒子種 粒子種
径 m) (wt¾) 径("m) (wt¾)
難ン 0. 6 0. 2 0-酸化アル 0. 1 0. 2 14. U
リム 一ノム
雄ルシ 0. 6 0. 2 0-酸化アル 0. 1 0. 2 14. 0 ― ヮム 一 ム
ルシ 0. 6 0. 2 ø -酸化アル 0. 1 0. 2 14. 0 一 ヮム 一'ノム
赚! 112 励ン 0. 6 0. 2 酸化アル 0. 1 0. 2 14. 0 ―
ゥム
«^!113 励トン スピネル酸
0. 6 0. 2
ゥム 物 0. 1 0. 2 14. 0
(MgA"04)
難レン 0. 6 0. 2 0 -酸化アル 0. 1 0. 2 14. 0
ゥム ミニゥム
難レン Θ-酸化アル
0. 6 0. 2 0. 1 0. 2 1. 5 11. 0 ゥム ミニゥム
議ン 0. 6 0. 2 0 -酸化アル 0. 1 0. 2 1. 0 12. 0 % ミニゥム
第 3表一 3
Figure imgf000036_0001
第 3表一 4
Figure imgf000037_0001
第 4表一 1
カレンダ - ブレ-ド削れ性 t¾速走行
面粗さ 削れ性 削れレ粉、ノ スクラッチ性 削れ性 Ra (nm) (級) 付着幅 A法 B法 C法 A法 B法 C法
(mm)
実施例 9 15 1 ◎ 0. 3 ◎ ◎ ◎ ◎ ◎ ◎ 実施例 10 16 2 〇 0. 8 ◎ ◎ ◎ ◎ ◎ ◎ 実施例 11 15 1 ◎ 0. 1 ◎ ◎ ◎ ◎ ◎ ◎ 実施例 12 16 2 ◎ 0. 4 ◎ ◎ ◎ ◎ ◎ ◎ 実施例 13 15 1 ◎ 0. 3 ◎ ◎ ◎ ◎ ◎ ◎ 実施例 14 15 1 ◎ 0. 3 ◎ ◎ ◎ ◎ ◎ ◎ 実施例 15 13 1 ◎ 0. 3 ◎ ◎ ◎ ◎ ◎ ◎ 実施例 16 11 1 ◎ 0. 3 ◎ ◎ ◎ ◎ ◎ ◎
第 4表一 2
低速繰り返し走行 h Uッノ /リ卜 亦: fa¾ 取り
スクラッチ性 ス 行/ / k 指数 β取り性 (個/分) 特性
A法 B法 C法 B法 C法 靜 cm2) C/N(dB) 実施例 9 ◎ ◎ ◎ Π 9 1
U. ι i 0. 21 0. 20 60 〇 0. 5 21 +1. 8
◎ ◎ ◎ 0 f 0. 20 0. 19 50 〇 0. 8 31 +1. 5
◎ ◎ ◎ 0 ^暑 22 0. 22 0. 22 70 〇 0. 3 15 +1. 9
◎ ◎ ◎ 0. 21 0. 21 0. 19 50 〇 0. 6 23 +1. 6 »!|13 ◎ ◎ ◎ 0. 21 0. 21 0. 20 60 〇 0. 5 20 +1. 8
◎ ◎ ◎ 0. 21 0. 21 0. 20 60 〇 0. 6 22 +1. 8 »J15 ◎ ◎ ◎ 0. 21 0. 21 0. 20 60 〇 0. 5 19 +2. 5 赚 >J 16 ◎ ◎ ◎ 0. 22 0. 22 0. 21 70 〇 0. 4 17 13. 1
第 4表一 3
Figure imgf000040_0001
第 4表一 4
低速繰り返し走行 取り性 干漏 3次 ド口ッフ。アウト 電磁変換 スクラッチ性 走 fr k 指数 取り性 (個/分) 特性
A法 B法 C法 Α法 Β法 C法 cm2) C細 B) 赚! 17 ◎ ◎ ◎ 0.21 0.21 0.20 50 〇 2.3 89 +1.6
1:關 8 〇 〇 〇 0.24 0.25 0.25 50 〇 2.5 92 +1.5
I:瞧 9 ◎ ◎ ◎ 0.23 0.23 0.24 200 X 0.3 15 +2.5
];國 10 〇 ◎ Δ 0.32 0.31 0.31 140 Δ 0.5 20 +3.6
1:國 11 X X Δ 0.23 0.23 0.22 60 〇 0.5 22 +1.8
1:關 12 ◎ ◎ ◎ 0.21 0.21 0.20 120 △ 0.4 19 +1.8
1:國 13 ◎ ◎ ◎ 0.23 0.23 0.22 50 〇 1.8 73 - 0.7 瞧 14 ◎ ◎ ◎ 0.21 0.21 0.20 110 Δ 0.4 17 +1.8
1:顏 15 ◎ ◎ ◎ 0.19 0.19 0.18 40 〇 1.3 55 0
]:關 16 Δ Δ Δ 0.22 0.22 0.24 60 〇 0.6 17 +1.8
1:議 17 〇 〇 〇 0.20 0.20 0.21 80 〇 0.8 30 -2.0 賺! 118 Δ Δ Δ 0.30 0.30 0.32 190 X 0.2 11 +3.7

Claims

請求の範囲
1 . (A) 芳香族ポリエステル
(B) (a) 下記式 (1)
R:S i (OR2) 3 … (1)
ここで R 1は炭素数 1〜 6のアルキル基またはフエニル基でありそして R 2は 炭素数 1〜4のアルキル基である、
で表わされるトリアルコキシシランを含むシラン化合物を界面活性剤および水の 存在下で重合しめて得られうる、 下記式 (2)
R^S i 03/2 … (2)
ここで R1の定義は上記に同じである、
で表わされる繰返し単位が少なくとも 80重量%を含め、
(b) 実質的に球状でありそして
(c) 平均粒径が 0. 1〜1. 0 /mの範囲にある、
シリコ一ン樹脂粒子 0. 01〜 0. 3重量%、 並びに
(C) 平均粒径が 0. 01〜0. 5 imの範囲にありそして上記シリコ一 ン樹脂粒子の平均粒径よりも小さい平均粒径の他の不活性微粒子 0 · 05〜: L . を含有する芳香族ポリエステル樹脂組成物よりなることを特徴とする磁気記録媒 体用二軸配向ポリエステルフィルム。
2 . シリコーン樹脂粒子が体積形状係数が 0. 4〜0. 52の範囲にあるよう に実質的に球状である請求項 1のフィルム。
3 . シリコーン樹脂粒子が相対標準偏差値が 0. 3以下である粒径分布を有す る請求項 1のフィルム。
4 . シリコーン樹脂粒子が平均粒径の 3倍以上の粒径を持つ粒子を、 粒子 10 0万ケ当り 30ケ以下でしか含有しない請求項 1のフィルム。
5 . シリコーン樹脂粒子が粒子表面の水酸基価として 3〜4 OKOHmgZg の値を持つ請求項 1のフィルム。
6 . シリコーン樹脂粒子がシランカップリング剤で表面処理されている請求項 1のフィルム。
7 . シリコーン樹脂粒子が粒子表面の水酸基価として 3〜: L OKOHmgZg の値を持つ請求項 6のフィルム。
8 . 界面活性剤がポリオキシエチレンアルキルフエニルエーテルおよびアルキ ルベンゼンスルホン酸ソーダよりなる群から選らばれる少なくとも 1種である請 求項 1のフィルム。
9 . 他の不活性微粒子 (C) が酸化アルミニウム粒子、 シリカ粒子およびスピ ネル型酸化物粒子よりなる群から選らばれる少なくとも 1種である請求項 1のフ イルム。
10. ブレード刃先に付着する削れ粉付着巾が 0. 5 mm未満である耐ブレード 削れ性を示す請求項 1のフィルム。
11. 表面の中心線平均表面粗さ R aが 3〜1 Onmの範囲にある請求項 1のフ イルム。
12. 請求項 1のフィルムおよびこのフィルムが少なくとも片面に積層された他 の芳香族ポリエステルフィルムからなりそして上記請求項 1のフィルムが 0. 1 〜1. 0 mの厚みを持つ、 磁気記録媒体用二軸配向ポリエステルフィルム。
13. 表面の 2次以上の干渉縞による突起が 1. 5ケ/ cm2以下である請求項 1または 12のフィルム。
14. (A) 芳香族ポリエステル
(B) (a) 下記式 (1)
i (OR2) 3 … (1)
ここで R 1は炭素数 1〜 6のアルキル基またはフエニル基でありそして R 2は 炭素数 1〜 4のアルキル基である、
で表わされるトリアルコキシシランを含むシラン化合物を界面活性剤および水の 存在下で重合しめて得られうる、 下記式 (2)
R'S i 03/2 … (2)
ここで R1の定義は上記に同じである、
で表わされる繰返し単位が少なくとも 80重量%を占め、
(b) 実質的に球状でありそして
(c) 平均粒径が 0. 8〜1. 6 ΠΙの範囲にある、
シリコーン樹脂粒子 0. 001〜0. 03重量%
(C) 平均粒径が 0. 4〜0. 7 の不活性微粒子 B 0. 1〜0. 6重 量%並びに
(D) 平均粒径が 0. 01〜0. 3 mでありそしてモース硬度が 7以上 の不活性微粒子 C 0. 05〜 1. 0重量%
を含有する芳香族ポリエステル樹脂組成物よりなることを特徴とする磁気記録媒 体用二軸配向ポリエステルフィルム。
15. シリコーン樹脂粒子が体積形状係数が 0. 4〜0. 52の範囲にあるよう に実質的に球状である請求項 14のフィルム。
16. シリコーン樹脂粒子が相対標準偏差値が 0. 3以下である粒径分布を有す る請求項 14のフィルム。
17. シリコーン樹脂粒子が平均粒径の 3倍以上の粒径を持つ粒子を、 粒子 10 0万ケ当り 30ケ以下でしか含有しない請求項 14のフィルム。
18. シリコーン樹脂粒子が粒子表面の水酸基価として 3〜4 OKOHmgZg の値を持つ請求項 14のフィルム。
19. シリコーン樹脂粒子がシランカップリング剤で表面処理されている請求項 14のフィルム。
20. シリコ一ン樹脂粒子が粒子表面の水酸基価として 3〜:! OKOHmgZg の値を持つ請求項 19のフィルム。
21. 界面活性剤がポリオキシエチレンアルキルフエ二ルェ一テルおよびアルキ ルベンゼンスルホン酸ソーダよりなる群から選らばれる少なくとも 1種である請 求項 14のフィルム。
22. 不活性微粒子 Bが炭酸カルシウムである請求項 14のフィルム。
23. 不活性微粒子 Cが酸化アルミニウム粒子、 およびスピネル型酸化物粒子よ りなる群から選らばれる少なくとも 1種である請求項 14のフィルム。
24. ブレード刃先に付着する削れ粉付着巾が 0. 5mm未満である耐ブレード 削れ性を示す請求項 14のフィルム。
25. 表面の中心線平均表面粗さ R aが 10〜25 nmの範囲にある請求項 14 のフィルム。
26. 請求項 14のフィルムおよびこのフィルムが少なくとも片面に積層された 他の芳香族ポリエステルフィルムからなりそして上記請求項 14のフィルムが 0. 5〜2. 0 mの厚みを持つ、 磁気記録媒体用二軸配向ポリエステルフィルム。
27. 表面の 3次以上の干渉縞による突起が 1. 0ケ/ cm2以下である請求項 14または 26のフィルム。
28. 巻き取り速度 20 OmZ分における巻き取り性指数が 100以下である請 求項 14または 26のフィルム。
29. フィルム厚が 3〜20 mの範囲にある請求項 1, 12, 14または 2 6のフィルム。
30. 芳香族ポリエステルがポリアルキレンテレフタレートまたはポリアルキレ
'—トである請求項 1また 14のフィルム。
PCT/JP1998/003030 1997-07-07 1998-07-06 Film polyester a orientation bi-axiale pour supports d'enregistrement magnetiques WO1999002584A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE1998614327 DE69814327T2 (de) 1997-07-07 1998-07-06 Biaxialorientierte polyesterfolie für magnetische aufzeichnungsmedien
EP19980929845 EP0931808B1 (en) 1997-07-07 1998-07-06 Biaxially oriented polyester film for magnetic recording media
JP50843599A JP3361105B2 (ja) 1997-07-07 1998-07-06 磁気記録媒体用二軸配向ポリエステルフィルム
US09/254,201 US6258442B1 (en) 1997-07-07 1998-07-06 Biaxially oriented polyester film for magnetic recording media

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP18109697 1997-07-07
JP9/181096 1997-07-07
JP9/193811 1997-07-18
JP19381197 1997-07-18
JP23571997A JPH10120886A (ja) 1996-09-02 1997-09-01 ポリエステルフイルム
JP9/235719 1997-09-01

Publications (1)

Publication Number Publication Date
WO1999002584A1 true WO1999002584A1 (fr) 1999-01-21

Family

ID=27324954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003030 WO1999002584A1 (fr) 1997-07-07 1998-07-06 Film polyester a orientation bi-axiale pour supports d'enregistrement magnetiques

Country Status (7)

Country Link
US (1) US6258442B1 (ja)
EP (1) EP0931808B1 (ja)
JP (1) JP3361105B2 (ja)
KR (1) KR100548661B1 (ja)
DE (1) DE69814327T2 (ja)
TW (1) TW467823B (ja)
WO (1) WO1999002584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055482A (ja) * 2001-08-16 2003-02-26 Mitsubishi Polyester Film Copp ポリエステルフィルム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048954A1 (fr) * 1998-03-25 1999-09-30 Teijin Limited Film polyester a orientation biaxiale
US20090075099A1 (en) * 2007-04-09 2009-03-19 Sung-Yueh Shieh Waterborne Coating Compositions for Optical-use Polyester film
GB2501243B (en) * 2012-03-27 2014-06-18 Cook Medical Technologies Llc Method of making a medical balloon
DE102021134261A1 (de) * 2021-12-22 2023-06-22 Mitsubishi Polyester Film Gmbh Transparente einseitig glatte Polyesterfolie mit Polymethylsilsesquioxan basierten Partikeln

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227439A (ja) * 1989-02-28 1990-09-10 Toshiba Silicone Co Ltd 二軸配向ポリエステルフィルム
JPH0762115A (ja) * 1993-08-25 1995-03-07 Toray Ind Inc 二軸配向フイルム
JPH0859973A (ja) * 1994-08-25 1996-03-05 Teijin Ltd ポリエステルフイルム
JPH09124952A (ja) * 1995-11-02 1997-05-13 Shin Etsu Chem Co Ltd 熱可塑性合成樹脂フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761327A (en) * 1986-01-17 1988-08-02 Teijin Limited Biaxially oriented aromatic polyester film
JPS63278939A (ja) * 1987-05-11 1988-11-16 Teijin Ltd 二軸配向ポリエステルフイルム
JPH01190554A (ja) * 1988-01-22 1989-07-31 Yushi Hayashi トラック用排雪装置
JP2590515B2 (ja) * 1988-03-01 1997-03-12 東レ株式会社 ポリエステル組成物及びそれからなる二軸延伸ポリエステルフィルム
JPH0768373B2 (ja) * 1989-07-25 1995-07-26 帝人株式会社 磁気記録媒体用二軸配向ポリエステルフイルム
JP2528215B2 (ja) * 1990-12-13 1996-08-28 帝人株式会社 磁気記録媒体用二軸配向ポリエステルフイルム
US5368932A (en) * 1990-12-13 1994-11-29 Teijin Limited Biaxially oriented polyester film for magnetic recording media containing theta or mixed alpha plus gamma aluminum oxide and inert organic particles
EP0572224B2 (en) * 1992-05-27 2004-03-10 Teijin Limited Biaxially oriented laminated polyester film
DE69402995T2 (de) * 1993-01-27 1998-01-02 Teijin Ltd Biaxial orientierter Mehrschichtfilm aus Polyester und magnetischer Aufzeichnungsträger mit demselben Basisfilm
US5372879A (en) 1993-02-22 1994-12-13 Teijin Limited Biaxially oriented polyester film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227439A (ja) * 1989-02-28 1990-09-10 Toshiba Silicone Co Ltd 二軸配向ポリエステルフィルム
JPH0762115A (ja) * 1993-08-25 1995-03-07 Toray Ind Inc 二軸配向フイルム
JPH0859973A (ja) * 1994-08-25 1996-03-05 Teijin Ltd ポリエステルフイルム
JPH09124952A (ja) * 1995-11-02 1997-05-13 Shin Etsu Chem Co Ltd 熱可塑性合成樹脂フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0931808A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055482A (ja) * 2001-08-16 2003-02-26 Mitsubishi Polyester Film Copp ポリエステルフィルム

Also Published As

Publication number Publication date
JP3361105B2 (ja) 2003-01-07
KR100548661B1 (ko) 2006-02-03
EP0931808A4 (ja) 1999-07-28
TW467823B (en) 2001-12-11
EP0931808B1 (en) 2003-05-07
DE69814327D1 (de) 2003-06-12
US6258442B1 (en) 2001-07-10
KR20000068497A (ko) 2000-11-25
DE69814327T2 (de) 2004-04-01
EP0931808A1 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
KR910008997B1 (ko) 2축 배향 폴리에스테르 필름
JP3088426B2 (ja) 積層二軸配向フイルム
JP3724898B2 (ja) 磁気記録媒体用二軸配向ポリエステルフイルム
WO1999002584A1 (fr) Film polyester a orientation bi-axiale pour supports d&#39;enregistrement magnetiques
JP3464333B2 (ja) 磁気記録媒体用ポリエステルフイルム
JP3542905B2 (ja) 二軸配向ポリエステルフィルム
JPH11134638A (ja) 磁気記録媒体用二軸配向ポリエステルフィルム
JP2528202B2 (ja) 磁気記録媒体用二軸配向ポリエステルフイルム
JP3355284B2 (ja) 磁気記録媒体用二軸配向積層ポリエステルフイルム
JP2528209B2 (ja) 磁気記録媒体用二軸配向ポリエステルフイルム
JP2541684B2 (ja) 磁気記録媒体用二軸配向ポリエステルフィルム
JP3025646B2 (ja) 積層二軸配向フイルム
JPH06157782A (ja) ポリエステルフイルム
US6319588B1 (en) Biaxially oriented polyester film
JPH07166034A (ja) ポリエステルフィルム
JPH07157639A (ja) ポリエステルフィルム
JP2659457B2 (ja) 磁気記録媒体用二軸配向ポリエステルフイルム
JP2541683B2 (ja) 磁気記録媒体用二軸配向ポリエステルフィルム
JPH069762A (ja) ポリエステルフイルム
JPH11291427A (ja) 磁気記録媒体用二軸配向ポリエステルフィルム
JP2550234B2 (ja) 磁気記録媒体用二軸配向ポリエステルフイルム
JP3066936B2 (ja) 磁気記録媒体用二軸配向積層ポリエステルフイルム
JPH09249754A (ja) 磁気記録媒体用二軸配向ポリエステルフイルム
JPH08104798A (ja) ポリエステルフイルム
JPH07196897A (ja) ポリエステルフィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): ID JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09254201

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997001911

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998929845

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998929845

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001911

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998929845

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997001911

Country of ref document: KR