WO1998048926A1 - Membrane a fibres creuses permettant de desaerer l'encre, procede et dispositif de desaeration de l'encre, procede de fabrication de cartouche d'encre, et encre - Google Patents

Membrane a fibres creuses permettant de desaerer l'encre, procede et dispositif de desaeration de l'encre, procede de fabrication de cartouche d'encre, et encre Download PDF

Info

Publication number
WO1998048926A1
WO1998048926A1 PCT/JP1998/001965 JP9801965W WO9848926A1 WO 1998048926 A1 WO1998048926 A1 WO 1998048926A1 JP 9801965 W JP9801965 W JP 9801965W WO 9848926 A1 WO9848926 A1 WO 9848926A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
hollow fiber
fiber membrane
porous layer
degassing
Prior art date
Application number
PCT/JP1998/001965
Other languages
English (en)
French (fr)
Inventor
Kenji Watari
Satoshi Takeda
Masumi Kobayashi
Makoto Uchida
Masamoto Uenishi
Noriaki Fukushima
Seiji Hayashi
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11256197A external-priority patent/JPH10298470A/ja
Priority claimed from JP2903298A external-priority patent/JPH11209670A/ja
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to EP98917731A priority Critical patent/EP1052011B1/en
Priority to CA002289494A priority patent/CA2289494C/en
Priority to DE69837974T priority patent/DE69837974T2/de
Priority to US09/403,986 priority patent/US6447679B1/en
Publication of WO1998048926A1 publication Critical patent/WO1998048926A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/19Ink jet characterised by ink handling for removing air bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/13Specific connectors

Definitions

  • Hollow fiber membrane for ink deaeration, ink deaeration method, ink deaerator, method for manufacturing ink cartridge, and ink technology field
  • the present invention provides an ink deaeration hollow fiber membrane for removing dissolved gas in an ink used in an ink jet printer or the like from an ink, an ink deaeration method, an ink deaeration apparatus, and a method using the same.
  • the present invention relates to a method for manufacturing an ink cartridge.
  • the method of degassing the dissolved gas from the ink can be roughly classified into a method of degassing by a physical method such as boiling or reduced pressure, and a chemical method of mixing an absorbent into the ink.
  • a physical method such as boiling or reduced pressure
  • a chemical method of mixing an absorbent into the ink there were inconveniences such as insufficient degree of deaeration by physical method and deterioration of ink.
  • the chemical method also has disadvantages such as deterioration of the dye in the ink.
  • Japanese Patent Application Laid-Open No. 5-17712 discloses that an ink is passed through a gas-permeable hollow fiber membrane and the outer surface of the hollow fiber membrane is depressurized. Accordingly, a method is described in which dissolved gas in ink for ink jet recording is permeated and removed. When the dissolved gas in the ink is removed using the hollow fiber membrane, the dissolved gas in the ink can be efficiently removed without adversely affecting the physical properties of the ink.
  • Ink for ink jet printers usually contains hydrophilic compounds such as alcohol and ethylene glycol to improve wetting and paper permeability. For this reason, the method using a porous hollow fiber membrane can maintain high gas permeability even with a large film thickness.However, the surface of the porous substrate is gradually hydrophilized by this hydrophilic compound, and the pores of the membrane are removed. This is not preferable because ink may leak out.
  • the degassing method using a good UNA nonporous membrane Teflon hollow fiber membrane oxygen and nitrogen permeation fluxes of Teflon port down film 7. 5 ⁇ 22.
  • the present invention has been made in view of such inconvenience, and when removing dissolved gas from ink, the pressure loss in the ink flow path is low, and the hollow fiber membrane is not damaged when the pressure changes. It is an object of the present invention to provide a hollow fiber membrane for ink deaeration, an ink deaeration method, and an ink deaerator that can efficiently deaerate.
  • Another object of the present invention is to provide a method for producing an ink cartridge for an ink-jet printer having a very low dissolved gas concentration in the ink.
  • the present invention is a hollow fiber membrane for degassing an ink, comprising a gas-permeable hollow fiber membrane having an inner diameter of 50 to 500 m and a thickness of 10 to 150 m.
  • the hollow fiber membrane for deaeration of the ink preferably has a three-layer structure in which a porous layer is disposed on both sides of a non-porous layer.
  • the thickness of the non-porous layer is 0.3 to It is preferable that the thickness of the porous layer be 5 to 1 m.
  • the ink degassing method of the present invention is characterized in that the ink is passed through a hollow portion of a hollow fiber membrane having gas permeability, an inner diameter of 50 to 500 wm, and a film thickness of 10 to 150 m, the outer surface of the yarn layer and removing the dissolved gas in Inku under reduced pressure ( Further, according to the present invention, an ink inlet, an inlet connected to the ink inlet, an ink outlet, an outlet connected to the ink outlet, and a gas outlet are provided. Both ends of a can body and a hollow fiber membrane having gas permeability, an inner diameter of 50 to 50 m, and a film thickness of 1 to 150 m were fixed by a fixing member while maintaining an open state.
  • This is an ink deaerator comprising a hollow fiber membrane element, wherein two fixing members are respectively connected to an inlet connection port and an outlet connection port.
  • This apparatus is preferably configured such that a plurality of hollow fiber membrane elements are connected to each other and disposed in a can body, and an ink merging chamber is formed at each connection portion.
  • the present invention provides an ink cartridge for ink jet printer, wherein the ink cartridge is filled with ink. Dissolved gas in the ink is degassed by reducing the pressure on the outer surface side, and the total dissolved gas concentration of the ink in the ink cartridge is set to 295 g / L or less for ink jet printers.
  • Ink power A method of manufacturing a cartridge.
  • the present invention is an ink for an ink jet printer, wherein the total dissolved gas concentration in the ink is 295 gL or less.
  • FIG. 1 is a schematic cross-sectional view showing one example of an ink deaerator of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a hollow fiber membrane element used for the ink deaerator of the present invention.
  • FIG. 3 is a schematic sectional view showing another example of the ink deaerator of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing one example of a hollow fiber membrane module used for the ink deaerator of the present invention.
  • the hollow fiber membrane for degassing of the present invention is a gas-permeable hollow fiber membrane having an inner diameter of 50 to 500 m and a thickness of 10 to 150 m.
  • a hollow fiber membrane having an inner diameter of 50 to 500 m pressure loss during degassing can be suppressed to a low level. If the inside diameter exceeds 500 m, it is difficult to reduce the concentration of dissolved gas.
  • a hollow fiber membrane with a thickness of 10 to 150 m pressure fluctuations occur. Also, since the hollow fiber membrane is not damaged, the degassing of the ink can be reliably performed.
  • the ink to be processed by the hollow fiber membrane for degassing of the present invention is an aqueous ink used in an ink jet printer or the like, and the main component of the solvent composition is water.
  • a water-soluble organic solvent may be added.
  • the gas to be degassed is a gas dissolved from the air into the ink, and is mainly composed of oxygen and nitrogen. Since the main component of the ink is water, the solubility of the gas dissolved in the ink is considered to be close to the solubility in water.
  • the solubility of oxygen in water at 25 ° C is 8.3 mg ZL, and the solubility of nitrogen in water is 13.7 mg ZL.
  • the hollow fiber membrane for degassing of the present invention may be a porous membrane or a non-porous membrane as long as it has gas permeability.
  • a porous membrane the surface of the porous substrate of the hollow fiber membrane is hydrophilized by the hydrophilic compound contained in the ink, and ink may leak out from the pores of the membrane.
  • the oxygen and nitrogen permeation fluxes are low, so that it takes a long time to deaerate.
  • the leakage of the ink from the hollow fiber membrane can be prevented, and the ink can be deaerated with high deaeration efficiency.
  • a non-porous layer having a thickness of 0.3 to 2 m and a porous layer sandwiching the non-porous layer having a thickness of 5 to 100 m is preferable.
  • the mechanical strength is high, breakage and the like are less likely to occur, and gas permeability is also good.
  • the non-porous layer becomes less wet by the ink, and the non-porous Deterioration of the layer is reduced, and the amount of gas permeation can be increased when degassing is performed.
  • a composite hollow fiber membrane having such a three-layer structure is prepared by melt-spinning a polymer forming a homogeneous layer and a polymer forming a porous layer using, for example, a multi-cylindrical composite spinning nozzle. It can be produced by a method in which only a portion that becomes a porous layer without being made porous is stretched under the condition for making it porous.
  • Examples of the polymer material constituting the non-porous layer of such a composite hollow fiber membrane include a silicone rubber-based polymer having excellent gas permeability, polydimethylsiloxane, Silicone rubber-based polymers such as copolymers of silicon and polycarbonate; polyolefin-based polymers such as poly4-methylpentene-11; low-density polyethylene; fluorine-containing polymers such as perfluoroalkyl-based polymers; and ethylcellulose Isocellulose-based polymers, polyphenylene oxide, poly (vinylvinylpyridine), and urethane-based polymers can be used, and these can be used alone or as a copolymer or a blend polymer.
  • polystyrene, polystyrene, polyetheretherketone, or a polymer such as polyetherketone can be used.
  • the combination of the polymer material constituting the non-porous layer and the polymer material constituting the porous layer is not particularly limited, and may be of the same kind or different kinds of polymers.
  • a urethane-based polymer is preferable from the viewpoint of high gas permeability and film formation stability.
  • polyethylene is preferable as the material because of its high flexibility as a hollow fiber membrane and high membrane production stability.
  • Polypropylene is also a more preferable material for both the non-porous layer and the porous layer because polypropylene has high durability against chemicals, has relatively high mechanical strength, and has better thermal properties than polyethylene perethane. is there.
  • Polyolefin-based polymers are also excellent in that the non-porous layer is less likely to be degraded by the chemical solution, and the porous layer has a high mechanical strength as well as the chemical solution durability. Excellent workability when manufacturing thread membrane elements.
  • FIG. 1 is a schematic cross-sectional view showing one example of the ink deaerator of the present invention.
  • the hollow fiber membrane element is housed in a can body comprising a can body container 6 and a can body cap 7 arranged above and below the can body container 6, and the can body container 6 and the can body cap 7 are gasket 8 The connection is more airtight.
  • FIG. 2 is a schematic sectional view showing the structure of the hollow fiber membrane element.
  • a hollow fiber membrane 2 having an inner diameter of 50 to 500 m and a film thickness of 1 ° to 150 m and having gas permeability is provided in a cylindrical porous case 1 having a large number of holes or voids on a wall surface.
  • the hollow fiber membranes 2 are bundled and fixed by the fixing members 3 such that the ends of the hollow fiber membranes are open at both ends of the cylindrical porous case 1.
  • O-rings 4 for connection are mounted at two locations on the outer periphery of the end of the cylindrical porous case 1.
  • the material of the cylindrical porous case 1 should have appropriate mechanical strength and durability against ink.
  • rigid polyvinyl chloride resin, polycarbonate, polysulfone resin, Polyolefin resins such as polypropylene, acryl resins, ABS resins, and modified PP resins can be used.
  • the hollow fiber membrane 2 the above-described hollow fiber membrane for degassing ink is used.
  • the fixing member 3 functions to fix both ends of a large number of hollow fiber membranes in an open state and to hermetically separate an ink flow path side and an exhaust gas flow path side.
  • a material obtained by curing a liquid resin such as an epoxy resin, an unsaturated polyester resin, or a urethane resin, or a material obtained by melting and cooling and solidifying polyolefin or the like can be used.
  • the shape of the hollow fiber membrane element is not particularly limited as long as both ends of the bundle of hollow fiber membranes are bundled and fixed by a fixing member, and the drain can be easily removed, but is housed in a cylindrical porous case.
  • the hollow fiber membrane element is preferable because the hollow fiber membrane element can be prevented from being damaged at the time of processing the hollow fiber membrane element and the hollow fiber membrane element can be processed with high dimensional accuracy.
  • One of the fixing members of the hollow fiber membrane element is connected to a lead-out connection port 10 ′ provided in communication with the ink lead-out port 11 in a can body cap provided at an upper portion.
  • the other fixing member is connected to an inlet connection port 10 provided in communication with the ink outlet port 9 in a can body cap 7 provided at a lower portion.
  • the can cap connected to the upper and lower parts of the can container 6 is provided with an exhaust port 12 connected to a vacuum pump or the like for depressurizing the can body to a vacuum, thereby depressurizing the can body.
  • this exhaust port may be provided in the can body 6.
  • the ink supplied from the ink introduction port 9 is sent to the hollow fiber membrane element via the introduction connection port 10 and undergoes deaeration through the hollow fiber membrane surface while flowing through the hollow portion of the hollow fiber membrane.
  • the degassed ink is taken out from the ink outlet 11.
  • the reduced pressure in the deaeration treatment is preferably 1 OKPa or less.
  • the degassing treatment varies depending on the treatment flow rate and the oxygen and nitrogen permeation performance of the hollow fiber membrane, but is preferably performed to a level at which the total dissolved gas concentration in the ink becomes 295 ppb or less.
  • the total dissolved gas concentration refers to the total concentration of dissolved oxygen concentration and dissolved nitrogen concentration.
  • a drain port 13 provided with a cock 14 for appropriately removing condensed liquid outside the can body is provided in a can body cap 7 provided at a lower portion, and is provided through a hollow fiber membrane from the ink through a hollow fiber membrane.
  • the drain liquid condensed by the vaporized water vapor can be easily discharged out of the can body.
  • FIG. 3 is a schematic sectional view showing another example of the ink deaerator of the present invention.
  • a hollow fiber membrane module formed by connecting a plurality of hollow fiber membrane elements is provided, and one of the open fixing members of the hollow fiber membrane module is provided with an ink inlet 9.
  • the other fixed member that is provided at the introduction connection port 10 communicating with the ink outlet port 11 is connected to the outlet connection port 10 ′ connected to the ink outlet port 11.
  • FIG. 4 is a schematic cross-sectional view showing a connection portion of a hollow fiber membrane element.
  • the hollow fiber membrane elements are connected in multiple stages by a connecting member 5, and an ink merging chamber 15 is formed at the connecting portion.
  • the connecting material 5 only needs to have mechanical strength and durability to ink.
  • rigid polyvinyl chloride resin, polycarbonate, polysulfone resin, polyolefin resin such as polypropylene, and acrylic resin Resin, ABS resin, modified FP ⁇ resin, etc., and those made of metal such as stainless steel are also suitable.
  • the ink supplied from the ink inlet 9 undergoes deaeration through the hollow fiber membrane surface while flowing through the hollow portion of the hollow fiber membrane in the hollow fiber membrane module in the can.
  • the ink that has passed through the hollow fiber membranes of one hollow fiber membrane element merges once in the ink merging chamber 15 formed between the hollow fiber membrane elements, so that the dissolved gas concentration in the ink is made uniform. After that, it is sent to the next hollow fiber membrane element. Therefore, compared to the case of using a hollow fiber membrane element without an ink merging chamber, the removal efficiency per membrane area is improved, and the dissolved gas in the ink can be removed with a high ink treatment amount. You.
  • the hollow fiber membrane elements are connected by the connecting member 5, they can be easily attached and detached, so that they can be easily replaced.
  • an optimum design can be easily performed.
  • When connecting a plurality of hollow fiber membrane elements not only a series connection as shown in Fig. 3 but also a plurality of inlet connection ports and outlet connection ports are provided to connect the hollow fiber membrane elements in parallel. You can also connect.
  • the degree of ink degassing achieved by the method of the present invention varies depending on the processing flow rate and the gas permeation performance of the hollow fiber membrane used, but it is preferable to degas all the dissolved gas in the ink to 2950 g / L or less.
  • the frequency of missing print dots during ink jet recording is reduced to 0.5% or less.
  • the printing dot missing frequency means the ratio of the number of dots which are not printed and become blank with respect to all the printing dots.
  • the composite hollow fiber membrane nitrogen permeation flux has a 0. ⁇ 5 X 1 0- 9 cm 3 / (cm 2 ⁇ P a ⁇ sec) or more permeability Preferably, it is used.
  • the ink is supplied to the ink filling flow path for guiding the ink to the ink cartridge.
  • Dissolved gas in the ink is degassed by arranging a degassing device and depressurizing the outer surface side of the hollow fiber membrane to reduce the total dissolved gas concentration of the ink filled in the ink cartridge to 2950 ⁇ g.
  • Ink cartridges for ink jet printing can be manufactured by setting the ratio to / L or less.
  • the ink cartridge When filling the ink cartridge with ink, it is particularly preferable to fill the ink cartridge with an ink having a total dissolved gas concentration of 2950 ppb or less after reducing the pressure in the ink cartridge. If the ink is pumped and filled without reducing the pressure inside the ink cartridge, the pump will be pumped again during the degassed ink. There is a risk that the gas or mixed gas may dissolve, and the desired effect of the present invention may not be maintained.
  • measurement of dissolved oxygen concentration in the ink is 0 by 2 analyzer MOC A3600 series (Orbisphere Laboratories DOO Ltd. Leeds), also the measurement of dissolved nitrogen is N 2 Analysis A total of MOC A3610 series (Orbis Fair Laboratories) was used.
  • the nitrogen permeation flatness was 3.0 10 to 9 cm 3 / (cm 2 ⁇ Pa 'sec) at 3 (cm 2 ' Pa 'sec).
  • the hollow fiber membrane was held in the open state at both ends, and was bound and fixed using epoxy resin as a fixing member, as shown in Fig. 2.
  • a hollow fiber membrane element was made.
  • the effective hollow fiber length of this hollow fiber membrane element is 20 cm, and the membrane area is 2.
  • One of the hollow fiber membrane elements is mounted in the container shown in Fig. 1, and the ink for the ink jet printer is passed at 25 ° C at a flow rate of 1 LZmin, and the outside of the hollow fiber membrane is The ink was degassed by reducing the pressure to 3 kPa.
  • the concentration of gas dissolved in the ink before degassing was 14.1 mg for nitrogen and 8.2 mg for oxygen, but this treatment reduced the nitrogen concentration to 24 ⁇ 0 g / L and oxygen were degassed to 400 g / L.
  • a hollow fiber membrane element having an effective hollow fiber length of 60 cm and other specifications similar to those of Example 1 was produced.
  • the hollow fiber membrane element was mounted in a can body container, and the ink was degassed under the same conditions as in Example 1.
  • the concentration of gas dissolved in the ink before degassing was 13.9 mg ZL for nitrogen and 8.3 mg ZL for oxygen, but this treatment reduced the nitrogen to 2330 ⁇ g / L. L and oxygen were degassed to 280 gZL.
  • Example 1 Three hollow fiber membrane elements similar to those produced in Example 1 were used, and these hollow fiber membrane elements were connected in series with the connecting material shown in FIG. 4 to form a can container as shown in FIG. A hollow fiber membrane element connected inside was mounted, and the ink was degassed under the same conditions as in Example 1.
  • the concentration of gas dissolved in the ink before degassing was 14.1 mg / L for nitrogen and 8.2 mgZL for oxygen.
  • 00 gZL oxygen was degassed to 95 g / L.
  • Example 4 X 1 0 "9 cm 3 / (cm Using this composite hollow fiber membrane, three hollow fiber membrane elements were produced with the same specifications as in Example 1. Three hollow fiber membrane elements were implemented. The hollow fiber element connected with the connecting material was connected in the same manner as in Example 3, and the hollow fiber membrane element connected in the can body was attached, and the ink was deaerated under the same conditions as in Example 1. As a result, the deaeration treatment was performed. The concentration of gas dissolved in the previous ink was 14. Omg / L for nitrogen and 8. l "gZL for oxygen, but by performing the above degassing process, nitrogen was reduced to 1950 gZL and oxygen. Was degassed to 120 gZL.
  • a composite hollow fiber membrane was prepared.
  • three hollow fiber membrane elements were produced with the same specifications as in Example 1.
  • Example 3 The three hollow fiber membrane elements were connected with a connecting material in the same manner as in Example 3, and the connected hollow fiber membrane elements were mounted in a can container, and the ink was deaerated under the same conditions as in Example 1.
  • Example 3 The three hollow fiber membrane elements were connected with a connecting material in the same manner as in Example 3, and the connected hollow fiber membrane elements were mounted in a can container, and the ink was deaerated under the same conditions as in Example 1.
  • the concentration of gas dissolved in the ink before degassing was 14.4 mg ZL for nitrogen and 8.2 gZL for oxygen.
  • Oxygen was degassed to 050 g / 60 gZL.
  • the degassing of the ink can be performed with a low pressure loss, and even if the pressure changes during degassing, the hollow fiber membrane is damaged. It is possible to perform stable degassing of the ink without any problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Ink Jet (AREA)

Description

明 細 書
イ ンク脱気用中空糸膜、 イ ンク脱気方法、 イ ンク脱気装置、 イ ンクカート リ ッジ の製造方法並びにイ ンク 技 術 分 野
本発明は、 インクジエツ トプリンタ一等に用いられるィンク中の溶存ガスを、 ィンク中から除去するためのィンク脱気用中空糸膜、 ィンクの脱気方法及びィン ク脱気装置並びにこれらを用いたィンクカート リツジの製造方法に関する。
背 景 技 術
イ ンクジエツ トプリ ンターにおいては、 ィ ンクの毛細管現象によりィ ンク力一 ト リッジょりィンクがプリンターへッ ドに送液される力;、 ィンクの送液時にィン ク中あるいはカート リッジ内の微小な空気泡がィンクの流動抵抗となることが知 られている。 また、 イ ンク吐出時においてイ ンクヘッ ド部が多数回加圧、 減圧を 繰り返す際に、 イ ンクへッ ド部にはィンク中の溶存酸素ゃ溶存窒素等の溶存ガス が滞留し易く、 これらィンク中に含まれる溶存ガスがィンク吐出時の印字抜けの 原因となることが知られている。
インク中から溶存ガスを脱気する方法としては、 大きく分けて、 煮沸や減圧等 の物理的方法により脱気する方法と、 吸収剤をィンク中に混入させる化学的方法 とがある。 しかし、 物理的方法では脱気の程度が充分でなかったり、 イ ンクの劣 化を引き起こす等の不都合があった。 また、 化学的方法においても、 インク中の 染料の変質が引き起こされる等の不都合があった。
これらの問題を解決する方法として、 特開平 5— 1 7 7 1 2号公報には、 気体 透過性のある中空糸膜内にイ ンクを通液し、 中空糸膜の外表面側を減圧すること により、 イ ンクジェッ ト記録用インク中の溶存ガスを透過、 除去する方法が記載 されている。 中空糸膜を用いてインク中の溶存ガスの除去を行うと、 インクの物 性に悪影響を与えずに効率よくィンク中の溶存ガスを除去することができる。
しかしながら、 特開平 5— 1 7 7 1 2号公報に記載されたィンクの脱気方法に おいては、 その内径が 2 0〜 3 0 mの中空糸膜を用いているので中空糸膜での 圧力損失が高くなり、 そのため系全体の機械的強度を高く設定する必要があり、 コストアップの原因となった。 また、 その膜厚が 10〃m以下のものを用いてい るので、 真空ポンプにより中空糸膜の外表面側の減圧を開始する際や常圧に戻す 際に、 中空糸膜が振動すると中空糸膜同士が接触して損傷しやすいという不都合 があつた。
インクジェッ トプリンター用インクには、 湿潤、 紙への浸透性の向上のために 通常アルコール、 エチレングリコール等の親水性化合物が含まれている。 このた め、 多孔質中空糸膜を用いる方法は、 膜厚が厚くても気体の透過性を高く保てる が、 この親水性化合物により多孔質基質の表面が徐々に親水化され、 膜の孔から インクが漏れ出すことがあるため好ましくない。 一方、 テフロン製中空糸膜のよ うな非多孔質膜を用いる脱気方法では、 テフ口ン膜の酸素及び窒素透過フラック スが 7. 5〜22. 5 x 10 10cm3/ (cm2 ' Pa ' s e c) と低いため、 十分な機械的強度を保持する膜厚のものを使用した場合には十分なガス透過流量 が得られ難く、 イ ンク中の溶存ガス濃度を 6. 4 p pm程度までしか脱気できな かった。
発 明 の 開 示
本発明は、 このような不都合に鑑みてなされたものであり、 インクから溶存ガ スを除去するに際して、 インク流路での圧力損失が低く、 更に圧力変化時におけ る中空糸膜の損傷がなく、 効率よく脱気が行えるイ ンク脱気用中空糸膜、 インク の脱気方法及びィンク脱気装置を提供することを目的とする。
本発明の他の目的は、 イ ンク中の溶存ガス濃度の極めて低いイ ンクジ Iッ トプ リ ンター用イ ンクカート リツジの製造方法を提供することにある。
すなわち、 本発明は、 内径が 50〜500 m、 膜厚が 10〜 150 mであ る気体透過性中空糸膜からなることを特徴とするィンク脱気用中空糸膜である。 このィンク脱気用中空糸膜は、 非多孔質層の両面に多孔質層が配された三層構造 からなるものであることが好ましく、 その際、 非多孔質層の厚みが 0. 3〜2 mであり、 多孔質層の厚みが 5〜 1◦ 0 mであることが好ましい。
また、 本発明のイ ンクの脱気方法は、 気体透過性を有し、 内径が 50〜500 wm、 膜厚が 10〜 150 mである中空糸膜の中空部にィンクを通液し、 中空 糸膜の外表面側を減圧することによりィンク中の溶存ガスを除去する方法である ( また、 本発明は、 イ ンク導入口と、 イ ンク導入口に連通した導入接続口と、 ィ ンク導出口と、 イ ンク導出口に連通した導出接続口と、 気体排気口とが設けられ た缶体と、 気体透過性を有し、 内径が 5 0〜5 0 ◦ m、 膜厚が 1◦〜 1 5 0 mである中空糸膜の両端が開口状態を保ちながら固定部材により固定された中空 糸膜ェレメントとからなり、 二つの固定部材を導入接続口及び導出接続口にそれ それ接続したことを特徴とするイ ンク脱気装置である。 この装置は、 中空糸膜ェ レメ ントが複数個連結して缶体内に配設され、 その各連結部でィンク合流室が形 成されるよう構成されることが好ましい。
また、 本発明は、 インクジエツ トプリンタ一用ィンクカート リツジにィンクを 充填するに際して、 イ ンクをイ ンクカート リッジに導くィンク充填流路に前記ィ ンク脱気用中空糸膜を配し、 該中空糸膜の外表面側を減圧することによりイ ンク 中の溶存ガスを脱気し、 イ ンクカート リツジ内のィンクの全溶存ガス濃度を 2 9 5 0 〃 g Z L以下とすることを特徴とするインクジエツ トプリンター用インク力 —ト リッジの製造方法である。
更に、 本発明は、 イ ンク中の全溶存ガス濃度が 2 9 5 0 g Z L以下であるこ とを特徴とするィンクジエツ トプリンタ一用イ ンクである。
図 面 の 簡 単 な 説 明
図 1は、 本発明のィンク脱気装置の一例を示す模式断面図である。
図 2は、 本発明のィンク脱気装置に用いる中空糸膜エレメントの一例を示す模 式断面図である。
図 3は、 本発明のィンク脱気装置の他の一例を示す模式断面図である。
図 4は、 本発明のィンク脱気装置に用いる中空糸膜モジュールの一例を示す模 式断面図である。
発明を実施するための最良の形態
本発明のィンク脱気用中空糸膜は、 内径が 5 0〜5 0 0 m、 膜厚が 1 0〜 1 5 0 mの気体透過性中空糸膜である。 内径が 5 0〜5 0 0 mの中空糸膜を用 いることにより脱気時の圧力損失を低く抑えることができる。 内径が 5 0 0 m を超えるものの場合には、 溶存ガスの濃度を低くすることが困難である。 また、 膜厚が 1 0〜 1 5 0 mの中空糸膜を用いることにより、 圧力の変動が起こって も中空糸膜の損傷が生じないのでィンクの脱気を確実に実施することができる。 本発明のィンク脱気用中空糸膜が処理の対象とするィンクは、 イ ンクジェッ ト プリンタ一等で利用される水性ィンクであり、 その溶媒組成の主成分を水とする ものであるが、 各種水溶性有機溶媒が添加されていてもよい。 また、 脱気の対象 とされる気体は空気中からィンクへ溶解した気体であり、 したがって酸素および 窒素が主体である。 インクの主成分は水なので、 インク中へ溶解した気体の溶解 度は、 水への溶解度に近いと考えられる。 なお、 2 5 °Cにおける水への酸素溶解 度は 8. 3 m g Z L、 水への窒素溶解度 1 3. 7 m g Z Lである。
本発明のィンク脱気用中空糸膜は、 気体透過性を有するものであれば多孔質膜 でもよいし、 非多孔質膜でもよい。 しかし、 多孔質膜の場合には、 イ ンク中に含 まれる親水性化合物により中空糸膜の多孔質基材の表面が親水化され、 膜の孔か らインクが漏れ出すおそれがあり、 一方、 非多孔質膜の場合には、 酸素及び窒素 透過フラッ クスが低いので脱気に長時間を要しやすい。 このため、 中空糸膜とし ては、 非多孔質層の両面に多孔質層が配された三層構造を有する複合中空糸膜を 用いることが好ましい。 このような複合中空糸膜を用いると、 中空糸膜からのィ ンクのリークが防止でき、 かつ高い脱気効率でィンクの脱気を行うことができる。 複合中空糸膜としては、 非多孔質層の厚みが 0 . 3〜2 mで、 これを挟む両 多孔質層の厚みがそれぞれ 5〜 1 0 0 mのものが好ましい。 このような複合中 空糸膜を用いると、 機械的強度が高く、 破損等が発生しにく くなるとともに、 気 体の透過性も良好である。 また、 複合中空糸膜として、 多孔質層の孔径が 0 . 0 1〜 1 mである複合中空糸膜を用いると、 非多孔質層がィンクによって濡れに く くなり、 イ ンクによる非多孔質層の劣化が低減されるとともに、 脱気を行う際 に気体の透過量を増加させることができる。
このような三層構造を有する複合中空糸膜は、 例えば多重円筒型の複合紡糸ノ ズルを用いて均質層を形成するポリマーと多孔質層を形成するポリマーと溶融紡 糸し、 次いで均質層を多孔質化することなく多孔質層となる部分だけを多孔質化 する条件で延伸する方法により製造することができる。
このような複合中空糸膜の非多孔質層を構成するポリマー素材としては、 ガス 透過性の優れたシリコンゴム系ポリマーを始めとして、 ポリジメチルシロキサン、 シリ コンとポリカーボネー トの共重合体等のシリコンゴム系ポリマー、 ポリ 4— メチルペンテン一 1、 低密度ポリェチレン等のポリオレフィ ン系ポリマ一、 パー フルォロアルキル系ポリマー等のフッ素含有ポリマ一、 ェチルセルロース等セル ロース系ポリマー、 ポリフエ二レンオキサイ ド、 ポリ 4一ビニルピリジン、 ウレ タン系ポリマーが挙げられ、 これらは単独で用いても共重合体あるいはプレンド ポリマー等であっても用いることができる。
また、 多孔質層を構成するポリマ一素材としては、 ポリエチレン、 ポリプロピ レン、 ポリ 3—メチルブテン一 1、 ポリ 4—メチルペンテン一 1等のポリオレフ イ ン系ポリマー、 ポリフッ化ビニリデン、 ポリテ トラフルォロエチレン等のフッ 素系ポリマ一、 ポリスチレン、 ポリエーテルエーテルケ ト ン、 ポリエーテルケ ト ン等のポリマーを用いることができる。
非多孔質層を構成するポリマー素材と、 多孔質層を構成するポリマー素材との 組み合わせについては特に限定されず、 異種のポリマーはもちろん、 同種のポリ マーであっても構わない。
非多孔質層としては、 高い気体透過性と製膜の安定性からゥレタン系のポリマ 一が好ましい。 また、 多孔質層としては、 中空糸膜として柔軟性に富み、 かつ高 い製膜安定性からポリエチレンが材質として好ましい。 また、 ポリプロピレンは、 薬液に対する耐久性が高く、 機械的強度も比較的高く、 熱的な物性もポリエチレ ンゃゥレタンなどよりも良好なので、 非多孔質層並びに多孔質層双方にとってよ り好ましい素材である。 また、 ポリオレフイ ン系ポリマーは、 非多孔質層に関し て薬液によって劣化を受けることが少ない点において優れており、 多孔質層に関 しては薬液耐久性とともに、 機械的な強度も高いため、 中空糸膜エレメ ン トの製 造時の加工性に優れている。
以下、 本発明のインク脱気方法およびインク脱気装置につき、 図面に従い説明 する。
図 1は、 本発明のイ ンク脱気装置の一例を示す模式断面図である。 中空糸膜ェ レメントが、 缶体容器 6及びその上下に配設された缶体キヤップ 7とからなる缶 体内に収納されており、 缶体容器 6と、 缶体キャップ 7とは、 ガスケッ ト 8によ り気密に接続される。 図 2は、 中空糸膜エレメン トの構造を示す模式断面図である。 壁面に多数の孔 あるいは空隙を有する円筒多孔ケース 1の中に、 その内径が 5 0〜5 0 0 m、 膜厚が 1◦〜 1 5 0 mであって気体透過性を有する中空糸膜 2が多数本収納さ れており、 中空糸膜 2は円筒多孔ケース 1の両端部で中空糸膜の端部が開口する ようにそれぞれ固定部材 3で集束、 固定されている。 また、 円筒多孔ケース 1の 端部外周部の 2ケ所に接続用 0リング 4を装着している。
円筒多孔ケース 1の材質は、 適度な機械的強度を有するとともに、 イ ンクに対 して耐久性を有するものが良く、 例えば硬質ポリ塩化ビニル樹脂、 ポリ力一ボネ —ト、 ポリ スルホン系樹脂、 ポリプロピレン等のポリオレフイ ン系樹脂、 アタ リ ル系樹脂、 A B S樹脂、 変性 P P〇樹脂等を用いることができる。 また、 中空糸 膜 2には、 前述したイ ンク脱気用中空糸膜が使用される。
固定部材 3は、 多数の中空糸膜の両端を開口状態を保ったまま固定するととも に、 ィンク流路側と排気される気体流路側を気密に仕切る部材として機能する。 固定部材 3には、 エポキシ樹脂、 不飽和ポリエステル樹脂、 ポリウレタ ン樹脂の 液状樹脂を硬化させたものや、 ポリオレフ イ ン等を溶融、 冷却固化させたものを 用いることができる。
中空糸膜エレメ ン トの形状は、 中空糸膜の束の両端が固定部材で集束、 固定さ れてなり、 ドレインが容易に除去できる構造であれば特に限定されないが、 円筒 多孔ケースに収納された形態を有するものは、 中空糸膜エレメン トの加工時に中 空糸膜の損傷を防ぎ、 かつ中空糸膜エレメントを高度な寸法精度で加工すること が可能であることから好ましい。
中空糸膜ェレメ ントの固定部材の一つは、 上部に設けられた缶体キヤ ップアに おいてィンク導出口 1 1 に連通して設けられた導出接続口 1 0 ' に接続される。 また、 もう一方の固定部材は、 下部に設けられた缶体キャップ 7においてイ ンク 導出口 9に連通して設けられた導入接続口 1 0に接続される。
缶体容器 6の上部及び下部に接続された缶体キヤップアには、 真空ポンプ等に 接続して缶体内を真空に減圧するための排気口 1 2が配設されており、 缶体内を 減圧することにより、 イ ンク中から、 中空糸膜を介して溶存ガスが除去される。 なお、 この排気口は缶体容器 6に配設されていても差し支えない。 ィンク導入口 9から供給されたィンクは、 導入接続口 1 0を経て中空糸膜エレ メントに送液され、 中空糸膜の中空部を流れながら、 中空糸膜面を通して脱気処 理を受ける。 脱気処理を受けたイ ンクは、 イ ンク導出口 1 1から取り出される。 脱気処理での減圧は、 1 O K P a以下とすることが好ましい。 脱気処理は、 処理 流量、 中空糸膜の酸素及び窒素透過性能によって異なるが、 イ ンク中の全溶存ガ ス濃度が 2 9 5 0 p p b以下となる水準まで実施することが好ましい。 ここで、 全溶存ガス濃度とは、 溶存酸素濃度と溶存窒素濃度の合計濃度をいう。
下部に配設された缶体キヤップ 7には凝縮液を適宜缶体外へ除去するためのコ ック 1 4を付設したドレイン抜き口 1 3が配設されており、 ィンクから中空糸膜 を介して揮発した水蒸気等が凝縮したドレイン液を缶体外へ容易に排出すること ができる。
図 3は、 本発明のイ ンク脱気装置の他の一例を示す模式断面図である。 本形態 例においては、 複数個の中空糸膜エレメントが連結して形成された中空糸膜モジ ユールが配設されており、 中空糸膜モジュールの開放された固定部材の一つが、 ィンク導入口 9に連通した導入接続口 1 0に配設されるとともに、 開放された他 の固定部材が、 イ ンク導出口 1 1 に連通した導出接続口 1 0 ' に接続される。 図 4は、 中空糸膜エレメ ン トの接続部分を示す模式断面図である。 中空糸膜ェ レメントは、 連結材 5により、 多段に連結されており、 連結部においてインク合 流室 1 5が形成される。 連結材 5は、 機械的強度及びイ ンクに対する耐久性を有 するものであれば良く、 例えば硬質ポリ塩化ビニル樹脂、 ポリカーボネー ト、 ポ リスルホン系樹脂、 ポリプロピレン等のポリオレフイ ン系樹脂、 アク リル系樹脂、 A B S樹脂、 変性 F P〇樹脂等や、 ステンレス等の金属製のものも適している。 ィンク導入口 9から供給されたィンクは、 缶体内の中空糸膜モジュールにおい て中空糸膜の中空部を流れながら、 中空糸膜面を通して脱気処理を受ける。 一つ の中空糸膜エレメ ントの中空糸膜内を通過したィンクは、 中空糸膜エレメ ント間 に形成されるィンク合流室 1 5内で一旦合流するため、 ィンク中の溶存ガス濃度 が均一化された後、 次の中空糸膜エレメ ントに送液される。 そのため、 イ ンク合 流室を有さない中空糸膜エレメントを使用した場合に比べ、 膜面積当たりの除去 効率が向上し、 高いィンク処理量でィンク内の溶存ガスの除去を行うことができ る。
また、 中空糸膜エレメ ン トは、 連結材 5で接続されているので容易に取り付け 及び取り外しを行うことができるので簡易に交換が可能である。 また、 缶体の長 さに応じて、 モジュールあるいはエレメ ントの長さ連結材の数を変えることによ り、 容易に最適な設計を行うことができる。 また、 複数個の中空糸膜エレメント を接続する場合には、 図 3のような直列方向の接続だけでなく、 複数個の導入接 続口及び導出接続口を設けて中空糸膜エレメントを並列に接続することもできる。 本発明の方法によるインクの脱気到達度は、 処理流量、 使用する中空糸膜の気 体透過性能によって異なるが、 ィンク中の全溶存ガスを 2950 g/L以下ま で脱気することが好ましい。 ィンク中の全溶存ガスを 2950 g/L以下とす ることにより、 イ ンクジ ッ ト記録時の印字ドッ ト抜け頻度が 0. 5%以下とな り、 実用上満足できる高画質印字あるいは画像となる。 ここで、 印字ドッ ト抜け 頻度とは、 全印字ドッ トに対し、 印字されずに空白となるドッ トの個数比を意味 する。
ィンク中の全溶存ガス濃度 2950 g/L以下を達成するためには、 処理流 量を 1 LZm i n · m2 (膜面積) とした場合、 酸素透過フラックスが 7. 5 x 1 0— 9 cm3/ (cm2 ' P a ' s e c) 以上で、 窒素透過フラックスが 0. Ί 5 X 1 0-9 cm3/ (cm2 · P a · s e c) 以上の透過性能を有する複合中空 糸膜を用いることが好ましい。
このような本発明のィンク脱気方法およびィンク脱気装置を利用して、 インク ジエツ トプリンター用インクカート リツジを製造する場合には、 インクをインク カート リツジへ導くィンク充填流路に前記のィンク脱気用装置を配し、 中空糸膜 の外表面側を減圧することによりィンク中の溶存ガスを脱気し、 イ ンクカート リ ッジ内に充填されたィンクの全溶存ガス濃度を 2950〃 g/L以下とするよう にしてイ ンクジエツ トプリ ン夕一用イ ンクカート リ ツジを製造することができる。 イ ンクカート リッジにイ ンクを充填する際に、 イ ンクカート リッジ内を減圧に した後に、 全溶存ガス濃度が 2950 p p b以下とされたィンクをカート リッジ に充填することは、 特に好ましいことである。 インクカート リッジ内を減圧にせ ずに、 イ ンクを圧送充填すると、 一旦脱気されたイ ンク中に再び圧送の際の圧送 ガス或いは混入する気体が溶解していまい、 本発明の目的とする効果が維持でき なくなる危険がある。
以下、 実施例に基づいて本発明を説明するが、 インク中の溶存酸素濃度の測定 は、 02分析計 MOC A3600シリーズ (オービスフェアラボラ ト リーズ製) により、 また溶存窒素の測定は N2分析計 MOC A3610シリーズ (オービス フェアラボラ ト リーズ製) により実施した。
実施例 1
セグメ ントイ匕ポリウ レタン (Te c o f l ex EG80A、 商品名、 サーメ ディ ックス社製、 MFR= 15、 密度 = 1. 04) 製の非多孔質層の両面に高密 度ポリエチレン (H i z ex2200 J、 商品名、 三井化学 (株) 製、 MFR = 5. 2、 密度 =0. 968) 製の多孔質層を設けた内径 200 m、 膜厚 40 m、 非多孔質層の厚みが 0. 8 m、 多孔質層の孔径が 0. 1 mの複合中空糸 膜を準備した。 この複合中空糸膜は、 酸素透過フラックスが 7. 7 X 10 9 cm
3ノ (cm2 ' Pa ' s e c) で、 窒素透過フラッタスが 3. 0 10~9 cm3/ (cm2 · P a ' s e c) であった。 この中空糸膜を用いて、 変性 P P〇樹脂製 の多孔円筒ケース内で中空糸膜の両端部の開口状態を保持したままエポキシ樹脂 を固定部材として用いて集束固定し、 図 2に示すような中空糸膜エレメ ントを作 製した。 この中空糸膜エレメ ントの有効中空糸長は 20 cmであり、 膜面積は 2.
4 m2であった。
この中空糸膜エレメント 1本を図 1に示す缶体容器内に装着して、 インクジェ ッ トプリンタ一用のインクを 25°Cで、 1 LZm i nの流量で通液し、 中空糸膜 の外側を 3 k P aまで減圧することでィンクの脱気を行った。
その結果、 脱気処理前のイ ンクに溶存しているガス濃度が窒素で 14. 1 mg 、 酸素で 8. 2mgZLであったのが、 この処理を行うことで窒素が 24〇 0〃g/L、 酸素が 400 g/Lまで脱気された。
実施例 2
有効中空糸長が 60 cmであって、 他の仕様は実施例 1と同様の中空糸膜ェレ メントを作製した。 この中空糸膜エレメントを缶体容器内に装着して、 実施例 1 と同様の条件でィンクの脱気を行った。 その結果、 脱気処理前のイ ンクに溶存しているガス濃度が窒素で 1 3. 9mg ZL、 酸素で 8. 3mgZLであったのが、 この処理を行うことで窒素が 233 0 μ g/L, 酸素が 280 gZLまで脱気された。
実施例 3
実施例 1で作製したものと同様の中空糸膜エレメントを 3本用い、 これらの中 空糸膜ェレメントを図 4で示した連結材で直列に連結し、 図 3に示したような缶 体容器内に連結した中空糸膜エレメ ントを装着して、 実施例 1 と同様の条件でィ ンクの脱気を行った。
その結果、 脱気処理前のイ ンクに溶存しているガス濃度が窒素で 1 4. 1 mg /L、 酸素で 8. 2mgZLであったのが、 上記の処理を行うことで窒素が 1 8 00 gZL、 酸素が 95 g/Lまで脱気された。
実施例 4
プロピレン系重合体 (タフマ一 XR 1 06 L、 商品名、 三井化学 (株) 、 MF R = 8、 密度 =0. 89) 製の非多孔質層の両面にポリプロピレン (J一 1 1 5 G、 宇部興産製、 MFR= 1 5、 密度 = 0. 89) 製の多孔質層を設けた内径 1 80 um, 膜厚 35〃m、 非多孔質層の厚みが 0. 6〃m、 多孔質層の孔径が 0. 1 の複合中空糸膜を準備した。 この複合中空糸膜は、 酸素透過フラックスが 7. 6 X 1 0-9 cm3/ (cm2 ' P a · s e c) で、 窒素透過フラックスが 2. 4 X 1 0"9 c m3/ (cm2 · P a · s e c) であった。 この複合中空糸膜を用 いて、 実施例 1 と同様の仕様で中空糸膜エレメン トを 3本作製した。 この中空糸 膜エレメ ン ト 3本を実施例 3と同様に連結材で連結し、 缶体容器内に連結した中 空糸膜エレメントを装着して、 実施例 1 と同様の条件でィンクの脱気を行った。 その結果、 脱気処理前のイ ンクに溶存しているガス濃度は窒素で 1 4. Omg /L, 酸素で 8. l " gZLであったのが、 上記の脱気処理を行うことで窒素が 1 950 gZL、 酸素が 1 20 gZLまで脱気された。
実施例 5
ポリ (4ーメチルペンテン一 1 ) (TPX— MX002、商品名、三井化学(株) 製、 MFR = 22、 密度 =0. 835) 製の非多孔質層の両面にポリ (4ーメチ ルペンテン一 1 ) (TPX— RT3 1、 商品名、 三井化学 (株) 製、 MFR= 2 6、 密度 =0. 833) 製の多孔質層を設けた内径 1 95 m、 膜厚 35 m、 非多孔質層の厚みが 0. 6 </m、 多孔質層の孔径が 0. 03 wmの複合中空糸膜 を準備した。 この複合中空糸膜は、 酸素透過フラックスが 31 X 1 0~9 cm3/ ( c m2 · P a · s e c) で、 窒素透過フラックスが 7. 8 x 1 0— 9 cm3Z (c m2 · P a · s e c) であった。 この中空糸膜を用いて実施例 1と同様の仕様で 中空糸膜ェレメントを 3本作製した。
この中空糸膜エレメント 3本を実施例 3と同様に連結材で連結し、 缶体容器内 に連結した中空糸膜エレメントを装着して、 実施例 1 と同様の条件でインクの脱 気を行った。
その結果、 脱気処理前のイ ンクに溶存しているガス濃度が窒素で 1 4. Omg ZL、 酸素で 8. 2 gZLであったのが、 上記の脱気処理を行うことで窒素が 1 050 g /し、 酸素が 60 gZLまで脱気された。
本発明のィンクの脱気方法及び脱気装置によれば、 低い圧力損失でィンクの脱 気を行うことができるとともに、 脱気時に圧力の変化が生じても、 中空糸膜が損 傷することなく安定したィ ンクの脱気を行うことができる。

Claims

請 求 の 範 囲
1 ) 内径が 50〜500 m、 膜厚が 10〜 150 mであることを特徴とす るイ ンク脱気用中空糸膜。
2) 中空糸膜が、 非多孔質層の両面に多孔質層が配された三層構造を有するこ とを特徴とする請求項 1記載のイ ンク脱気用中空糸膜。
3) 非多孔質層の厚みが 0. 3〜2 mであり、 多孔質層の厚みが 5〜 100 mであることを特徴とする請求項 2記載のィンク脱気用中空糸膜。
4) 多孔質層の孔径が 0. 01〜1〃mであることを特徴とする請求項 2また は 3記載のィンク脱気用中空糸膜。
5) 多孔質層の材質がポリエチレンであることを特徴とする請求項 2〜 4の何 れか 1項記載のィンク脱気用中空糸膜。
6) 非多孔質層の材質がポリウレタン系ポリマ一であることを特徴とする請求 項 2〜 4の何れか 1項記載のィンク脱気用中空糸膜。
7) 非多孔質層および多孔質層の材質が共にポリォレフィ ンであることを特徴 とする請求項 2〜4の何れか 1項記載のィンク脱気用中空糸膜。
8) 複合中空糸膜の酸素透過フラックスが 7. 5 10"9 cm3/ (c m2 · Fa · s e c) 以上あり、 窒素透過フラックスが 0. 75 x 1◦— 9 c m3/ ( c m2 · P a · s e c) 以上であることを特徴とする請求項 1〜 9の何れか 1項記 載のィンク脱気用中空糸膜。
9) イ ンク導入口と、 イ ンク導入口に連通した導入接続口と、 イ ンク導出口と、 イ ンク導出口に連通した導出接続口と、 気体排気口とが設けられた缶体と、 気体 透過性を有し、 内径が 50〜500〃m、 膜厚が 10〜 150 mである中空糸 膜の両端が開口状態を保ちながら固定部材により固定された中空糸膜エレメ ント とからなり、 二つの固定部材が導入接続口及び導出接続口にそれぞれ接続されて なるィンク脱気装置。
10) 中空糸膜エレメ ン トが複数個連結して缶体内に配設され、 その各連結部 でィンク合流室が形成されることを特徴とする請求項 10記載のィンク脱気装置 c
1 1) 中空糸膜が、 非多孔質層の両面に多孔質層が配された三層構造を有する 複合中空糸膜であることを特徴とする請求項 1 0又は 1 1に記載のィンク脱気装
1 2) 気体透過性を有し、 内径が 50〜500 um. 膜厚が 1 0〜: L 50〃m である中空糸膜の中空部にィンクを通液し、 中空糸膜の外表面側を減圧すること により、 ィンク中の溶存ガスを除去することを特徴とするィンクの脱気方法。
1 3) ィンク中の溶存ガス濃度を 2950 μ gZL以下とすることを特徴とす る請求項 1 2記載のィンクの脱気方法。
1 4) 中空糸膜の中空部を通過したイ ンクを一旦合流させた後、 別の中空糸膜 の中空部へ通液してィンク中の溶存ガスを除去することを特徴とする請求項 1 2 または 1 3記載のィンクの脱気方法。
1 5) 中空糸膜が、 非多孔質層の両面に多孔質層が配された三層構造を有する 複合中空糸膜であることを特徴とする請求項 1 2〜 1 4の何れか 1項記載のィン クの脱気方法。
1 6) イ ンクジエツ トプリ ンター用イ ンクカート リ ッジにイ ンクを充填するに 際して、 インクをイ ンクカート リッジに導くインク充填流路に、 気体透過性を有 し、 内径が 50〜500 m、 膜厚が 1 0〜 1 50 mである中空糸膜を配し、 該中空糸膜の外表面側を減圧することによりィンク中の溶存ガスを脱気し、 ィン クカート リ ッジ内のィ ンクの全溶存ガス濃度を 2950〃 gZL以下とすること を特徴とするィンクジェッ トプリン夕ー用ィンク力一ト リッジの製造方法。
1 7) 中空糸膜が、 非多孔質層の両面に多孔質層が配された三層構造を有する 複合中空糸膜であることを特徴とする請求項 1 6記載の製造方法。
1 8) ィンク中の全溶存ガス濃度が 2950 " gZL以下であることを特徴と するイ ンクジエツ トプリ ンター用イ ンク。
PCT/JP1998/001965 1997-04-30 1998-04-30 Membrane a fibres creuses permettant de desaerer l'encre, procede et dispositif de desaeration de l'encre, procede de fabrication de cartouche d'encre, et encre WO1998048926A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98917731A EP1052011B1 (en) 1997-04-30 1998-04-30 Ink deaerating apparatus, ink deaerating method, and ink cartridge manufacturing method
CA002289494A CA2289494C (en) 1997-04-30 1998-04-30 Hollow fiber membrane for the degassing of inks, ink degassing method, ink degassing apparatus, method for the fabrication of an ink cartridge, and ink
DE69837974T DE69837974T2 (de) 1997-04-30 1998-04-30 Vorrichtung und verfahren zur entlüftung von tinte sowie verfahren zur herstellung von tintenpatronen
US09/403,986 US6447679B1 (en) 1997-04-30 1998-04-30 Hollow fiber membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/112561 1997-04-30
JP11256197A JPH10298470A (ja) 1997-04-30 1997-04-30 インクの脱気方法及びインク脱気装置
JP10/29032 1998-01-28
JP2903298A JPH11209670A (ja) 1998-01-28 1998-01-28 インクジェットプリンタ用インク並びにインクジェットプリンタ用インク中の溶存ガスの除去方法及びインクジェットプリンタ用インクカートリッジの製造方法

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US09/403,986 A-371-Of-International US6447679B1 (en) 1997-04-30 1998-04-30 Hollow fiber membrane
US09403986 A-371-Of-International 1998-04-30
US10/176,620 Division US6858063B2 (en) 1997-04-30 2002-06-24 Hollow fiber membrane for the degassing of inks, ink degassing method, ink degassing apparatus, method for the fabrication of an ink cartridge, and ink
US10/176,624 Division US6860922B2 (en) 1997-04-30 2002-06-24 Hollow fiber membrane for the degassing of inks, ink degassing method, ink degassing apparatus, method for the fabrication of an ink cartridge, and ink
US10/176,575 Division US6824261B2 (en) 1997-04-30 2002-06-24 Hollow fiber membrane for the degassing of inks, ink degassing method, ink degassing apparatus, method for the fabrication of an ink cartridge, and ink

Publications (1)

Publication Number Publication Date
WO1998048926A1 true WO1998048926A1 (fr) 1998-11-05

Family

ID=26367181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001965 WO1998048926A1 (fr) 1997-04-30 1998-04-30 Membrane a fibres creuses permettant de desaerer l'encre, procede et dispositif de desaeration de l'encre, procede de fabrication de cartouche d'encre, et encre

Country Status (6)

Country Link
US (4) US6447679B1 (ja)
EP (1) EP1052011B1 (ja)
CA (1) CA2289494C (ja)
DE (1) DE69837974T2 (ja)
TW (1) TW408161B (ja)
WO (1) WO1998048926A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174175A1 (en) * 1999-04-02 2002-01-23 Mitsubishi Rayon Co., Ltd. Hollow yarn membrane module, potting agent therefor and method for deaeration of liquid chemicals

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69837974T2 (de) * 1997-04-30 2008-02-21 Mitsubishi Rayon Co., Ltd. Vorrichtung und verfahren zur entlüftung von tinte sowie verfahren zur herstellung von tintenpatronen
US6558450B2 (en) * 2001-03-22 2003-05-06 Celgard Inc. Method for debubbling an ink
US6585362B2 (en) 2001-10-05 2003-07-01 Eastman Kodak Company Ink composition, ink cartridge having ink composition, and method of filling ink cartridge
US6652088B1 (en) * 2002-05-13 2003-11-25 Creo Srl High throughput inkjet printing system
JP4341947B2 (ja) * 2002-06-14 2009-10-14 株式会社潤工社 分離膜モジュール
JP4242171B2 (ja) * 2003-02-21 2009-03-18 メタウォーター株式会社 濾過器、及びフィルタモジュール
US6939392B2 (en) 2003-04-04 2005-09-06 United Technologies Corporation System and method for thermal management
CA2543701C (en) * 2003-10-30 2009-06-02 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module, hollow fiber membrane module unit, and water treatment method
WO2005112659A2 (en) * 2004-05-21 2005-12-01 Cornell Research Foundation, Inc. Extended shelf life and bulk transport of perishable organic liquids with low pressure carbon dioxide
US7473302B2 (en) * 2004-12-28 2009-01-06 Canon Kabushiki Kaisha Liquid housing container and liquid supply apparatus
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
KR100694151B1 (ko) * 2005-09-05 2007-03-12 삼성전자주식회사 탈기기능을 갖는 잉크순환장치
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
EP1967559B1 (en) * 2005-11-30 2020-07-29 Konica Minolta Holdings, Inc. Method for degassing of ink-jet ink, method for production of ink-jet ink, and ink-jet printer
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
US8287106B2 (en) * 2007-06-15 2012-10-16 Seiko Epson Corporation Liquid ejecting apparatus
JP4867904B2 (ja) * 2007-12-10 2012-02-01 セイコーエプソン株式会社 導体パターン形成用インク、導体パターン、導体パターンの形成方法および配線基板
JP2010076413A (ja) * 2007-12-11 2010-04-08 Seiko Epson Corp 液体供給装置及び液体噴射装置
JP4867905B2 (ja) * 2007-12-11 2012-02-01 セイコーエプソン株式会社 導体パターン形成用インク、導体パターン、および配線基板
CN104307210B (zh) * 2008-01-18 2017-09-29 弗雷塞尼斯医疗保健控股公司 从透析装置的流体回路中除去二氧化碳气体
MX343491B (es) * 2008-10-30 2016-11-07 Porous Media Corp Sistemas de ventilación y filtración con membrana permeable a gas.
US20100310743A1 (en) * 2009-06-04 2010-12-09 Dean Intellectual Property Services, Inc. Removing gas additives from raw milk
US8506685B2 (en) * 2009-08-17 2013-08-13 Celgard Llc High pressure liquid degassing membrane contactors and methods of manufacturing and use
US20110076359A1 (en) * 2009-09-28 2011-03-31 Dean Intellectual Property Services, Inc. Removing gas additives from raw milk
JP5378180B2 (ja) * 2009-12-02 2013-12-25 愛三工業株式会社 分離膜モジュールとこれを備える蒸発燃料処理装置
US8430949B2 (en) * 2011-03-25 2013-04-30 Idex Health & Science Llc Apparatus for pervaporation control in liquid degassing systems
US8945387B2 (en) 2011-08-18 2015-02-03 General Electric Company Hollow fiber membrane module for use in a tubular pressure vessel
KR20140134684A (ko) * 2012-03-30 2014-11-24 미쯔비시 레이온 가부시끼가이샤 복합 중공사막 및 중공사막 모듈
JP5956279B2 (ja) 2012-08-08 2016-07-27 株式会社日立産機システム 気液分離器、及びそれを備えたインクジェット記録装置
JP6104560B2 (ja) * 2012-10-23 2017-03-29 株式会社ミマキエンジニアリング 印刷装置、インク供給装置、及び印刷方法
JP6098264B2 (ja) 2013-03-21 2017-03-22 セイコーエプソン株式会社 記録装置
US20150015645A1 (en) * 2013-07-11 2015-01-15 Loc V. Bui Degassing apparatus and methods thereof
WO2015012293A1 (ja) * 2013-07-24 2015-01-29 三菱レイヨン株式会社 外部灌流型の中空糸膜モジュール及び前記モジュールを有するインクジェットプリンタ
CN106659983A (zh) * 2014-03-13 2017-05-10 3M创新有限公司 非对称膜和相关的方法
JP6264109B2 (ja) * 2014-03-14 2018-01-24 セイコーエプソン株式会社 液体収容容器
CA2891161A1 (en) * 2014-05-28 2015-11-28 Chemetics Inc. Membrane separation at high temperature differential
US10086314B2 (en) * 2015-03-19 2018-10-02 Helgesen Industries, Inc. Fluid storage reservoir with flow dynamic fluid management and hydronucleation
WO2017195818A1 (ja) * 2016-05-11 2017-11-16 三菱ケミカル・クリンスイ株式会社 中空糸膜モジュール
JP6854822B2 (ja) * 2016-08-17 2021-04-07 三菱ケミカル・クリンスイ株式会社 中空糸膜モジュール、脱気給気装置、インクジェットプリンタおよび炭酸泉製造装置
DE102017114166A1 (de) * 2017-06-27 2018-12-27 Océ Holding B.V. Vorrichtung und Verfahren zum Entgasen einer Druckerflüssigkeit
US11338588B2 (en) * 2018-12-20 2022-05-24 Kateeva, Inc. Print material feed system
JP2022515478A (ja) * 2018-12-27 2022-02-18 スリーエム イノベイティブ プロパティズ カンパニー 核剤を有する中空糸膜並びにその製造方法及び使用方法
KR20210107008A (ko) 2018-12-27 2021-08-31 쓰리엠 이노베이티브 프로퍼티즈 컴파니 비대칭 중공 섬유 막 및 이의 제조 및 사용 방법
US11331629B2 (en) * 2019-06-03 2022-05-17 Hamilton Sundstrand Corporation Modular liquid degassing systems
CN114618321B (zh) * 2020-12-11 2023-07-25 中国科学院大连化学物理研究所 一种中空纤维膜及制备和在液压油脱气中的应用
US20220193614A1 (en) * 2020-12-23 2022-06-23 Repligen Corporation Venting or degassing of filter devices and filtration systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621404A (ja) * 1985-06-27 1987-01-07 Mitsubishi Rayon Co Ltd 多層複合中空繊維状膜及びその製造法
JPH0517712A (ja) * 1991-07-08 1993-01-26 Seiko Epson Corp インクジエツト記録用インクの脱気方法
JPH05184812A (ja) * 1992-01-08 1993-07-27 Mitsubishi Rayon Co Ltd 脱気用中空糸膜モジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207065A (en) * 1981-06-17 1982-12-18 Seiko Epson Corp Ink jet recorder
JPS63264127A (ja) 1987-04-22 1988-11-01 Dainippon Ink & Chem Inc 多孔質膜型気液接触装置
DE68919796T2 (de) * 1988-10-03 1995-07-13 Seiko Epson Corp Aufzeichnungstinte für Tintenstrahl-Drucksystem.
US5254143A (en) * 1990-07-09 1993-10-19 Dainippon Ink And Chemical, Inc. Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
DE69305742T2 (de) * 1992-05-18 1997-04-10 Minntech Corp Hohlfaserfilterpatrone und verfahren zu deren herstellung
JPH06335623A (ja) * 1993-05-28 1994-12-06 Dainippon Ink & Chem Inc 脱気膜および脱気方法
JPH07171555A (ja) * 1993-12-21 1995-07-11 Mitsubishi Rayon Co Ltd 脱気水生成装置
US5468430A (en) * 1994-05-19 1995-11-21 L'air Liquide S.A. Process of making multicomponent or asymmetric gas separation membranes
DE69837974T2 (de) * 1997-04-30 2008-02-21 Mitsubishi Rayon Co., Ltd. Vorrichtung und verfahren zur entlüftung von tinte sowie verfahren zur herstellung von tintenpatronen
JP4139456B2 (ja) * 1997-10-02 2008-08-27 三菱レイヨン株式会社 脱気膜
US6270211B1 (en) * 1999-07-07 2001-08-07 Lexmark International, Inc. Bubble elimination and filter tower structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621404A (ja) * 1985-06-27 1987-01-07 Mitsubishi Rayon Co Ltd 多層複合中空繊維状膜及びその製造法
JPH0517712A (ja) * 1991-07-08 1993-01-26 Seiko Epson Corp インクジエツト記録用インクの脱気方法
JPH05184812A (ja) * 1992-01-08 1993-07-27 Mitsubishi Rayon Co Ltd 脱気用中空糸膜モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174175A1 (en) * 1999-04-02 2002-01-23 Mitsubishi Rayon Co., Ltd. Hollow yarn membrane module, potting agent therefor and method for deaeration of liquid chemicals
EP1174175A4 (en) * 1999-04-02 2002-11-06 Mitsubishi Rayon Co HOLLOW WIRE MEMBRANE MODULE, FILLING AGENT AND METHOD FOR DEAERATING LIQUID CHEMICAL SUBSTANCES
US6648945B1 (en) 1999-04-02 2003-11-18 Mitsubishi Rayon Co., Ltd. Hollow yarn membrane module, potting agent therefor and method for deaeration of liquid chemicals

Also Published As

Publication number Publication date
EP1052011A1 (en) 2000-11-15
TW408161B (en) 2000-10-11
CA2289494A1 (en) 1998-11-05
EP1052011B1 (en) 2007-06-20
US6858063B2 (en) 2005-02-22
DE69837974T2 (de) 2008-02-21
US20020148775A1 (en) 2002-10-17
CA2289494C (en) 2006-08-01
EP1052011A4 (en) 2002-04-24
US20020153318A1 (en) 2002-10-24
US6447679B1 (en) 2002-09-10
US20020158000A1 (en) 2002-10-31
US6824261B2 (en) 2004-11-30
DE69837974D1 (de) 2007-08-02
US6860922B2 (en) 2005-03-01

Similar Documents

Publication Publication Date Title
WO1998048926A1 (fr) Membrane a fibres creuses permettant de desaerer l&#39;encre, procede et dispositif de desaeration de l&#39;encre, procede de fabrication de cartouche d&#39;encre, et encre
US6558450B2 (en) Method for debubbling an ink
US6168648B1 (en) Spiral wound type membrane module, spiral wound type membrane element and running method thereof
JP5926384B2 (ja) 過飽和流体の脱気
WO2006044255A2 (en) A membrane contactor and method of making the same
WO2016104155A1 (ja) 中空糸脱気モジュール及びインクジェットプリンタ
JP5080781B2 (ja) 脱気用中空糸膜モジュール及び脱気装置
KR101465295B1 (ko) 탈기용 중공사 모듈의 제조 방법
WO2016104509A1 (ja) 中空糸脱気モジュール及びインクジェットプリンタ
JP3195924U (ja) 中空糸脱気モジュール及びインクジェットプリンタ
JPH10298470A (ja) インクの脱気方法及びインク脱気装置
JPH11209670A (ja) インクジェットプリンタ用インク並びにインクジェットプリンタ用インク中の溶存ガスの除去方法及びインクジェットプリンタ用インクカートリッジの製造方法
JPH11244607A (ja) 薬液の脱気方法及び脱気装置
JPH0768103A (ja) 膜脱気方法
JPH06335623A (ja) 脱気膜および脱気方法
JP7290208B2 (ja) 中空糸膜モジュール
JP2000342934A (ja) 中空糸膜モジュール、そのポッティング材並びに薬液の脱気方法
JPH0788304A (ja) 溶存ガス除去およびガス給気モジュール
MXPA99010029A (es) Membrana de fibras huecas para desgasificar tinta, metodo para desgasificar tinta, aparato para desgasificar tinta, metodo para la fabricacion de un cartucho de tinta y tinta
JP3582986B2 (ja) 脱気用セラミック複合部材並びにそれを用いた脱気方法
US20230025394A1 (en) Method for manufacturing hollow fiber membrane module, and hollow fiber membrane module
WO2024038722A1 (ja) スパイラル型膜エレメント及び膜分離装置
JPS6253202B2 (ja)
JP2006044004A (ja) インクタンク及びこれを備えるヘッドカートリッジ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ID KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2289494

Country of ref document: CA

Ref country code: CA

Ref document number: 2289494

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/010029

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998917731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09403986

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998917731

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998917731

Country of ref document: EP