WO1998042458A1 - Rouleau composite pour bande mince en acier lamine a froid et son procede de fabrication - Google Patents

Rouleau composite pour bande mince en acier lamine a froid et son procede de fabrication Download PDF

Info

Publication number
WO1998042458A1
WO1998042458A1 PCT/JP1998/001181 JP9801181W WO9842458A1 WO 1998042458 A1 WO1998042458 A1 WO 1998042458A1 JP 9801181 W JP9801181 W JP 9801181W WO 9842458 A1 WO9842458 A1 WO 9842458A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
sleeve
steel strip
modulus
composite
Prior art date
Application number
PCT/JP1998/001181
Other languages
English (en)
French (fr)
Inventor
Osamu Sonobe
Hirotaka Kano
Kazuhito Kenmochi
Ikuo Yarita
Akihiko Fukuhara
Nobuaki Gamo
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9085553A external-priority patent/JP3065270B2/ja
Priority claimed from JP07509697A external-priority patent/JP3188643B2/ja
Priority claimed from JP15947797A external-priority patent/JP3209705B2/ja
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP98909761A priority Critical patent/EP0913212A4/en
Priority to KR1019980709563A priority patent/KR100338572B1/ko
Priority to US09/180,672 priority patent/US6374494B1/en
Publication of WO1998042458A1 publication Critical patent/WO1998042458A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49544Roller making
    • Y10T29/49547Assembling preformed components
    • Y10T29/49549Work contacting surface element assembled to core
    • Y10T29/49554Work contacting surface having annular axial sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49544Roller making
    • Y10T29/4956Fabricating and shaping roller work contacting surface element

Definitions

  • the present invention relates to a composite sleeve roll made of a cemented carbide having high hardness, high Young's modulus and high rigidity, and a method for producing the same.
  • cold rolled rolls of cold rolled steel strips such as stainless steel strip, silicon steel strip, and bright-finished steel strip, etc.
  • the present invention relates to a rolling roll capable of advantageously producing a steel strip, a bright-finished steel strip, or a silicon steel strip having excellent magnetic properties.
  • the above-mentioned Sendzimir roll is made of a solid cemented carbide, and the wire roll, etc., has a shaft portion and a shaft having a central axis substantially equal to the diameter of the shaft around the shaft.
  • a sleeve with an inner diameter is manufactured by applying a compressive force in the axial direction or by applying a compressive force in the circumferential direction with a wedge-shaped ring or the like to fix it to the shaft part and finish the surface.
  • a large-sized roll (usually indicating a diameter of 150 mm or more and a length of 500 mm or more) by the conventional method of manufacturing a composite roll in which a sleeve made of cemented carbide is fitted to the shaft, the sleeve is usually made of
  • the metal powder of the hard alloy is rubber-molded, sintered as a single hollow member with a central shaft part hollow (equal to the diameter of the shaft material), hot isostatically pressed (HIP treated), and then machined. Manufacturing. This is fixed to the shaft, but since the hollow member is large and is made of a cemented carbide material in particular, large distortion occurs in the material during heat treatment such as sintering. In many cases, making subsequent processing difficult.
  • a metal rod of a cemented carbide is sufficiently and densely filled around a core rod having the same diameter as the shaft part, and then the core rod is removed to obtain a molded body.
  • the large size made it difficult to remove the core rod, and there were many problems, such as the difficulty in workability, such as the shape of the molded product being greatly collapsed and the necessity of excessive force.
  • cold-rolled stainless steel strip is annealed and pickled from a hot-rolled steel strip, then cold-rolled by a Sendzimir mill using a work roll made of a steel alloy with a crawl diameter of 150 ⁇ or less, followed by finish baking. It was manufactured by a process of annealing with a mild pickling or bright annealing, and finish pass rolling at a rolling reduction of 1.2% or less.
  • Stainless steel cold-rolled steel strip manufactured through such a process for example, in the case of a ferritic material represented by SUS430, is often used as it is on the surface after manufacturing, and after finish temper rolling. Good surface gloss is required for products.
  • an austenitic material represented by SUS304 buffing is often performed after finish temper rolling, and it is necessary to exhibit excellent surface gloss after buffing.
  • a method of continuously rolling in one direction by a cold tandem mill using a large diameter crawl of 150 mm ⁇ or more is being adopted.
  • a cold-rolled steel strip of grain-oriented silicon steel is prepared by annealing and pickling a hot-rolled steel strip, cold-rolling it twice or more with tandem mill using high alloy steel work rolls, sandwiching intermediate annealing, Decarburizing annealing, finishing annealing Manufacturing process. It is known that the silicon steel strip manufactured through such a process, when cold-rolled without removing the scale after the intermediate annealing, increases the surface roughness of the steel strip and adversely affects the magnetic properties. I have. Therefore, after intermediate annealing, grinding with a grinding belt is performed before cold rolling.
  • the oriented silicon steel strip since the oriented silicon steel strip usually contains 2.5 to 4.0 wt% of Si, it has extremely high deformation resistance, and when rolled under high load and high surface pressure, the roll becomes eccentric and the cylindrical shape cannot be maintained. However, there is a problem that the shape of the steel strip, particularly the edge drop, becomes large, and the margins at both ends of the plate increase, and the yield becomes poor. Also, with conventional rolls, the surface roughness of the grain-oriented silicon steel strip after cold rolling has not yet reached a sufficient level, and this surface roughness deteriorates with the rolling time. There was a problem that the roll was broken. Another problem was that the cost of the roll itself was high.
  • the present invention described in claims 1 to 8 is intended to manufacture a composite sleeve roll having high hardness, high Young's modulus and excellent wear resistance, and a long-sized large roll using a cemented carbide material. It is an object of the present invention to provide a method for producing a composite sleeve nozzle which is free from the above-mentioned material distortion and has good workability.
  • Japanese Patent Publication No. 5-55202 discloses a sleeve obtained by sintering a carbide or high-speed steel powder outside a steel cylinder by high-temperature isostatic pressing and diffusion bonding with a steel cylinder. It is a composite roll in which steel and a steel bar are fitted. It is a roll for hot wire rods and bar rolling. There is no mention of conditions for improving the surface gloss in cold rolling.
  • 61-1404 discloses a sleeve formed by high-temperature isostatic pressing, diffusion bonding of an inner canning material and a sleeve, and metallurgy of the canning material by a medium filling method. Although a bonding method is disclosed, this method is also a roll only for the purpose of improving abrasion resistance and skin resistance, and does not disclose conditions of an outer layer portion forming a rolled surface of the roll.
  • an object of the present invention described in claims 9 and 10 is to solve the above-mentioned problems of the prior art, and to improve the surface light of a stainless cold-rolled steel strip and a bright-finished steel strip.
  • Another object of the present invention is to provide an inexpensive cold rolling roll capable of further improving the surface roughness of a silicon steel strip and stably rolling the cold-rolled steel strip.
  • Still another object of the present invention described in claims 9 and 10 is to provide a roll for cold rolling, in which each of the above characteristics is particularly effective when used in a cold tandem mill.
  • Japanese Patent Publication No. 5-55202 Japanese Patent Laid-Open No. 4-41007
  • Japanese Patent Laid-Open No. 60-111704. high Young's modulus materials are brittle materials such as ceramics and cemented carbide, and if stress is concentrated during rolling, there is a concern that destruction may occur from that location. Therefore, it is important to prevent stress concentration on the material during rolling.
  • the technique disclosed in Japanese Patent Application Laid-Open No. 4-41007 is a proposal of a method for preventing this stress concentration.
  • ceramic or cemented carbide is used for the outermost layer of the rolling roll, and a sawtooth-shaped groove is formed in non-oxidized copper, which is a plastic body, as an intermediate material between this and the core material, or a copper wire is used.
  • the effective elastic modulus is set to 3000 to 17000 kgf / mm 2 by means such as winding.
  • the rolling roll when rolling a material with extremely high deformation resistance, such as a stainless steel strip or a stainless steel strip, under high load and high surface pressure, the roll may become eccentric due to plastic deformation of the intermediate layer. There was a risk that the cylindrical shape could not be maintained, and if the rolling proceeded further, the rolls would break, causing a serious problem.
  • Japanese Patent Application Laid-Open No. Sho 60-111704 proposes a rolling mill having a cemented carbide roll barrel and a steel roll neck.
  • the intermediate material made of cemented carbide having a higher binder content and higher strength than the cemented carbide of the roll barrel is provided by brazing. is there.
  • the entire roll barrel is made of cemented carbide, no significant cost reduction has been solved at all when manufacturing large rolls.
  • an object of the present invention described in claims 11 to 13 is to solve the above-mentioned problems of the prior art and to further improve the surface gloss of a stainless cold-rolled steel strip or a bright-finished steel strip, A roll for cold rolling that can reduce the surface roughness of the steel strip and reduce the edge drop, and can stably roll cold rolled steel strip such as stainless steel strip and silicon steel strip. To provide.
  • Another object of the present invention described in claims 11 to 13 is to reduce the edge opening of a cold-rolled steel strip and to further improve the surface gloss of a stainless cold-rolled steel strip or a bright-finished steel strip.
  • Still another object of the present invention described in claims 11 to 13 is to provide a roll for cold rolling, in which each of the above characteristics is particularly effective when used in a cold tandem mill.
  • the present invention according to claim 1 to claim 8, further comprising: a sleeve having a hollow portion having an inner diameter substantially equal to the diameter of the shaft portion around the shaft portion around the shaft portion, A roll in which a shaft member is inserted and fitted to fix the member, and a plurality of molded members in which the sleeve is divided by a surface intersecting with the central axis of the integrally molded member or the roll are integrated in advance. And a method for producing the same.
  • the present invention according to claim 9 is a composite roll for cold rolling of a stainless steel strip or a silicon steel strip, in which a core material and a sleeve are fitted, wherein the core material is made of steel, and the sleeve material has a Young's modulus of 35,000 kgf / It is made of a WC-Co cemented carbide having a mm 2 or more and a Co content of 12 to 50% by weight, and the thickness of the sleeve is 3% or more of the composite roll radius.
  • the invention according to claim 10 is the invention according to claims 1 to 9, wherein the ratio L / D of the length L of the barrel of the sleeve to the diameter D of the mouth is 2 to : 10 range.
  • the roll barrel consists concentric three or more layers, the outermost layer has a Young's modulus 35000kgf / mm 2 or more and 3 the layer thickness of the roll and a half diameter%
  • the intermediate layer located between the outermost layer and the shaft core is a composite roll for cold rolling, wherein the Young's modulus is smaller than the Young's modulus of the outermost layer and larger than that of the shaft core.
  • the intermediate layer when the intermediate layer is composed of two or more layers, the intermediate layer is larger as the layer is relatively outside. It is desirable to arrange a material having a Young's modulus.
  • both the outermost layer and the intermediate layer are made of a WC-based cemented carbide, and the composition of the cemented carbide is relative.
  • the outermost layer should reduce the binding equivalent of the binder metal. Is desirable.
  • FIG. 1 is an external view of two hollow members used in the present invention in claims 1 to 8.
  • FIG. 2 is an illustration of a cross section taken along the center axis of the roll manufactured by the present invention in claims 1 to 8.
  • FIG. 3 is a graph showing the relationship between the Young's modulus of the sleeve material and the surface gloss of the cold-rolled steel strip.
  • FIG. 4 is a graph showing the relationship between the ratio of the high Young's modulus sleeve material to the radius of the mouth and the roll radius.
  • FIG. 5 is a graph showing the relationship between the ratio of the high Young's modulus sleeve material to the roll radius and the surface light of the cold-rolled steel strip.
  • FIG. 6 is a view for explaining L and t in the fitting opening of the present invention in claims 9 and 10.
  • FIG. 7 is a graph showing the relationship between the Co content in a WC-Co cemented carbide and impact strength.
  • FIG. 8 is a graph showing the relationship between the Co content in the WC-Co-based cemented carbide and the Young's modulus.
  • FIG. 9 is a schematic sectional view of the barrel portion of the composite roll of the present invention according to claims 11 to 13.
  • FIG. 10 is a diagram showing a circumferential stress distribution at a layer boundary of the composite roll of the present invention according to claims 11 to 13. Best shape bear for carrying out the invention
  • FIG. 1 is an external view of a hollow member constituting a sleeve used in the present invention
  • FIG. 2 is a cross-sectional view taken along a center axis of a roll manufactured in the present invention.
  • 1 is the sleeve
  • the constituent hollow member 2 is a hollow portion of the hollow member
  • 3 is an integrated sleep
  • 4 is a shaft member
  • 5 is a side end ring.
  • the material of the roll used in the present invention according to claims 1 to 8 is a cemented carbide powder, for example, WC, TaC, TiC or the like.
  • a rubber mold for example, an outer cylinder with a predetermined diameter and its depth (vertical)
  • a pipe-shaped double cylinder composed of an inner cylinder having a diameter smaller than the diameter of the outer cylinder having a common central axis in the direction, and a thin rubber mold made of, for example, rubber and the like having a high elasticity.
  • a core rod having a diameter substantially equal to the inner diameter of the inner cylinder is inserted into the center axis of the inner cylinder in the same manner as the longitudinal central axis of the inner cylinder.
  • the formed space is filled with a super-hard powder of a roll material into a sufficiently dense state using, for example, a hammer-type filling machine.
  • the rubber mold used here is used for ordinary cold isostatic pressing (CIP processing) molding, and is determined by the size of the product roll in the present invention according to claims 1 to 8, For example, a double cylindrical outer cylinder with an inner diameter of 200 to 600 mm, an outer diameter of the inner cylinder of 100 to 500 mm, and a depth (length in the vertical direction) of about 300 to 1500 mm. It is characterized by being larger and longer than the sleeves.
  • the core rod a rod made of a material having high compressive strength and a hollow pipe having a diameter substantially corresponding to the shaft portion of the roll is used.
  • the rubber mold is protected and fixed by, for example, a metal container at its outer periphery so as to maintain a constant shape when the powder is filled. It is preferable to use a container having a large number of through-holes in its wall surface or the like so that a uniform pressure is applied to the surface of the molded product in the subsequent CIP treatment.
  • a container having a large number of through-holes in its wall surface or the like so that a uniform pressure is applied to the surface of the molded product in the subsequent CIP treatment.
  • the CIP treatment improves dimensional accuracy and reduces the amount of mechanical calorie after pre-sintering, so it is better to perform it, but it is not necessary.
  • the molded product obtained by the CIP process through the above-mentioned process has good dimensional accuracy and can be obtained as a molded product almost as designed.However, in the subsequent sintering process, deformation due to the molded product's own weight and heating due to heating Deformation such as contraction. Therefore, in the provisional sintering process, it is preferable to use a jig such as a graphite core material in consideration of such deformation prevention.
  • a reaction inhibitor such as boron nitride (BN)
  • BN boron nitride
  • the molded body subjected to CIP molding is subjected to a temporary sintering process.
  • the conditions are preferably set in a vacuum furnace where the molded body is placed sideways, that is, heated in a state where the center axis is substantially horizontal, in order to prevent the above-mentioned deformation of the molded body.
  • the sintering conditions are preferably, for example, 550 to 800 ° C. and about 1 to 3 hours.
  • the pre-sintered molded body has good dimensional accuracy, and has sufficient strength to withstand such processing even when a predetermined shape processing with a diamond bite, lathe, etc. is required.
  • the present invention according to claims 1 to 8 is characterized in that it is used as a sleeve made of an integrally molded member or a sleeve obtained by joining a plurality of molded bodies that have been pre-sintered or shaped after pre-sintering.
  • the individual molded bodies are integrated by a method such as pressure sintering by superimposing the surfaces intersecting the central axis with the same central axis.
  • pressure and sintering main sintering
  • pressurization may be performed after main sintering.
  • CIP molding or pre-sintering molding is machined to improve dimensional accuracy, and set in a state where a plurality of moldings are joined together.
  • the main sintering HIP treatment performed here is, for example, in an Ar atmosphere, 1000 to 2000 kgf / mm 2 , 1100 to 1200 ° (:, after holding for 0.5 to 2 hours, then 1300 to 1350 It is recommended that the temperature be kept at 1 ° C for 1 to 3 hours.
  • a method of applying a binder to the bonding surface may be used. Note that Co, Ni, Cr and the like are good as the binder.
  • the integrated hollow member sleeve obtained by pressure sintering is further ground or polished by mechanical processing as necessary, and the roll shaft member is inserted into the hollow part and fitted to shrink. It is advisable to fix them using a normal method such as cold swaging.
  • the shaft is made of chromium steel, chromium molybdenum steel, high-speed steel and tempered, for example, and has a diameter equivalent to that of the sleeve cavity and a length of 1000 to 1000 mm. The one of about 5000mm is used.
  • the physical properties of the parts processed by the above method using the WC-15% Co mixture were as follows.
  • the hardness (HRA) was 86.0
  • the density was 13.8 g / cm 3
  • the transverse rupture strength was 210 to 250 kgf / mm 2 .
  • the composite sleeve roll obtained in this way is a large, long roll with a thick part in the center of the shaft member in the longitudinal direction, and is used for sheet material processing and cold rolling in the steel and non-ferrous metal divisions. used.
  • the inventors have found that the surface gloss of stainless steel products depends on the surface roughness of the steel strip after cold rolling, and the surface roughness of the steel strip after cold rolling is the same as that of the steel strip before cold rolling. (Steel strip annealed and pickled after hot rolling) A part of the surface roughness must remain after cold rolling. In order to obtain a steel strip with good surface gloss, it was found that the recesses on the surface of the steel strip existing at the start of cold rolling should be reduced during rolling.
  • the roll diameter is larger than that of conventional small-diameter roll mills, so a large amount of rolling oil is interposed between the roll and the steel strip, and the protrusions on the roll surface fully contact the steel strip surface. It is difficult because it is difficult to make In order to deal with this, the inventors have found that it is effective to satisfy the following conditions (a) and (b).
  • the inventors measured the surface gloss of a cold rolled stainless steel strip rolled with various rolls having different Young's moduli by the JIS Z8741 gloss measurement method (Gs20 °). The results were evaluated in order of goodness, with a gloss rating of 950 or higher, special grade, 800-950 as A, 600-800 as B, 400-600 as C, and 400 or less as D, with five grades. According to the experiments by the inventors, as shown in Fig.
  • the gloss of the steel strip surface after rolling is greatly related to the flat roll radius, and the thickness of the outer layer of the roll barrel is optimized so that the flat deformation of the composite roll does not differ greatly from that of the WC cemented carbide integrated roll Value must be If the thickness of the outer layer of the roll barrel is too large, it is possible to make the flatness of the roll not different from that of the WC-based cemented carbide roll, but this also increases the cost, so that both performance and cost are achieved Setting the wall thickness is extremely important.
  • Figure 4 is, WC-based cemented carbide having a high Young's modulus (Young's modulus 51000kgf / m xn 2) - when the flat roll radius of the body roll was Rl, flat composite roll the thickness of the outer layer was varied
  • the difference between the roll radius R and Rl is expressed as (R-Ri) X 100 / F ⁇ , and shows the relationship between this ratio and the ratio of the outer layer thickness to the radius.
  • FIGS. 4 and 5 shows the relationship between the surface lightness of the cold-rolled steel strip and the ratio of the outer layer thickness to the radius, which is similarly represented.
  • the composite roll As shown in FIGS. 4 and 5, while the difference between the flat roll radius of the steel piece rolls (Young's modulus 21000kgf / mm 2) in the WC-based cemented carbide piece rolls is about 70%, the composite roll When the outer layer thickness is about 3% of the roll radius, the flat difference with the WC-based cemented carbide integrated roll is within 10%, and it is possible to obtain a sufficient effect on gloss. This I understood.
  • the thickness of the outer WC layer is set to 10% or more of the roll radius, the difference between the flat roll radius and the WC-based cemented carbide integrated roll can be made within 2%, resulting in a higher effect on gloss. It turned out that it could be obtained.
  • the thickness of the outer WC layer is preferably 3% or more of the radius of the roll, and more preferably 10% or more of the radius of the roll.
  • the inventors examined the ratio L / D of the barrel length L and the diameter D of the fitting roll. As a result, as shown in Table 1, if this ratio is too large, the risk of roll breakage due to roll bending during rolling increases, so it is necessary to keep this ratio below a certain value. I found it. According to the studies by the inventors, a value of 10 or less is preferable, and a value of 7 or less is preferable. On the other hand, in rolling a steel strip using this roll, it is necessary to set the L / D to 2 or more from the viewpoint of shape control ability. Therefore, the range of L / D should be 2 to 10, preferably 2 to 7. Note that the barrel length L in the present invention refers to the length of the WC alloy sleeve in FIG.
  • a material having an extremely high Young's modulus is often a brittle material, and using a material having an excessively high Young's modulus as a roll material is not preferable in terms of its strength, particularly strength against impact.
  • a WC cemented carbide as a material having a high Young's modulus
  • a WC-Co cemented carbide with Co as a binder metal has a high Young's modulus, excellent bending strength, and It is also known to have excellent impact strength.
  • the present inventors have conducted intensive studies on the Co content in the WC-Co cemented carbide. As a result, as shown in Fig.
  • the outer layer of the roll which is a high Young's modulus material
  • FIG. 9 The discontinuity in the Young's modulus at the boundary between the steel and the steel core causes a tensile stress on the inner peripheral surface of the outer layer of the roll during rolling. If this stress exceeds the limit, the roll will break.
  • the present inventors as shown in FIG. 9, provided a material having a Young's modulus smaller than the outer layer and larger than the shaft core between the roll outer layer and the roll axis. We have found that an intermediate layer made of a material can be provided to alleviate the stress.
  • FIG. 10 shows the radial distribution of the stress. As shown in Fig.
  • the intermediate layer according to the present invention, the tensile stress near the boundary between the outer layer and the intermediate layer and the tensile stress near the boundary between the intermediate layer and the axis are smaller than in the conventional case. It can be used stably without being damaged.
  • the inventors have further studied a method of alleviating the tensile stress. Since the tensile stress is caused by the difference in the Young's modulus between the outer layer of the roll and the intermediate layer, it was understood that the tensile stress can be further reduced by reducing the difference in the Young's modulus. However, when the Young's modulus of the intermediate layer approaches the Young's modulus of the outer layer of the roll, the difference in Young's modulus between the intermediate layer and the roll core increases, and a large tensile stress acts on the inner surface of the intermediate layer. . Therefore, as a result of further studies, the inventors have found that providing two or more layers as an intermediate layer is extremely effective in eliminating such a phenomenon.
  • the inventors have found that, for example, when a WC-based cemented carbide is used as a material having a high Young's modulus, the structure is extremely uniform, and the roll surface roughness set low at the beginning of rolling is such that the rolling progresses and It was discovered that the roughness did not increase as much as steel rolls did.
  • the WC-based cemented carbide is obtained by adding one or more of Ni-based alloy, Co-based alloy, Ti and G, etc. to WC (tungsten carbide) as a main component. And, as the bond equivalent of the binder metals Ni, Co, Ti, Cr, etc. is reduced, the Young's modulus gradually increases, and the tensile stress acting between the layers is reduced.
  • the composition of the cemented carbide should be such that the outermost layer has a smaller binder metal equivalent. Is desirable.
  • Powder mixed with WC having a particle size of 3 to 5 m and Co with a diameter of about l to 2 / xm (Co: 15 wt%), and powder mixed for 2 days using a WC pole as a mixing medium.
  • a method was employed in which a rubber mold was placed on a hammer-type filling machine, the powder was filled in equal amounts, and then the process of pressing was repeated.
  • the core rod was pulled out to obtain a molded body whose central axis portion was hollow and penetrated. Similarly, two molded bodies were manufactured. The molded body was kept at 2850 kgf / cm 2 for 10 minutes in the next stage and subjected to CIP treatment.
  • the molded body obtained by CIP processing is a hollow member with an outer diameter of 330 mm, an inner diameter of 160 mm, and a length of 730 mm, and the surface, inner surface and joint surface are further smoothed by machining and finished to the specified dimensions.
  • the hollow member is attached to a graphite core material, introducing trace hydrogen in a vacuum oven, 10-3 ⁇ : at L0-5 m mHg, in 1120, and primary sintered for 2 hours.
  • the primary sintered body was further mounted on a graphite core material and subjected to secondary sintering at 1250T for 2 hours.
  • This sintered body was further subjected to HIP treatment at 1330 ° C. and 100 kgf / cm 2 for 2 hours in an Ar atmosphere.
  • HIP-treated molded body is a sleeve, anti Orika junction was 180 ⁇ 220kgf / mm 2.
  • the hardness was 86-88HRA.
  • 5% chromium steel was tempered, and a shaft part with a diameter of about 140 mm and a length of about 3500 mm was inserted into a sleeve with an outer diameter of 280 mm, an inner diameter of 140 mm, and a length of 1230 mm, and was machined into a roll. . Using this roll, the steel strip was rolled, and a good thin plate was obtained without roll breakage.
  • Example 5 Using a SUS430 steel strip as an example of a ferritic stainless steel strip, annealed and pickled a hot-rolled steel strip, and then invented Example 5 on the fifth stand of a five-stand cold tandem mill. Using a work roll with a WC alloy sleeve fitted to a high alloy steel core, cold rolling was performed from a material thickness of 4.0 mm to a finish thickness of 1.0 mm. Thereafter, the steel strip was finish-annealed, pickled, and temper-rolled at an elongation of 1.0%.
  • WC alloy sleeve roll as shown in Table 2, the sleeve outer diameter 285 mm, the outer layer material is contained 17% to Co, a WC-based cemented carbide has a Young's modulus of about 52000kgf / mm 2, the sleeve Was 5 mm (3.5% of the sleeve radius).
  • a WC-based cemented carbide integrated work roll having a roll diameter of 285 mm and containing 17% of Co was applied to the fifth stand, and cold-rolled. Thereafter, the steel strip was finish-annealed, pickled, and temper-rolled at an elongation of 1.0% (Comparative Example 2a).
  • a WC composite work roll with a thickness of 2 mm and a diameter of 285 mm per mouth was sprayed on a high alloy steel core material by spraying a WC-based cemented carbide containing 17% Co on the fifth stand. And cold-rolled. Thereafter, the steel strip was finish-annealed, pickled, and temper-rolled at an elongation of 1.0% (Comparative Example 2b).
  • Example 2 cold rolling was similarly performed in a case where a single crawl using normal 5% forged steel was applied to all stands of a five-stand cold tandem mill. Thereafter, the steel strip was finish-annealed, pickled, and temper-rolled at an elongation of 1.0%.
  • a rating of 950 or more was evaluated on a 5-point scale, with 800-950 as A, 600-800 as B, 400-600 as C, and 400 or less as D.
  • Table 3 shows the results. From Table 3, it can be seen that the cold rolled stainless steel strip rolled using the sleeve fitting hole according to the present invention is the same as the steel strip manufactured using the WC cemented carbide roll of Comparative Example 2a. It had significantly better luster than the steel strips manufactured in 2b and the conventional example.
  • Table 4 shows the specifications of the WC alloy sleeve in the invention example. As shown in the upper part of the table, the sleeve contains 20% Co, a WC-based cemented carbide alloy in which the Young's modulus of about 50000kgf / mm 2, the thickness of the sleeve is about 10% of the radius.
  • Comparative Example 3 a work roll in which a WC alloy sleeve was fitted with a core material of hot die steel was applied to the fifth stand, and cold rolling was performed. Thereafter, the steel strip was finish-annealed, pickled, temper-rolled at an elongation of 1.0%, and subjected to # 400 puff polishing in one pass (Comparative Example 3).
  • the lower part of Table 4 shows the specifications of the sleeve in the comparative example.
  • Sleeve is Col7%,
  • Example 3 ordinary 5% Cr forged steel was used for all stands of a five-stand cold tandem mill, and the Young's modulus was about 21000 kgf / mm 2 . Cold rolling was performed similarly when a work roll was applied. Thereafter, the steel strip was finish-annealed, pickled, temper-rolled at an elongation of 1.0%, and subjected to # 400 nof polishing in one pass.
  • Example 5 The surface gloss was measured and evaluated in the same manner as in Example 2 for each of the cold rolled stainless steel strips obtained by the above method. The results are shown in Table 5. Table 5 shows that the stainless steel cold-rolled steel strip rolled using the sleeve-fitting roll according to the present invention had significantly better gloss than the steel strips manufactured in Comparative Example 2 and the conventional example. .
  • the sleeve of the invention example Reeve outer layer material contains 20% Co, a WC-based cemented carbide having a Young's modulus of about 50000kgf / mm 2, the thickness of the sleeve was about 10% of the radius.
  • the roll size is 231 mm for the sleeve diameter
  • the roll barrel length L is 1500 mm
  • the ratio L / D to the roll diameter D is 6.5
  • the sleeve diameter is 155 mm
  • the roll barrel length L is It was changed to two levels when the ratio L / D to the roll diameter D was set to 9.7 (Invention Example 4b).
  • the outer layer material is a WC-based cemented carbide with WC-20% Co as shown in Table 6, the thickness is 7mm (radius ratio 10%), and the sleeve diameter is
  • SUS304 steel strip is used as the austenitic stainless steel strip, the hot-rolled steel strip is annealed and pickled, and then the fifth stand of a five-stand cold tandem mill is used.
  • the work roll was fitted with and rolled from a material thickness of 3.0 mm to a finish thickness of 0.98 mm. At that time, the rolling reduction of the fifth stand was set to 20%. Then, the steel strip is finish-annealed, pickled, and temper-rolled at an elongation of 1.0%. Then, one pass of # 400 puff polishing was performed.
  • the thickness of the WC alloy sleeve was set to about 3% of the radius ratio, and the Co content was changed from 6% to 55%.
  • the fifth stand of a five-stand cold tandem mill (roll diameter c /) 285 mm) was used as an example of the invention.
  • the fifth stand has a shaft core of 5% forged steel, the outermost layer has a Young's modulus of 52000 kgf / mm 2 , a WC-based cemented carbide with a Col of 7%, and an outer middle layer (middle layer 1).
  • the 5th stand is made of forged steel with a shaft core of 5%, and the outermost layer has a Young's modulus
  • the surface gloss of these cold-rolled stainless steel strips was measured by the JIS Z8741 gloss measurement method (Gs20 °). 600 was rated as C and 400 or less was rated as D on a five-point scale. From the results shown in Table 10, the cold rolled stainless steel strip manufactured by using the rolling roll of the present invention is equivalent to the steel strip manufactured by using the WC-based cemented carbide integrated roll of Comparative Example 6a, and , 6c and the steel strips manufactured in the conventional examples.
  • a hot rolled steel strip for directional silicon steel with a thickness of 2.5 mm containing C: 0.045%, Si: 3.35%, Mn: 0.065%, Se: 0.017% and Sb: 0.027% was heated at 1000 ° C for 30 seconds.
  • the surfaces of the samples C and C were ground in parallel with the rolling direction using a # 100 abrasive belt. Samples B and D were left as they were during intermediate annealing.
  • the rolling reduction at the final stand was 20%.
  • Table 12 shows the results of an investigation of the margins at both ends of the strip after rolling, in order to make the product required to have a product thickness deviation of 5 m.
  • samples ⁇ and ⁇ ⁇ rolled using the rolls of the present invention have less edged opening of the plate compared to samples C and D, which are comparative examples, and reduce the margin for trimming and improve the yield. You can see that.
  • the average value of the results obtained by subjecting the sample A using the roll of the present invention and the sample C using the conventional high alloy steel roll to cold rolling and then decarburizing annealing and measuring the sacrifice structure of the surface layer was calculated as the twelfth value. It is shown in the table. As shown in Table 12, it can be seen that the sample A using the rolling roll of the present invention has a higher ⁇ 110 ⁇ strength of the texture than the sample C of the conventional example. This is because the WC roll has a high Young's modulus in WC roll rolling. As the amount of oil introduced into the ruvit decreases, the coefficient of friction increases about twice that of conventional high-alloy steel rolls.
  • the present invention is applied to all stands (work roll diameter: 380 to 43 O mm) of a four-stand cold evening demem mill.
  • the outer circumference of the roll contains 20% by weight of nickel and the balance is tungsten carbide.
  • the tungsten carbide cemented carbide has a wall thickness of 20 mm (9.3-10.5% of the roll radius).
  • a composite roll formed by fitting with cold die steel as the core is applied as a work roll, and a synthetic ester emulsion with a rolling oil temperature of 60 ° C, a concentration of 2% and an average particle size of 3 m is circulated. It was rolled at high speed to 0.5 mm while supplying the oil.
  • the same type of hot-rolled steel strip (sheet thickness: 2.6 mm) was pickled, and then all the stands of the cold tandem mill were coated with 8% by weight of nickel on the entire stand of the cold tandem mill.
  • Tungsten carbide cemented carbide with a thickness of 10 mm (4.6% to 5.2% of the roll radius), with the remainder being tungsten carbide
  • the combined composite roll was applied as a single crawl and rolled to 0.5 mm in the same manner as above.
  • the amount of abrasion powder remaining on the surface of the steel strip after rolling was remarkably small, and there was no oil scorching.However, a part of the roll was damaged and flaws were generated on the surface of the plow plate. Later, the damage spread and it became impossible to roll.
  • the amount of wear powder remaining on the surface of the steel strip after rolling is large, and oil scorching occurs at the end of the rolling of the steel strip, causing unevenness of oil bleeding on the steel strip surface after continuous annealing.
  • the symbol in the shape control ability is as follows: ⁇ : The shape liij control ability is good
  • Middle layer 1 Middle layer 2 Shaft Core Remarks Material: WC-17C0 Material: WC-40CO
  • Wall thickness 5 mm
  • the composite sleeve roll of the present invention according to claims 1 to 8 is a relatively long one having a small strain, and the manufacturing method of the present invention is such that even when the cemented carbide sleeve is heat-treated, the material is deformed.
  • a large, long, high hardness, high Young's modulus and abrasion-resistant composite slip propellant can be produced with good workability and no generation of cracks.
  • a silicon steel strip having a small surface roughness and excellent magnetic properties can be rolled without causing roll breakage.
  • the ratio L / D of the length L of the barrel of the sleeve to the roll diameter D is in the range of 2 to: 0 so that the bending of the roll barrel can be prevented. Strength can be improved.
  • the outermost layer having a Young's modulus of 35,000 kgf / mm 2 or more and a wall thickness of 3% or more of the roll radius, a shaft core, and a
  • the composite roll is composed of an intermediate layer having a lower modulus than the outermost layer and an intermediate layer larger than the axis, a stainless steel cold-rolled steel strip or a bright-finished steel strip with extremely low edge drop and extremely good surface gloss, or with a low surface roughness It is possible to roll a silicon steel strip which is small and has excellent magnetic properties without causing roll breakage.
  • the intermediate layer has two or more layers, the risk of roll breakage can be further reduced by arranging the outer layer so that the Young's modulus of the outer layer is higher than the Young's modulus of the inner layer.
  • the composite roll of the present invention exhibits excellent effects not only in cold rolling of stainless steel strip, silicon steel strip, or bright-finished steel strip, but also in rolling of ordinary steel strip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

明細書
薄冷延鋼帯圧延用複合ロールおよびその製造方法 抟術分野
本発明は、 高硬度、 高ヤング率で高剛性を持つ超硬合金で構成された複合スリ ーブロールおよびその製造方法に関するものである。 また、 ステンレス鋼帯、 珪 素鋼帯およびブライト仕上げ鋼帯等の冷延鋼帯の冷間圧延ロールに関し、 エッジ ド口ップの小さい冷延鋼帯、 さらには表面光沢の優れたステンレス冷延鋼帯およ びブライト仕上げ鋼帯、 あるいは磁気特性に優れた珪素鋼帯を有利に生産しうる 圧延ロールに関するものである。
背景抟術
鋼帯や鋼線材、 棒鋼の製造において、 例えばゼンジミア口一ル、 線材ロール等 が用いられるが、 扱う鋼材の高級化、 省エネルギー化などの要望により、 高硬 度、 高ヤング率で耐摩耗性に優れた超硬合金を素材としたロールが開発され使用 されている。 これら超硬合金ロールは、 取り扱う材料の形状から比較的径の小さ いもの、 例えば径が 20〜80mm程度、 或いは径が 50〜150mmで長さ力 !00〜200mm 程度の小型のロールが主であった。 近年、 鋼材の品質面の向上、 製造コストの低 減のための長期連続運転の必要性から超硬合金ロールの大型化が要望されてい る。
一般に前記したゼンジミアロールは超硬合金の一体物が適用され、 又、 線材ロ ール等は、 軸材部と、 軸材部を中心軸としてその周囲に軸材部の径とほぼ同等の 内径を持つスリーブを軸方向に圧縮力をかけるか、 くさび型リング等により円周 方向に圧縮力をかけて軸材部に、 固定し表面仕上げを行い製造している。
しかし従来のこのような超硬合金のスリーブを軸材部に嵌合した複合ロールの 製造方法で大型ロール (通常径 150mm以上及び長さ 500mm以上を指す)を製造する 際、 スリーブは通常、 超硬合金の金属粉末をラバー成型し、 中心軸部分が中空 (軸材の径と同等)の 1個の中空部材として焼結し、 熱間等方加圧 (HIP処理)した 後、 機械加工して製造する。 これを軸材部に固定しているが、 中空部材が大型で あり特に超硬合金の素材であるので、 焼結などの熱処理時に材料に大きな歪みが 発生したりして、 その後の加工が困難となる場合が多い。 又、 前記中空部材をラ バー成型する際、 軸材部と同等径の芯棒の周囲に超硬合金の金属粉を充分緻密に 充填したのち芯棒を抜去し成型体とするが、 中空部材が大型であると芯棒の抜去 が困難となり、 成型体の形状が大きく崩れたり必要以上の力が必要となるなど作 業性に難点が生ずる等々問題が多かった。
次に、 ステンレス冷延鋼帯の製造方法について述べ、 大型ロールを使用する場 合のステンレス鋼帯の製造方法の問題点について述べる。 従来、 ステンレス鋼の 冷延鋼帯は、 熱延鋼帯を焼鈍酸洗したのち、 ヮ一クロール径 150ππη φ以下の鋼系 合金製ワークロールを用いたゼンジミアミル等により冷間圧延した後、 仕上げ焼 鈍酸洗又は仕上げ光輝焼鈍し、 圧下率 1.2%以下で仕上調質圧延する工程で製造 されていた。 このような工程を経て製造されたステンレス冷延鋼帯は、 例えば、 SUS430に代表されるフェライト系の場合には、 製造後の表面のまま使用される ことが多く、 仕上調質圧延した後の製品に優れた表面光沢が要求される。 一方、 SUS304に代表されるオーステナイト系の場合には、 仕上調質圧延後、 さらにバ フ研磨を施すことが多く、 このバフ研磨後に優れた表面光沢を呈することが必要 である。 ところで、 最近、 ステンレス冷延鋼帯を能率良く製造するために、 150mm φ以上の大径ヮ一クロールを用いた冷間タンデムミルにより一方向に連続 して冷間圧延する方法が採用されつつある。 例えば、 特開平 8-39103号には、 か かる冷間タンデムミルにおいて少なくとも 1以上のスタンドに WC系超硬合金ヮ 一クロールを用いることによって、 生産能率を高めるとともに、 ステンレス冷延 鋼帯の表面光沢を高める技術が開示されている。 しかし、 この方法では、 ステン レス冷延鋼帯の表面光沢が未だ十分なレベルに達していないばかりか、 圧延時間 と共にこの表面光沢が劣化したり、 場合によっては、 ヮ一クロールが破損すると いう問題があった。 また、 ロールのコスト自体が高いという問題もあった。 次に、 方向性珪素鋼帯の製造方法について述べ、 大型ロールを使用して方向性 珪素鋼帯を製造する場合の問題点について述べる。 従来、 方向性珪素鋼の冷延鋼 帯は、 熱延鋼帯を焼鈍酸洗したのち、 高合金鋼ワークロールを用いたタンデムミ ルにより中間焼鈍を挾んで 2回以上の冷間圧延した後、 脱炭焼鈍、 仕上げ焼鈍す る工程で製造されていた。 このような工程を経て製造された珪素鋼帯は、 中間焼 鈍後のスケールが除去されないまま冷間圧延すると鋼帯の表面粗さが大きくな り、 磁気特性に悪影響を与えることが知られている。 したがって、 中間焼鈍後、 引き続く冷間圧延前に研削ベルトによる研削を行っている。 また、 方向性珪素鋼 帯は、 通常 Siを 2.5〜4.0wt%添加しているため極めて変形抵抗が高く高荷重高面 圧で圧延する場合に、 ロールが偏芯したり円筒形状が保持出来なくなり、 鋼帯の 形状、 特にエッジドロップが大きくなり、 板両端の耳切り代が増え、 歩留まりが 悪くなる問題がある。 また、 従来のロールでは、 冷間圧延後の方向性珪素鋼帯の 表面粗さが未だ十分なレベルに達していないばかりか、 圧延時間と共にこの表面 粗さが劣化したり、 場合によっては、 ワークロールが破損するという問題があつ た。 また、 ロールのコスト自体が高いという問題もあった。
まず、 請求項 1〜請求項 8に記載の本発明は、 高硬度、 高ヤング率で耐摩耗性の 優れた複合スリーブロール及びこれら長尺の大型ロールを超硬合金の素材を用い 製造するに際し、 上記した材料の歪みもなく、 又作業性も良好な複合スリーブ口 —ルの製造法を提供することを目的とするものである。
また、 請求項 9および請求項 10に記載の本発明の一部と類似した技術として、 特公平 5-55202号公報および特開昭 61-14104号公報に開示の方法がある。 しか し、 特公平 5- 55202号公報に開示のものは、 超硬あるいは高速度鋼の粉末を鋼製 の円筒外部に高温静水圧成型にて焼結させ、 鋼の円筒と拡散接合させたスリーブ と鋼のァ一バーとを嵌合した複合ロールで、 熱間の線材、 棒鋼圧延用のロールで あり、 冷間圧延における表面光沢を向上させるための条件については全く言及さ れていない。 また、 特開昭 61-1404号公報に開示のものは、 高温静水圧成型でス リーブを成型し、 内側のキヤニング材とスリーブを拡散接合し、 そのキヤニング 材を中盛り法にて冶金的に結合する方法が開示されているものの、 この方法も耐 摩耗、 耐肌ァレ性の改善のみを目的としたロールであり、 ロールの圧延面を形成 する外層部分の条件などについて提示していない。
そこで、 請求項 9および請求項 10に記載の本発明の目的は、 従来技術が抱えて いる上記問題を解決し、 ステンレス冷延鋼帯およびブライト仕上げ鋼帯の表面光 o 沢あるいは、 珪素鋼帯の表面粗さのさらなる向上と、 上記冷延鋼帯の安定した圧 延が可能で、 安価な冷間圧延用ロールを提供することにある。
請求項 9および請求項 10に記載の本発明の他の目的は、 冷延鋼帯のエッジ ドロップを小さくし、 特にステンレス冷延鋼帯およびブライ卜仕上げ鋼帯の表面 光沢および珪素鋼帯の表面粗さのさらなる向上を図ることが可能で、 長時間圧延 を行っても表面光沢や表面粗さの低下が少なく、 また、 珪素鋼帯の、 磁気特性を 向上させるものである。 また、 ロール折損などのトラブルを招くことのない、 安 価な冷間圧延用ロールを提供することにある。
請求項 9および請求項 10に記載の本発明のさらに他の目的は、 上記各特性が、 冷間タンデムミルに用いて特に効果を奏する、 冷間圧延用ロールを提供すること にある。
なお、 請求項 11〜請求項 13に記載の本発明の一部と類似した技術が、 特公平 5- 55202号公報、 特開平 4-41007号公報、 特開昭 60-111704号公報に提案されてい る。 また、 高ヤング率材料はセラミックスや超硬合金など脆性材料であり、 圧延 中に応力が集中するとその場所から破壊が生じることが懸念される。 従って圧延 中の該材質への応力集中を防ぐことが重要となる。 特開平 4-41007号公報に開示 の技術は、 この応力集中を防ぐ方法の提案である。 この方法は、 圧延ロール最外 層にセラミックスまたは超硬合金を用い、 これと芯材との間に中間材として弹塑 性体である無酸化銅に鋸歯状の溝を加工したり、 銅線にして巻き付けるなどの手 段で、 実効弾性係数を 3000〜17000kgf/mm2として配するものである。 しかし、 この圧延ロールでは、 例えばステンレス鋼帯や珐素鋼帯のように極めて変形抵抗 の高い圧延材を高荷重高面圧で圧延する場合に、 中間層の塑性変形によりロール が偏芯したり円筒形状が保持出来なくなり、 さらに圧延が進むとロールが破壊し 大きな問題となるという恐れがあつた。
さらに、 特開昭 60- 111704号公報の提案は、 超硬合金製のロールバレルと鋼製 のロールネック部を持つ圧延口一ルで、 この超硬合金製ロールバレルと鋼製ネッ ク部との中間に、 このロールバレルの超硬合金よりバインダ含有量が高くて強度 が高い超硬合金製の中間材をろう付けにより設ける圧延ロールについてのもので ある。 しかし、 超硬合金の材質についての記載がないばかりか、 ロールバレル部 全体を超硬合金で構成しているため、 大型ロールを製造する場合の大幅なコスト 低減は全く解決されていない。
そこで、 請求項 11〜請求項 13に記載の本発明の目的は、 従来技術が抱えている 上記問題を解決し、 ステンレス冷延鋼帯やブライト仕上げ鋼帯の表面光沢のさら なる向上あるいは、 珪素鋼帯の表面粗さを小さくすること、 また、 エッジドロッ プを小さくすることが可能で、 ステンレス鋼帯や珪素鋼帯等の冷延鋼帯を安定し て圧延が可能な冷間圧延用ロールを提供することにある。
請求項 11〜請求項 13に記載の本発明の他の目的は、 冷延鋼帯のエツジド口ップ を小さくすることや特にステンレス冷延鋼帯やブライト仕上げ鋼帯の表面光沢の さらなる向上を図ること、 あるいは、 珪素鋼帯の表面粗さを小さくし、 磁気特性 のさらなる向上を図ることが可能で、 ロール折損などのトラブルを招くことのな い、 安価な冷間圧延用ロールを提供することにある。
請求項 11〜請求項 13に記載の本発明のさらに他の目的は、 上記各特性が、 冷間 タンデムミルに用いて特に効果を奏する、 冷間圧延用ロールを提供することにあ る。
また、 一般に、 鋼帯の冷間圧延時には、 鋼帯とロールとの間に潤滑剤として圧 延油を供給している。 このため、 圧延後の鋼帯表面には、 圧延油と、 圧延加工時 の口一ルと鋼帯との摩擦によつて発生した金属磨耗粉が多量に残留している。 こ れらを洗浄せずに次工程で焼鈍に供すると、 金属粉がそのまま又は酸化されて鋼 帯表面に固着残留し、 鋼帯表面に油焼けや油じみ等のむらを発生させて鋼帯の表 面品質を著しく損ねる。 さらに、 自動車用鋼帯等のこのようなむらは、 その後の メツキ工程でメツキの部分剥離等を発生させて品質不良となる。 したがって、 焼 鈍工程前に、 鋼帯表面を清浄化する技術が種々開発されている。 例えば、 特開昭 60-261609号に示されているが、 未だ不十分であった。 しかし、 本発明のロール を用い冷間圧延することによって、 すなわち、 圧延ロールの材質を鋼帯と凝着し にくい WC系超硬合金を用いることによって磨耗粉の発生を抑制でき、 焼鈍後の 鋼帯表面のむらの発生がなく従来よりも表面清浄の良好な鋼帯を得ることを可能
0 とするものである。 ίΐ月の開云
請求項 1〜請求項 8に記載の本発明は、 軸材部を中心軸として軸材部の周囲に、 軸材部の径とほぼ同等の内怪の中空部を持つスリーブを、 その中空部に軸材部を 挿入し嵌合してこれらを固定したロールであって、 前記スリーブが一体成型体部 材またはロールの中心軸と交わる面で分割される複数個の成型部材を予め一体化 して構成されたスリーブであることを、 特徴とする複合スリーブロールおよびそ の製造法に関するものである。
さらに請求項 9に記載の本発明は、 芯材とスリーブを嵌合した、 ステンレス帯 や珪素鋼帯の冷間圧延用の複合ロールにおいて、 芯材が鋼からなり、 スリーブ材 がヤング率 35000kgf/mm2以上、 かつ Co含有量 12〜50重量%の WC-Co系超硬合金 からなるとともに、 該スリーブの肉厚が複合ロール半径の 3%以上形成されてな るものである。
また、 請求項 10に記載の本発明は、 請求項 1〜9記載の上記発明において、 さ らに、 スリーブのバレルの長さ Lと口一ル直径 Dとの比 L/Dを、 2〜: 10の範囲とす るものである。
さらに、 請求項 11に記載の本発明は、 ロールバレルが同心円状の 3つ以上の層 からなり、 最外層は、 ヤング率が 35000kgf/mm2以上、 かつ層の厚みがロール半 径の 3%以上であり、 該最外層と軸芯との間に位置する中間層は、 ヤング率が最 外層のヤング率より小さく、 軸芯のヤング率より大きい、 冷間圧延用複合ロール である。
また、 請求項 12に記載の本発明は、 請求項 11に記載の上記発明において、 中間 層が 2つ以上の層からなる場合には、 該中間層は相対的に外側にある層ほど大き いヤング率を有する材質を配置することが望ましい。
さらに、 請求項 13に記載の本発明は、 請求項 11および請求項 12記載のこれらの 発明において、 最外層および中間層がいずれも WC系超硬合金からなり、 該超硬 合金の組成は相対的に外側にある層ほどバインダ金属の結合当量を少なくするこ とが望ましい。 阅面の簡 な説明
第 1図は、 請求項 1〜請求項 8における本発明で用いる 2個の中空部材の外観図。 第 2図は、 請求項 1〜請求項 8における本発明で製造したロールの中心軸に沿って 切断した断面の説明。
第 3図は、 スリーブ材のヤング率と冷延鋼帯の表面光沢との関係を示すグラフで ある。
第 4図は、 高ヤング率スリ一ブ材の口ール半径に対する比率とロール半径との関 係を示すグラフである。
第 5図は、 高ヤング率スリーブ材のロール半径に対する比率と冷延鋼帯の表面光 沢との関係を示すグラフである。
第 6図は、 請求項 9および請求項 10における本発明の嵌合口一ルにおける Lおよび t を説明するための図である。
第 7図は、 WC-Co系超硬合金中の Co含有量と耐衝撃強度との関係を示すグラフで ある。
第 8図は、 WC-Co系超硬合金中の Co含有量とヤング率との関係を示すグラフであ る。
第 9図は、 請求項 11〜請求項 13における本発明の複合ロールのバレル部の断面模 式図である。
第 10図は、 請求項 11〜請求項 13における本発明の複合ロールの層境界における周 方向応力分布を示す図である。 発明を実施するための最良の形熊
次に請求項 1〜請求項 8記載の本発明の一実施態様を図面を基に更に詳細に説明 する。
第 1図は本発明で用いるスリーブを構成する中空部材の外観図、 第 2図は本発明 で製造したロールの中心軸に沿つて切断した断面図である。 図中 1はスリ一ブを 構成する中空部材、 2は中空部材の空洞部、 3は一体化したスリープ、 4は軸材 部、 5は側端リングを夫々示す。 請求項 1〜請求項 8記載の本発明で用いるロール の素材は超硬合金粉末で、 例えば、 WC、 TaC、 TiC等である。
請求項 1〜請求項 8記載の本発明では従来工具類の素材として用いる超硬合金粉 末に比較して粗い粒度の素材を用いると後述の成型工程において充填密度が向上 し、 高い耐摩耗性、 靱性を持った成型体とすることが出来る。 素材に WCを用い る場合、 Coとの混合粉末 (Co: 5〜50wt%)を用いるが、 例えば、 WC粉末と径 1〜2 の Co粉末とを、 供材からなる媒体 (WC製ポール) を用い不活性雰囲気下で混 合して用いることが好ましい。 これら超硬合金の粉末を用いて中空部材を構成す る成型体 (図中 1)を構成するには、 ラバ一製型、 例えば、 所定の径を持つ外筒 と、 その深さ (縦)方向の中心軸を共通とする前記外筒の径より小さい径を持つ内 筒とで構成されるパイプ形状の二重円筒で、 肉薄で伸縮強度の高い例えばゴム等 で構成されたラバ一製型を用い、 前記内筒の縦方向の中心軸に、 同じく中心軸を 合わせてその内径とほぼ同等の径を持つ芯棒をその中心軸部分に挿入し、 外筒の 内壁と内筒の外壁で構成された空間にロール素材の超硬質粉末を例えばハンマー 式充填機等を用い充分緻密となる状態に充填する。 ここで用いるラバ一製型は通 常の冷間等方加圧 (CIP処理)成型に用いられるもので、 請求項 1〜請求項 8記載の 本発明では製品ロールの大きさにより決められるが、 例えば二重円筒の外筒の内 径 200〜600mm、 内筒の外径 100〜500mm、 深さ(縦方向の長さ) 300〜1500mm程度 のもので、 従来の超硬質素材で構成されたロールのスリーブに比較して大型で長 尺であることが特徴である。 又、 芯棒はロールの軸材部にほぼ相当する径を持つ 圧縮強度の高い素材からなる棒、 中空パイプ等を用いる。 ラバ一製型は粉末の充 填時に一定形状を保持するように、 その外周を例えば金属容器で保護固定するこ とが好ましい。 この容器は後の CIP処理の際、 充填成型した成形体の表面に均等 圧が施されるようにその壁面等に多数の導通孔を持つものを用いると良い。 尚、 超硬質粉末を型に充填する際、 従来の CIP成型で充填粉末に混合して用いる滑剤 としてのワックス、 ステアリン酸、 樟脳等は請求項 1〜請求項 8記載の本発明では 特に用いなくても充分緻密な成形体とすることが出来る。 充分緻密に超硬質粉末 を充填した後ラバー製型の中心軸部分に挿入した芯棒を抜去し、 中心軸部分に空 洞部 (図中 2)を持ったラバー型成形体とする。 この芯棒の抜去は後の CIP処理にお いて、 成型体の中心軸部分 (空洞部)表面と外周部分表面とをほぼ相似則に沿った 均一な加圧状態とする上で好ましい態様である。 芯棒を抜去し、 中心軸部分を空 洞にした成型体は直接 CIP成型を行うが、 その条件は例えば 1000〜3000kgf/mm2 で 5〜60分が良い。 CIP処理を行うと寸法精度が良好となり、 仮焼結後の機械カロ ェ量が少なくなるので、 行った方がよいが、 行わなくとも良い。 上記したような 工程を経て CIP処理で得た成型体は寸法精度も良好でほぼ設計通りの成型体とし て得られるが、 後の仮焼結処理工程において、 成型体自重による変形、 加熱によ る収縮等の変形が考えられる。 そこで、 仮焼結処理に際しては、 このような変形 防止を考慮し、 例えば黒鉛製の芯材などの治具を使用することが好ましい。 又、 治具と成型体との接触界面の不必要な反応の防止に治具表面に例えばボロンナイ トライド (BN)等の反応防止剤を塗布して用いるとさらに良い。 CIP成型を施した 成型体は仮焼結処理を行う。 その条件は、 好ましくは成型体を横置き、 すなわち その中心軸がほぼ水平となる状態で加熱する真空炉で行うと、 前記した成型体の 変形を防止する上で好ましい。 仮焼結条件は、 例えば 550〜800°C、 1〜3時間程度 が好ましい。 仮焼結処理した成型体は寸法精度も良好であり、 例えばダイヤモン ドバイト、 旋盤などによる所定の形状加工が必要な場合でもこれらの加工に充分 耐えられる強度を持つものである。
請求項 1〜請求項 8記載の本発明では、 一体成型体部材によるスリーブあるいは 仮焼結又は仮焼結後形状加工した成型体を複数個接合して一体化したスリーブと して用いることが特徴であり、 個々の成型体はその中心軸と交わる面どうしを中 心軸を同一とする状態に重ね合わせて加圧焼結などの方法で一体化する。 加圧焼 結は、 加圧と焼結 (本焼結)を同時に実施しても良く、 又、 本焼結の後加圧を行つ ても良い。 加圧と焼結同時処理の場合、 CIP成型体又は仮焼結処理した成型体を 機械加工し、 寸法精度を上げ、 成型体を複数個接合させた状態でセットし、 これ をキヤニングし HIP処理を行う。 ここで行う本焼結 HIP処理は、 例えば Ar雰囲気 下、 1000〜2000kgf/mm2、 1100〜1200° (:、 0.5〜2時間保持後、 さらに 1300〜1350 °Cにて 1〜3時間保持して行うと良い。 あるいは、 バインダーを接合面に塗布する 方法でも良い。 なお、 バインダーとしては Co,Ni,Cr等が良い。
本焼結の後に加圧処理する場合は、 黒鉛成型品の機械加工により精度の高い円 筒材、 芯材、 上下蓋を作成し、 これにスリーブ材を重ね合わせセットし、 真空炉 にて微量の水素ガスを導入しながら 10-3〜10-5mmHgの雰囲気に保ち、 1000〜 1200°Cにて 0.5〜2時間保持後、 1200〜1350°Cにて更に:!〜 3時間保持し本焼結を実 施すると良い。 この二段階加熱は、 焼結時における収縮変形を均一に行うための 処置である。 前記、 本焼結後の焼結体はほぼ真比重の 94〜98%のものであり、 こ の成型体を Ar雰囲気下、 1000〜2000kgf/mm2、 1200〜1350°Cで 1〜3時間保持し HIP処理する。
上記した二通りの方法では加圧焼結を行って、 中空部材を一体化するのに最終 的に HIP処理を行うが、 この処理は成型体の密度の向上及び接合面での密着性の 向上に好ましい結果を与える。 加圧焼結により得られた一体化した中空部材のス リーブは、 更に必要に応じて機械加工により研削、 研磨等を行い、 その空洞部に ロールの軸部材を挿入し嵌合して焼きバメ、 冷しバメなどの通常の方法でこれら を固定すると良い。 尚、 軸部材は、 例えばクロム鋼、 クロムモリブデン鋼、 高速 度鋼を調質し通常の方法で作成したものが用いられ、 径はスリ一ブの空洞部怪と 同等で、 長さは 1000〜5000mm程度のものが、 用いられる。 尚、 一例として、 WC-15%Co混合分を用いて上記の方法で加工した部品の物理特性は次の通りで あった。 硬度 (HRA)が 86.0、 密度が 13.8g/cm3、 抗折力が 210〜250kgf/mm2であつ た。 このようにして得られた複合スリーブロールは、 軸部材の長手方向のほぼ中 央部に肉厚部を持つ大型の長尺ロールで、 鉄鋼、 非鉄金属部門での板材の加工や 冷間圧延に使用される。
更に、 請求項 9〜請求項 13記載の他の本発明のロールを活用した実施の形態と して、 高光沢を要求されるステンレス鋼帯の冷間圧延について説明する。
まず始めに、 発明者らは、 ステンレス製品の表面光沢は冷間圧延後の鋼帯表面粗 さに左右され、 この冷間圧延後の鋼帯の表面粗さが、 冷間圧延前の鋼帯 (熱延後 に焼鈍、 酸洗した鋼帯)の表面粗さの一部が冷問圧延後に残存するものであるこ と、 表面光沢の良好な鋼帯を得るためには、 冷間圧延開始時に存在する鋼帯表面 の凹部を圧延中に小さくするとよいことを見いだした。
しかし、 冷間圧延中にロール表面の凸部を鋼帯表面に充分に接触させて、 冷間圧 延前の鋼帯表面の凹部を充分に低減することは、 大径ワークロールを用いる冷間 タンデムミルにおいては、 従来の小径ロールミルに比較して、 ロール径が大きい ため、 圧延油を大量にロールと鋼帯の間に介在させてしまい、 ロール表面の凸部 を鋼帯表面に充分に接触させることが難しいため、 困難である。 これに対応する ために、 発明者らは、 以下の (a), (b)の条件を満たすことが効果的であることを 知見した。
(a)圧延油がロールと鋼帯の間にできるだけ引き込まれにくくすること。
(b)ロールと鋼帯との間に充分な圧力を生じさせること。
まず、 (a)について、 ロールと鋼帯との間に圧延油が引き込まれる原因は、 圧延 油に働く流体力学的な力であり、 この力は、 嚙み込み角度に大きく影響され、 か つ、 この角度を大きくすると圧延油が引き込まれ難くなることがわかった。 そこで、 発明者らは、 ロールのヤング率に着目し、 ロールのヤング率を大きくす るとロールの偏平が小さくなり、 その結果嚙み込み角度を大きくできて、 圧延油 を引き込み難くできるとの結論に達したのである。
そこで、 ロールのヤング率と圧延後の鋼帯表面の光沢との関係について述べ る。 発明者らは、 ヤング率が異なる種々のロールで圧延したステンレス冷延鋼帯 について、 JIS Z8741光沢測定方法 (Gs20° )により表面光沢を測定した。 その結 果を、 良好な順に、 光沢度 950以上を特八、 800〜950を A、 600〜800を B、 400〜 600を C、 400以下を Dとして 5段階で評価した。 発明者らの実験によれば、 第 3図 に示すように、 ヤング率を鋼の値 21000kgf/mm2から大きくしていくと光沢は少 しづつ向上するが、 ヤング率 35000kgf/mm2以上であれば、 その値が高いほど良 く、 50000kgf/mm2以上にするといつそう優れた光沢を呈し望ましいことがわ かった。 なお、 一般的にヤング率が高くなると、 一種の脆性を示すようになるこ とが多く、 あまりに高いヤング率の材料をロール材料として用いることは、 ロー ルの強度上好ましくない。 例えば、 高いヤング率を有する材料として WC系の超 硬合金が挙げられるが、 Co含有量 (結合当量)を 12%以上にして、 ヤング率が 56000kgf/mm2以下になるように設定するのがよい。
また、 ヤング率を大きくさせると、 上述した効果に加えて、 ロールと鋼帯との接 触長さが短くなつて、 ロールと鋼帯との圧力が増加する結果、 前記 (b)に示す充 分な圧力を生じる効果もあることを確認した。
さて、 冷間タンデムミルのように大径ワークロールに光沢を向上させる材料と してヤング率の高い WC系超硬合金を用いる場合に、 WC系超硬合金の一体口一 ルを用いても良いが、 コストが極めて高くなるという問題がある。 この問題を解 決するためには、 WC系超硬合金を外層の材質とし、 芯を鋼系の材質とした複合 ロールを採用することが極めて効果的である。 ただし、 このような複合ロールを 用いる場合、 圧延中の口ールの偏平変形は WC系超硬合金一体ロールの場合と異 なることが考えられる。 圧延後の鋼帯表面の光沢は偏平ロール半径に大きく係 わっており、 複合ロールの偏平変形が、 WC系超硬合金一体ロールのそれと大き く異ならないように、 ロールバレル外層の肉厚を最適な値にする必要がある。 ロールバレル外層の肉厚を余りに大きくすると、 ロール偏平を WC系超硬合金一 体ロールと異ならないようにすることは可能であるが、 やはりコス卜が高くなる ので、 性能とコストとを両立させる肉厚の設定が極めて重要である。
発明者らは上記観点から、 外層に WC系超硬合金を用いた複合ロールの外層の 肉厚について FEM解析および圧延実験により鋭意検討した。 第 4図は、 高ヤング 率を有する WC系超硬合金 (ヤング率 51000kgf/mxn2)—体ロールの偏平ロール半径 を Rlとしたとき、 外層の肉厚を種々変化させた複合ロールの偏平ロール半径 Rの Rlとの差を、 (R-Ri) X 100/F^で表し、 この比率と、 外層肉厚の半径に対する比 率との関係を示したものである。 また第 5図は、 同様に表した冷延鋼帯の表面光 沢と外層肉厚の半径に対する比率との関係を示したものである。 第 4図および第 5 図に示すように、 鋼一体ロール (ヤング率 21000kgf/mm2)では WC系超硬合金一体 ロールとの偏平ロール半径の差は約 70%であるのに対し、 複合ロールの偏平ロー ル半径は外層の肉厚がロール半径の約 3% では WC系超硬合金一体ロールとの偏 平差が 10%以内となり、 光沢に対し充分な効果を得ることが可能であるというこ とがわかった。 また、 WC外層の肉厚をロール半径の 10%以上に設定すると、 偏 平ロール半径の WC系超硬合金一体ロールの場合との差は 2%以内にできて、 光沢 に対しより高い効果が得られることもわかった。 これより、 WC外層の肉厚は口 ール半径の 3%以上、 好ましくはロール半径の 10%以上とするのがよい。
さらに、 発明者らが上記口一ル半径と外層肉厚との関係について検討した結 果、 外層のヤング率が変化しても、 この関係は、 ほぼ同じであることがわかつ た。
次に、 発明者らは、 嵌合ロールのバレル長 Lと直径 Dの比 L/Dについて検討し た。 その結果、 第 1表に示すように、 この比が大きすぎると、 圧延中にロールの 曲げによるロールの破損の危険性が高くなるので、 この比をある一定値以下とす ることが必要であることがわかった。 発明者らの検討によれば、 10以下がよく、 望ましくは 7以下がよい。 一方、 本ロールを用いた鋼帯の圧延において、 形状制 御能力の観点からすれば L/Dを 2以上とする必要がある。 したがって、 L/Dの範囲 は 2〜: 10、 好ましくは 2〜7とするのがよい。 なお、 本発明におけるバレル長 L は、 第 6図における WC合金スリーブの長さをさすものとする。
また、 一般的にヤング率が極めて高い材料は、 脆性材料であることが多く、 あ まりに高いヤング率を有するものをロール材料として用いることは、 その強度、 特に衝撃に対する強度の上で好ましくない。 例えば、 高いヤング率を有する材料 として WC系の超硬合金の場合には、 Coをバインダ金属とした、 WC-Co系超硬合 金はそのヤング率が高く、 抗折強度にも優れ、 また、 耐衝擊強度にも優れている ことが知られている。 本発明者らは、 上記 WC-Co系超硬合金における Co含有量 について鋭意検討した。 その結果、 第 7図に示すように Coの含有量が 12重量%(以 下%と略記)以上とすることにより、 圧延時の絞り込みなどによる衝擊に対する 耐久性が向上することが判明したのである。 また、 Coの含有量が大きくなるほ ど耐衝撃強度は高くなるが、 多すぎると第 8図に示すようにヤング率を
35000kgf/mm2以下に低下させてしまい、 光沢が低下するので、 Coの含有量は 12 〜50%の範囲に設定するのが良いこともわかった。
一方、 このようにロールを複合化した場合、 高ヤング率材質であるロール外層
1 と鋼の軸芯との境界のヤング率の不連続により、 圧延中のロール外層の内径周面 に引張り応力が生じ、 この応力が限界を超えて大きくなるとロールの破壊につな がる。 そこで本発明者らは、 この応力を緩和するために、 第 9図に示すように、 ロール外層とロール軸芯との間に、 外層よりは小さく、 軸芯よりは大きなヤング 率を有する材料を素材とした中間層を設け、 上記応力を緩和できることを知見し た。 第 10図は、 上記応力の半径方向分布を示すものである。 第 10図のように、 従 来例である高ヤング率外層と鋼軸芯の 2層からなる複合ロールの場合には、 外層 と軸芯の境界近くの外層内部に大きな引張り応力が働き、 ロールの破損を起こし 易い。 これに対して、 本発明に従う中間層を設けることにより、 外層と中間層の 境界近くの引張り応力、 中間層と軸芯の境界近くの引張り応力とも、 従来の場合 より小さくなつており、 ロールを破損せずに安定して用いることができる。
発明者らは、 さらにこの引張り応力を緩和する方法について検討した。 そし て、 引張り応力はロール外層と中間層との間のヤング率の差により生じるわけで あるから、 このヤング率の差を小さくすることにより引張り応力を更に緩和可能 であることを把握した。 しかし、 中間層のヤング率をロール外層のヤング率に近 づけると、 中間層とロール軸芯との間のヤング率の差が大きくなり、 中間層の内 面に大きな引張り応力が働くことになる。 そこで更に検討を加えた結果、 発明者 らは、 このような現象を解消するためには、 中間層として 2層以上の複数層を設 けることが極めて有効であることを知見した。
また、 発明者らは、 ヤング率の高い材料として、 例えば WC系超硬合金を用い ると、 組織は極めて均一であり、 圧延初期に低く設定したロール表面粗度は、 圧 延が進み摩耗が進んでも鋼系ロールのようには粗度が大きくならないことを見い だした。 ここに、 WC系超硬合金は、 主成分としての WC (炭化タングステン)に Ni 基合金、 Co基合金、 Tiや G等を単独又は、 複数種添加したものである。 そしてバ インダー金属である Ni、 Co、 Ti、 Crなどの結合当量を少なくするにしたがって、 ャング率が徐々に増加し、 層と層の間に作用する引張り応力が緩和され.る。
このことから、 最外層および中間層に WC系超硬合金を用いる場合には、 超硬 合金の組成は相対的に外側にある層ほどバインダ金属の結合当量を少なくするこ とが望ましいと言える。 実施例
(実施例 1)
粒径 3〜5 mの WCと、 径約 l〜2 /x mの Coを混合した粉末 (Co: 15wt%)を、 WC製 のポールを混合媒体として 2日間混合した粉末を、 外筒の内径が約 400mm、 深さ 850mmで、 内筒の内径約 180mmの二重筒の中心軸部分に、 径約 180mm、 長さ 1000mmのパイプ状の芯棒を挿入した二重円筒ラバー製型の外筒と内筒で構成さ れた間隙に充填した。 充填はハンマー式充填機上にラバー製型を置き粉末を等量 づっ充填した後加圧する工程を繰り返し行う方法を採った。
次に芯棒を引き抜き、 中心軸部分が空洞で貫通した成型体とした。 同様にして 2 個の成型体を製作した。 成型体は次レゝで 2850kgf/cm2で 10分間保持し CIP処理を 行った。 CIP処理で得た成型体は、 外径 330mm、 内径 160mm、 長さ 730mmの中空 部材であり、 これをさらに機械加工により表面、 内面及び接合面を平滑にし、 所 定の寸法に仕上げ、 2個の中空部材を黒鉛製芯材に装着し、 真空炉で微量の水素 を導入し、 10-3〜: L0-5mmHgで、 1120で、 2時間一次焼結した。 一次焼結体は、 更 に黒鉛製芯材に装着し、 1250T:、 2時間二次焼結した。 この焼結体は、 さらに Ar 雰囲気下 1330°C、 lOOOkgf/cm2, 2時間 HIP処理を行った。 HIP処理したスリーブ である成型体の、 接合部の抗折カは 180〜220kgf/mm2であった。 又、 硬度は 86〜 88HRAであった。
次に、 5%クロム鋼を調質し、 径約 140mm、 長さ約 3500mmの軸材部を、 外径 280mm, 内径 140mm、 長さ 1230mmのスリーブに揷入し、 機械加工してロールと した。 このロールを用いて、 鋼帯を圧延したが、 ロール破損もなく良好な薄板を 得た。
(実施例 2)
フェライ ト系ステンレス鋼帯の一例としての SUS430鋼帯を用いて、 熱延鋼帯を 焼鈍、 酸洗した後、 5スタンド冷間タンデムミルの第 5スタンドに、 発明例 2とし て WC合金スリーブを高合金鋼の芯材に嵌合したワークロールを適用し、 素材厚 み 4.0mmから仕上厚み 1.0mmまで冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延した。 WC合金スリーブロールの仕様は、 第 2 表に示すように、 スリーブ外径 285mm、 外層材質が Coを 17%含有し、 ヤング率を 約 52000kgf/mm2とした WC系超硬合金であり、 スリーブの肉厚を 5mm (スリ一ブ半 径に対して 3.5%)とした。
また、 比較例として、 第 5スタンドに Coを 17%含有したロール径 285mmの WC系 超硬合金一体ワークロールを適用し、 冷間圧延した。 その後、 この鋼帯を仕上焼 鈍、 酸洗して、 伸び率 1.0%で調質圧延した (比較例 2a)。
また、 別の比較例として、 第 5スタンドに Coを 17%含有した WC系超硬合金を高 合金鋼の芯材に溶射して、 肉厚 2mm盛った口一ル径 285mmの WC複合ワークロー ルを適用し、 冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延した (比較例 2b)。
さらに、 従来例 2として、 5スタンド冷間タンデムミルの全スタンドに通常の 5% 鍛鋼を用いたヮ一クロールを適用した場合についても同様に冷間圧延し た。 その後、 この鋼帯を仕上焼鈍、 酸洗して伸び率 1.0%で調質圧延した。
以上の方法で得られた、 各ステンレス冷延鋼帯について、 S Z8741光沢度測定 方法 (Gs20° )により表面光沢を測定した。 その結果を、 良好な順に光沢度
950以上を特八、 800〜950を A、 600〜800を B、 400〜600を C、 400以下を Dとして 5 段階で評価した。 その結果を第 3表に示す。 第 3表から、 本発明によるスリーブ嵌 合口一ルを用いて圧延したステンレス冷延鋼帯は、 比較例 2aの WC系超硬合金一 体ロールを用いて製造した鋼帯と同等で、 比較例 2b及び従来例で製造した鋼帯に 比較して著しく良好な光沢を有していた。
(実施例 3)
オーステナイト系ステンレス鋼帯として SUS304鋼帯を用いて、 熱延鋼帯を焼 鈍、 酸洗した後、 5スタンド冷間タンデムミルの全スタンドに、 発明例 3として、 WC合金スリーブと熱問ダイス鋼とを嵌合したワークロールを適用し、 素材厚み 3.0mmから仕上厚み 0.98mmまで冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延し、 #400のパフ研磨を 1パス施した。
発明例における WC合金スリーブの仕様を第 4表に示す。 本表の上段に示すよう に、 スリーブは Coを 20%含有し、 ヤング率を約 50000kgf/mm2とした WC系超硬合 金であり、 スリーブの肉厚は半径の約 10%である。
また、 比較例 3として、 第 5スタンドに WC合金スリーブに熱間ダイス鋼の芯材 を嵌合したワークロールを適用し、 冷間圧延した。 その後、 この鋼帯を仕上焼 鈍、 酸洗して伸び率 1.0%で調質圧延し、 #400パフ研磨を 1パス施した (比較例 3)。 比較例におけるスリーブの仕様を第 4表下段に示す。 スリーブは Col7%、
Ni28%、 Cr7%を含有し、 ヤング率を 33000kgf/mm2とした WC系超硬合金で、 肉厚 は半径比約 10%である。
さらに、 従来例 3として、 5スタンド冷間タンデムミルの全スタンドに通常の 5%Cr鍛鋼を用い、 ヤング率を約 21000kgf/mm2とした。 ワークロールを適用した 場合についても同様に冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して伸 び率 1.0%で調質圧延し、 #400ノ フ研磨を 1パス施した。
以上の方法で得られた、 各ステンレス冷延鋼帯について、 実施例 2と同様に表 面光沢を測定、 評価した。 その結果を第 5表に併せて示す。 第 5表から、 本発明に よるスリーブ嵌合ロールを用レ て圧延したステンレス冷延鋼帯は、 比較例 2及び 従来例で製造した鋼帯に比較して著しく良好な光沢を有していた。
(実施例 4)
オーステナイ卜系ステンレス鋼帯として SUS304鋼帯を用いて、 熱延鋼帯を焼 鈍、 酸洗した後、 5スタンド冷間タンデムミルの 3スタンドに、 発明例 4として、 WC合金スリ一ブと 5%Cr鍛鋼の芯材とを嵌合したロールをワークロールを適用 し、 素材厚み 3.0mmから仕上厚み 0.98mmまで冷間圧延した。 その際、 第 3スタン ドの圧下率を 20%と 30%の 2水準について、 各スタンドの圧下率を調整した。 その後、 この鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延し、 #400のバ フ研磨を 1パス施した。 発明例のスリーブは第 6表および第 7表に示すように、 ス リーブ外層材質は Coを 20%含有し、 ヤング率を約 50000kgf/mm2とした WC系超硬 合金であり、 スリーブの肉厚は半径の約 10%とした。 この条件でロールのサイズ を、 スリーブ直径 231mm、 ロールバレル長 Lを 1500mmとし、 ロール径 Dとの比 L/Dを 6.5とした場合 (発明例 4a)と、 スリーブ直径 155mm、 ロールバレル長 Lを 1500mmとし、 ロール径 Dとの比 L/Dを 9.7とした場合 (発明例 4b)の 2レベルに変え た。
また、 比較例 4として、 第 3スタンドに、 第 6表に示すような外層材質が WC- 20%Coの WC系超硬合金で、 その肉厚が 7mm (半径比 10%)、 スリーブ直径
135mm, ロールバレルを 1500mm(L/D=ll.l)としたスリーブと 5%Cr鍛鋼の芯材と を嵌合したワーク口一ルを適用し、 冷間圧延した。 その後、 この鋼帯を仕上焼 鈍、 酸洗して伸び率 1.0%で調質圧延し、 #400パフ研磨を 1パス施した。
さらに、 従来例として、 5スタンド冷間タンデムミルの全スタンドに通常の 5%Cr鍛鋼を用い、 ヤング率を約 21000kgf/mm2とした、 ヮ一クロールを適用した 場合についても同様に冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して伸 び率 1.0%で調質圧延し、 #400ノ フ研磨を 1パス施した。
このようにして得られた、 各ステンレス冷延鋼帯について、 実施例 2と同様に 表面光沢を測定、 評価するとともに、 圧延中のロールの破損についても調査し た。 その結果を第 7表に示す。 第 7表から、 本発明の圧延ロールで製造したステン レス冷延鋼帯は、 いずれも、 従来例で製造した鋼帯に比較して著しく良好な結果 となった。 特に、 L/D=7以下とした発明例 4aは、 圧下率 30%以上でもロールの破 損は生じなかった。
(実施例 5)
オーステナイト系ステンレス鋼帯として SUS304鋼帯を用いて、 熱延鋼帯を焼 鈍、 酸洗した後、 5スタンド冷間タンデムミルの第 5スタンドに、 発明例として、 WC合金スリーブと熱間ダイス鋼とを嵌合したワークロールを適用し、 素材厚み 3.0mmから仕上厚み 0.98mmまで冷間圧延した。 その際の第 5スタンドの圧下率は 20%とした。 その後、 この鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延 し、 #400のパフ研磨を 1パス施した。 ここで、 WC合金のスリーブは、 肉厚を半 径比約 3%とし、 Coの含有量を 6%から 55%まで変えた。
また、 従来例として、 5スタンド冷間タンデムミルの全スタンドに通常の 5%Cr 鍛鋼を用い、 ヤング率を約 21000kgf/mm2とした、 ワークロールを適用した場合 についても同様に冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して伸び率 1.0%で調質圧延し、 #400ノ フ研磨を 1パス施した。
上記冷間圧延において、 衝撃に対する強度の調査として、 第 5スタンドでの絞 り込みや溶接点通過時の板厚変動の発生によるロール破損の有無を調査した。 ま た、 得られた、 各ステンレス冷延鋼帯について、 実施例 2と同様に表面光沢を測 定、 評価した。 第 8表に示す結果より、 本発明によるスリーブの肉厚がロール半 径の 3%以上、 Co含有量 12〜50%、 ヤング率 35000kgf/mm2以上を備えた嵌合口一 ルで圧延したステンレス冷延鋼帯は、 比較例及び従来例で製造した鋼帯に比較し て著しく良好な光沢を有しており、 しかも衝撃に対する強度も高く破損しなかつ た。
(実施例 6)
フェライ卜系ステンレス鋼帯としての SUS430鋼帯を用い、 熱延鋼帯を焼鈍、 酸洗した後、 5スタンド冷間タンデムミルの第 5スタンド(ロール径 c/) 285mm)に、 発明例として、 軸芯を 5%Cr鍛鋼、 最外層をヤング率 52000kgf/mm2、 Col7%の WC 系超硬合金、 中間層をヤング率約 39000kgf/mm2、 Co40%の WC系超硬合金とし、 直径 285mm、 最外層の肉厚 5mm (ロール半径の 3.5%)、 中間層の肉厚 4mmの 3層か らなる複合ワークロールを適用し、 熱延鋼帯厚み 4.0mmから冷間圧延した。 その 際に、 第 5スタンドの圧下率を 20%、 30%、 40%の 3水準に設定した。 その後、 こ の鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延した。 (発明例 6a)
また、 他の発明例として、 第 5スタンドに、 軸芯を 5% 鍛鋼、 最外層をヤング 率 52000kgf/mm2、 Col7%の WC系超硬合金、 外側の中間層 (中間層 1)をヤング率約 44000kgf/mm2, Co30%の WC系超硬合金、 内側の中間層 (中間層 2)をヤング率 35000kgf/mm2、 Co50%の WC系超硬合金として配した、 直径 285mm、 最外層の肉 厚 5mm、 中間層 1の肉厚 4mm、 中間層 2の肉厚 3mmの 4層からなる複合ワークロー ルを適用し、 冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延した。 (発明例 6b)
一方、 比較例として、 第 5スタンドに、 Coを 17%含有する WC系超硬合金から なり、 口一ル径 285mmの一体ワークロールを適用し、 冷間圧延した。 その後、 こ の鋼帯を仕上焼鈍、 酸洗して、 伸び率 1.0%で調質圧延した (比較例 6a)。
また、 第 5スタンドに、 Col7%、 Ni28%、 Cr7%を含有する WC系超硬合金で、 ャング率を 33000kgf/mm2とした、 口ール径 285mmの一体ワーク口一ルを適用 し、 冷間圧延した。 その後、 この鋼帯を仕上焼鈍、 酸洗して伸び率 1.0%で調質 圧延した。 (比較例 6b)
また、 第 5スタンドに、 軸芯 5% 鍛鋼とし、 最外層をヤング率約
52000kgf/mm2, Col7%の WC系超硬合金からなり、 直径 285mm、 外層の肉厚 5mm の 2層の複合ワークロールを適用し、 冷間圧延した。 その後、 この鋼帯を仕上焼 鈍、 酸洗して、 伸び率 1.0%で調質圧延した。 (比較例 6c)
さらに、 従来例として、 5スタンド冷間タンデムミルの全スタンドに、 通常の 5%Cr鍛鋼を用いたワークロールを適用した場合についても同様に冷間圧延し た。 以上の各例の第 5スタンドロール仕様を第 9表に示す。
これらステンレス冷延鋼帯の表面光沢について、 JIS Z8741光沢度測定方法 (Gs20° )により測定し、 良好な順に光沢度 950以上を特八、 800〜950を A、 600〜 800を B、 400〜600を C、 400以下を Dとして 5段階で評価した。 第 10表に示す結果 より、 本発明の圧延ロールを用いて製造したステンレス冷延鋼帯は、 比較例 6aの WC系超硬合金一体ロールを用いて製造した鋼帯と同等で、 比較例 6b、 6c及び従 来例で製造した鋼帯に比較して著しく良好な光沢を有していた。
またロール強度についても、 比較例 3および比較例 4の場合より高い圧下率でも ロールの破損はなく良好な結果が得られた。
これに対し、 従来例では圧下率 30%以上で圧延材の表面とロール表面にヒー卜 ス卜リーク (焼付疵)が発生して、 表面光沢は不合格となった。 (実施例 7)
C:0.045%, Si:3.35%, Mn:0.065%, Se:0.017%および Sb:0.027%を含有する 2.5mm厚の方向性珪素鋼用熱延鋼帯に, 1000°C, 30秒の熱延板焼鈍を施し, 酸洗 後 0.64mmに冷間圧延し, ついで 980°C, 90秒の中間焼鈍を行って, 4種の試料 A,B,C,Dを作製した. その後, 試料 Aおよび Cには粒度 #100の研磨ベルトを用い て, 圧延方向と平行に表面を研削した. 試料 B,Dは中間焼鈍のままとした。
これらの試料を口一ル径 350mm, 口ール表面粗度 0.1 mRaの圧延ロールを備え た 3スタンドタンデムミルにおいて粘度 8cst/50°C, 濃度 3%の圧延油を使用して最 終スタンド圧延速度 lOOOmpmにて 0.23mmの最終板厚に仕上げた。
最終スタンドでの圧下率は 20%とした。
コイル Aおよび Bに対しては本発明例の一つとして第 11表に示す WC複合ロール を用い, コイル Cおよび Dに対しては比較例として従来の高合金鋼ロールを用い た。 圧延後の試料に対して, 最終スタンド圧延速度 lOOOmpm部における表面平均 粗さ (Ra)を測定した結果を第 12表に示す。 第 I2表から明らかなように, 本発明例 のロールを用いて得られた試料 Α,Βは比較例である試料 C,Dに比べて表面性状は 優れていることがわかる。 試料 Bにおいては, 中間焼鈍後に研削ベルトによる研 削を行っていないが, 研削を行い高合金鋼ロールで圧延した場合より圧延後鋼帯 の表面粗さがやや小さく良好になっている。
また, 圧延後の試料に対して, 製品板厚偏差 5 mを要求される材料にするた めに必要な板幅両端部の耳切り代を調査した結果を第 12表に示す. 第 12表に示す ように, 本発明のロールを用いて圧延された試料 Α,Βは比較例である試料 C,Dに 比べて板のェッジド口ップが少なく耳切り代が減少し、 歩留まりが向上すること がわかる。
更に, 本発明のロールによる試料 Aおよび従来例の高合金鋼ロールによる試料 Cについて冷間圧延後に脱炭素焼鈍を施し, 表面層の槃合組織の測定を行った結 果の平均値を第 12表に示す。 第 12表に示されるように, 本発明の圧延ロールによ る試料 Aは従来例の試料 Cより集合組織の {110}強度が大きくなつていることがわ かる。 これは WCロール圧延においては, WCロールのヤング率が高いためロー ルバイ卜への導入油量が少なくなつて摩擦係数が従来の高合金鋼ロールの倍程度 に高くなるので, 板の表面層では剪断変形量が増加し, そこにゴス方位結晶粒が 生成して集積度が向上するためと推定される. さらにその後の仕上焼鈍によって {110}<001>方位結晶粒が粒成長し第 I2表に示すように, 磁気特性も向上した。
(実施例 8)
電磁鋼帯 (板厚 2 . 6 mm) を用いて、 該鋼帯を酸洗した後、 4スタンド冷間夕 ンデムミルの全スタンド (ワークロール径 3 8 0〜4 3 O mm) に、 本発明の口 ールである外周がニッケルを 2 0重量%含有し、 残りが炭化タングステンである 炭化タングステン系超硬合金で肉厚を 2 0 mm (ロール半径の 9 . 3〜 1 0 . 5 % ) とし、 軸芯に冷間ダイス鋼を用いた嵌合による複合ロールをワークロールと して適用し、 圧延油として 6 0 °C、 濃度 2 %、 平均粒径 3 mの合成エステル系 エマルションを循環給油方式で供給しつつ、 0 . 5 mmまで高速圧延した。
また、 比較例として、 同種の熱延鋼帯 (板厚 2 · 6 mm) を用いて、 該鋼帯を 酸洗した後、 同冷間タンデムミルの全スタンドに、 外周がニッケルを 8重量%含 有し、 残りが炭化タングステンである炭化タングステン系超硬合金で肉厚を 1 0 mm (ロール半径の 4 . 6 %〜 5 . 2 %) とし、 軸芯に冷間ダイス鋼を用いた嵌合 による複合ロールをヮ一クロールとして適用し、 上記と同様に 0 . 5 mmまで圧 延した。
さらに、 従来例として、 同種の熱延鋼帯 (板厚 2 . 6 mm) を用いて、 該鋼帯 を酸洗した後、 同冷間タンデムミルの全スタンドに従来の高合金鋼鋼のワーク ロールを適用し、 上記と同様に 0. 5 mmまで圧延した。
冷間圧延中にロールの破損状況を観察するとともに、 冷間圧延後に、 鋼帯から 試料を採取して、 鋼帯表面に残留した摩耗粉を測定し、 さらに鋼帯を巻き戻して 表面を観察し、 油焼けの有無を調べた。 また、 これら鋼帯をアルカリ電解洗浄ェ 程を有する連続焼鈍ラインで焼鈍した後、 鋼帯表面の油焼けや油じみ等のむらの 調査を行った表 13より、 本発明例のヮ一クロールを適用して冷間圧延した場合に は、 圧延後の鋼帯表面に残留する摩耗粉の量が著しく少なく、 汕焼けの発生が無 く、 また、 連続焼鈍後の鋼帯表面に汕じみ等のむらを発生することもなかった。 一方、 比較例では、 圧延後の鋼帯表面に残留する摩耗粉の量が著しく少なく、 油 焼けの発生が無かったが、 ロールの一部が破損して鋤板の表面に疵が発生し、 そ の後に破損が拡大して圧延不能に陥った。 従来例では、 圧延後の鋼帯表面に残留 する摩耗粉の量が多 〈て、 鋼帯の圧延最終部分に油焼けが発生し、 連続焼鈍後の 鋼帯表面に油じみのむらを発生させていた。
【表 1】
Figure imgf000025_0001
SUS 304の焼鈍材を 1パスにて圧下
口一ル破損における記号は、 〇:破損なし
X:破損あり
形状制御能力における記号は、 〇:形状liij御能力が良好
Δ:形状制御が可能
:形状制御が不可
一:圧延不可
9 ο 【表 2】
Figure imgf000026_0001
【表 3】 圧延材: SUS 430 母板厚ノ仕上厚: 4.0mm /1.0mm
5スタンド 冷間タンデムミル
スタンド 口一ル径 L/D 口一ル材質 ャング率 製品鋼帯の
(mm) ( gt/mm2) 光沢判定
1〜4 540 3.3 5 %Cr鍛綱 21000 発明例 2 A
5 285 5.0 ¾2に記 52000
1〜4 540 3.3 5 %Cr鍛鋼 21000 比較例 2a A
5 285 5.0 WC-17%Co 52000
一$ローノレ
1〜4 540 3.3 5 %Cr鍛鋼 21000 比較例 2b C
5 285 5.0 WC-17%Co 52000
2讓肉厚
'/容射ロール
従来例 1 -5 540 3.3 5 %Cr鍛鋼 21000 D 【表 4】
Figure imgf000027_0001
【表 5】 圧延材: SUS 304 母板厚 Ζ仕上厚: 3. Onim /0.98mm
5スタンド冷間タンデムミル
スタンド 口一ル径 ロール材質 ャング率 製品鋼帯の
(mm) (kgf/mm2) 光沢判定 ト 4 540 2.9
発明例 3 表 4に記載 50000 特 A
5 285 4.5
1〜4 540 2.9
比較例 3 表 4に記載 33000 C
5 285 4.5
1-4 540 2.9
従来例 5 %Cr鍛鋼 21000 D
5 285 4.5 【表 6】
Figure imgf000028_0001
【表 7】 圧延材: SUS 304 , (3.0/0.98 mm ) , 5スタンド冷間タンデ厶ミル
3std.圧下率 20% 3std.圧下率 30% 口一ル径 L/D
(mm) 破損の有無 光沢判定 破損の有無 光沢判定 発明例 4a 231 6.5 無 B 無 A〜B 発明例 4b 155 9.7 無 B 有
比較例 4 135 11.1 有 有
従来例 231 6.5 無 D 無 D 【表 8】
Figure imgf000029_0001
口ール破損における記号は 〇:破損なし
X:破損あり
【表 9】
〇第 5スタンドロール仕様
ロール径 285mm
最外層 中間層 1 中間層 2 軸 芯 備 考 材質: WC-17C0 材質: WC-40CO
発明例 6a ャング率: ャング案: 5 %Cr鍛綱
52000 kgf /mm 2 39000 kgf/mm 2
肉厚: 5 mm 肉厚: 4 ram
材質: WC— 17Co 材質: WC— 30Co 材質: WC— 50Co
CO
00 発明例 6b ャング : ャング率: ャング率: 5 %Cr鍛鋼
52000 kgf/mm2 44000 kgf/mm2 35000kgf/mm2
肉厚: 5 mm 肉厚: 4剛 肉厚: 3
比較例 6a 材質: WC-17C0 —体口ール ヤング率:52000kgf/mm2
比較例 6b 材質: WC-17%Co-28%Ni-7%Cr 一体口ール ヤング率: 33000kgf/mm2
材質: WC-17C0
比較例 6c ャング率: 5 %Cr鍛鋼
52000kgf /画2
肉厚: 5 mm
従来例 5 %Cr鍛綱 σ—ル (ャング率 21000kgf/mm2) 一体口一ル
【表 10】
圧延材: SUS 430母板厚/仕上厚: 4. 0mm /\. 0關冷間タンデムミル D
Figure imgf000031_0001
X :ロール破損有り
〇: ル破損無し
【表 11】
Figure imgf000032_0001
【表 12】
Figure imgf000032_0002
0 【表 13】 冷間タンデムミル ロール 後の J ¾後の 鋼 の石鎖 ヒー卜ス 後 CO 帯 種 ス夕 ロール径 ロール材質 職 トリーク 麵の ン卜' 1 m m ) 量 むら
No. mg/mm2
1 390 外周:
本 炭 ·ί匕夕ソグス亍ソ
発 磁 2 41 0 80% +
明 20%ニッケル 職 20 無し 無し 例 3 430 (肉厚: 20mm) せず
軸芯:
4 380 泠間ダイス鋼
1 390 外周:
比 炭化タングステン
2 41 0 92% +
铰 8%ニッケル 20 無し 無し
3 430 (肉厚: 10mm)
例 軸芯:
4 380 冷間ダイス鋼
1 390
2 41 0
来 合金鋼 赚 500 胜
3 430 せず
4 380
産業卜の利用可能件
請求項 1〜8に記載の本発明の複合スリーブロールは歪^ >の少ない、 比較的長尺 のものであり、 本発明の製造法は超硬合金スリーブを熱処理する際にも材料の歪 みが発生せず、 又作業性も良好に大型長尺の高硬度、 高ヤング率で耐摩耗性の優 れた複合スリ一プロ一ルを製造することができる。
また、 以上説明したように、 請求項 9および 10に記載の本発明によれば、 スリ —ブ材を、 ヤング率35000kgf/mm2以上、 かつ Co含有量 12〜50重量%の WC--Co系 超硬合金とし、 かつロール半径の 3%以上の肉厚とした嵌合ロールとするので、 ェッジド口ップが少なく、 表面光沢が極めて良好なステンレス冷延鋼帯やブライ 卜仕上げ鋼帯または、 表面粗さが小さく磁気特性に優れた珪素鋼帯を、 ロールの 破損を招くことなく圧延することが可能となる。
また、 請求項 9および 10に記載の本発明において、 スリーブのバレルの長さ L とロール直径 Dとの比 L/Dを、 2〜:0の範囲とすることにより、 ロールバレルの曲 げに対する強度を向上させることが可能となる。
また、 請求項 9および 10に記載の本発明により、 嵌合ロールにおいてもロール の偏平変形を一体ロールと同程度とすることが可能となるため、 口一ルバィ卜接 触弧長が短くなり、 圧延荷重も低下し、 効率的な圧延が可能となる。
また、 以上説明したように、 請求項 11〜13に記載の本発明により、 ヤング率が 35000kgf/mm2以上、 かつ肉厚がロール半径の 3%以上である最外層と、 軸芯と、 ャング率が最外層より小さく、 軸芯より大きい中間層とからなる複合ロールとす れば、 エッジドロップが少なく、 表面光沢が極めて良好なステンレス冷延鋼帯や ブライト仕上げ鋼帯あるいは、 表面粗さが小さく磁気特性に優れた珪素鋼帯を、 ロールの破損を招くことなく圧延することが可能となる。 また、 この中間層が 2 層以上の場合には、 外側の層のヤング率が内側の層のヤング率より大きくなるよ うに配置することにより、 一層ロール破損の危険を少なくできる。
そして、 請求項 11〜13に記載の本発明によれば、 ヤング率の調整により、 層境 界における周方向応力を低下させることができるので、 軸芯と口ール外層のみか らなる複合ロールに比べてより強圧下が可能となり、 効率的な圧延が可能とな o 2 る。
また、 請求項 1〜13に記載の本発明のロールを用い冷間圧延することによつ て、 磨耗粉の発生を抑制でき、 焼鈍後の鋼帯表面のむらの発生がなく従来よりも 表面清浄の良好な鋼帯を得ることを可能とするものである。
なお、 本発明の複合ロールは、 ステンレス鋼帯、 珪素鋼帯あるいは、 ブライ卜 仕上げ鋼帯の冷間圧延のみならず、 普通鋼帯の圧延においても優れた効果を示す ものである。

Claims

請求の節! [
1 . 軸材部を中心軸として軸材部の周囲に、 軸材部の径とほぼ同等の内径の中 空部を持つスリーブを、 その中空部に軸材部を挿入し嵌合してこれらを固定した ロールであって、 前記スリーブが一体成型体スリーブまたはロールの中心軸と交 わる面で分割される複数個の成型体部材を、 予め一体化して構成されたスリーブ であることを特徴とする複合スリーブロール。 -
2 . 超硬材料粉末を冷間等方加圧 (C I P)成型して得たスリーブを用いた請求 項 1に記載の複合スリーブロール。
3 . 超硬材料が WC-Co混合物である請求項 2に記載の複合スリーブロール。
4 . スリーブが、 複数の成型体部材をこれらの中心軸をほぼ同軸として焼結処 理及び Zまたは熱間等方加圧 (H I P)し一体としたものである請求項 1から請求 項 3のいずれかに記載の複合スリ一ブロール。
5 . 軸材部を中心軸として軸材部の周囲に、 軸材部の径とほぼ同等の内径の中 空部を持つスリーブを、 その中空部に軸材部を挿入し嵌合してこれらを固定した ロールであって、 一体成型体スリーブまたは中心軸と交わる面で分割される複数 個の成型体部材を予め一体化して構成されたスリーブを、 軸材部に嵌合し固定す ることを特徴とする複合スリーブロールの製造方法。
6 . 超硬材料粉末を冷間等方加圧 (C I P)成型して得たスリーブを用いる請求項 5に記載の複合スリーブロールの製造方法。
7 - 超硬材料が WC-Co混合物である請求項 5または請求項 6に記載の複合スリ― ブロールの製造法。
o 4
8 . スリーブが、 複数の成型体部材をこれらの中心軸をほぼ同軸として焼結処 理及び Zまたは熱間等方加圧 (H I P )し一体としたものである請求項 5から請求 項 7のいずれかに記載の複合スリーブロールの製造方法。
9 . 芯材とスリーブを嵌合した、 冷間圧延用の複合ロールにおいて、 芯材が鋼 からなり、 スリ一ブ材がヤング率 3 5 0 0 0 k g f /mm2以上、 かつ C o含有 量 1 2〜5 0重量%の\¥0じ o系超硬合金からなるとともに、 該スリーブの肉 厚が複合ロール半径の 3 %以上であることを特徴とする請求項 1から請求項 4の いずれかに記載の冷間圧延用複合ロール。
1 0 . スリーブのバレルの長さ Lとロール直径 Dとの比 L ZDが 2〜 1 0の範 囲であることを特徴とする、 請求項請求項 1から請求項 4のいずれかに記載の冷 間圧延用複合ロール。
1 1 . ロールバレルが同心円状の 3つ以上の層からなり、 最外層は、 ヤング率 が 3 5 0 0 0 k g f Zmm2以上、 かつ層の厚みがロール半径の 3 %以上であ り、 該最外層と軸芯との間に位置する中間層は、 ヤング率が最外層のヤング率よ り小さく、 軸芯のヤング率より大きいことを特徴とする請求項 1から請求項 4のレ ずれかに記載の冷間圧延用複合ロール。
1 2 . 中間層が 2つ以上の層からなり、 該中間層のヤング率は相対的に外側に ある層ほど大きいことを特徴とする、 請求項 1 1に記載の冷間圧延用複合口一 ル。
1 3 . 最外層および中間層が、 いずれも W C系超硬合金からなり、 該超硬合金 の組成は相対的に外側にある層ほどバインダ金属の結合当量が少ないことを特徴 とする、 請求項 1 1または請求項 1 2に記載の冷間圧延用複合ロール。
5
14. スリーブのバレルの長さ Lとロール直径 Dとの比 L/Dが 2〜 1 0の範 囲であることを特徴とする、 請求項請求項 5から請求項 9のいずれかに記載の複 合スリーブロールの製造方法。
6
PCT/JP1998/001181 1997-03-21 1998-03-19 Rouleau composite pour bande mince en acier lamine a froid et son procede de fabrication WO1998042458A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98909761A EP0913212A4 (en) 1997-03-21 1998-03-19 COMPOSITE ROLLER FOR THIN COLD ROLLED STEEL TAPE AND METHOD FOR THEIR PRODUCTION
KR1019980709563A KR100338572B1 (ko) 1997-03-21 1998-03-19 박냉연강대압연용복합롤및그제조방법
US09/180,672 US6374494B1 (en) 1997-03-21 1998-03-19 Compound roll for thin cold rolled steel strip and method of manufacturing same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP9/85553 1997-03-21
JP9085553A JP3065270B2 (ja) 1997-03-21 1997-03-21 複合スリーブロール及びその製造法
JP7193697 1997-03-25
JP9/71936 1997-03-25
JP9/75096 1997-03-27
JP07509697A JP3188643B2 (ja) 1997-03-27 1997-03-27 ステンレス鋼冷間圧延用複合ロール
JP9/85032 1997-04-03
JP8503297 1997-04-03
JP9/159477 1997-06-17
JP15947797A JP3209705B2 (ja) 1997-03-25 1997-06-17 冷間圧延用複合ロール

Publications (1)

Publication Number Publication Date
WO1998042458A1 true WO1998042458A1 (fr) 1998-10-01

Family

ID=27524354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001181 WO1998042458A1 (fr) 1997-03-21 1998-03-19 Rouleau composite pour bande mince en acier lamine a froid et son procede de fabrication

Country Status (4)

Country Link
US (1) US6374494B1 (ja)
EP (1) EP0913212A4 (ja)
KR (1) KR100338572B1 (ja)
WO (1) WO1998042458A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296197A (zh) * 2011-08-12 2011-12-28 成都西顿硬质合金有限公司 硬质合金石蜡工艺的控碳方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271962B2 (ja) * 2000-05-10 2002-04-08 冨士ダイス株式会社 伝熱管製造用の複合ロール及び伝熱管製造用の複合ロールの製造方法
EP1283079A1 (en) * 2000-05-16 2003-02-12 Kawasaki Steel Corporation Composite roll of cemented carbide, and steel hot-rolling method using the same
EP1166906A1 (en) * 2000-06-23 2002-01-02 Alcan International Limited A work roll for and a method of producing metal foil
KR100441758B1 (ko) * 2001-09-10 2004-07-27 김용호 압연가공을 위한 디스크 롤 및 그 제조방법
US6702924B2 (en) * 2001-09-27 2004-03-09 Voith Paper Patent Gmbh Main roll for an air press of a papermaking machine
US6875310B2 (en) * 2003-03-26 2005-04-05 Voith Paper Patent Gmbh Roll configuration for an air press of a papermaking machine
CN101966641A (zh) * 2010-07-26 2011-02-09 新兴铸管股份有限公司 一种制造铝板生产用卷筒的方法及其用该方法制造的卷筒
KR101391028B1 (ko) * 2011-07-20 2014-04-30 주식회사 대화알로이테크 압연용 복합롤
KR101231178B1 (ko) * 2011-07-29 2013-02-07 (주)하이엠시 압연용 초경 합금제 복합 롤의 제조 방법
CN103386417A (zh) * 2013-07-30 2013-11-13 株洲硬质合金集团有限公司 冶金粘结生产硬质合金制品的方法
CN103817150B (zh) * 2014-02-26 2015-07-01 湖南天益高技术材料制造有限公司 一种梯度结构型硬质合金辊环及其制造工艺
EP3677354B1 (en) * 2018-01-31 2023-10-04 Proterial, Ltd. Cemented carbide composite roll
JP7215431B2 (ja) * 2018-01-31 2023-01-31 日立金属株式会社 超硬合金製複合ロール及び超硬合金製複合ロールの製造方法
CN109880995B (zh) * 2019-03-01 2021-09-17 广东宝盛兴实业有限公司 一种冷轧钢带在罩式退火炉生产防止粘结的装置
CN113373389B (zh) * 2021-04-07 2022-10-28 西南铝业(集团)有限责任公司 一种控制铝合金卷材中间退火油斑的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241306A (ja) * 1988-03-18 1989-09-26 Kubota Ltd 複合リングロール
JPH03128103A (ja) * 1989-10-12 1991-05-31 Nippon Steel Corp チタンの冷間圧延方法
JPH07115051B2 (ja) * 1987-11-13 1995-12-13 株式会社日立製作所 圧延ロール用複合スリーブの製造方法
JPH0871603A (ja) * 1994-09-08 1996-03-19 Kawasaki Steel Corp 表面光沢に優れたステンレス冷延鋼帯の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000010A (en) * 1974-03-29 1976-12-28 Hitachi Metals, Ltd. Roll and process for producing same
JPS59197307A (ja) * 1983-04-22 1984-11-08 Hitachi Ltd 圧延機用ロ−ル
US4606883A (en) * 1983-10-21 1986-08-19 J. Wizemann Gmbh & Co. Method of manufacturing a metallic composite article
US4697320A (en) * 1984-06-28 1987-10-06 Hitachi, Ltd. Roll for a rolling mill, method of producing the same and the rolling mill incorporating the roll
US4756180A (en) * 1984-09-07 1988-07-12 Sumitomo Electric Industries, Ltd. Method of hot rolling for iron and iron alloy rods
US5081760A (en) * 1989-06-26 1992-01-21 Hitachi, Ltd. Work roll for metal rolling
US5647279A (en) * 1992-09-05 1997-07-15 Heidelberger Druckmaschinen Ag Printing machine roller and method of production thereof
JPH07188841A (ja) * 1993-12-27 1995-07-25 Kanto Special Steel Works Ltd 冷間圧延用ワークロール
US5599497A (en) * 1995-07-26 1997-02-04 National-Oilwell, L.P. Alloy steel roll caster shell
JP3376484B2 (ja) * 1995-08-30 2003-02-10 日鉄ハード株式会社 熱延工場巻取設備各ロール
US5813962A (en) * 1996-06-28 1998-09-29 Kawasaki Steel Corporation Forged roll for rolling a seamless steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115051B2 (ja) * 1987-11-13 1995-12-13 株式会社日立製作所 圧延ロール用複合スリーブの製造方法
JPH01241306A (ja) * 1988-03-18 1989-09-26 Kubota Ltd 複合リングロール
JPH03128103A (ja) * 1989-10-12 1991-05-31 Nippon Steel Corp チタンの冷間圧延方法
JPH0871603A (ja) * 1994-09-08 1996-03-19 Kawasaki Steel Corp 表面光沢に優れたステンレス冷延鋼帯の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0913212A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296197A (zh) * 2011-08-12 2011-12-28 成都西顿硬质合金有限公司 硬质合金石蜡工艺的控碳方法

Also Published As

Publication number Publication date
EP0913212A4 (en) 2002-03-27
KR20000016002A (ko) 2000-03-25
US6374494B1 (en) 2002-04-23
EP0913212A1 (en) 1999-05-06
KR100338572B1 (ko) 2002-09-18

Similar Documents

Publication Publication Date Title
WO1998042458A1 (fr) Rouleau composite pour bande mince en acier lamine a froid et son procede de fabrication
EP0743106B1 (en) Method for manufacturing seamless pipe
JP4517008B1 (ja) 高温材搬送用部材
CN108430692B (zh) 具有由钢制成芯区段的构件的生产方法
JPH10180315A (ja) 継目無鋼管圧延用プラグおよび継目無鋼管の製造方法
JP3743793B2 (ja) 熱間圧延用複合ロール及びその製造方法並びにそれを用いた熱間圧延方法
EP2008731B1 (en) Method for surface treatment of a mandrel bar
WO2001087508A1 (fr) Rouleau composite de carbure metallique et procede de laminage a chaud d&#39;acier faisant intervenir ce rouleau
JP2687732B2 (ja) 金属圧延用複合ロール及びその製造法と圧延機
JP2006181628A (ja) 厚鋼板の圧延方法および厚鋼板の製造方法
JP3209705B2 (ja) 冷間圧延用複合ロール
JP4314884B2 (ja) 熱間継目無管圧延用マンドレルバー
JP3644367B2 (ja) 金属帯の冷間圧延方法
JPH10263628A (ja) 冷間圧延用複合ロール
JP3286657B2 (ja) 金属板圧延用ロール及びそのロールを用いた圧延方法
JP2992216B2 (ja) 高光沢ステンレス鋼帯の製造方法
JP3440697B2 (ja) ステンレス冷延鋼帯の製造方法
JP2001025803A (ja) 金属板の圧延機および圧延方法
KR20060015048A (ko) 판 압연용 초경합금제 복합 롤
JP2004181520A (ja) 超硬合金製圧延用複合ロール
JP2006181629A (ja) 形鋼の圧延方法および形鋼の製造方法
JP2006150404A (ja) 冷間圧延方法及びそれを用いた冷延金属帯の製造方法
JP2002224717A (ja) 鋼の熱間圧延方法
JPS63180310A (ja) 複合ロ−ル
JP2002224703A (ja) 形鋼の圧延方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09180672

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998909761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980709563

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998909761

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980709563

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980709563

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998909761

Country of ref document: EP