WO1999000525A1 - Tuyau en acier a grains ultrafins et procede de fabrication dudit tuyau - Google Patents

Tuyau en acier a grains ultrafins et procede de fabrication dudit tuyau Download PDF

Info

Publication number
WO1999000525A1
WO1999000525A1 PCT/JP1998/002811 JP9802811W WO9900525A1 WO 1999000525 A1 WO1999000525 A1 WO 1999000525A1 JP 9802811 W JP9802811 W JP 9802811W WO 9900525 A1 WO9900525 A1 WO 9900525A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
less
ferrite
rolling
reduction
Prior art date
Application number
PCT/JP1998/002811
Other languages
English (en)
French (fr)
Inventor
Takaaki Toyooka
Akira Yorifuji
Masanori Nishimori
Motoaki Itadani
Yuji Hashimoto
Takatoshi Okabe
Taro Kanayama
Masahiko Morita
Saiji Matsuoka
Nobuki Tanaka
Osamu Furukimi
Takaaki Hira
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24093097A external-priority patent/JP3896647B2/ja
Priority claimed from JP13393398A external-priority patent/JP3622499B2/ja
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to BR9806104-6A priority Critical patent/BR9806104A/pt
Priority to AT98929659T priority patent/ATE312208T1/de
Priority to US09/254,024 priority patent/US6290789B1/en
Priority to DE69832684T priority patent/DE69832684T2/de
Priority to EP98929659A priority patent/EP0924312B1/en
Publication of WO1999000525A1 publication Critical patent/WO1999000525A1/ja
Priority claimed from CA002281316A external-priority patent/CA2281316C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects

Definitions

  • the present invention relates to a steel pipe having ultrafine crystal grains, high strength, high toughness, high ductility, and excellent impact resistance and a method for producing the same.
  • Refinement of crystal grains is important as a few means that can improve both strength, ductility and toughness.
  • the method of grain refinement is to prevent coarsening of austenite grains, to refine ferrite grains from fine austenite to austenite-ferrite transformation, and to process austenite grains by processing. To reduce the size of ferrite grains, or to use martensite by quenching and tempering, or to use lower veneite.
  • controlled rolling in which the ferrite grains are refined by austenite-ferrite transformation followed by heavy working in the austenitic region, is widely used in steel production.
  • a small amount of Nb has been added to suppress recrystallization of austenite grains and to further refine ferrite grains.
  • austenite grains By processing in the austenite non-recrystallization temperature range, austenite grains elongate and generate deformed bands in the grains, and ferrite grains are generated from these deformed bands, and ferrite grains are further refined. Is done.
  • Control cooling in which cooling is performed during or after processing to refine the ferrite grains, is also being used.
  • the miniaturization of the ferrite particle size to about 4 to 5 ⁇ m is the limit, and the process is complicated to apply to the production of steel pipe.
  • the above-mentioned method requires significant process remodeling, including equipment remodeling, in order to manufacture steel pipes with improved crash impact resistance for the purpose of improving the safety of automobiles, which have recently been increasing in demand. Required, and there were limitations in terms of cost.
  • High-strength steel pipes with a tensile strength exceeding 600 MPa are manufactured using materials with an increased C content of 0.30% or more, or materials with an increased C content and a large amount of other alloying elements added. I have.
  • high-strength steel pipes whose strength has been increased in this way the elongation characteristics deteriorate.Therefore, in general, strong working should be avoided, and if strong working is required, intermediate annealing should be performed during the working. And then heat treatment such as normalizing or quenching and tempering. However, heat treatment such as intermediate annealing becomes complicated in process.
  • the present invention provides a steel pipe having ultrafine grains excellent in toughness and ductility, in which ferrite crystal grains are refined to 3 / Xm or less, preferably 2 ⁇ m or 1 ⁇ m or less, and a method for producing the same. The purpose is to provide.
  • Another object of the present invention is to provide a high-strength steel pipe having ultra-fine crystal grains and excellent workability and a tensile strength of 600 MPa or more, and a method for producing the same. Disclosure of the invention
  • the present inventors have conducted intensive studies on a method of manufacturing a steel pipe capable of producing a high-strength steel pipe having excellent ductility at a high pipe-forming speed. It has been found that when applied, it is possible to produce a high-ductility, high-strength steel pipe with an excellent balance between strength and ductility.
  • ERW steel pipe ( ⁇ 42.7mm DX 2.9mmt) containing 0.09wt% C—0.40wt% Si—0.80wt% Mn—0.04wt% Al is heated to 750 ° C to 550 ° C.
  • the product tube was subjected to reduction rolling with the outer diameter of the product tube varied to ⁇ 33.2 to 0 mm by a reduction mill at a rolling exit speed of 200 m / min. After rolling, the tensile strength (TS) and elongation (E1) of the product tube were measured, and the relationship between elongation and strength was shown in Fig. 1 (fist mark in the figure).
  • the symbol “ ⁇ ” is an example in which the relationship between the elongation and the strength of the ERW steel pipes of various sizes welded and not subjected to drawing rolling is also illustrated in the same manner.
  • E1 E10 X ((aO / a)) 0.4
  • the steel pipe manufactured by the above manufacturing method had fine ferrite grains of 3 Atm or less.
  • the present inventors determined the relationship between the tensile strength (T S) and the ferrite grain size by drastically changing the strain rate to 2000S-1 in order to examine the impact resistance.
  • T S tensile strength
  • Fig. 2 it was found that when the ferrite particle size was 3 ⁇ m or less, the TS increased remarkably, especially when the impact shock deformation with a high strain rate was large. .
  • a steel pipe having fine ferrite grains has not only an excellent ductility-strength balance, but also significantly improved impact resistance.
  • the present invention for obtaining a steel pipe having ultra-fine grains is characterized by heating a material steel pipe having an outer diameter ODi (mm) and a ferrite having a cross section perpendicular to the longitudinal direction of the steel pipe and having an average grain size di ( ⁇ m) of ferrite.
  • Rolling temperature ⁇ m (° C) total reduction ratio T red (%) is drawn and rolled to produce a product pipe with an outer diameter of ODf (mm).
  • the relationship among the average crystal grain size di ( ⁇ m), the average rolling temperature 0 m (° C), and the total diameter reduction T red (%) is as follows:
  • the heating or soaking of the material steel pipe is preferably set to an Ac3 transformation point or less, and the heating or soaking of the material steel pipe is based on the Acl transformation point of the material steel pipe, (Acl + 50 ° C.)
  • the temperature is preferably within the following range, and the reduction rolling is preferably rolling under lubrication.
  • the reduction rolling is preferably rolling including at least one or more rolling passes having a diameter reduction rate of 6% or more per pass, and the cumulative diameter reduction rate is preferably 60% or more. .
  • the steel pipe containing C: 0.70 wt% or less by weight of the material steel pipe is used.
  • the material steel pipe contains, by weight%, C: 0.005 to 0.30%, Si: 0.01 to 3.0%, Mn: 0.01 to 2.0%, and A1: 0.001 to 0.10%.
  • Group A Cu: 1% or less,: 2% or less, Cr: 2% or less, Mo: 1% or less, Group B: Nb: 0.1% or less, V: 0.5% or less, Ti: 0.2% or less, B : 0.005% or less
  • Group C REM: 0.02% or less, Ca: 0.01% or less,
  • the steel pipe may include one or more of one group or two or more groups selected from the above.
  • the inventors of the present invention have set forth a method of manufacturing a steel pipe as described above, in which the composition of the material steel pipe is further limited to an appropriate range to obtain a steel pipe having high strength, high toughness, and excellent stress corrosion cracking resistance. We found that it could be manufactured and came to the conclusion that it could be used advantageously as a steel pipe for line pipes.
  • composition of the material steel pipe By further restricting the composition of the material steel pipe to within an appropriate range and performing drawing rolling in the ferrite recrystallization region, dispersion of fine ferrite and fine carbide can be obtained, and high strength and high toughness can be obtained.
  • alloy elements can be restricted to reduce weld hardening, and crack generation and progress can be suppressed, improving stress corrosion cracking resistance.
  • the present invention includes, by weight%, C: 0.005 to 0.10%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.8%, A1: 0.001 to 0.10%, Cu: 0.5% or less, Ni: One or more selected from 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, or Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, B : One or more selected from 0.004% or less, or one or two selected from REM: 0.02% or less, Ca: 0.01% or less, with the balance Fe and unavoidable
  • the present inventors have found that, in the above-described method for manufacturing a steel pipe, it is possible to manufacture a steel pipe having high strength, high toughness, and excellent fatigue resistance by further limiting the composition of the material steel pipe to an appropriate range. They found that it could be used advantageously as a high fatigue strength steel pipe.
  • the present invention contains, by weight%, C: 0.06 to 0.30%, Si: 0.01 to 1.5%, Mn: 0.01 to 2.0%, A1: 0.001 to 0.10%, the balance being Fe and unavoidable impurities.
  • the structure is composed of ferrite and a second phase other than ferrite having an area ratio of more than 30%, and the average crystal grain size of the cross section perpendicular to the longitudinal direction of the steel pipe is 2 ⁇ m or less or perpendicular to the longitudinal direction of the steel pipe.
  • 5 is a graph showing the effect of tensile strain rate on the relationship between the tensile strength of steel pipe and the particle size of the fluoride.
  • FIG. 1 is an electron microscopic structure photograph showing a metal structure of a steel pipe as one example of the present invention.
  • FIG. 1 is a conceptual diagram showing one example of a solid-state pressure-welded steel pipe manufacturing facility suitable for carrying out the present invention and a continuous equipment row.
  • 1 is a graph showing the relationship between the total diameter reduction rate and the average crystal grain size of a material steel tube, which affect the refinement of the crystal grain size of a product tube, showing one embodiment of the present invention.
  • a steel pipe is used as a material.
  • the method of manufacturing the raw steel pipe is not particularly limited. Electric resistance welded steel pipe (electrically welded steel pipe) by electric resistance welding method using high frequency current, solid state pressure welded steel pipe, forged steel pipe, and Mannesmann type drilling by heating both edges of open pipe to solid phase pressure welding temperature range and pressure welding Any seamless steel tube by rolling can be suitably used.
  • C is an element that precipitates as a solid solution or carbide in the matrix and increases the strength of the steel.
  • fine cementite, martensite, and payite precipitated as a hard second phase are ductile (uniform elongation). Contribute to improvement.
  • the content of C must be 0.005% or more, preferably 0.04% or more.
  • C is 0.30% or less, more preferably 0.10% or less. For this reason, the range is preferably limited to the range of 0.005 to 0.30%, and more preferably to the range of 0.04 to 0.30%.
  • the content of C is preferably 0.10% or less. If it exceeds 0.10%, the stress corrosion cracking resistance deteriorates due to the hardening of the weld.
  • C is preferably set to 0.06 to 0.30% in order to improve fatigue resistance. If the content is less than 0.06%, the fatigue resistance deteriorates due to insufficient strength.
  • C In order to secure the desired strength of tensile strength of 600 MPa or more, the content of C needs to be more than 0.30%, but if it exceeds 0.70%, the ductility deteriorates. For this reason, C was limited to a range greater than 0.30 to 0.70%. -Si: 0.01-3.0%
  • Si acts as a deoxidizing element and forms a solid solution in the matrix to increase the strength of the steel. This effect is observed at a content of 0.01% or more, preferably 0.1% or more, but a content of more than 3.0% deteriorates ductility.
  • the upper limit is 2.0% for ductility reasons.
  • Si was limited to the range of 0.01 to 3.0% or 0.01 to 2.0%. Preferably, it is in the range of 0.1 to 1.5%.
  • the content of Si is preferably 0.5% or less. If it exceeds 0.5%, the weld is hardened and the stress corrosion cracking resistance deteriorates.
  • the content of Si is preferably 1.5% or less in order to improve the fatigue resistance. If it exceeds 1.5%, inclusions are generated, and the fatigue resistance deteriorates.
  • Mn is an element that increases the strength of steel, and in the present invention, promotes precipitation of cementite as a second phase, or precipitation of martensite and bainite. If it is less than 0.01%, the desired strength cannot be ensured, and fine precipitation of cementite or precipitation of martensite and veneite is hindered. On the other hand, if it exceeds 2.0%, the strength is excessively increased and ductility is deteriorated. For this reason, Mn was limited to the range of 0.01 to 2.0%. From the viewpoint of strength-elongation balance, Mn is preferably in the range of 0.2 to 1.3%, more preferably in the range of 0.6 to 1.3%.
  • Mn is preferably 1.8% or less. If it exceeds 1.8%, the weld is hardened and the stress corrosion cracking resistance deteriorates.
  • A1 has the function of reducing the crystal grain size.
  • the content In order to refine the crystal grains, the content must be at least 0.001% or more, but if it exceeds 0.10%, the amount of oxygen-based inclusions increases and the cleanliness deteriorates. For this reason, A1 was limited to the range of 0.001 to 0.10%. Preferably, the content is 0.015 to 0.06%.
  • one or more of one or more of the following groups A to C selected from the group of alloy elements A to C are added and contained. May be.
  • the upper limits are set to 2% and 1%, respectively, because they deteriorate the performance and are economically expensive.
  • Cu 0.1 to 0.6%
  • Ni 0.1 to 1.0%
  • Cr 0.1 to 1.5%
  • Mo 0.1 to 1.5%
  • Group B Nb: 0.1% or less, V: 0.5% or less, Ti: 0.2. /. Below, B: group of 0.005% or less
  • Nb, V, Ti, and B are elements that precipitate as carbides, nitrides, or carbonitrides and contribute to the refinement and strengthening of crystal grains. Has the effect of refining the crystal grains during the heating process during joining and acting as the precipitation nucleus of the fly during the cooling process, preventing the joint from hardening, and adding one or more as necessary. it can. However, if added in large amounts, the weldability and toughness deteriorate, so the upper limits of Nb are 0.1%, V is 0.5%, preferably 0.3%, Ti is 0.2%, and B is 0.005%, preferably 0.004%. .
  • Nb 0.005 to 0.05%
  • V 0.05 to 0.1. /.
  • Ti 0.005 to 0.10%
  • B 0.0005 to 0.002%.
  • Nb, V, and N are each preferably limited to 0.1% or less. If b, V, and Ti exceed 0.1% and are added in a large amount, stress corrosion cracking resistance deteriorates due to precipitation hardening.
  • Group C REM: 0.02% or less, Ca: 0.01% or less
  • REM and Ca both have the effect of adjusting the shape of inclusions and improving workability, and also precipitate as sulfides, oxides or sulfates, and form joints in steel pipes that have joints. It also has the effect of preventing curing, and one or more can be added as needed. If REM: 0.02% and Ca: more than 0.01%, the amount of inclusions becomes too large, the cleanliness decreases, and the ductility deteriorates. Since the effect of this effect is small when REM is less than 0.004% and Ca is less than 0.001%, it is preferable that REM is 0.004% or more and Ca is 0.001% or more.
  • the raw steel pipe and the product steel pipe are composed of the components of the above-mentioned components ⁇ balance Fe and inevitable impurities.
  • As unavoidable impurities N: 0.010% or less, O: 0.006% or less, P: 0.025% or less, and S: 0.020% or less are allowed.
  • N is an amount necessary for refining the crystal grains by combining with A1, and is allowable up to 0.010% .However, if it is contained more than this, ductility is deteriorated, so it is preferable to reduce it to 0.010% or less. . In addition, more preferably, N is 0.002 to 0.006%.
  • P segregates at grain boundaries and degrades toughness, so it is preferable to reduce P as much as possible, but up to 0.025% is acceptable. .
  • the steel pipe of the present invention is a steel pipe having excellent ductility and impact-resistant properties in which the yarn and weave are composed mainly of ferrite having an average ferrite crystal grain size of 3 m or less.
  • the average particle size of the ferrite is 1 ⁇ m or less.
  • the average crystal grain size of the ferrite is determined by corroding a cross section perpendicular to the longitudinal direction of the steel pipe with a nital solution, observing the structure with an optical microscope or an electron microscope, and calculating the equivalent circle diameter of 200 or more ferrite grains. The average value was used.
  • the structure mainly composed of ferrite as referred to in the present invention includes a structure composed of ferrite alone in which the second phase does not precipitate, and a structure composed of ferrite and a second phase other than ferrite.
  • the second phase other than ferrite includes martensite, bainite, and cementite, and these may be precipitated alone or in combination.
  • the area ratio of the second phase shall be 30% or less.
  • the precipitated second phase contributes to the improvement of uniform elongation during deformation, and improves the ductility and impact resistance of the steel pipe.However, such effects are reduced when the area ratio of the second phase exceeds 30%. Become.
  • the weave of the high-strength steel pipe of the present invention is composed of ferrite and a second phase other than ferrite having an area ratio of more than 30%, and has an average crystal grain size of a cross section perpendicular to the longitudinal direction of the steel pipe of 2 ⁇ m.
  • the second phase other than ferrite includes martensite, bainite and cementite, and these may be precipitated alone or in combination.
  • the area ratio of the second phase should be more than 30%.
  • the precipitated second phase contributes to the improvement of strength and uniform elongation, and improves the strength and ductility of the steel pipe. However, such an effect is small when the area ratio of the second phase is 30% or less.
  • the area ratio of the second phase other than ferrite is more than 30%, preferably 60% or less. If it exceeds 60%, ductility is deteriorated due to coarse cementite.
  • the average crystal grain size exceeds 2 ⁇ m, there is no remarkable improvement in ductility and no remarkable improvement in workability can be obtained.
  • the average ferrite crystal grain size is 1 ⁇ m or less.
  • the average crystal grain size in the present invention is obtained by corroding a cross section perpendicular to the longitudinal direction of a steel pipe with a nitral solution, observing the structure with an optical microscope or an electron microscope, determining the circular equivalent diameter of 200 or more grains, and calculating the average value. Values were used.
  • the particle size of the second phase was measured using the pearlite colony boundary when the second phase was burlite, and the bucket boundary when the second phase was barite or martensite.
  • Fig. 3 shows an example of the structure of the steel pipe of the present invention. Next, a method for manufacturing a steel pipe according to the present invention will be described.
  • the material steel pipe having the above composition is heated to a heating temperature of Ac 3 to 400 ° C, preferably (Acl + 50 ° C) to 400 ° C, more preferably 750 to 400 ° C.
  • the heating temperature of the raw steel pipe is set to the Ac3 transformation point or lower, preferably (Acl + 50 ° C) or lower, and more preferably 750 ° C or lower. If the heating temperature is less than 400 ° C, a suitable rolling temperature cannot be secured, so the heating temperature is preferably 400 ° C or more.
  • the heated raw steel pipe is subjected to drawing rolling.
  • the reduction rolling is preferably performed by a three-roll reduction mill, but is not limited thereto.
  • the rolling mill is preferably provided with a plurality of stands and continuously rolled.
  • the number of stands can be determined appropriately according to the dimensions of the raw steel pipe and the dimensions of the product steel pipe.
  • the rolling temperature of the reduction rolling is in the range of Ac3 to 400 ° C, preferably (Acl + 50 ° C) to 400 ° C, more preferably 750 to 400 ° C in the ferrite recovery and recrystallization temperature range. I do.
  • the rolling temperature exceeds the Ac3 transformation point, ultrafine grains cannot be obtained, and the ductility does not improve at the expense of strength. For this reason, the rolling temperature is set to the Ac3 transformation point or lower, preferably (Acl + 50 ° C) or lower, and more preferably 750 ° C or lower.
  • the rolling temperature is lower than 400 ° C, the material may be embrittled due to blue embrittlement and the material may break during rolling.
  • the rolling temperature of the reduction rolling is limited to a range of Ac3 to 400 ° C, preferably (Acl + 50 ° C) to 400 ° C, and more preferably 750 to 400 ° C. Preferably it is 600 to 700 ° C. Cumulative diameter reduction ratio in reduction rolling shall be 20% or more.
  • the cumulative diameter reduction rate is set to 20% or more. If the cumulative diameter reduction ratio is 60% or more, the microstructure becomes remarkable in addition to the increase in strength due to work hardening, and the balance between strength and ductility of low-component steel pipe with a low alloy addition in the above composition range is also obtained. A steel pipe with excellent strength, ductility and excellent strength can be obtained. For this reason, it is more preferable that the cumulative diameter reduction rate be 60% or more.
  • the rolling includes at least one rolling pass having a diameter reduction ratio of 6% or more per pass.
  • the diameter reduction ratio per pass of the reduction rolling is less than 6%, the crystal grains are recovered and recrystallized. Is insufficiently refined. If it is 6% or more, a rise in temperature due to the heat generated during processing is observed, and a decrease in the rolling temperature can be prevented.
  • the diameter reduction ratio per pass is more preferably at least 8%, which is said to be a great effect by grain refinement. .
  • the rolling reduction of the steel pipe in the present invention is a rolling process in a biaxial stress state, and a remarkable crystal grain refining effect can be obtained.
  • free ends exist not only in the rolling direction but also in the sheet width direction (the direction perpendicular to the rolling direction), and the rolling process is performed under uniaxial stress. is there.
  • the reduction rolling is rolling under lubrication.
  • lubricating rolling By performing the rolling under lubrication (lubricating rolling), the strain distribution in the thickness direction becomes uniform, and the distribution of the crystal grain size becomes uniform in the thickness direction.
  • non-lubricated rolling the strain concentrates only on the material surface layer due to the shearing effect, and the crystal grains in the thickness direction tend to be non-uniform.
  • the lubricating rolling may be performed using a known mineral oil or a rolling oil obtained by mixing a synthetic ester with a mineral oil, and the rolling oil need not be particularly limited.
  • the steel After rolling, the steel is cooled to room temperature.
  • air cooling may be used, but a known cooling method such as water cooling, mist cooling, or forced air cooling can be applied in order to suppress grain growth as much as possible.
  • the cooling rate is l ° C / sec or more, preferably 10 ° CZsec or more.
  • a stepwise cooling method such as retention during cooling may be used according to the required characteristics of the product.
  • the present invention in order to stably reduce the crystal grain size of the product steel pipe to 1 ⁇ m or less, and to set the high-strength steel pipe to 2 ⁇ m or less, it is preferable to perform the following reduction rolling on the material steel pipe.
  • the raw steel pipe is heated or soaked and subjected to drawing rolling at an average rolling temperature of ⁇ m (° C) and a total reduction ratio of T red (%) to obtain a product pipe having an outer diameter of ODf (mm).
  • FIG. 4 shows an example of an equipment line suitable for implementing the present invention.
  • FIG. 4 shows a plurality of stands of a rolling mill 21 having a grooved roll.
  • the number of stands of the rolling mill is appropriately determined by the combination of the material steel pipe diameter and the product pipe diameter.
  • the porous roll any of generally known two rolls, three rolls and four rolls can be suitably applied.
  • the method of heating or soaking in the rolling is not particularly limited, but it is preferable to use a heating furnace or induction heating. Among them, the induction heating method is preferable because the heating rate is high and the production efficiency or the growth of crystal grains is suppressed. (Fig.
  • the heating or soaking temperature is below the Ac3 transformation point, which is the temperature range in which the crystal grains do not become coarse, or the Acl transformation point of the material steel pipe. Based on the standard, it should be (Acl + 50 ° C) or less, more preferably 600 to 700 ° C. In the present invention, of course, even when the heating or soaking temperature of the raw steel tube exceeds the above-mentioned temperature, the crystal grain size of the product tube becomes fine. -By rolling in this rolling zone, when the second phase in the material steel pipe and structure is pearlite, the layered cementite in the pearlite is divided and refined, thereby ensuring the elongation characteristics of the product pipe.
  • the rolling temperature of the reduction rolling is set to a temperature range of 400 ° C or higher and a heating or soaking temperature or lower, preferably 750 ° C or lower.
  • ferrite + austenite two-phase region with large amounts of austenite or austenite It becomes a single phase and is unlikely to have a ferrite structure after fermentation or a structure mainly composed of ferrite, and also reduces the effect of grain refinement by ferrite processing.
  • the rolling temperature exceeds 750 ° C, the growth of ferrite grains after recrystallization becomes remarkable, making it difficult to form fine grains.
  • the rolling temperature of the reduction rolling is set to a temperature range of 400 ° C or higher, the Ac3 transformation point or lower, or (Acl + 50 ° C) or lower, preferably 750 ° C or lower.
  • the temperature is preferably 560 to 720 ° C, more preferably 600 to 700 ° C.
  • the average crystallites of the product pipe (cross section perpendicular to the longitudinal direction of the steel pipe) will not be fine grains of 1 ⁇ m or less. Similarly, in high-strength steel pipes, the average crystal grain (cross section perpendicular to the longitudinal direction of the steel pipe) does not become fine grains of 2 ⁇ m or less.
  • the average rolling temperature 550 ° Fig. 6 shows the relationship between the total diameter reduction rate and the average crystal grain size of the material steel pipes, when the product pipes of various diameters are rolled at 700 ° C and 700 ° C.
  • the product tube 16 is cooled to preferably 300 ° C. or less.
  • a cooling method air cooling may be used.
  • a commonly known cooling method such as water cooling using a quenching device 24, mist cooling, or forced air cooling can be applied.
  • the cooling rate is 1 ° C / sec or more, preferably 10 ° C / sec or more.
  • a cooling device 26 may be installed on the inlet side of the reduction rolling device 21 or in the middle of the reduction rolling device 21 to control the temperature.
  • a deskering device 23 may be installed on the inlet side of the reduction rolling device 21.
  • the material steel pipe used as a material in the present invention may be a seamless steel pipe, an ERW steel pipe, a forged steel pipe, a solid-phase pressure welded steel pipe, or the like. Further, the production process of the ultrafine-grained steel pipe of the present invention may be continuous with the above-mentioned production line for the material steel pipe.
  • Figure 5 shows an example of a continuous solid-state pressure welded steel pipe production line.
  • the strip 1 discharged from the uncoiler 14 is connected to the preceding strip by the joining device 15, preheated by the preheating furnace 2 via the looper 17, and then opened by the forming device 3 composed of a group of forming rolls.
  • the open pipe is heated to a temperature range below the melting point by the induction heating device for heating the edge and the induction heating device for heating the edge.
  • the edge is heated by the squeeze roll and pressed against the material steel tube. Is done.
  • the raw steel tube 8 is heated or soaked at a predetermined temperature in the soaking furnace 22, the scale is removed by the descaling device 23, and is drawn and reduced by the drawing and rolling device 21.
  • the pipe is straightened by a pipe straightening device 19 to be a product pipe 16.
  • the temperature of the steel pipe is measured with a thermometer 20.
  • the rolling under lubrication also be performed under the lubrication.
  • a steel pipe having a structure mainly composed of ferrite and having ultrafine grains having an average crystal grain size of 1 ⁇ m or less in a cross section perpendicular to the longitudinal direction of the steel material can be obtained. Further, according to the above-described manufacturing method, there is also an effect that a steel pipe having a uniform seam portion such as an electric resistance welded steel pipe, a forged welded steel pipe, and a solid-phase pressure welded steel pipe is obtained.
  • a high-strength steel pipe having a structure composed of ferrite and a second phase other than ferrite having an area ratio of more than 30%, and having ultrafine grains having an average crystal grain size of 2 ⁇ m or less in a cross section perpendicular to the longitudinal direction of the steel material is obtained. Obtained without intermediate annealing.
  • a steel tube having the chemistry and composition shown in Table 1 was heated to the temperature shown in Table 2 by an induction heating coil, and then formed into a product tube under the rolling conditions shown in Table 2 using a three-roll drawing mill.
  • the solid-state pressure-welded steel pipe shown in Table 2 is obtained by preheating a 2.6 mm thick hot-rolled strip steel to 600 ° C, then continuously forming it with a plurality of forming rolls to form an open pipe. Preheated to 1000 ° C by induction heating, then both edges are heated to 1450 ° C in the unmelted temperature range by induction heating, butted by squeeze rolls, and pressed against solid phase by 42.7mm.
  • X A steel pipe having a thickness of 2.6 mm was used.
  • a seamless steel pipe was prepared by heating a continuous structure billet and forming the pipe by a Mannes mandrel type mill.
  • the value of elongation is determined by taking the size effect of the test piece into consideration.
  • E1 E10 X ( "(aO / a)) () ⁇ 4 (Here, E10: measured elongation, a0: 292 mm2, a: cross-sectional area of test piece (mm2)) ".
  • the collision impact characteristics are represented by the deformation energy of the material at a strain rate of 1000 to 2000 S-1 when the vehicle actually collides. The greater this energy, the better the collision impact resistance.
  • the present invention examples (No. 1 to No. 16 and No. 19 to No. 22) of the present invention are steel pipes having an excellent balance between ductility and strength.
  • the tensile strength at high strain rates is high, and the impact shock absorption energy is high.
  • Comparative Examples No. 17, No. 18, and No. 23 out of the range of the present invention either the ductility or the strength is reduced, the balance between strength and ductility is poor, and the impact resistance is also poor.
  • a raw steel pipe having the chemical composition shown in Table 3 was heated to the temperature shown in Table 4 by an induction heating coil, and then was turned into a product pipe using a three-roll drawing mill under the rolling conditions shown in Table 4.
  • the method of manufacturing the material steel pipe was the same as in Example 1.
  • the present invention examples (No.2-l to No.2-3, No.2-6 to No.2-8, No.2-10 to No.2 to 14) of the present invention range It is a steel pipe with excellent balance between ductility and strength. Furthermore, the tensile strength at high strain rates is high, and the impact energy absorbed is high. On the other hand, in Comparative Examples No. 2-4, No. 2-5, and No. 2-9 out of the range of the present invention, either the ductility or the strength was reduced, and the strength-ductility balance was poor. Poor impact resistance.
  • the steel pipe of the present invention has a secondary workability, for example, a bulge such as a hydrid foam. It has excellent workability and is suitable for bulging.
  • the steel pipes of the present invention in the welded steel pipe (ERW steel pipe) or the solid-phase welded steel pipe subjected to seam cooling, the hardened seam has the same level of hardness as the base pipe by drawing and rolling, and the bulge workability is low. It is remarkably improved compared to the conventional case.
  • a steel tube having the chemical composition shown in Table 5 was heated to the temperature shown in Table 6 by an induction heating coil, and then formed into a product tube under the rolling conditions shown in Table 6 using a three-port wrought rolling mill.
  • the material steel pipe in this embodiment is a hot-rolled steel sheet manufactured by controlled rolling and controlled cooling.
  • a steel pipe having a diameter of 110 mm and a thickness of 4.5 mm was used.
  • the tensile properties, impact impact properties, microstructure and sulfide stress damage resistance of these product pipes were examined, and the results are shown in Table 6.
  • Example 1 the impact impact characteristics were determined by conducting a high-speed tensile test at a strain rate of 2000 s-1 and calculating the absorbed energy up to a strain of 30% from the obtained stress-strain curve. was evaluated.
  • the collision impact characteristics are represented by the deformation energy of the material at a strain rate of 1000 to 2000 S-1 when the vehicle actually collides. The greater this energy, the better the collision impact resistance.
  • the sulfide stress corrosion cracking resistance was determined by using the C-ring test piece shown in Fig. 7 in a NACE bath (0.5% acetic acid + 5% saline, H2S saturation, temperature 25 ° C, 1 atmosphere). A tensile stress of 120% of the strength was applied, and the presence or absence of fracture during the test period of 200 hours was evaluated. The C-ring test specimen was cut out from the T direction (circumferential direction) of the product pipe base material. Two tests were performed under the same conditions.
  • the present invention examples (No. 3-l to No. 3-3, No. 3-5 to No. 3-8, No. 3-10, No. 3-12) of the present invention range
  • the copper tube has an excellent balance between ductility and strength. It has high tensile strength at high strain rates and high impact energy absorption. It also has excellent sulfide stress cracking resistance and has excellent properties for use in line pipes.
  • Comparative Examples No. 3-4, No. 3-9, and No. 3-11 out of the scope of the present invention, either the ductility or the strength was reduced, the strength-ductility balance was poor, and the impact resistance was low.
  • a steel tube having the chemical composition shown in Table 7 was heated to the temperature shown in Table 8 by an induction heating coil, and then formed into a product tube using a three-roll drawing mill under the rolling conditions shown in Table 8.
  • the material steel pipe in this example was formed by forming a hot-rolled strip steel with a plurality of forming rolls to form an open pipe, and then welding both edges of the open pipe by induction heating to form a ⁇ HOmm X 2.0 mm thick electric resistance welded steel pipe.
  • a continuous steel billet were heated and formed into a seamless steel pipe with a diameter of l lOmm X 3.0 mm by forming a pipe with a Mannes mudrel type mill. was used.
  • the present invention examples (No. 4-l, No. 4-3, No. 4-6 to No. 4-9) within the scope of the present invention are steel pipes having an excellent balance between ductility and strength. ing. It has high tensile strength at high strain rates and high impact energy absorption. In addition, it has excellent fatigue resistance properties and has excellent properties as a high fatigue strength steel pipe. On the other hand, in Comparative Examples No. 4-2, No. 4-4, and No. 4-5) out of the range of the present invention, the fatigue strength is reduced.
  • Comparative Example No. 4-2 no reduction rolling was performed, in Comparative Example No. 4-5, the diameter reduction ratio was out of the range of the present invention, and in Comparative Example No. 4-4, the reduction rolling was not performed.
  • the rolling temperature is out of the range of the present invention, the ferrite grains are coarsened, the strength-ductility balance is deteriorated, the impact shock absorption energy is reduced, and the fatigue resistance is deteriorated.
  • a steel material A1 having the chemical composition shown in Table 9 was hot-rolled into a 4.5 mm thick strip.
  • this steel strip 1 was preheated to 600 ° C in a preheating furnace 2 and then continuously formed by a forming apparatus 3 consisting of a plurality of forming roll groups to form an open pipe 7.
  • a forming apparatus 3 consisting of a plurality of forming roll groups to form an open pipe 7.
  • both edges of the open pipe 7 are preheated to 1000 ° C by an induction induction heating device 4 for edge preheating, then both edges are further heated to 1450 ° C by an induction heating device 5 for edge heating, and squeeze rolls 6 Abutting and solid-phase pressure welding were performed to obtain a material steel pipe 8 having a diameter of 88.0 X 4.5 mm.
  • the material steel pipe is heated to the heating soaking temperature shown in Table 10 by the seam cooling and pipe heating device 22, and then the specified outer diameter is reduced by the reduction rolling device 21 equipped with a plurality of three-roll structure reduction rolling mills.
  • the number of stands used for the rolling mill was 6 when the outer diameter of the product pipe was 60.3 mm, and 16 when the outer diameter of the product pipe was 42.7 mm.
  • the No. 5-2 product pipe was lubricated and rolled using rolling oil in which synthetic esters were mixed with mineral oil during drawing and rolling.
  • the crystal grain size, tensile properties and impact properties of these product tubes were investigated, and the results are shown in Table 10.
  • a cross section perpendicular to the longitudinal direction of the steel pipe (C cross section) was observed at 5 times or more at a magnification of 5000 times, and the average crystal grain size of ferrite was measured.
  • J1S No. 11 test piece was used for tensile properties.
  • the elongation (E 1) is calculated by taking the size effect of the test piece into consideration.
  • E 1 E 1 0 X ((a0 / a)) 0 4
  • the average crystal grain size of ferrite is 1 m, which is a fine grain, has high elongation and toughness, and has excellent balance between strength, toughness and ductility.
  • No. 5-2 which was subjected to lubricating rolling, there was little variation in crystal grains in the thickness direction.
  • Comparative Examples No. 5-l, No. 5-3, No. 5-8, No. 5-12 out of the range of the present invention, the crystal grains became coarse, and the ductility and toughness were poor. Has deteriorated.
  • the organization of the product tube within the scope of the present invention was ferrite + perlite, ferrite + cementite, or frite + bainite.
  • Steel B1 having the chemical composition shown in Table 9 was melted in a converter and turned into a billet by the continuous rusting method.
  • This billet was heated and pipe-formed with a Mannes mandrel mill to form a seamless steel pipe with a diameter of 110.0 mm x 6.0 mm.
  • These seamless steel pipes were reheated to the temperatures shown in Table 11 by the induction heating coil, and were turned into product pipes with the outer diameters shown in Table 11 using a three-roll reducing mill.
  • the number of stands of the rolling mill used was 18 stands when the outer diameter of the product tube was 60.3 mm, 20 stands when the outer diameter was 42.7 mm, 24 stands when the diameter was 31.8 mm, and 25.4 mm In the case of, there were 28 stands.
  • the organization of the product tube within the scope of the present invention was ferrite + perlite, ferrite + cementite, or fullite + benite.
  • a steel tube having the chemical composition shown in Table 12 was heated to the temperature shown in Table 13 by an induction heating coil, and then turned into a product tube using a three-roll drawing mill under the rolling conditions shown in Table 13.
  • the number of stands of the rolling mill used was 24 when the material steel pipe was a seamless steel pipe, and 16 when the solid-state pressure welded pipe and the electric resistance welded pipe were used.
  • the solid-state pressure-welded steel pipe shown in Table 13 is a 2.3 mm thick hot-rolled strip steel preheated to 600 ° C and then continuously formed with multiple forming rolls to form an open pipe. After preheating to 1000 ° C by induction heating, both edges are heated to 1450 ° C, which is lower than the melting point, by induction heating, butted by squeeze rolls and solid-phase pressed, and A steel pipe having a constant outer diameter was used. On the other hand, a seamless steel pipe was prepared by heating a continuous steel billet and forming the pipe by a Mannes mandrel type mill to form a seamless steel pipe with a diameter of 110.0 x 4.5 mm.
  • inventive examples within the scope of the present invention have a ferrite having an average crystal grain size of 1 ⁇ m or less, have high elongation and toughness, and have excellent balance between strength, toughness and ductility.
  • the organization of the product pipes in the scope of the present invention was ferrite + perlite, ferrite + perlite + benite, ferrite + cementite, and ferrite + martensite.
  • a steel material having the chemical composition shown in Table 14 was hot-rolled into a 4.5 mm thick strip.
  • this steel strip 1 was preheated to 600 ° C in a preheating furnace 2, and then continuously formed by a forming apparatus 3 consisting of a plurality of forming rolls, and then formed into an open pipe 7. did.
  • both edges of the open pipe 7 are preheated to 1000 ° C by an induction induction heating device 4 for edge preheating, and then both edges are further heated to 1450 ° C by an induction heating device 5 for edge heating, and squeeze rolls 6
  • a solid steel tube 8 having a diameter of 110 x T4.5 mm was formed.
  • the material steel pipe is heated to the soaking temperature shown in Table 15 by the seam cooling and pipe heating device 22, and the specified outer diameter is measured by the reduction rolling device 21 equipped with a plurality of three-roll reduction rolling mills.
  • the number of stands used for the rolling mill was 6 when the outer diameter of the product pipe was 60.3 mm, and 16 when the outer diameter of the product pipe was 42.7 mm.
  • the No. 1-2 product pipe was lubricated and rolled using drawing oil in which synthetic esters were mixed with mineral oil during drawing and rolling.
  • the crystal grain size and tensile properties of these product tubes were investigated, and the results are shown in Table 15.
  • the crystal grain size the cross section perpendicular to the longitudinal direction of the steel pipe (C cross section) was observed at 5 times or more at a magnification of 5000 times, and the average crystal grain size of ferrite and the second phase was measured.
  • JIS No. 11 test pieces were used for the tensile properties.
  • the elongation (E 1) is calculated by taking the size effect of the test piece into consideration.
  • E 1 E 1 0 X ((a0 / a)) 0 4
  • Table 15 shows that all of the examples of the present invention (No. l-2, No. l-4 to No. l-7, No. 1-10) within the present invention have an average crystal grain size of 2 ⁇ m. It has high elongation and toughness, and has a tensile strength of 600MPa or more, and is a steel pipe with excellent balance between strength and toughness and ductility. In addition, in No. 1-2 which was subjected to lubrication rolling, the variation of crystal grains in the thickness direction was small and Was. In comparison, in comparative examples (No. ll, No. 1-3, No. 1-8, No. 1-9) out of the range of the present invention, the crystal grains became coarse and the ductility was deteriorated. . ⁇
  • the structure of the product tube within the scope of the present invention was ferrite and a structure having, as the second phase, cementite having an area ratio of more than 30%.
  • the raw steel pipe having the chemical composition shown in Table 16 was reheated to the temperature shown in Table 17 with an induction heating coil, and then turned into a product pipe with the outer diameter shown in Table 17 using a three-roll drawing mill. .
  • the number of rolling mill stands used was 16.
  • the present invention examples (No. 2-l to No. 2-6) in the present invention range have an average ferrite grain size of 2 m or less, a tensile strength of 600 MPa or more, The steel pipe has high elongation and a good balance between strength and ductility.
  • Comparative Examples (No. 2-7 and No. 2-8) out of the range of the present invention the crystal grains are coarsened and the strength is reduced, and the target tensile strength is not obtained.
  • the yarn and weave of the product tube in the range of the present invention was a structure having fu- lite and, as the second phase, perlite, cementite, bainite or martensite having an area ratio of more than 30%.
  • the steel pipe of the present invention is also excellent in secondary workability, for example, bulge workability such as forming of a hole. It is a steel pipe suitable for bulging.
  • the hardened seam portion has the same level of hardness as the base pipe portion by drawing and rolling, and the bulge workability is more remarkable than before. Be improved.
  • F is ferrite
  • C is cementite
  • is bainite
  • F is ferrite, ⁇ « ⁇ .
  • One light « ⁇ '—including light) C is cementite, ⁇ is bainite, ⁇ is manoite
  • F is ferrite
  • P parlite (including pseudo perlite)
  • C is cementite
  • B bainite
  • M martensite
  • F is ferrite
  • P parlite (including pseudo perlite)
  • C is cementite
  • B bainite
  • M martensite
  • the productivity of a high-strength steel pipe excellent in ductility and impact resistance is high, it can be easily manufactured, the use of the steel pipe can be expanded, and an industrially outstanding effect is achieved.
  • a high-strength and high-toughness steel pipe for line pipes having excellent resistance to stress corrosion cracking and a high-strength high-ductility steel pipe having excellent fatigue resistance characteristics are reduced in the amount of alloy elements, It can be manufactured at low cost.
  • a steel material having ultra-fine crystal grains of 1 ⁇ m or less and having high strength and excellent toughness and ductility can be easily produced, and the applications of the steel material can be expanded.
  • high strength steel with ultra-fine crystal grains of 2 ⁇ m or less, tensile strength of 600 MPa or more, and excellent toughness and ductility can be easily manufactured without intermediate annealing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

• 明 細 書 超微細粒鋼管およびその製造方法 技術分野
本発明は、 超微細結晶粒を有し、 高強度、 高靱性 ·高延性を有しかつ耐衝突衝 撃特性に優れた鋼管およびその製造方法に関する。 背景技術
鋼材の強度を増加させるためには、 Mn、 Si等の合金元素の添加や、 さらに、 制 御圧延、 制御冷却、 焼入れ焼戻し等の熱処理あるいは、 Nb、 V等の析出硬化型元 素の添カ卩などが利用されている。 し力、し、 鋼材には、 強度のみでなく延性 ·靱性 が高いことが必要で、 従来から、 強度と延性 ·靱性がバランスよく向上した鋼材 が要望されている。
結晶粒の微細化は、 強度、 延性 ·靱性を共に向上させうる数少ない手段として 重要である。 結晶粒の微細化の方法としては、 オーステナイ ト粒の粗大化を防止 して、 微細オーステナイ トからオーステナイ ト一フェライ ト変態を利用しフェラ ィ ト結晶粒を微細化する方法、 加工によりオーステナイ ト粒を微細化しフェライ ト結晶粒を微細化する方法、 あるいは焼入れ焼戻し処理によるマルテンサイ ト、 下部べィナイ トを利用する方法などがある。
なかでも、 オーステナイ ト域における強加工とそれに続くオーステナイ ト一フ ェライ ト変態によりフェライ ト粒を微細化する制御圧延が、 鋼材製造に広く利用 されている。 また、 微量の Nb を添加しオーステナイ ト粒の再結晶を抑制してフ ェライ ト粒を一層微細化することも行われている。 オーステナイ トの未再結晶温 度域で加工を施すことにより、 オーステナイ ト粒が伸長し粒内に変形帯を生成し て、 この変形帯からフェライ ト粒が生成され、フェライ ト粒が一層微細化される。 さらにフェライ ト粒を微細化するために、 加工の途中あるいは加工後に冷却を行 う、 制御冷却も利用されるようになっている。
しかしながら、上記した方法では、 フェライ ト粒径で 4〜5 μ m程度までの微 細化が限度であり、 また、 鋼管の製造に適用するには、 工程が複雑である。 この ようなことから、 鋼管の靱性 ·延性の向上のために、 簡素な工程でフェライ ト結 晶粒のさらなる微細化が要望されていた。 また、 上記した方法では、 最近、 要望 が高まってきた自動車の安全性向上を目的とした耐衝突衝撃特性を向上させた鋼 管を製造するうえで、 設備の改造等を含む大幅な工程改造が必要となり、 コス ト 面で限界があった。
また、 ラインパイプ用鋼管の耐硫化物応力腐食割れ性を向上させるために、 不 純物の低減や合金元素の調整による硬さ制御を行っているのが現状である。
従来から耐疲労特性を向上させるために、 焼入れ焼もどし、 高周波焼入れ、 浸 炭等の熱処理、 あるいは Ni、 Cr、 Mo等の高価な合金元素を多量添加していた。 し力 し、 これらの方法では、溶接性が劣化ししかもコスト高となる問題 あった。
600MPa を超える引張強さの高強度鋼管は、 C含有量を 0.30%以上に高めた材 料、 あるいは C含有量を高めさらに他の合金元素を多量に添カ卩した材料を用いて 製造されている。 しかし、 このようにして強度を高められた高強度鋼管では、 伸 び特性が低下するため、 通常、 強加工を施すことは避け、 強加工を必要とする場 合には、 加工途中で中間焼鈍を施して、 その後さらに焼ならし、 または焼入れ焼 戻し等の熱処理を行っていた。 しカゝし、 中間焼鈍等の熱処理を施すことは工程的 に複雑となる。
このようなことから、 中間焼鈍を行うことなく高強度鋼管の強加工を可能とす ることが要望され、 高強度鋼管の加工性向上のためにも、 結晶粒のさらなる微細 化が望まれていた。
本発明は、 上記した問題を有利に解決し、 大幅な工程変更することなく、 延性 および耐衝突衝撃特性に優れた鋼管およびその製造方法を提供することを目的と する。 また、 本発明は、 フェライ ト結晶粒が 3 /X m 以下、 好ましくは 2 μ mま たは 1 μ m以下に微細化され靱性 ·延性に優れた超微細粒を有する鋼管およびそ の製造方法を提供することを目的とする。
さらには、 超微細結晶粒を有し、 加工性に優れた引張強さ 600MPa以上の高強 度鋼管およびその製造方法を提供することを目的とする。 発明の開示
本発明者らは、 延性に優れた高強度鋼管を高造管速度で生産できる鋼管の製造 方法について鋭意検討した結果、 組成を限定した鋼管にフ ライ ト回復 ·再結晶 温度域で絞り圧延を施すと、 強度一延性バランスに優れた高延性高強度鋼管を製 造できることを見い出した。
まず、 本発明の基礎となった実験結果について説明する。
0.09wt% C— 0.40wt%Si— 0.80wt%Mn— 0.04wt%Alを含有する電縫鋼管 ( φ 42 .7mm D X 2.9mm t ) を、 750 °C〜550 °Cの各温度に加熱し、 絞り圧延機により 製品管の外径を Φ 33.2〜 0mm に種々変化した絞り圧延を圧延出側速度 200m/minで施し製品管とした。 圧延後、 製品管の引張強さ (TS) 、 伸び (E1) を 測定し、 伸び一強度の関係に図示し、 図 1に示す (図中拳印) 。 なお、 〇印は、 各種サイズの溶接接合した絞り圧延を行わない電縫鋼管の伸び一強度の関係を同 様に図示した例である。
なお、 伸び (E1) の値は、 試験片サイズ効果を考慮して、
E1=E10 X ( (aO/a) ) 0.4
(ここに、 E10 :実測伸び、 a0: 292mm2、 a :試験片断面積 (mm2 ) ) を用いて求めた換算値を使用した。
図 1から、 素材鋼管を 750 〜 550°Cに加熱して絞り圧延を施すと、 接合のまま の電縫鋼管の伸び一強度の関係にくらべ、 同一強度で比較して高い伸びが得ちれ ることがわかる。 すなわち、 本発明者らは、 組成を制限した素材鋼管を— 750 〜40 0 °Cに加熱し絞り圧延を施すことにより、 延性一強度バランスに優れた髙強度鋼 管が製造できるという知見を得た。
さらに、上記の製造方法で製造された鋼管は、 3 At m以下という微細フェライ ト粒を有していることが判明した。 本発明者らは、 耐衝突衝撃特性を調べるため 、 歪速度を 2000S-1と大幅に変化して、 引張強さ (T S ) とフェライ ト粒径との 関係を求めた。 その結果、 図 2に示すように、 フェライ ト粒径が 3 μ m 以下とな ると、 顕著に T Sが増加する、 とくに歪速度が大きい衝突衝撃変形時に T Sの増 加が著しいことを見い出した。 すなわち、 微細フェライ ト粒を有する鋼管は、 延 性一強度バランスが優れることに加えて、 顕著に改善された耐衝突衝撃特性を有 しているという知見も得た。
さらに超微細粒を有する鋼管を得るための本発明は、 外径 ODi (mm) で鋼管 長手方向に直角な断面のフェライ トの平均結晶粒径 d i ( μ m ) の素材鋼管を加 熱し、 平均圧延温度 Θ m (°C) 、 合計縮径率 T red (%) の絞り圧延を施し外径 ODf (mm) の製品管とする鋼管の製造方法において、 前記絞り圧延を 400 °C以 上加熱または均熱温度以下の温度範囲で、 かつ前記平均結晶粒径 d i ( μ m ) 、 前記平均圧延温度 0 m (°C) および前記合計縮径率 T red (%) の関係が次 (1 ) 式
{(0.008+ Θ m/50000)x T red}
d i ≤ (2.65-0.003 x Θ m) x 10
( 1 )
(ここに、 d i :素材鋼管の平均結晶粒径 ( m ) 、 d m:平均圧延温度 (°C) = ( Θ i + Θ f ) / 2 , Θ i :圧延開始温度、 Θ f :圧延終了温度、 T red :合 計縮径率 (%) = (ODi-ODf) X 100 /ODi 、 ODi :素材鋼管外径 (mm) 、 ODf : 製品管外径 (mm) ) を満足する絞り圧延とすることを特徴とする鋼管長手方向に 直角な断面のフェライ トの平均結晶粒径が 1 μ m以下の超微細粒を有する鋼管 の製造方法である。 また、 本発明では、 前記絞り圧延を 400 〜750 °Cの温度範囲 で行うのが好ましい。また、本発明では、前記素材鋼管の加熱または均熱を Ac3 変 態点以下とするのが好ましく、 また、 前記素材鋼管の加熱または均熱を該素材鋼 管の A cl変態点を基準にし、 (A cl + 50°C) 以下の温度範囲とするのが好まし く、 また、 前記絞り圧延が潤滑下での圧延とするのが好ましい。
前記絞り圧延を、 1パス当たりの縮径率が 6 %以上の圧延パスを少なくとも 1 パス以上含む圧延とするのが好ましく、 また、 前記累積縮径率が 6 0 %以上とす るのが好ましい。
また、平均結晶粒径が 1 μ m以下の超微細粒を有する鋼管およびその製造方法 である本発明では、 前記素材鋼管を重量%で、 C : 0.70wt%以下を含有する鋼管 とするのがよく、また、本発明では、前記素材鋼管を重量%で、 C: 0.005 〜0.30%、 Si: 0.01—3.0 %、 Mn: 0.01〜2.0 %、 A1: 0.001 〜0.10%を含有し、 残部 Feおよ び不可避的不純物からなる糸且成を有する鋼管とするのが好ましく、 また.、 本発明 では、 前記組成に加えて、 さらに、 次 A〜C群、
A群: Cu: 1 %以下、 : 2 %以下、 Cr: 2 %以下、 Mo: 1 %以下の群、 B群: Nb: 0.1 %以下、 V : 0.5 %以下、 Ti: 0.2 %以下、 B : 0.005 %以
下の群、
C群: REM : 0.02%以下、 Ca: 0.01%以下の群、
のうちから選ばれた 1群または 2群以上から該各群のうちの 1種以上を含有する 鋼管としてもよい。
また、 本発明者らは、 上記した鋼管の製造方法において、 素材鋼管の組成をさ らに適正範囲内に限定することにより、 高強度、 高靱性でかつ耐応力腐食割れ性 に優れた鋼管を製造できることを見い出し、 ラインパイプ用鋼管として有利に利 用できることに思い至った。
ラインパイプ用鋼管は、 従来から耐応力腐食割れ性を向上するために、 S等の 不純物の低減や合金元素の調整による硬さ制御を行っていた。 し力、し、 これらの 方法では、 高強度化に限界があり、 しかもコスト高となる問題があった。
素材鋼管の組成をさらに適正範囲内に限定し、 フェライ ト再結晶域での絞り圧 延を行うことにより、 微細フェライ トと微細炭化物の分散が得られ、 高強度、 高 靱性が得られるとともに、 さらに合金元素を制限でき溶接硬化性が低減し、 また クラックの発生、 進展を抑制でき耐応力腐食割れ性が向上する。
すなわち、 本発明は、 重量%で、 C : 0.005〜0.10% 、 Si: 0.01 〜0.5 % 、 Mn: 0.01 〜1.8 %、 A1: 0.001 〜0.10%を含み、 さらに、 Cu: 0.5 %以下、 Ni: 0.5 %以下、 Cr: 0.5 %以下、 Mo: 0.5 %以下のうちから選ばれた 1種また は 2種以上、 あるいはさらに Nb: 0.1 %以下、 V : 0.1 %以下、 Ti: 0.1 %以下、 B : 0.004 %以下のうちから選ばれた 1種または 2種以上、 あるいはさらに REM : 0.02%以下、 Ca : 0.01%以下のうちから選ばれた 1種または 2種を含有し、 残部 Feおよび不可避的不純物からなる組成を有する素材鋼管に対し、 上記 (1 ) 式を満足する絞り圧延を施すことにより、 延性および耐衝突衝撃特性に優れ、 か っ耐応力腐食割れ性に優れた鋼管が製造できる。
また、 本発明者らは、 上記した鋼管の製造方法において、 素材鋼管の組成を さらに適正範囲内に限定することにより、 高強度、 高靱性でかつ耐疲労特性に優 れた鋼管を製造できることを見い出し、 高疲労強度鋼管として有利に利用できる ことに思い至った。
適正範囲内に限定した組成の素材鋼管を、 フェライ ト回復 ·再結晶域での絞り 圧延を行うことにより、 微細フ ライ トと微細析出物の分散が得られ、 高強度、 高靱性が得られるとともに、 さらに合金元素を制限でき溶接硬化性が低減し、 ま た疲労クラックの発生、 進展を抑制でき耐疲労特性が向上する。 すなわち、 本発明は、 重量%で、 C : 0.06〜0.30%、 Si : 0.01-1.5 %、 Mn : 0.01-2.0 %、 A1 : 0.001 〜0.10%を含有し、 残部 Feおよび不可避的不純物から なる組成を有する素材鋼管を、 上記 (1 ) 式を満足する絞り圧延を施すことによ り、 延性、 耐衝突衝撃特性および耐疲労特性に優れた鋼管が製造できる。
さらに重量%で、 C : 0.30超〜 0.70%、 Si : 0.01—2.0 %、 Mn : 0.01〜2.0 %、 A1 : 0.001 〜0.10%を含有し、残部 Feおよび不回避的不純物からなる組成を有し、 かつ組織がフェライ トおよび面積率で 30%超のフェライ ト以外の第 2相からな り、鋼管長手方向に直角な断面の平均結晶粒径が 2 μ m以下または、鋼管長手方 向に直角な断面の該フェライ トの粒径が 1 μ m 以下である超微細粒を有するこ とを特徴とする加工性に優れた高強度鋼管も得ることができる。 図面の簡単な説明
【図 1】
鋼管の伸びと引張強さの関係を示すグラフである。
【図 2】
鋼管の引張強さとフユライ ト粒径の関係におよぼす引張歪速度の影響を示すグ ラフである。
【図 3】
本発明の 1実施例である鋼管の金属組織を示す電子顕微鏡組織写真である。
【図 4】
本発明の実施に好適な設備列の一例を示す概念図である。
【図 5】
本発明の実施に好適な固相圧接鋼管製造設備と連続化した設備列の 1例を示す 概念図である。
【図 6】
本発明の 1実施例を示す製品管の結晶粒径微細化におよぼす合計縮径率と素材 鋼管の平均結晶粒径との関係を示すグラフである。
【図 7】
耐硫化物応力割れ性試験の試験片形状を示す概略説明図である。
【符号の説明】
1 帯鋼
2 予熱炉
3 成形加工装置
4 エッジ予熱用誘導加熱装置
5 エツジ加熱用誘導加熱装置
6 スクイズローノレ
7 オープン管
8 素材鋼管 14 アンコイラ
15
16
17 ルーパ
18 切断機
19
20 温度計
21 絞り圧延装置
22 均熱炉 (シーム冷却および管加熱装置)
23 デスケーリング装置
24
25 再加熱装置
26 冷却装置
発明を実施するための最良の形態
本発明では素材として鋼管を用いる。 素材鋼管の製造方法についてはとくに限 定しない。 高周波電流を利用した電気抵抗溶接法による電気抵抗溶接鋼管 (電縫 鋼管) 、 オープン管両エッジ部を固相圧接温度域に加熱し圧接接合による固相圧 接鋼管、 鍛接鋼管、 およびマンネスマン式穿孔圧延による継目無鋼管いずれも好 適に使用できる。
つぎに、 素材鋼管および製品鋼管の化学組成の限定理由を説明する。
C : 0.70%以下
cは、 基地中に固溶あるいは炭化物として析出し、 鋼の強度を増加させる元素 であり、 また、 硬質な第 2相として析出した微細なセメンタイ ト、 マルテンサイ ト、 ペイナイ トが延性 (一様伸び) 向上に寄与する。 所望の強度を確保し、 第 2 相として析出したセメンタイ ト等による延性向上の効果を得るためには、 Cは 0. 005 %以上、 好ましくは 0.04%以上の含有を必要とする。 なお、 好ましくは Cは 0.30%以下、 より好ましくは 0.10%以下である。 このようなことから、 好ましく は 0.005 〜0.30%、 より好ましくは 0.04〜0.30%の範囲に限定した。
ラインパイプ用として耐応カ腐食割れ性を向上させるためには、 Cは 0.10%以 下とするのが好ましい。 0.10%を超えると、 溶接部の硬化のため、 耐応力腐食割 れ性が劣化する。
高疲労強度鋼管用として、 耐疲労特性を向上させるためには、 Cは 0.06 〜0.30%とするのが好ましレ、。 0.06%未満では、 強度不足のため、耐疲労特性が劣 化する。
引張強さ 600MPa以上の所望の強度を確保するためには、 Cは、 0.30%超以上 の含有を必要とするが、 0.70%を超えて含有すると延性が劣化する。 このため、 Cは、 0.30超〜 0.70%の範囲に限定した。 - Si: 0.01〜3.0 %
Siは、 脱酸元素として作用するとともに、 基地中に固溶し鋼の強度を増加させ る。 この効果は、 0.01%以上、 好ましくは 0.1 %以上の含有で認められるが、 3. 0 %を超える含有は延性を劣化させる。 高強度鋼管では、 延性の理由から上限を 2.0 %とする。 このことから、 Siは 0.01〜3.0 %または 0.01〜2.0 %の範囲に限定 した。 なお、 好ましくは、 0.1 〜1.5 %の範囲である。
なお、 ラインパイプ用として耐応カ腐食割れ性を向上させるためには、 Siは 0. 5 %以下とするのが好ましい。 0.5 %を超えると、 溶接部が硬化し、 耐応力腐食 割れ性が劣化する。
なお、 高疲労強度鋼管用として、 耐疲労特性を向上させるためには、 Siは 1.5 %以下とするのが好ましい。 1.5 %を超えると、 介在物を生成するため、 耐疲労 特性が劣化する。
Mn: 0.01〜2.0 %
Mn は、 鋼の強度を増加させる元素であり、 本発明では第 2相としてのセメン タイ トの微細析出、 あるいはマルテンサイ ト、 べィナイ トの析出を促進させる。 0.01 %未満では、 所望の強度が確保できないうえ、 セメンタイ トの微細析出、 あ るいはマルテンサイ ト、 べィナイ トの析出が阻害される。 また、 2.0 %を超える と、 強度が増加しすぎて延性が劣化する。 このため、 Mnは 0.01〜2.0 %の範囲に 限定した。 なお、 強度一伸びバランスの観点から、 Mnは 0.2 〜1.3 %の範囲が好 ましく、 より好ましくは 0.6 〜1.3 %の範囲である。
なお、ラインパイプ用として耐応カ腐食割れ性を向上させるためには、 Mnは 1. 8 %以下とするのが好ましい。 1.8 %を超えると、 溶接部が硬化するため、 耐応 力腐食割れ性が劣化する。
A1: 0.001 〜0.10%
A1は、 結晶粒径を微細化する作用を有している。 結晶粒微細化のためには、 少 なくとも 0.001 %以上の含有を必要とするが、 0.10%を超えると酸素系介在物量 が増加し清浄度が劣化する。 このため、 A1は 0.001 〜0.10%の範囲に限定した。 なお、 好ましくは 0.015 〜0.06%である。 上記した素材鋼管の基本糸且成に加えて、 つぎに述べる A〜C群の合金元素群から選ばれた 1群または 2群以上から該各群 のうちの 1種または 2種以上を添加含有してもよい。
A群: Cu: 1 %以下、 Ni: 2 %以下、 Cr: 2 %以下、 Mo: 1 %以下の群 Cu、 Ni、 Cr、 Mo はいずれも、 鋼の焼入れ性を向上させ、 強度を増加させる元 素であり、 必要に応じ 1種または 2種以上を添加できる。 これら元素は、 変態点 を低下させ、 フェライ ト粒あるいは第 2相を微細化する効果を有している。 しか し、 Cu は多量添加すると熱間加工性が劣化するため、 1 %を上限とした。 M は 強度増加とともに靱性をも改善するが 2 %を超えて添加しても効果が飽和し経済 的に高価となるため、 2 %を上限とした。 Cr、 Mo は多量添加すると溶接性、 延 性が劣化するうえ経済的に高価となるため、 それぞれ 2 %、 1 %を上限とした。 なお、好ましくは Cu: 0.1 〜0.6 %、 Ni: 0.1 〜1.0 %、 Cr: 0.1 〜1.5 %、 Mo:
0.05〜0.5 %である。 .
なお、 ラインパイプ用として耐応力腐食割れ性を向上させるためには、 Cu、 Ni
、 Cr、 Moはいずれも、 それぞれ、 0.5 %以下に制限するのが好ましい。 0.5 %を 超えて多量添加すると、 溶接部が硬化し、 そのため、 耐応力腐食割れ性が劣化す る。
B群: Nb: 0.1 %以下、 V : 0.5 %以下、 Ti: 0.2 。/。以下、 B : 0.005 %以下 の群
Nb、 V、 Ti、 Bは、 炭化物、 窒化物または炭窒化物として析出し、 結晶粒の微 細化と高強度化に寄与する元素であり、 特に高温に加熱される接合部を有する鋼 管では、 接合時の加熱過程での結晶粒の微細化や、 冷却過程でフ ライ トの析出 核として作用し、 接合部の硬化を防止する効果もあり、 必要に応じ 1種または 2 種以上添加できる。 しカゝし、 多量添加すると、 溶接性と靱性が劣化するため、 Nb は 0.1 %、 Vは 0.5 %好ましくは 0.3 %、 Tiは 0.2 %、 Bは 0.005 %好ましくは 0.004 %をそれぞれ上限とした。 なお、 好ましくは Nb: 0.005 〜0.05%、 V : 0. 05〜0.1 。/。、 Ti: 0.005 〜0.10%、 B : 0.0005—0.002 %である。
なお、 ラインパイプ用として耐応力腐食割れ性を向上させるためには、 Nb、 V 、 は、 それぞれ、 0.1 %以下に制限するのが好ましレ、。 b、 V、 Tiが 0.1 %を 超えて、 多量に添加されると、 析出硬化のため、 耐応力腐食割れ性が劣化する。
C群: REM : 0.02%以下、 Ca: 0.01%以下の群
REM 、 Caは、 いずれも介在物の形状を調整し加工性を向上させる作用を有し ており、 さらに、 硫化物、 酸化物または硫酸化物として析出し、 接合部を有する 鋼管での接合部の硬化を防止する作用をも有し、必要に応じ 1種以上添加できる。 REM : 0.02%、 Ca: 0.01%を超えると介在物が多くなりすぎ清浄度が低下し、 延 性が劣化する。 なお、 REM : 0.004 %未満、 Ca : 0.001 % 未満ではこの作用に よる効果が少ないため、 、 REM : 0.004 %以上、 Ca : 0.001 %以上とするのが好 ましい。
素材鋼管および製品鋼管は、上記した成分のほ力 \残部 Feおよび不可避的不純 物からなる。 不可避的不純物としては、 N : 0.010 %以下、 O : 0.006 %以下、 P : 0.025 %以下、 S : 0.020 %以下が許容される。
N : 0.010 %以下
Nは、 A1と結合して結晶粒を微細化するに必要な量、 0.010 %までは許容でき るが、 それ以上の含有は延性を劣化させるため、 0.010 %以下に低減するのが好 ましい。 なお、 より好ましくは、 Nは 0.002 〜0.006 %である。
O : 0.006 %以下
oは、 酸化物として清浄度を劣化させるため、 できるだけ低減するのが好まし いが、 0.006 %までは許容できる。 • P : 0.025 %以下
Pは、 粒界に偏析し、 靱性を劣化させるため、 できるだけ低減するの—が好まし いが、 0.025 %までは許容できる。 .
S : 0.020 %以下
sは、 硫化物を増加し清浄度を劣化させるため、 できるだけ低減するのが好ま しいが、 0.020 %までは許容できる。 つぎに、 製品鋼管の組織について説明する。
1 )本発明の鋼管は糸且織がフェライ ト平均結晶粒径が 3 m以下のフェライ ト を主とする組織からなる延性および耐衝突衝撃特性に優れた鋼管である。
フェライ ト粒径が 3 m を超えると、延性の顕著な改善と歪速度の大きい衝撃 荷重に対する特性、 耐衝突衝撃特性の顕著な改善が得られない。 好ましくは、 フ エラィト平均結晶粒径は、 1 μ m 以下である。
本発明におけるフユライ ト平均結晶粒径は、 鋼管長手方向に直角な断面を、 ナ ィタール液で腐食し光学顕微鏡または電子顕微鏡で組織観察し、 200個以上のフ ェライ ト粒の円相当径を求め、 その平均値を用いた。
本発明でいうフェライ トを主とする組織は、 第 2相が析出しないフユライ ト単 独の組織と、 フェライ トとフェライ ト以外の第 2相とからなる組織が含まれる。 フェライ ト以外の第 2相としては、 マルテンサイ ト、 べィナイ ト、 セメンタイ トがあり、 それら単独あるいは複合して析出してもよい。 第 2相の面積率は 30% 以下とする。 析出した第 2相は変形時に一様伸びの向上に寄与し、 鋼管の延性、 耐衝突衝撃特性を向上させるが、 このような効果は、 第 2相の面積率が 30%を超 えると少なくなる。
2 ) 本発明の高強度鋼管の a織は、 フェライ トと、 面積率で 30%超のフェライ ト以外の第 2相からなり、鋼管長手方向に直角な断面の平均結晶粒径が 2 μ m 以 下である。 フェライ ト以外の第 2相としては、 マルテンサイ ト、 べィナイ ト、 セ メンタイ トがあり、 それらが単独あるいは複合して析出してもよい。 第 2相の面 積率は 30%超とする。 析出した第 2相は、 強度、 一様伸びの向上に寄与し、 鋼管 の強度、 延性を向上させるが、 このような効果は第 2相の面積率が 30%以下では 少ない。フェライ ト以外の第 2相の面積率は 30%超好ましくは 60%以下とするの が好ましい。 60%を超えるとセメンタイ トの粗大化のため延性が劣化する。
平均結晶粒径が 2 μ m を超えると、延性の著しい向上がなく、加工性の著しい 向上が得られない。 好ましくは、 フェライ ト平均結晶粒径は、 1 μ m 以下である。 この本発明における平均結晶粒径は、 鋼管長手方向に直角な断面を、 ナイター ル液で腐食し光学顕微鏡または電子顕微鏡で組織観察し、 200 個以上の粒の円相 当径を求め、 その平均値を用いた。 なお、 第 2相の粒径は、 第 2相がバーライ ト の場合は、 パーライ トコロニー境界を、 べィナイ ト、 マルテンサイ トの場合には バケツト境界を粒界として、 粒径を測定した。 本発明鋼管の,組織の 1例を図 3に示す。 つぎに、 本発明の鋼管の製造方法について説明する。
上記組成の素材鋼管を加熱温度: A c3〜400 °C、 好ましくは (A cl + 50°C) 〜 400 °C、 より好ましくは 750 〜400 °Cに加熱する。
加熱温度が A c3変態点を超えると、表面性状が劣化するとともに、結晶粒が粗 大化する。 このため、 素材鋼管の加熱温度は A c3変態点以下、 好ましくは (A cl + 50°C) 以下、 より好ましくは 750 °C以下とするのがよい。加熱温度が 400 °C未 満では、 好適な圧延温度を確保できないため、 加熱温度は 400 °C以上とするのが 好ましい。
ついで、 加熱された素材鋼管は絞り圧延を施される。
絞り圧延は、 3ロール方式の絞り圧延機により行うのが好ましいが、 これに限 定されるものではない。 絞り圧延機は、 複数のスタンドを配設して、 連続的に圧 延するのが好ましい。 スタンド数は素材鋼管の寸法と、 製品鋼管の寸法により適 宜決定できる。
絞り圧延の圧延温度は、 フェライ ト回復 '再結晶温度域の A c3〜400 °C、 好ま しくは (A cl + 50°C) 〜400 °C、 より好ましくは 750 〜400 °Cの範囲とする。 圧 延温度が A c3変態点を超えると、超微細粒が得られず、強度低下のわりには延性 が向上しない。 このため、圧延温度は A c3変態点以下、好ましくは(A cl + 50°C) 以下、 さらに好ましくは 750 °C以下とする。 一方、圧延温度が 400 °C未満では青 熱脆性により脆化し圧延中に材料が破断する恐れがある。
さらに、圧延温度が 400 °C未満では材料の変形抵抗が増大し圧延が困難となる ほか、 回復 ·再結晶が不十分となり加工歪が残存しやすくなる。 このため、 絞り 圧延の圧延温度は、 A c3〜400 °C、 好ましくは (A cl + 50°C) 〜400 °C、 さらに 好ましくは 750 〜400 °Cの範囲に限定した。 好ましくは 600 〜700 °Cである。 絞り圧延における累積縮径率は 20%以上とする。
累積縮径率 (= (素材鋼管外径一製品鋼管外径) / (素材鋼管外径) X 100 % ) が 20%未満では、 回復 ·再結晶による結晶粒の微細化が不十分であり、 延性に 富む鋼管とならない。 また、 造管速度も遅く生産能率が低い。 このため、 本発明 では累積縮径率を 20%以上とした。 なお、 累積縮径率が 60%以上では、加工硬化 による強度増加に加えて組織の微細化が顕著となり、 上記した組成範囲の合金添 加量が低い低成分系の鋼管でも強度と延性のバランスに優れ、 強度、 延性ともに 優れた鋼管が得られる。 このことから、 累積縮径率は 60%以上とするのがより好 ましい。
絞り圧延においては、 1パス当たりの縮径率が 6 %以上の圧延パスを少なくと も 1パス以上含む圧延とするのが好ましい。
絞り圧延の 1パスあたりの縮径率が 6 %未満では、 回復 ·再結晶による結晶粒 の微細化が不十分である。 また、 6 %以上では、 加工発熱による温度上昇が認め られ圧延温度の低下を防止できる。 なお、 1パスあたりの縮径率は、 結曰曰曰粒微細 化により大きな効果がある 8 %以上とするのがより好ましい。 .
本発明における鋼管の絞り圧延は、 2軸応力状態の圧延加工となり、 著しい結 晶粒微細化効果を得ることができる。 これに対し、 鋼板の圧延においては、 圧延 方向に加え、 板幅方向 (圧延直角方向) にも自由端が存在し、 1軸応力状態にお ける圧延加工であり、 結晶粒微細化に限界がある。
また、 本発明では、 絞り圧延は潤滑下での圧延とするのが好適である。 絞り圧 延を潤滑下での圧延 (潤滑圧延) とすることにより、 厚み方向の歪分布が均一と なり、 結晶粒径の分布が厚み方向で均一となる。 無潤滑圧延を行うと剪断効果に よって材料表面層部のみに歪が集中し、 厚み方向の結晶粒が不均一となりやすい 。 潤滑圧延は、 通常公知の、 鉱油あるいは鉱油に合成エステルを混合した圧延油 を用いて行えばよく、 圧延油をとくに限定する必要はない。
絞り圧延加工後、 鋼材は室温まで冷却される。 冷却方法は、 空冷でよいが、 粒 成長を少しでも抑える目的で水冷、 あるいはミス ト冷却、 強制空冷等通常公知の 冷却方法が適用可能である。冷却速度は l°C/sec 以上、好ましくは 10°CZsec 以 上とする。 また、 製品の要求特性に応じ、 冷却途中で保定などの段階的冷却方法 を用いてもよい。
さらに、 本発明では、製品鋼管の結晶粒径を安定して 1 μ m以下、 高強度鋼管 に関しては 2 μ m以下とするためには素材鋼管に以下のような絞り圧延を行う のが好ましい。
外径 ODi (mm) で鋼管長手方向に直角な断面のフェライ トの平均結晶粒径 d i ( μ m ) 、 高強度鋼管の場合には第 2相も含めた平均結晶粒径 d i ( μ m ) の素材鋼管を加熱または均熱し、平均圧延温度 Θ m (°C)、合計縮径率 T red (%) の絞り圧延を施し外径 ODf (mm) の製品管とする。
絞り圧延方法は、 レデューサと称される複数の孔型圧延機による絞り圧延が好 適である。 本発明の実施に好適な設備列の 1例を図 4に示す。 図 4では、 孔型ロ ールを有する複数のスタンドの絞り圧延装置 21が示されている。圧延機のスタン ド数は、 素材鋼管径と製品管径の組み合わせで適宜決定される。 孔型ロールは、 通常公知の 2ロール、 3ロールあるいは 4ロールいずれでも好適に適用できる。 絞り圧延の加熱または均熱方法はとくに限定するものではないが、 加熱炉、 あ るいは誘導加熱によるのが好ましい。 なかでも誘導加熱方式が加熱速度が大きく 生産能率あるいは結晶粒の成長を抑制する点から好ましい。 (図 4には誘導加熱 方式の再加熱装置 25が例示されている。)加熱または均熱温度は結晶粒が粗大化 しない温度範囲である Ac3 変態点以下、 あるいは前記素材鋼管 A cl変態点を基 準にし、 (A cl + 50°C) 以下、 さらに好ましくは 600 〜700 °Cとする。 本発明で は、 もちろん、 素材鋼管の加熱あるいは均熱温度が上記した温度を超える場合で も製品管の結晶粒径は微細となる。 - この圧延域での圧延により、素材鋼管,組織中の第 2相がパーライ トの場合には、 パーライ ト中の層状セメンタイ トが分断微細化され、 これにより製品 管の伸び 特性が確保され、 加工性が向上する。 また、 素材鋼管組織中の第 2相がべィナイ トの場合には、 加工を受けたべィナイ トが再結晶し、 微細べィニティックフェラ ィ ト組織となり、 これにより製品鋼管の伸び特性が確保され、加工性が向上する。 絞り圧延の圧延温度は 400 °C以上加熱または均熱温度以下、好ましくは 750 °C 以下の温度範囲とする。 Ac3 変態点を超える温度、 あるいは (A cl +50°C) を超 える温度、 あるいは 750 °Cを超える高い温度では、 多量のオーステナイ トを含ん だフェライ ト +オーステナイ ト 2相域、 あるいはオーステナイ ト単相となり、 カロ ェ後フェライ ト組織、 あるいはフェライ トを主とする組織となりにくいうえ、 フ ェライ ト加工による結晶粒微細化効果を減少させる。 また、 圧延温度が 750 °Cを 超えると、 再結晶後のフェライ ト粒の成長が著しくなり微細粒となりにくい。 さ らに、 圧延温度が 400 °C未満では、 青熱脆化域となり圧延が困難となるか、 ある いは再結晶が不十分となり加工歪が残存しやすくなるため、 延性 ·靱性が低下す る。 このため、 絞り圧延の圧延温度は 400 °C以上、 Ac3 変態点以下、 あるいは ( A cl + 50°C) 以下、 好ましくは 750 °C以下の温度範囲とする。 なお、 好ましくは 560 〜 720°C、 より好ましくは 600 〜700 °Cである。
絞り圧延は、 上記圧延温度範囲内でかつ素材鋼管の鋼管長手方向に直角な断面 のフェライ トの平均結晶粒径 d i ( μ m ) 、 絞り圧延の平均圧延温度 0 m (°C) および合計縮径率 T red (%) の関係が (1 ) 式
を満足する絞り圧延とする。
d i 、 θ πιおよび T red の関係が (1 ) 式を満足しない場合には、 製品管のフ ライ ト平均結晶粒(鋼管長手方向に直角な断面)が 1 μ m 以下の微細粒となら ない。高強度鋼管でも同様に平均結晶粒 (鋼管長手方向に直角な断面)が 2 μ m 以 下の微細粒とならない。
JIS STKM 13A相当の素材鋼管 ( ODi=60.3mm、 肉厚: 3.5mm ) を、 4ロール 圧延機を 22スタンド連続させた絞り圧延装置で圧延出側速度 200m/min、 平均圧 延温度 550 °C、 700 °Cで、 各種径の製品管を圧延した場合について、 製品管の結 晶粒径におよぼす合計縮径率と素材鋼管の平均結晶粒径との関係を図 6に示す。
( 1 )式を満足する斜線領域が製品管の結晶粒を 1 μ m 以下にできる領域である c 絞り圧延後、 製品管 16は好ましくは 300 °C以下まで冷却される。 冷却方法は、 空冷でよいが、粒成長を少しでも抑える目的で急冷装置 24を用い水冷、あるいは ミス ト冷却、 強制空冷等通常公知の冷却方法が適用可能である。 冷却速度は 1°C /sec 以上、 好ましくは 10°C/sec 以上とする。
なお、 本発明では、 絞り圧延装置 21の入側あるいは絞り圧延装置 21の途中に 冷却装置 26を設置し、 温度調節を行ってもよい。 また、 絞り圧延装置 21の入側 にデスケリーング装置 23を設置してもよい。 ■ 本発明で素材とする素材鋼管は、 継目無鋼管あるいは、 電縫鋼管、 鍛接鋼管、 固相圧接鋼管等いずれでもよい。 また、 本発明の超微細粒鋼管の製造 i程は、 上 記した素材鋼管の製造ラインと連続化してもよい。 固相圧接鋼管の製造ラインと 連続化した 1例を図 5に示す。
アンコイラ 14から払い出された帯鋼 1は、 接合装置 15により先行する帯鋼と 接続され、ルーパ 17を介して予熱炉 2で予熱されたのち、成形ロール群からなる 成形加工装置 3でオープン管 7とされ、 エツジ予熱用誘導加熱装置 4とエツジ加 熱用誘導加熱装置 5により融点未満の温度域にオープン管 7エツジ部を加熱して、 スクイズロール 6で衝合圧接され、 素材鋼管 8とされる。
ついで、 素材鋼管 8は、 上記したように、均熱炉 22で所定の温度に加熱あるい は均熱後、 デスケーリング装置 23でスケールを除去し、 絞り圧延装置 21により 絞り圧延され、 切断機で切断され、 管矯正装置 19で矯正され製品管 16となる。 鋼管の温度は温度計 20で測定する。
また、 上記した絞り圧延でも、 前記したように、 潤滑下での圧延とするのが好 ましい。
上記した製造方法によれば、 フェライ トを主とした組織を有し、 鋼材長手方向 直角断面のフェライ トの平均結晶粒径が 1 μ m 以下の超微細粒を有する鋼管が 得られる。 また、 上記した製造方法によれば、 電縫鋼管、 鍛接鋼管、 固相圧接鋼 管等のシーム部の硬さが均一な鋼管となるという効果もある。
さらに、 フェライ トと面積率で 30%超のフェライト以外の第 2相からなる組織 を有し、鋼材長手方向直角断面の平均結晶粒径が 2 μ m 以下の超微細粒を有する 高強度鋼管が中間焼鈍なしに得られる。
(実施例 1 )
表 1に示す化学,組成を有する素材鋼管に、 表 2に示す温度に誘導加熱コイルで 加熱したのち、 3口ール構造の絞り圧延機で表 2に示す圧延条件で製品管とした 。表 2中に示す固相圧接鋼管とは、 2.6mm厚の熱延帯鋼を 600 °Cに予熱したのち 、 複数の成形ロールで連続的に成形しオープン管とし、 ついで、 オープン管両ェ ッジ部を誘導加熱で 1000°Cまで予熱したのち、 さらに両エッジ部を誘導加熱によ り未溶融温度域の 1450°Cまで加熱しスクイズロールにより衝合し固相圧接して、 Φ 42.7mm X 2.6mm厚の鋼管としたものを用いた。 一方、 継目無鋼管は、 連続铸 造製ビレットを加熱し、 マンネスマンマンドレル方式のミルで造管し、 継目無鋼 管としたものを用いた。
これら製品管の引張特性、 衝突衝撃特性、 組織を調査し、 その結果を表 2に示 す。 引張特性は、 JIS 1 1号試験片を用いた。 降伏応力は、 降伏現象が明確に観察 された場合には下降伏点の値とし、 それ以外は、 0.2%PSとした。
なお、 伸びの値は、 試験片のサイズ効果を考慮して、
E1=E10 X ( " (aO/a) ) ()·4 (ここに、 E10 :実測伸び、 a0: 292mm2、 a :試験片断面積 (mm2 ) ) " を用いて求めた換算値を使用した。 ―
衝突衝撃特性は、 歪速度 2000S-1の高速引張試験を行い、 得られた応力一歪曲 線から歪量 30%までの吸収エネルギーを求め、衝突衝撃吸収エネルギーとして評 価した。
なお、 衝突衝撃特性は、 実際に自動車が衝突する時の歪速度 1000〜 2000S-1に おける材料の変形エネルギーで代表され、 このエネルギーが大きいほど耐衝突衝 撃特性が優れることになる。
表 2から、 本発明範囲の本発明例 (No. l〜No. l6 、 No.19 〜No.22 ) は、 延性 と強度のバランスに優れた鋼管となっている。 高歪速度における引張強さも高く 、 衝突衝撃吸収エネルギーも高い。 一方、 本発明の範囲を外れる比較例 No.17 、 No.18 、 No.23 は、 延性あるいは強度のいずれかが低下し、 強度—延性バランス が悪く、 耐衝突衝撃特性も劣る。
比較例 No.17 、 No.18 は、 縮径率が本発明の範囲を外れ、 フェライ ト粒が粗大 化し、 強度延性バランスが劣化し、 耐衝突衝撃吸収エネルギーが低下している。
(実施例 2 )
表 3に示す化学組成を有する素材鋼管を、 表 4に示す温度に誘導加熱コイルで 加熱したのち、 3ロール構造の絞り圧延機で表 4に示す圧延条件で製品管とした 。 なお、 素材鋼管の製造法は実施例 1と同様とした。
これら製品管について、 実施例と同様に、 引張特性、 耐衝突衝撃特性、 組織を 調査し、 その結果を表 4に示す。
表 4から、 本発明範囲の本発明例 (No.2-l〜No.2-3、 No.2-6〜No.2-8、 No.2-1 0 〜No.2〜14) は、 延性と強度のバランスに優れた鋼管となっている。 さらに、 高歪速度における引張強さも高く、 衝突衝撃吸収エネルギーも高い。 一方、 本発 明の範囲を外れる比較例 No.2-4、 No.2-5, および No.2-9は、 延性あるいは強度の いずれかが低下し、 強度一延性バランスが悪く、 また、 耐衝突衝撃特性も劣る。 本発明によれば、 従来になく延性一強度バランスが向上し、 耐衝突衝撃特性に 優れた鋼管が得られるが、 さらに、 本発明の鋼管は、 二次加工性、 例えばハイド 口フォーム等のバルジ加工性にも優れ、 バルジ加工用として好適な鋼管である。 本発明の鋼管のうち、 溶接鋼管 (電縫鋼管) またはシーム冷却を施した固相圧 接鋼管においては、 硬化シーム部が絞り圧延により母管部と同じレベルの硬さと なり、 バルジ加工性が従来より顕著に改善される。
(実施例 3 )
表 5に示す化学組成を有する素材鋼管に、 表 6に示す温度に誘導加熱コイルで 加熱したのち、 3口ール構造の絞り圧延機で表 6に示す圧延条件で製品管とした 。 本実施例における素材鋼管は、 制御圧延、 制御冷却により製造された熱延鋼板 を用いて、 φ 110mm X4.5mm厚の鋼管としたものを用いた。 - これら製品管の引張特性、 衝突衝撃特性、 組織および耐硫化物応力害れ性を調 查し、 その結果を表 6に示す。 実施例 1と同様に、 弓 I張特性は、 JIS 11 .号試験片 を用いた。 なお、 伸びの値は、 試験片のサイズ効果を考慮して、 E1=E10 X
(aO/a) ) °-4 (ここに、 E10 :実測伸び、 a0: 292mm2、 a :試験片断面積 (mm 2 ) ) を用いて求めた換算値を使用した。
また、 実施例 1と同様に、 衝突衝撃特性は、 歪速度 2000s- 1の高速引張試験を 行い、 得られた応力一歪曲線から歪量 30%までの吸収エネルギーを求め、 衝突衝 撃吸収エネルギーとして評価した。
なお、 衝突衝撃特性は、 実際に自動車が衝突する時の歪速度 1000〜 2000S-1に おける材料の変形エネルギーで代表され、 このエネルギーが大きいほど耐衝突衝 撃特性が優れることになる。
なお、 耐硫化物応力腐食割れ性は、 図 7に示す Cリング試験片を用いて、 N A C E浴 (0.5 %酢酸 + 5 %食塩水、 H2S 飽和、 温度 25°C、 1気圧) 中で、 降伏強 さの 120 %の引張応力を付与し、 200hr の試験期間中での破断の有無を調査して 評価した。 Cリング試験片は、 製品管母材部の T方向 (円周方向) から切り出し た。 試験は、 同一条件で各 2本実施した。
表 6から、 本発明範囲の本発明例 (No.3-l ~No.3-3, No.3-5〜No.3-8、 No.3-1 0 、 No.3-12)は、 延性と強度のバランスに優れた銅管となっている。 高歪速度に おける引張強さも高く、 衝突衝撃吸収エネルギーも高い。 また、 耐硫化物応力割 れ性にも優れ、 ラインパイプ用としては優れた特性を有する鋼管である。 一方、 本発明の範囲を外れる比較例 No.3-4、 No.3-9、 No.3-11)は、 延性あるいは強度の いずれかが低下し、 強度一延性バランスが悪く、 耐衝突衝撃特性も劣り、 NACE 浴中の試験で破断が発生しており、 耐硫化物応力腐食割れ性が劣化している。 比較例 No.3-4は、 縮径率が本発明の範囲を外れ、 フェライ ト粒が粗大化し、 強 度延性バランスが劣化し、 耐衝突衝撃吸収エネルギーが低下し、 耐硫化物応力腐 食割れ性が劣化している。
比較例 No.3-9、 No.3-11 は、 絞り圧延の圧延温度が本発明の範囲を外れ、 フエ ライ ト粒が粗大化し、 強度延性バランスが劣化し、 耐衝突衝撃吸収エネルギーが 低下し、 耐硫化物応力腐食割れ性が劣化している。
(実施例 4 )
表 7に示す化学組成を有する素材鋼管に、 表 8に示す温度に誘導加熱コイルで 加熱したのち、 3ロール構造の絞り圧延機で表 8に示す圧延条件で製品管とした 。 本実施例における素材鋼管は、 熱延帯鋼を複数の成形ロールで成形しオープン 管とし、 ついでオープン管両エッジ部を誘導加熱により溶接し、 φ HOmm X 2.0 mm厚の電縫鋼管としたもの、 および連続铸造製ビレットを加熱し、 マンネスマ ドレル方式のミルで造管して、 φ l lOmm X 3.0mm厚の継目無鋼管とした ものを用いた。 一 これら製品管の引張特性、 衝突衝撃特性、 組織および耐疲労特性を if査し、 そ の結果を表 8に示す。 引張特性、 衝突衝撃特性は、 実施例 1と同様に実施した。 疲労特性は、 製品管そのままの実管試験片を用いて、 大気中で片持ち式両振り 疲労試験 (繰返し速度: 20Hz) を実施し、 疲労強度を求めた。
表 8から、 本発明範囲の本発明例 (No.4-l、 No.4-3, No.4-6〜No.4-9) は、 延 性と強度のバランスに優れた鋼管となっている。 高歪速度における引張強さも高 く、 衝突衝撃吸収エネルギーも高い。 また、 耐疲労特性にも優れ、 高疲労強度鋼 管としては優れた特性を有する鋼管である。 一方、 本発明の範囲を外れる比較例 No.4-2、 No.4-4、 No.4-5) は、 疲労強度が低下している。
比較例 No.4-2は絞り圧延が行われておらず、 比較例 No.4-5は、 縮径率が本発 明の範囲を外れ、 比較例 No.4-4は、絞り圧延の圧延温度が本発明の範囲を外れ、 フェライ ト粒が粗大化し、 強度延性バランスが劣化し、 耐衝突衝撃吸収エネルギ 一が低下し、 耐疲労特性が劣化している。
(実施例 5 )
表 9に示す化学組成を有する鋼素材 A 1を熱間圧延により 4.5 mm厚の帯鋼と した。 図 5に示す設備列を利用して、 この帯鋼 1を予熱炉 2で 600 °Cに予熱した のち、 複数の成形ロール群からなる成形加工装置 3で連続的に成形しオープン管 7とした。 ついで、 オープン管 7の両エッジ部をエッジ予熱用誘導誘導加熱装置 4で 1000°Cまで予熱したのち、 さらに両エッジ部をエッジ加熱用誘導加熱装置 5 により 1450°Cまで加熱しスクイズロール 6により衝合し固相圧接して、 φ 88.0 X 4.5mm厚の素材鋼管 8とした。
ついで、 素材鋼管をシーム冷却および管加熱装置 22で表 10に示す加熱均熱温 度にしたのち、複数の 3口ール構造の絞り圧延機を設置した絞り圧延装置 21で所 定の外径寸法の製品管とした。 使用した圧延機のスタンド数は、 製品管の外径が φ 60.3mmの場合には 6スタンド、 φ 42.7mmの場合には 16スタンドとした。 なお、 No.5-2の製品管は、 絞り圧延に際し、 鉱油に合成エステルを混合した圧 延油を用いて潤滑圧延を行った。
絞り圧延後、 製品管は空冷した。
これら製品管について、 結晶粒径、 引張特性、 衝撃特性を調査しその結果を表 10に示す。 結晶粒径は、 鋼管の長手方向に対し直角な断面 (C断面) について、 5000倍の倍率でそれぞれ 5視野以上観察し、 フェライ トの平均結晶粒径を測定し た。 引張特性は、 J1S 11号試験片を用いた。 なお、 伸び (E 1 ) は試験片のサイ ズ効果を考慮して、
E 1 = E 1 0 X ( (a0/ a ) ) 0 4
( E 1 0 :実測伸び、 a0= 100mm2、 a :試験片断面積 mm2 ) より求めた換 算ィ直を用いた。衝撃特性(靱性) は、実管をシャルピー衝撃試験により、 一 150 °C における C断面の延性破面率を用レ、て評価した。 実管シャルピー衝撃試験は実管 の管長手方向に直角に 2 mmVノツチを入れて衝撃破壊し、延性破面率—を求めた。 表 10から、 本発明範囲の本発明例 (No.5-2 No.5-4〜No.5-7、 No.5-9~No.5-l 1 、 No.5-13 ) は、 フェライ トの平均結晶粒径がいずれも 1 m の微細粒となり 、 伸び、 靱性も高く、 強度と靱性 ·延性のバランスが優れた鋼管となっている。 また、 潤滑圧延を行った No.5-2では、 肉厚方向の結晶粒のばらつきが少なかった 。 それに比較し、 本発明の範囲を外れた比較例 (No.5-l、 No.5-3, No.5-8、 No.5 -12 ) では、 結晶粒が粗大化し、 延性、 靱性が劣化している。 なお、 本発明範囲 の製品管の組織はフェライ ト +パーライ ト、 フェライ ト +セメンタイ ト、 あるい はフ ライ ト +べィナイ トであった。
(実施例 6 )
表 9に示す化学組成を有する鋼 B 1を転炉で溶製し連続銹造法によりビレツト とした。 このビレッ トを加熱し、 マンネスマンマンドレル方式のミルで造管し、 φ 110.0mm X 6.0mm厚の継目無鋼管とした。これら継目無鋼管は誘導加熱コイル で表 11に示す温度に再加熱され、 3ロール構造の絞り圧延機で表 11に示す外径 の製品管とした。なお、使用した圧延機のスタンド数は、製品管の外径が φ 60.3mm の場合には 18スタンド、 φ 42.7mmの場合には 20スタンド、 ψ 31.8mmの場合に は 24スタンド、 φ 25.4mmの場合には 28スタンドとした。
これら製品管の特性を調査し、 その結果を表 11に示す。製品管の特性は、組織 、 結晶粒径、 引張特性、 靱性について実施例 5と同様に調査した。
表 11から、 本発明範囲の本発明例 (No.6-l、 No.6-3, No.6-6、 No.6-7、 No.6-9 ) は、 フェライ トの平均結晶粒径が 1 m 以下となり、 伸び、 靱性も高く、 さら に強度と靱性 '延性のバランスが優れた鋼管となっている。 それに比較し、 本発 明の範囲を外れた比較例 (No.6-2、 No.6-4、 No.6-5、 No.6-8) では、 フェライ ト 結晶粒が粗大化し、 延性、 靱性が劣化している。
なお、 本発明範囲の製品管の組織はフェライ ト +パーライ ト、 フェライ ト +セ メンタイ ト、 あるいはフユライ ト +べィナイ トであった。
(実施例 7 )
表 12に示す化学組成を有する素材鋼管に、 表 13に示す温度に誘導加熱コイル で加熱したのち、 3ロール構造の絞り圧延機で表 13に示す圧延条件で製品管とし た。 なお、 使用した圧延機のスタンド数は、 素材鋼管が継目無鋼管の場合には 24 スタンド、 固相圧接管および電縫管の場合には 16スタンドとした。
表 13中に示す固相圧接鋼管とは、 2.3mm厚の熱延帯鋼を 600 °Cに予熱したの ち、 複数の成形ロールで連続的に成形しオープン管とし、 ついで、 オープン管両 ェッジ部を誘導加熱で 1000°Cまで予熱したのち、 さらに両ェッジ部を誘導加熱に より融点未満の 1450°Cまで加熱しスクイズロールにより衝合し固相圧接して、所 定外径の鋼管としたものを用いた。 一方、 継目無鋼管とは、 連続铸造製ビレット を加熱し、マンネスマンマンドレル方式のミルで造管し、 φ 110.0 X 4.5mm厚の 継目無鋼管としたものを用いた。
これら製品管の特性を調査し、 その結果を表 13に示す。製品管の特性は、組織 、 結晶粒径、 引張特性、 靱性について実施例 1と同様に調査した。
表 13から、 本発明範囲の本発明例は、 フェライ トの平均結晶粒径が 1 μ m以 下となり、 伸び、 靱性も高く、 さらに強度と靱性 ·延性のバランスが優れた鋼管 となっている。 なお、 本発明範囲の製品管の組織はフェライ ト +パーライ ト、 フ ェライ ト +パーライ ト +べィナイ ト、 フェライ ト +セメンタイ ト、 フェライ ト + マルテンサイ トであった。
(実施例 8 )
表 1 4に示す化学組成を有する鋼素材を熱間圧延により 4.5mm厚の帯鋼とし た。 図 5に示す設備列を利用して、 この帯鋼 1を予熱炉 2で 600 °Cに予熱したの ち、 複数の成形ロール群からなる成形加工装置 3で連続的に成形しオープン管 7 とした。 ついで、 オープン管 7の両エッジ部をエッジ予熱用誘導誘導加熱装置 4 で 1000°Cまで予熱したのち、 さらに両エッジ部をエッジ加熱用誘導加熱装置 5に より 1450°Cまで加熱しスクイズロール 6により衝合し固相圧接して、 φ 110 X T4.5mmの素材鋼管 8とした。
ついで、素材鋼管をシーム冷却および管加熱装置 22で表 1 5に示す加熱均熱温 度にしたのち、複数の 3ロール構造の絞り圧延機を設置した絞り圧延装置 21で所 定の外径寸法の製品管とした。 使用した圧延機のスタンド数は、 製品管の外径が φ 60.3mmの場合には 6スタンド、 φ 42.7mmの場合には 16スタンドとした。 なお、 No.1-2の製品管は、 絞り圧延に際し、 鉱油に合成エステルを混合した圧 延油を用いて潤滑圧延を行った。
絞り圧延後、 製品管は空冷した。
これら製品管について、結晶粒径、引張特性を調査しその結果を表 1 5に示す。 結晶粒径は、 鋼管の長手方向に対し直角な断面 (C断面) について、 5000倍の倍 率でそれぞれ 5視野以上観察し、 フェライトおよび第 2相の平均結晶粒径を測定 した。 引張特性は、 JIS 11号試験片を用いた。 なお、 伸び (E 1 ) は試験片のサ ィズ効果を考慮して、
E 1 = E 1 0 X ( (a0/ a ) ) 0 4
( E 1 0 :実測伸び、 a0= 100mm2、 a :試験片断面積 mm2 ) より求めた換 算値を用いた。
表 1 5力 ら、 本発明範囲の本発明例 (No.l-2、 No. l-4〜No. l- 7、 No.1-10 ) は、 平均結晶粒径がいずれも 2 μ m の微細粒となり、 伸び、靱性も高く、 引張強さも 600MPa以上を有し、 強度と靱性 '延性のバランスが優れた鋼管となっている。 また、 潤滑圧延を行った No.1-2では、 肉厚方向の結晶粒のばらつきが少なかつ た。それに比較し、本発明の範囲を外れた比較例(No. l-l、 No.1-3, No.1-8, No.1-9 ) では、 結晶粒が粗大化し、 延性が劣化している。 ―
なお、 本発明範囲の製品管の組織はフェライ トと、 第 2相として面積率で 30% 超のセメンタイ トを有する組織であった。
(実施例 9 )
表 1 6に示す化学組成を有する素材鋼管を、 表 1 7に示す温度に誘導加熱コィ ルで再加熱したのち、 3ロール構造の絞り圧延機で表 1 7に示す外径の製品管と した。 なお、 使用した圧延機のスタンド数は 16スタンドとした。
これら製品管の特性を調査し、 その結果を表 1 7に示す。 製品管の特性は、 組 織、 結晶粒径、 引張特性について実施例 8と同様に調査した。
表 1 7から、 本発明範囲の本発明例 (No.2-l〜No.2-6) は、 フェライ トの平均 結晶粒径が 2 m以下となり、 引張強さが 600MPa以上を有し、 伸びも高く、 さ らに強度と延性のバランスが優れた鋼管となっている。 それに比較し、 本発明の 範囲を外れた比較例 (No.2-7、 No.2-8) では、 結晶粒が粗大化し強度が低下して、 目標の引張強さが得られていない。
なお、 本発明範囲の製品管の糸且織はフユライ トと、 第 2相として面積率で 30% 超のパーライ ト、 セメンタイ ト、 べィナイ ト、 あるいはマルテンサイ トを有する 組織であった。
本発明によれば、 従来になく延性一強度バランスが向上した高強度鋼管が得ら れるが、 さらに本発明の鋼管は、 2次加工性、 例えばハイ ド口フォーミング等の バルジ加工性にも優れ、 バルジ加工用として好適な鋼管である。
本発明の鋼管のうち、 溶接鋼管またはシーム冷却を施した固相圧接鋼管におい ては、 硬化シーム部が絞り圧延により母管部と同じレベルの硬さとなり、 バルジ 加工性が従来になく顕著に改善される。
【表 1】
鋼 化学組成 (wt%) Ac i Ac3 備 考
Να
C Si Mn P S Al N 0 °C 。C
A 0.09 0.40 0.80 0.012 0.005 0.035 0.0035 0.0025 770 900 本発明例
Β 0.08 0.07 1.42 0.015 0. Oil 0.036 0.0038 0.0036 760 875 本発明例
C 0.06 0.21 0.35 0.013 0.008 0.028 0.0025 0.0028 775 905 本発明例
D 0.11 0.22 0.45 0.017 0.013 0.018 0.0071 0.0035 775 885 本発明例
E 0.21 0.20 0.50 0.013 0.024 0.0043 0.0030 770 855 本発明例
F 0.03 0.05 0.15 0.021 0.007 0.041 0.0026 0.0038 780 905 本発明例
G 0.09 0.15 0.52 0.024 0.003 0.004 0.0025 0.0026 775 890 本発明例
【表 2】
【表 2— 1】
素材鋼管 絞 り 圧 延 条 件 製 品 管 特 性
鋼 管外 そ Να 種 類 mカ皦 mm EEsm m 全 6%&± 径 引職さ 仲び 髙速引 衝突衝 5S フ Iラ仆 第 2相 第 2 の 考
mm m 了難 mm //ftの mm TS E 1 職さ 吸 iRlネ mm 他
DDI % 数 パス数 noin mm MPa % MPa MJ .of3 βΈΙ % 類 *
1 A 固湖體 42.7 750 710 690 65 14 9 200 15.0 525 44 728 242 10 10 C 本発糊
2 A 固鹏諧 42.7 700 670 660 65 14 9 200 15.0 575 43 780 260 2.0 C 本発糊
3 A 固鹏體 42.7 650 635 620 65 14 9 200 15.0 622 40 864 292 1.0 C 糊
4 A 固細體 42.7 700 655 630 40 7 4 !40 25.5 537 43 761 257 1.0 C 本発糊
5 A 42.7 650 ; 605 590 40 7 4 140 25.5 580 38 799 267 1.5 C 本発糊
6 A mi 42.7 700 660 630 30 5 3 120 29.7 512 40 724 241 1.5 C 柳朋
7 A e 42.7 650 615 590 30 5 3 120 29.7 562 38 799 268 1.0 C 本発剛
8 A mi 42.7 700 660 640 22 3 2 110 33.2 493 42 712 230 1.0 C 本発嚷
9 A mi 42.7 650 615 585 22 3 2 110 33.2 541 39 755 249 1.5 C 楼朋
10 A 固细體 42.7 650 620 580 22 7 0 110 33.2 537 36 751 242 1.5 C 本発糊
【表 2】
【表 2— 2】
Figure imgf000024_0001
ft) *: Cセメンタイト、 Bペイナイト、 Mマ itィ卜、 pパーライト
* *:絞り腿 ·ιττ
Figure imgf000025_0001
【表 4】
Figure imgf000026_0001
ft) *: Cセメンタイト、 Bペイナイト、 Mマリ t ト、 Pパーライト
**:絞り腿 ii
ςζ
Figure imgf000027_0001
U8rO/86<If /XDd SZS00/66 O ¾6】
Figure imgf000028_0001
m *: cセメンタイト、 Bペイナイ卜、 Mマリ y "ィト
**:絞り IBit^
*** :d2 %PS
****: 5fi¾f¾^Q蘭 x
Figure imgf000029_0001
素材鋼管 絞 り 圧 延 条 件 mm 製 品 管 特 性
Na m m
Na m m嫌 麵 a mm 全 彌 さ s 衝突衝^ 第 2相 第 2ffl 考 mi 觸 7¾ϊίί£ 赫 TS El さ **** 觀
Dm ■c *e *C % 数 DDI MPa % MPa MJ -r3 MPa %
4- 1 R 讅丽 110 660 650 630 68 14 9 35.0 466 550 47 742 198 220 1.5 14 C 極崩
4- 2 35.0 ― ** 35.0 364 448 45 553 124 140 は 0 15 C 騰! 1
4- 3 S m纖 110 605 600 590 68 14 9 35.0 531 612 40 821 223 250 1.5 18 c
00
4- 4 880 860 830 68 14 9 35.0 421 517 38 648 143 155 &0_ 16 C+B 脚 j
4 - 5 660 650 640 18 4 2 90.0 451 522 36 679 151 160 9.0 18 C 贿!!
4- 6 700 690 670 77 17 10 25.6 525 575 42 761 255 250 0.9 18 C 繊朋
4- 7 T w ms 110 660 650 630 77 17 10 25.6 507 596 40 795 196 235 2.0 16 C 柳眉
4- 8 U 顧 rat 110 660 650 630 77 17 10 25.6 523 618 39 806 198 240 2.5 20 C 禱朋
4- 9 V 継目解職 110 660 650 630 77 17 10 25.6 570 657 37 850 210 255 2.0 23 C 本 删 m *: Cセメンタイト、 Bペイナイト、 Mマリ Hト
**:絞り κϋκτ
* * *: S
* * * *:
Figure imgf000030_0001
: 106回における負 力
soo/ま OM
<
CO o :
补 d5
000 · ο·
Figure imgf000031_0001
【細】
Figure imgf000032_0001
FW:フェライト、 PH ?—ライト ®¾ί /一ライトも含む) Cはセメン夕イト、 Βはべイナイト
【表 11】
Figure imgf000033_0001
Fはフェライト、 Ρ« —ライ卜 (¾ί —ライトも含む) Cはセメンタイト、 Βはべイナイト
o
1 1 1 1 ! o
CO
1
O 1 1
c> 1 1
1 1 1 1 1 ◦ 1
1 1
1 1
1 1 1 1 1 1
>
> 1 1 1 1 1
1 1 1 1 1 r 1 1 1 1 1
1 1 1 1 1 υ 1 1 1 1 o
C o
>
o
cS
2 to 【表 13】
Figure imgf000035_0001
Fはフェライト、 Ρ«Λ。一ライト «Λ'—ライトも含む) Cはセメンタイト、 Βはべイナィ卜, Μはマノ 1ィ卜
ZZO '0 εοο ·ο πο ·0 98 ·0 92 ·0 η ·ο α
ISO ·0 200 ·0 SIO ·0 IS Ί 92 ·0 S Ό 0
^0 Ό 刚 Ό πο ·0 58 ·0 ΙΖ ·0 25 Ό a
910*0 200 ·0 800 "0 29 11 ·0 ·0 V
I V S d UN I S 0
( )*) ¾Ι I ^ q> 歸
【 τ拏】
U8Z0/86df/13d SZS00/66 O 【表 1 5】
Figure imgf000037_0001
* : Fはフェライト、 Pはパ一ライト (疑似パーライトも含む) Cはセメン夕イト、 Bはべイナイト、 Mはマルテンサイト。
fcvlリo i OM
6iob ·0 10 ·0 10 "0 s刚 ·0 6Ζ0 ·0 刚 Ό 910 "0 89 ·0 1?; Ό 80 ·0
SZ00 Ό 9£00 ,0 ζεο ·ο 200 ·0 110 Ό £i ·0 60 ·0 00 ·0 01 Ό ΟΖ ·0 6S00 ·0 9C0 Ό 200 ·0 ΙΙΟ ·0 £9 ·0 SI ·0 ζζ ·0
9200 ·0 10 ·0 10 ·0 οζ ·ο SI ·0 00 Ό 2ZQ ·0 刚 ·0 ειο ·ο IS ·0 SI ·0 88 ·0
ZZOQ Ό ZOO Ό 100 ·0 10 ·0 10 "0 so ·0 90 ·0 01 Ό 01 ·0 U "0 9200 Ό S10 ·0 ZOO ·0 ΖΙΟ Ό 9C SZ '0 SC Ό Η εζοο ·ο 刚 ·0 zoo ·0 SSOO ·0 810 '0 900 ·0 ΗΟ ·0 2ί ·0 9Ζ ·0 8 ·0
6100 Ό 600 Ό ΖΟ ·0 20 ·0 80 ·0 ζεοο ·ο ΙΖΟΌ εοο ·ο 800 ·0 i6 ·0 9Ζ Ό 9ε ·ο
80 ·0 U "0 QZ ·0 91 Ό 8Ζ00 ·0 910 ·0 刚 ·0 600 ·0 18 ·0 ·0 S' ·0 3
Ο Β 3 a ! 丄 Λ 0 no N V S ! S 0
W 'k 'λ)
【9 】
【表 1 7】
Figure imgf000039_0001
* : Fはフェライト、 Pはパ一ライト (疑似パーライ卜も含む) Cはセメン夕イト、 Bはべイナイト、 Mはマルテンサイト。
**: 0. 2 %耐カ
産業上の利用可能性
本発明によれば、 延性および耐衝撃特性に優れた高強度鋼管の生産性—が高く、 容易に製造でき、 鋼管の用途を拡大でき産業上格別の効果を奏する。 また、 本発 明によれば、 耐応力腐食割れ性の優れた高強度、 高靱性のラインパイプ用鋼管や 、 耐疲労特性の優れた高強度高延性鋼管が、 合金元素量を低減して、 安価に製造 できる。 また、本発明によれば、 1 μ m 以下という超微細結晶粒を有し高強度で かつ靱性 ·延性に優れた鋼材が容易に製造でき、 鋼材の用途を拡大できる。 さらに、 2 μ m 以下という超微細結晶粒を有し引張強さ 600MPa以上の 高強度でかつ靱性 ·延性に優れた鋼材が中間焼鈍なしに容易に製造できる。

Claims

. 請求の範囲 -
1、 外径 ODi (mm) 、 鋼管長手方向に直角な断面のフユライ トの平均結晶粒径 d i ( μ m ) の素材鋼管を加熱または均熱し、 平均圧延温度 0 m (°C) 、 合計 縮径率 T red (%) の絞り圧延を施し外径 ODf (mm) の製品管とする鋼管の製 造方法において、 前記絞り圧延を 400 °C以上、 加熱または均熱温度以下の温度範 囲で、 かつ前記平均結晶粒径 d i ( μ m ) 、 前記平均圧延温度 θ ιη (°C) および 前記合計縮径率 T red (%) の関係が下記 (1 ) 式を満足する絞り圧延を含む鋼 管の製造方法。
{(0.008+ Θ m/50000)x T red}
d i ≤ (2.65-0.003 x Θ m) x 10
—— ( 1 ) d i 素材鋼管の平均結晶粒径 (// m )
Θ m 平均圧延温度 (°C) = ( Θ i + Θ f ) 2
Θ i :圧延開始温度 (°C)
Θ f :圧延終了温度 (°C)
T red 合計縮径率 (%) = (ODi-ODf) X 100 /ODi
ODi :素材鋼管外径 (mm)
ODf :製品管外径 (mm)
2、 絞り圧延後の鋼管長手方向に直角な断面のフェライ トの平均結晶粒径が 1 μ m 以下の超微細粒を有する請求の範囲第 1項記載の鋼管の製造方法。
3、 絞り圧延後の組織がフェライ ト、 あるいはフェライ トと面積率で 30%以下の フェライ ト以外の第 2相とからなり、 鋼管長手方向に直角な断面の該フェライ ト の粒径が 3 m 以下である超微細粒を有する請求の範囲第 1項記載の鋼管の製 造方法。
4、 絞り圧延後の組織がフェライ ト、 あるいはフェライ トと面積率で 30%以下の フェライ ト以外の第 2相とからなり、 鋼管長手方向に直角な断面の該フェライ ト の粒径が 1 μ m 以下である超微細粒を有する請求の範囲第 1項記載の鋼管の製 造方法。
5、絞り圧延後の組織がフェライ トおよび面積率で 30%超のフエライ ト以外の第 2相からなり、鋼管長手方向に直角な断面の平均結晶粒径が 2 μ m 以下である超 微細粒を有する請求の範囲第 1項記載の鋼管の製造方法。
6、絞り圧延後の組織がフェライ トおよび面積率で 30%超のフエライ ト以外の第 2相からなり、鋼管長手方向に直角な断面の該フェライ トの粒径が 1 μ m 以下で ある超微細粒を有する請求の範困第 1項記載の鋼管の製造方法。
7、絞り圧延温度を A c3変態点〜 400 °Cで行うことを特徴とする請求の範囲第 1 項ないし第 6項いずれか一つに記載の鋼管の製造方法。
8、、 絞り圧延前、 素材鋼管を加熱温度: A c3変態点〜 400 °Cに加熱したのち、…絞 り圧延温度: A c3変態点〜 400 °Cで絞り圧延を行うことを特徴とする請汆の範囲 第 1項ないし第 6項いずれか一つに記載の鋼管の製造方法。 .
9、 絞り圧延前、 素材鋼管を加熱温度: 400〜750 °Cに加熱したのち、 絞り圧延温 度: 400〜750 °Cで絞り圧延を行うことを特徴とする請求の範囲第 1項ないし第 6 項いずれか一つに記載の鋼管の製造方法。
1 0、 絞り圧延が潤滑下での圧延であることを特徴とする請求の範囲第 1項ない し第 6項いずれか一つに記載の鋼管の製造方法。
1 1、 絞り圧延が、 1パス当たりの縮径率が 6 %以上の圧延パスを少なくとも 1 パス以上含むことを特徴とする請求の範囲第 1項ないし第 6項いずれか一つに記 載の鋼管の製造方法。
1 2、 絞り圧延における累積縮径率が 6 0 %以上である請求の範囲第 1項ないし 第 6項いずれか一つに記載の鋼管の製造方法。
1 3、 重量%で、
C : 0.005 〜0.30%、
Si : 0.0 〜 3.0 %、
Mn: 0.0ト 2.0 %、
A1 : 0.001 〜0.10%
を含有し、残部 Feおよび不可避的不純物からなる組成を有する素材鋼管を用いて、 絞り圧延を行う請求の範囲第 1項ないし第 6項いずれか一つに記載の鋼管の製造 方法。
1 4、 重量%で、
C : 0.005 〜0.30%、
Si : 0.01—3.0 %、
Mn: 0.01〜2.0 %、
A1 : 0.001 〜0.10%を含み、
さらに、 Cu : 0.5 %以下、 Ni : 0.5 %以下、 Cr : 0.5 %以下、 Mo : 0.5 %以下の うちから選ばれた 1種または 2種以上、 あるレ、はさらに、
Nb : 0.1 %以下、 V : 0.1 %以下、 Ti : 0.1 %以下、 B : 0.004 %以下のうち から選ばれた 1種または 2種以上、 あるいはさらに、
REM : 0.02%以下、 Ca: 0.01%以下のうちから選ばれた 1種または 2種 を含有し、残部 Feおよび不可避的不純物からなる組成を有する素材鋼管を用いて、 絞り圧延を行う請求の範囲第 1項ないし第 6項いずれか一つに記載の鋼管の製造 方法。
1 5、 重量%で、
C : 0.30超 〜0.70%、
Si: 0.01〜2.0 %、
Mn: 0.01〜2.0 %、 Al: 0.001 〜0. 10% - - を含有し、残部 Feおよび不可避的不純物からなる組成を有する素材鋼管一を用いて、 絞り圧延を行う請求の範囲第 1項ないし第 6項レ、ずれか一つに記載の鋼管の製造 方法。
1 6、 重量%で、
C : 0.30超 〜0.70%、
Si: 0.01〜2.0 %、
Mn: 0.0ト 2.0 %、
A1: 0.001 〜0.10%を含み、
さらに、 Cu: 0.5 %以下、 Ni: 0.5 %以下、 Cr: 0.5 %以下、 Mo: 0.5 %以下の うちから選ばれた 1種または 2種以上、 あるレ、はさらに、
Nb: 0.1 %以下、 V : 0.1 %以下、 Ti: 0. 1 %以下、 B : 0.004 %以下のうち から選ばれた 1種または 2種以上、 あるいはさらに、
REM : 0.02%以下、 Ca: 0.01 %以下のうちから選ばれた 1種または 2種 を含有し、残部 Feおよび不可避的不純物からなる組成を有する素材鋼管を用いて、 絞り圧延を行う請求の範囲第 1項ないし第 6項いずれか一つに記載の鋼管の製造 方法。
1 7、 外径 ODi (mm) 、 鋼管長手方向に直角な断面のフエライ トの平均結晶粒 径 d i ( m ) の素材鋼管を加熱または均熱し、 平均圧延温度 Θ m (°C) 、 合 計縮径率 T red (%) の絞り圧延を施し外径 ODf (mm) の製品管とする鋼管の 製造方法において、 前記絞り圧延を 400 °C以上、 加熱または均熱温度以下の温度 範囲で、 かつ前記平均結晶粒径 d i ( μ m ) 、 前記平均圧延温度 θ πι (°C) およ び前記合計縮径率 T red (%) の関係が下記 (1 ) 式を満足する絞り圧延により、 重量%で、
C : 0.005 〜0.30%、
Si: 0.01〜3.0 %、
Mn: 0.0ト 2.0 %、
A1: 0.001 〜0.10%
を含有し、 残部 Feおよび不可避的不純物からなる組成を有する超微細粒鋼管。
{(0.008+ Θ m/50000)x T red}
d i ≤ (2.65-0.003 x Θ m) x 10
一 ( 1 ) d i 素材鋼管の平均結晶粒径 m )
Θ m 平均圧延温度 (°C) = ( Θ i + Θ f ) Z 2
Θ i :圧延開始温度 (°C)
Θ f :圧延終了温度 (°C)
T red 合計縮径率 (%) = (ODi- ODf) X 100 /ODi ODi :素材鋼管外径 (mm) - ODf :製品管外径 (mm) 一
1 8、 前記鋼管の成分系が、 .
重量%で、
C : 0.005 〜0.10%、
Si: 0.0 〜 0.5 %、
Mn: 0.0 〜 1.8 %
A1: 0.001 〜0.10%
を含有し、残部 Feおよび不可避的不純物からなる組成を有する請求の範囲第 1 7 項記載の超微細粒鋼管。
1 9、 前記鋼管の成分系が、
重量%で、
C : 0.06〜0.30%、
Si: 0.01— 1.5 %、
Mn: 0.01〜2.0 %、
A1: 0.001 〜0.10%
を含有し、残部 Feおよび不可避的不純物からなる組成を有する請求の範囲第 1 7 項記載の超微細粒鋼管。
2 0、 絞り圧延後の鋼管長手方向に直角な断面のフェライ トの平均結晶粒径が 1 β m 以下の超微細粒を有する請求の範囲第 1 7項ないし第 1 9項いずれか一つ に記載の超微細粒鋼管。
2 1、 絞り圧延後の組織がフェライ ト、 あるいはフェライ トと面積率で 30%以下 のフェライ ト以外の第 2相とからなり、 鋼管長手方向に直角な断面の該フェライ トの粒径が 3 μ m 以下である超微細粒を有する請求の範囲第 1 7項ないし第 1 9項いずれか一つに記載の超微細粒鋼管。
2 2、 絞り圧延後の組織がフェライ ト、 あるいはフェライ トと面積率で 30%以下 のフェライ ト以外の第 2相とからなり、 鋼管長手方向に直角な断面の該フェライ トの粒径が 1 μ m 以下である超微細粒を有する請求の範囲第 1 7項ないし第 1 9項いずれか一つに記載の超微細粒鋼管。
2 3、絞り圧延後の組織がフェライ トおよび面積率で 30%超のフェライ ト以外の 第 2相からなり、鋼管長手方向に直角な断面の平均結晶粒径が 2 m以下である 超微細粒を有する請求の範囲第 1 7項ないし第 1 9項いずれか一つに記載の超微 細粒鋼管。
2 4、絞り圧延後の組織がフェライ トおよび面積率で 30%超のフェライ ト以外の 第 2相からなり、鋼管長手方向に直角な断面の該フェライ トの粒径が 1 m 以下 である超微細粒を有する請求の範囲第 1 7項ないし第 1 9項いずれか一^ 3に記載 の超微細粒鋼管。
2 5、 重量%で、 - C : 0.30超〜 0.70%、 一
Si: 0.01〜2.0 %、 .
Mn: 0.01〜2.0 %、
A1: 0.001 〜0.10%
を含有し、残部 Feおよび不回避的不純物からなる組成を有し、かつ組織がフェラ ィ トおよび面積率で 30%超のフェライ ト以外の第 2相からなり、鋼管長手方向に 直角な断面の平均結晶粒径が 2 m 以下であることを特徴とする加工性に優れ た高強度鋼管。
2 6、 重量%で、
C : 0.30超〜 0.70%、
Si: 0.01〜2.0 %、
Mn: 0.0卜 2.0 %、
A1 : 0.001 〜0.10%
を含有し、 さらに、 Cu: 0.5 %以下、 Ni: 0.5 %以下、 Cr: 0.5 %以下、 Mo: 0.5 % 以下のうちから選ばれた 1種または 2種以上、 あるいはさらに
Nb: 0.1 %以下、 V : 0.1 %以下、 Ti: 0.1 %以下、 B : 0.004 %以下のうち から選ばれた 1種または 2種以上、 あるいはさらに、
REM : 0.02%以下、 Ca: 0.01%以下のうちから選ばれた 1種または 2種 を含有し、残部 Feおよび不可避的不純物からなる組成を有する素材鋼管を用いて、 絞り圧延を行う請求の範囲第 2 5項記載の高強度鋼管。
2 7、 前記式 (1 ) の絞り圧延により、 重量%で、
C : 0.30超〜 0.70%、
Si : 0.01—2.0 %、
Mn: 0.01〜2.0 %、
A1 : 0.001 〜0.10%
を含有し、 または、 さらに Cu: 0.5 %以下、 Ni: 0.5 %以下、 Cr: 0.5 %以下、 Mo: 0.5 %以下のうちから選ばれた 1種または 2種以上、 あるいはさらに、
Nb: 0.1 %以下、 V: 0.1 %以下、 Ti: 0.1 %以下、 B : 0.004 %以下のうち から選ばれた 1種または 2種以上、 あるいはさらに、
REM : 0.02%以下、 Ca: 0.01 %以下のうちから選ばれた 1種または 2種 を含有し、残部 Feおよび不可避的不純物からなる組成を有し、かつ組織がフェラ ィ トおよび面積率で 30%超のフェライ ト以外の第 2相からなり、鋼管長手方向に 直角な断面の平均結晶粒径が 2 m 以下を製造する加工性に優れた高強度鋼管。
2 8、絞り圧延後の組織がフェライ トおよび面積率で 30%超のフヱライ ト以外の 第 2相からなり、鋼管長手方向に直角な断面の該フェライ トの粒径が 1 m 以下 である超微細粒を有する請求の範囲第 2 5項ないし第 2 7項いずれか一つに記載 の超微細粒鋼管。
PCT/JP1998/002811 1997-06-26 1998-06-24 Tuyau en acier a grains ultrafins et procede de fabrication dudit tuyau WO1999000525A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR9806104-6A BR9806104A (pt) 1997-06-26 1998-06-24 Tubo de aço de granulação superfina e processo para a produção do mesmo.
AT98929659T ATE312208T1 (de) 1997-06-26 1998-06-24 Verfahren zur herstellung von stahlrohr mit ultrafeinem gefüge
US09/254,024 US6290789B1 (en) 1997-06-26 1998-06-24 Ultrafine-grain steel pipe and process for manufacturing the same
DE69832684T DE69832684T2 (de) 1997-06-26 1998-06-24 Verfahren zur herstellung von stahlrohr mit ultrafeinem gefüge
EP98929659A EP0924312B1 (en) 1997-06-26 1998-06-24 Method for manufacturing super fine granular steel pipe

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP9/170790 1997-06-26
JP17079097 1997-06-26
JP19603897 1997-07-22
JP9/196038 1997-07-22
JP9/223315 1997-08-20
JP22331597 1997-08-20
JP22857997 1997-08-25
JP9/228579 1997-08-25
JP9/240930 1997-09-05
JP24093097A JP3896647B2 (ja) 1997-09-05 1997-09-05 加工性に優れた高強度鋼管の製造方法
JP10/133933 1998-05-15
JP13393398A JP3622499B2 (ja) 1997-05-15 1998-05-15 鋼管の製造方法
CA002281314A CA2281314C (en) 1997-06-26 1999-09-02 Super fine granular steel pipe and method for producing the same
CA002281316A CA2281316C (en) 1997-06-26 1999-09-02 High-ductility, high-strength steel product and process for production thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/254,024 A-371-Of-International US6290789B1 (en) 1997-06-26 1998-06-24 Ultrafine-grain steel pipe and process for manufacturing the same
US09/771,589 Division US20010027831A1 (en) 1997-06-26 2001-01-30 Super fine granular steel pipe and method for producing the same

Publications (1)

Publication Number Publication Date
WO1999000525A1 true WO1999000525A1 (fr) 1999-01-07

Family

ID=27570295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002811 WO1999000525A1 (fr) 1997-06-26 1998-06-24 Tuyau en acier a grains ultrafins et procede de fabrication dudit tuyau

Country Status (6)

Country Link
US (2) US6290789B1 (ja)
EP (1) EP0924312B1 (ja)
CN (1) CN1082561C (ja)
BR (1) BR9806104A (ja)
CA (1) CA2281314C (ja)
WO (1) WO1999000525A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294405A (ja) * 2001-04-02 2002-10-09 Nippon Steel Corp 成形性に優れた鋼管およびその製造方法
JP2002329713A (ja) * 2001-02-07 2002-11-15 Eni Technologies Inc 半導体プラズマ処理を特徴付ける方法及び適応性プラズマ特徴付けシステム

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60038092T2 (de) 1999-12-16 2009-02-19 Nsk Ltd. Rollenträger für Rad und Herstellungsverfahren
JP3794230B2 (ja) * 2000-01-28 2006-07-05 Jfeスチール株式会社 高加工性鋼管の製造方法
US6866725B2 (en) * 2000-02-28 2005-03-15 Nippon Steel Corporation Steel pipe excellent in formability and method of producing the same
CN100340690C (zh) * 2000-06-07 2007-10-03 新日本制铁株式会社 可成形性优异的钢管及其生产方法
JP2001355047A (ja) * 2000-06-14 2001-12-25 Kawasaki Steel Corp 冷間加工性と高周波焼入れ性に優れた高炭素鋼管およびその製造方法
US6364355B1 (en) * 2000-06-15 2002-04-02 Illinois Tool Works Inc. Selectively heat treated airbag canister and method for making same
JP2002038242A (ja) * 2000-07-27 2002-02-06 Kawasaki Steel Corp 二次加工性に優れた自動車構造部材用ステンレス鋼管
US20020033591A1 (en) * 2000-09-01 2002-03-21 Trw Inc. Method of producing a cold temperature high toughness structural steel tubing
SE0003655D0 (sv) * 2000-10-10 2000-10-10 Avesta Sheffield Ab Förfarande och anordning för tillverkning av ett ien rörkonstruktion ingående rör samt ett rör tillverkat enligt förfarandet
ATE382103T1 (de) * 2001-03-07 2008-01-15 Nippon Steel Corp Elektrogeschweisstes stahlrohr für hohlstabilisator
JP4189133B2 (ja) * 2001-03-27 2008-12-03 独立行政法人科学技術振興機構 普通低炭素鋼を低ひずみ加工・焼鈍して得られる超微細結晶粒組織を有する高強度・高延性鋼板およびその製造方法
US6682829B2 (en) 2001-05-31 2004-01-27 Jfe Steel Corporation Welded steel pipe having excellent hydroformability and method for making the same
MXPA02005390A (es) 2001-05-31 2002-12-09 Kawasaki Steel Co Tubo de acero soldado que tiene excelente hidroformabilidad y metodo para elaborar el mismo.
KR100878731B1 (ko) * 2001-05-31 2009-01-14 제이에프이 스틸 가부시키가이샤 하이드로 포밍성이 우수한 용접강관 및 그 제조방법
WO2002103070A1 (fr) * 2001-06-14 2002-12-27 Kawasaki Steel Corporation Procede de production de tuyaux en acier presentant une tenacite elevee
CN1234896C (zh) * 2001-06-14 2006-01-04 杰富意钢铁株式会社 高加工性钢管及其制造方法
JP2003096534A (ja) 2001-07-19 2003-04-03 Mitsubishi Heavy Ind Ltd 高強度耐熱鋼、高強度耐熱鋼の製造方法、及び高強度耐熱管部材の製造方法
CA2378934C (en) 2002-03-26 2005-11-15 Ipsco Inc. High-strength micro-alloy steel and process for making same
US7220325B2 (en) * 2002-04-03 2007-05-22 Ipsco Enterprises, Inc. High-strength micro-alloy steel
EP1961831A1 (en) * 2003-01-17 2008-08-27 JFE Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same
CN100564567C (zh) * 2003-10-20 2009-12-02 杰富意钢铁株式会社 扩管用无缝油井钢管及其制造方法
JP4873921B2 (ja) * 2005-02-18 2012-02-08 新日本製鐵株式会社 表面性状、加工性および成形性に優れた極低炭素鋼板および極低炭素鋳片の製造方法
US20100158746A1 (en) * 2006-02-16 2010-06-24 Katsuhiro Sasai Extremely Low Carbon Steel Plate Excellent in Surface Characteristics, Workability, and Formability and a Method of Producing Extremely Low Carbon Cast Slab
JP4461112B2 (ja) * 2006-03-28 2010-05-12 株式会社神戸製鋼所 加工性に優れた高強度鋼板
MX2008012240A (es) * 2006-03-28 2008-10-07 Sumitomo Metal Ind Metodo para fabricar conductos y tubos de acero sin costuras.
JP4466619B2 (ja) * 2006-07-05 2010-05-26 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法
EP2089556B1 (en) * 2006-10-06 2019-05-01 JFE Steel Corporation Low yield ratio dual phase steel linepipe with superior strain aging resistance
CA2667534C (en) * 2006-10-27 2013-02-05 Sumitomo Metal Industries, Ltd. Seamless steel tube for an airbag accumulator and a process for its manufacture
BRPI0817570B1 (pt) * 2007-10-30 2017-05-23 Nippon Steel & Sumitomo Metal Corp tubo de aço e método para a produção do mesmo
CN101883875B (zh) * 2007-12-04 2012-10-10 Posco公司 具有出色低温韧性的高强度钢板及其制造方法
DE102010004081C5 (de) * 2010-01-06 2016-11-03 Benteler Automobiltechnik Gmbh Verfahren zum Warmformen und Härten einer Platine
JP5476597B2 (ja) * 2010-03-04 2014-04-23 株式会社神戸製鋼所 高強度中空ばね用シームレス鋼管
CN101892441A (zh) * 2010-06-24 2010-11-24 安徽天大石油管材股份有限公司 一种超细晶粒半挂车车轴管材料及车轴管加工方法
CN102400063A (zh) * 2010-09-15 2012-04-04 鞍钢股份有限公司 屈服强度550Mpa的超高强船体及海洋平台用钢及其生产方法
CA2843588C (en) * 2011-08-09 2018-02-20 Nippon Steel & Sumitomo Metal Corporation High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same
CN102534429A (zh) * 2012-02-29 2012-07-04 首钢总公司 高强度低屈强比x90热轧钢板及其生产方法
US10351925B2 (en) * 2014-03-28 2019-07-16 Nippon Steel Nisshin Co., Ltd. Steel plate having excellent acid dew point corrosion resistance, method of production, and exhaust gas channel constituent member
JP5909014B1 (ja) * 2015-06-08 2016-04-26 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
CN108070789B (zh) * 2018-01-17 2020-04-03 山东钢铁集团日照有限公司 屈服强度不小于480MPa级超细晶特厚钢及制备方法
CN111304529A (zh) * 2019-12-02 2020-06-19 张子夜 一种多级油缸用无缝钢管及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301540A (ja) * 1989-05-15 1990-12-13 Sumitomo Metal Ind Ltd 微細粒フェライト鋼材
JPH04143219A (ja) * 1990-10-03 1992-05-18 Sumitomo Metal Ind Ltd 超微細組織を有する棒鋼の製造法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466842A (en) * 1982-04-03 1984-08-21 Nippon Steel Corporation Ferritic steel having ultra-fine grains and a method for producing the same
DE3415590A1 (de) * 1984-04-24 1985-10-31 Mannesmann AG, 4000 Düsseldorf Verwendung eines stahls in schwefelwasserstoffhaltigen medien
CA2004548C (en) * 1988-12-05 1996-12-31 Kenji Aihara Metallic material having ultra-fine grain structure and method for its manufacture
US5200005A (en) * 1991-02-08 1993-04-06 Mcgill University Interstitial free steels and method thereof
JPH0570831A (ja) * 1991-03-08 1993-03-23 Nippon Steel Corp 高強度鋼管の製造法
JPH0559434A (ja) * 1991-08-28 1993-03-09 Nippon Steel Corp 降伏点伸びを有し、かつ降伏比の低い角管の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301540A (ja) * 1989-05-15 1990-12-13 Sumitomo Metal Ind Ltd 微細粒フェライト鋼材
JPH04143219A (ja) * 1990-10-03 1992-05-18 Sumitomo Metal Ind Ltd 超微細組織を有する棒鋼の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0924312A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329713A (ja) * 2001-02-07 2002-11-15 Eni Technologies Inc 半導体プラズマ処理を特徴付ける方法及び適応性プラズマ特徴付けシステム
JP2002294405A (ja) * 2001-04-02 2002-10-09 Nippon Steel Corp 成形性に優れた鋼管およびその製造方法
JP4567907B2 (ja) * 2001-04-02 2010-10-27 新日本製鐵株式会社 ハイドロフォーム成形性に優れた鋼管およびその製造方法

Also Published As

Publication number Publication date
EP0924312A4 (en) 2004-03-03
US20010027831A1 (en) 2001-10-11
CN1082561C (zh) 2002-04-10
BR9806104A (pt) 1999-08-31
CA2281314C (en) 2008-12-09
US6290789B1 (en) 2001-09-18
CA2281314A1 (en) 2001-03-02
CN1237213A (zh) 1999-12-01
EP0924312A1 (en) 1999-06-23
EP0924312B1 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
WO1999000525A1 (fr) Tuyau en acier a grains ultrafins et procede de fabrication dudit tuyau
KR100351791B1 (ko) 고연성고강도강관및그제조방법
CN100398684C (zh) 超高强度x100管线钢及其热轧板制造方法
JP5370016B2 (ja) 穴広げ性に優れた高強度熱延鋼板及びその製造方法
JP5146051B2 (ja) 靭性および変形能に優れた板厚:25mm以上の高強度鋼管用鋼材およびその製造方法
EP1293581A1 (en) Steel pipe for use in reinforcement of automobile and method for production thereof
WO2010087512A1 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
WO2013099192A1 (ja) 高張力熱延鋼板及びその製造方法
JP5742123B2 (ja) ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法
JP2008274323A (ja) 表面品質および延性亀裂伝播特性に優れる熱延鋼板およびその製造方法
JP3433687B2 (ja) 加工性に優れた高張力熱延鋼板およびその製造方法
JP3375554B2 (ja) 強度一延性バランスに優れた鋼管
JPH09249935A (ja) 耐硫化物応力割れ性に優れる高強度鋼材とその製造方法
JP2004027249A (ja) 高張力熱延鋼板およびその製造方法
JPH1161327A (ja) 耐衝突安全性と成形性に優れた自動車用高強度鋼板とその製造方法
JP2023531248A (ja) 鋼組成物から高強度鋼管を製造する方法およびその鋼管から作られる構成部品
JP3622499B2 (ja) 鋼管の製造方法
CN114737109B (zh) 厚壁抗hic油气管道用x52直缝焊管用钢及制造方法
JP4438614B2 (ja) 高強度熱延鋼板およびその製造方法
KR100330432B1 (ko) 초미세 입자 강관 및 그 제조방법
JP3330522B2 (ja) 高疲労強度鋼管の製造方法
JP3896647B2 (ja) 加工性に優れた高強度鋼管の製造方法
JP2004225131A (ja) 加工性に優れた高強度鋼管とその製造方法
JP2003096545A (ja) 高強度かつ延性に優れた電縫鋼管およびその製造方法
JP4815729B2 (ja) 高強度電縫鋼管の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801216.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998929659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/001850

Country of ref document: MX

Ref document number: 1019997001507

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09254024

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998929659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001507

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997001507

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998929659

Country of ref document: EP