WO1998039565A1 - Startersysteme für einen verbrennungsmotor sowie verfahren zum start eines verbrennungsmotors - Google Patents

Startersysteme für einen verbrennungsmotor sowie verfahren zum start eines verbrennungsmotors Download PDF

Info

Publication number
WO1998039565A1
WO1998039565A1 PCT/EP1998/001297 EP9801297W WO9839565A1 WO 1998039565 A1 WO1998039565 A1 WO 1998039565A1 EP 9801297 W EP9801297 W EP 9801297W WO 9839565 A1 WO9839565 A1 WO 9839565A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
energy
term memory
starting
starter
Prior art date
Application number
PCT/EP1998/001297
Other languages
English (en)
French (fr)
Inventor
Thomas Pels
Klaus Revermann
Holger Riekenbrauck
Klaus-Peter Zeyen
Original Assignee
Isad Electronic Systems Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7822515&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998039565(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Isad Electronic Systems Gmbh & Co. Kg filed Critical Isad Electronic Systems Gmbh & Co. Kg
Priority to JP53817598A priority Critical patent/JP2001513863A/ja
Priority to EP98913670A priority patent/EP0964995B1/de
Priority to DE59807311T priority patent/DE59807311D1/de
Priority to IL13367698A priority patent/IL133676A0/xx
Publication of WO1998039565A1 publication Critical patent/WO1998039565A1/de
Priority to US09/389,992 priority patent/US6202615B1/en
Priority to US09/389,549 priority patent/US6109229A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0885Capacitors, e.g. for additional power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/023Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/046Energy or power necessary for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs

Definitions

  • the present invention relates to starter systems for an internal combustion engine and methods for starting an internal combustion engine.
  • step-up converter DC-DC converter
  • Starter systems are e.g. known from SU 1265388 AI (MOSC AUTO ECH) and EP 0 390 398 AI (ISUZU).
  • the capacitor store is at the same voltage level as the vehicle battery, so there is no step-up converter in between. Examples of this are given in DE 41 35 025 AI (MAGNETI MARELLI) and US Pat. No. 5,041,776 (ISUZU).
  • the battery is disconnected from the starter motor during the starting process, so the starting takes place entirely with the energy stored in the capacitor store.
  • JP 02175350 A ISUZU
  • JP 02175351 A ISUZU
  • JP 02175351 A ISUZU
  • EP 0 403 051 AI ISUZU
  • EP 0 533 037 B1 discloses an electric catalyst heater and EP 0 420 379 B1 an electric glow system for a diesel engine, the heating energy being kept available in a capacitor store.
  • the known starter systems with capacitor storage ensure a safer start, especially in very cold weather, and allow a smaller design of the conventional vehicle battery, which is generally unsuitable for short-time discharge when starting.
  • the present invention aims to provide improved starter systems with short-term storage, such as a capacitor storage. This also includes the provision of appropriate procedures for starting.
  • a starter system for an internal combustion engine comprises the following: an electrical starter, an electrical short-term storage, in particular a capacitor storage, which serves to feed the starter after charging, direct or indirect temperature detection, and a control device which causes a removal of part of the energy stored in the short-term storage for feeding one or more consumers before the starting process, the size of the removed energy part being temperature-dependent, specifically at low temperatures than at high temperatures (claim 1).
  • This first aspect of the invention is based on the following findings: at low temperatures of the internal combustion engine, in particular in severe frost such as -20 ° C., the electrical energy required for starting is considerably greater than at high temperatures, for example at operating temperature. This is essentially due to the much greater resistance that the internal combustion engine opposes to the starter rotation due to the greater viscosity of the oil in the cold.
  • the starter system must be designed for the lowest temperatures that occur in practice. This means that the capacitance of the capacitor is greatly oversized for the higher temperatures that usually occur.
  • the invention takes a different path: because even a temperature-dependent loading of the short-term storage does not change the fact that it must be dimensioned for the lowest occurring temperature - and is therefore oversized. It was recognized that a portion of the short-term storage capacity (not required at higher temperatures) can be used by other consumers (than the starter) in order to be able to supply it with high power for a short time, preferably even before the internal combustion engine is started. At high temperatures, such as operating temperature, these additional consumers have a relatively large energy and performance value before Start available. As the temperature of the internal combustion engine decreases, this amount decreases because a larger amount of energy has to be kept available for the starting process. If the capacitor store is dimensioned accordingly, there is no energy left for the additional consumers at the lowest temperature. In this relatively rare case, your power supply can be postponed, for example, to the time immediately after starting when a generator driven by the internal combustion engine supplies sufficient energy.
  • Short-term storage is preferably understood to mean any storage for electrical energy in which the major part (e.g. 97%) of the stored maximum energy can be removed non-destructively within 60 seconds, preferably within 30 seconds and particularly preferably within 15 seconds.
  • chemical energy stores for high power consumption can also be involved, e.g. so-called alkaline secondary systems, e.g. alkaline nickel / cadmium systems or nickel / iron systems, e.g. May contain sintered electrodes or fiber structure electrodes.
  • Long-term storage is a storage device from which, after a full charge, the entire stored energy can only be removed in periods longer than 10 minutes.
  • the consumer is advantageously an electric heater, preferably a catalyst heater (claim 2).
  • a catalyst heater (claim 2).
  • the invention allows rapid preheating of the catalytic converter practically without additional constructional expenditure, in that the - otherwise oversized - short-term storage serves as an intermediate storage for the catalytic converter heating energy when the temperatures of the internal combustion engine are not too low.
  • the short-term storage is operated with low power would take from the battery or - in an earlier driving cycle - slowly charged from the vehicle electrical system and practically suddenly discharged to heat up the catalyst (claim 2).
  • the heating is carried out with high electrical power, and therefore very quickly, for example within a few seconds.
  • Other heaters such as disc heaters, can also be supplied with high power before starting.
  • a second aspect of the invention relates to a starter system for an internal combustion engine, with an electric starter; an electrical short-term storage, in particular a capacitor storage, which is used to charge the starter after charging;
  • This second aspect is based on the idea of not dimensioning the short-term storage device so large that it can start the internal combustion engine alone even at very low temperatures, but rather to take energy from the short-term storage device and the long-term storage device (e.g. in the form of a conventional sulfuric acid lead accumulator) at the same time .
  • Simple parallel connections of battery and capacitor storage are - as mentioned above - known from Japanese publications 02175350 A (ISUZU) and 02175351 A (ISUZU). However, these are very simple starter systems.
  • the invention takes a different approach in that it provides an actively controllable coupling between the two energy stores (not only) when the short-term store is being charged, but also when it is being discharged during the starting process.
  • the involvement of both energy stores allows a smaller dimensioning of the short-term storage while at the same time adapting the relative power consumption to the ia different characteristics of the two different storage types.
  • Actively controllable is not (only) understood to mean the possibility of switching the long-term memory and / or short-term memory on and off, but the possibility of continuously presenting the proportion of energy and / or power which the long-term memory and / or the short-term memory when starting is removed.
  • the power required to start depends, among other things, on strongly depends on the temperature of the internal combustion engine.
  • the amount of the power withdrawn from the long-term storage can therefore be based on the
  • REPLACEMENT BLA ⁇ (RULE 26) tion is approximately equal to the internal resistance of the long-term storage.
  • resistances between the long-term battery and the coupling circuit must be taken into account (by adding either the input resistance of the coupling circuit or the internal resistance of the long-term memory).
  • This configuration assigns the long-term storage to a comparatively larger share of the total output and thus allows a comparatively smaller dimensioning of the short-term storage.
  • only a certain fraction of the greatest possible output is taken from the long-term storage, for example fractions in the range from 50 to 100%, advantageously 65 to 100%, preferably 75 to 100% and particularly preferably 90 to 100% of the largest possible output.
  • the short-term memory preferably operates at a different, in particular a higher voltage level than the long-term memory (claim 7).
  • the coupling circuit then preferably comprises a voltage converter, e.g. a step-up converter that can bring current from one to the other voltage level.
  • the different voltage levels can advantageously be adapted to the different technical characteristics of the two different types of memory. In this way, a capacitor store generally reaches its greatest energy storage density at a relatively high voltage level (e.g. at 300 volts), while an accumulator battery - depending on the type of battery used and the number of series connected
  • the coupling circuit is, for example, a step-up converter based on an induction pump circuit. Such is built up, for example, from a series connection of an inductor and an electronic switch, which is traversed by current from the long-term memory when the switch is closed. Between these two elements there is a branch to the short-term memory, which is at a higher voltage level, and which is equipped with a backflow-preventing diode. When the switch is opened, induction creates a voltage spike (in principle of any height), which allows the current to flow briefly to the high voltage level and thus increases it. By enlarging or Reducing the switching frequency of the switch allows the increased amount of current to be increased or decreased accordingly.
  • the starter is advantageously fed by an inverter with a DC voltage intermediate circuit, the short-term energy store being at the voltage level of the DC voltage intermediate circuit (claim 8).
  • a DC link inverter for example, cuts out modulated pulses from a constant DC link voltage with the help of electronic switches (e.g. field effect transistors or IGBTs) which, averaged by the inductance of the generator, produce almost smooth DC currents of the desired voltage or alternating currents Frequency, amplitude and phase lead.
  • the starter is therefore particularly advantageously designed as a three-phase machine (also called a three-phase machine).
  • a machine In contrast to a commutator machine, this is understood to mean a machine, particularly a commutatorless machine, in which, for example, the stator generates a magnetic rotating field which rotates through 360 ° and takes the rotor with it.
  • the starter can be designed in particular as an asynchronous machine, for example with a short-circuit rotor, or as a synchronous machine, for example with a rotor with pronounced magnetic poles.
  • the short-circuit rotor in the asynchronous machine can be, for example, a squirrel-cage rotor with short-circuit bars in the axial direction.
  • the rotor has windings which can be short-circuited externally, for example, using slip rings.
  • the distinctive magnetic poles of the rotor in the synchronous machine are realized, for example, by permanent magnets or by electromagnets, which can be supplied with excitation current via slip rings, for example.
  • the starter can be coupled indirectly to the internal combustion engine shaft, for example via pinions, countershaft, etc. However, part of the starter, in particular the rotor, is advantageously seated directly on the motor shaft and is preferably coupled or can be coupled to it in a rotational test.
  • the rotor can sit, for example, on the shaft leading to the gearbox, or on the other side of the internal combustion engine on the shaft end that ends blindly there.
  • an inverter-controlled three-phase machine can advantageously have one or more additional functions, for example the function of a generator for the on-board power supply, an additional vehicle drive motor, as an additional vehicle brake and / or an active smoothing device for rotational irregularities that occur in internal combustion engines due to their discontinuous mode of operation.
  • the changeover from motor to generator operation takes place by corresponding changeover of the magnetic fields by means of appropriate inverter control.
  • the invention is also directed to methods for starting an internal combustion engine.
  • the invention is also directed to methods for starting an internal combustion engine.
  • 1 shows a diagram of the relative energy which can be drawn from a consumer as a function of the temperature (first aspect); 2 shows a diagram of the power components delivered by the short-term storage and the long-term storage as a function of temperature (second aspect); 3 shows a schematic representation of the most important functional units of the starter systems (first and second aspects); 4 is a flowchart of a method for starting (first aspect); 5 is a flowchart of another method of starting (second aspect).
  • the proportion e v of the energy stored in the capacitor which is branched off for the consumer, is plotted as a function of the temperature of the internal combustion engine.
  • the proportion e v is defined as the ratio of the energy amount E v branched off for the consumer and the amount of the total energy stored in the capacitor E toIa
  • T min the lowest occurring temperature
  • T v the consumer energy part e v is zero.
  • the entire stored energy is required for starting, ie the starting energy component e stArt / k -i t is equal to one. At the highest occurring temperature T.
  • for example the operating temperature of the internal combustion engine, only part of the stored energy is required for starting, ie the starting energy component e SülI1 y warm is significantly less than one.
  • the remaining amount of energy can serve here to feed a consumer before starting, the consumer energy portion e v i rm st that is equal to the difference of one and e Start / wa ⁇ n.
  • 1 schematically illustrates e v for all values between T mm and T max . Due to the decreasing resistance, which the internal combustion engine opposes to the starter, as well as the decreasing starting speed, the dependency shown is a continuous and only increasing (or constant) function.
  • FIG. 2 illustrates the power relationships in an exemplary embodiment according to the second aspect of the invention.
  • the total power required (for a certain moment) when starting is plotted here as a function of the temperature.
  • T min the total power at the lowest occurring temperature
  • T max the highest temperature
  • T max the maximum power consumption from the short-term memory
  • dashed lines which is temperature-independent - and thus a horizontal straight line in the illustration. Since, in the second aspect of the invention, short-term storage and the battery interact when starting, the maximum short-term storage power is below the maximum total power at the lowest occurring temperature ⁇ and thus forms a kind of base. Energy is only taken from the battery in the (hatched) temperature range in which the total power curve lies above this base.
  • FIG. 2 This is shown in FIG. 2 as an example for a temperature slightly above T min .
  • the total power curve falls below the base. That means that at temperatures above the point of intersection, the starting takes place exclusively from the Short-term storage, the battery does not contribute here.
  • the maximum short-term storage power can also fall below the required total power at T, ⁇ , so that the battery must then contribute.
  • the maximum short-term storage power at all times can be below the total power required at T ⁇ , so that the battery contributes to starting at all times.
  • clutch 3 for a motor vehicle, for example a passenger car
  • a motor vehicle for example a passenger car
  • a drive shaft 2 for example the crankshaft of the internal combustion engine 1
  • clutch 3 and further parts (not shown) of a drive train releases the drive wheels of the vehicle.
  • clutch 3 is open.
  • an electrical machine 4 serving as a starter, here an asynchronous three-phase machine. It has a rotor 5 seated directly on the drive shaft 2 and rotates connected to it, and a stand 6 supported, for example, on the housing of the internal combustion engine 1.
  • the starter 4 (as well as the devices for its supply and energy storage described below) are dimensioned such that the internal combustion engine 1 can preferably be started directly (ie without a flywheel function or the like) and preferably also no step-up or step-down ratio between the starter 4 and the internal combustion engine 1 is arranged so that both can run together permanently.
  • the (not shown) winding of the stator 6 is fed by an inverter 7 with electrical currents and voltages of practically freely adjustable amplitude, phase and frequency.
  • the inverter is essentially made up of a machine-side DC voltage-AC converter 7a, an intermediate circuit 7b and a DC-DC converter 7c on the electrical system side.
  • Short-term energy storage 8 for example a capacitor storage, is - seen electrically - in the intermediate circuit 7b.
  • the converter 7c is coupled to a vehicle electrical system 9 and a long-term energy store, here an electrical system battery 10.
  • the vehicle electrical system 9 and the battery 10 are at a low voltage level, for example 12 or 24 volts.
  • the intermediate circuit 7b is at an increased voltage, which is advantageously in the range between 48 and 350 volts.
  • the electrical machine 4 can act as a generator, ie supply electrical energy.
  • the converter 7c is therefore designed as a bidirectional converter, on the one hand to be able to bring electrical energy from the on-board power supply battery 10 into the intermediate circuit 7b for the starting process or its preparation, and on the other hand to transfer energy from the intermediate circuit 7b to the low-voltage side during generator operation To feed consumers of the electrical system 9 and to charge the electrical system battery 10.
  • the converter 7a converts the DC voltage of the intermediate circuit 7b into AC voltage in motor operation, in generator mode it feeds the energy supplied by the electrical machine 4 into the intermediate circuit 7b after rectification.
  • Capacitor memory 8 is able to supply voltage pulses with a required steepness for a high pulse frequency (advantageously in the range from 20 kHz to 100 kHz). It also serves as an energy store for the energy required for starting, possibly in cooperation with the battery 10. In other (not shown) embodiments, a separate, particularly rapidly discharged capacitor store is provided for the provision of edge-dividing pulses, which has only a smaller capacity needs.
  • the capacitor store 8 can be charged either in generator mode by the electrical
  • a high-performance consumer for example an electrical catalyst heater, is electrically coupled to the intermediate circuit 7b via a consumer control device 12.
  • the high-power consumer 11 is advantageously supplied at a high voltage level, for example the voltage level of the intermediate circuit 7b.
  • the consumer control device 12 does not serve as a voltage converter, but only as a current control device. In other embodiments it also has the function of a voltage converter for higher or lower voltages.
  • a higher-level control device 13 controls the inverter 7, specifically the converter 7a and the converter 7c, and the consumer control device 12.
  • the control unit 13 receives input signals from a temperature sensor 14, which provides information, for example, about the coolant temperature of the internal combustion engine 1. It also receives input signals from a (not shown) angle encoder, from which it can determine the current speed of the drive shaft 2. Furthermore, it can receive a number of further information, for example regarding the position of the throttle valve of the internal combustion engine 1, the ignition timing, etc.
  • step S1 the capacitor store 8 is charged. Charging takes place to a fixed, predetermined value, which is predetermined, for example, by the setpoint of the intermediate circuit voltage. If possible, the capacitor store 8 is already charged while the internal combustion engine is running. the electrical machine 4 which then acts as a generator. When the vehicle is stationary for a longer period of time, however, the capacitor store 8 gradually discharges, so that it can then be fully or partially charged by drawing energy from the on-board electrical system battery 10.
  • step S2 the control unit 13 determines the instantaneous temperature of the internal combustion engine on the basis of the measurement information supplied by the temperature sensor 14.
  • step S3 the control device 13 determines, for example on the basis of a stored characteristic diagram, the amount of energy which, as expected, is required for starting at the temperature determined in the previous step. On the basis of the determined required amount of energy and the known value of the amount of energy stored in the capacitor store, the control unit determines in step S4 that part of the Memory 8 stored energy that is not required to start at the current temperature.
  • step S5 control unit 13 queries whether a command to start the internal combustion engine has been given, for example by actuating the ignition key. If this is not the case, the control unit 13 executes steps S2 to S5 repeatedly. If, on the other hand, a start command has been given, it proceeds to the next step S6.
  • the program is in a passive waiting state; it only carries out actions in accordance with steps S2 and S4 there after receiving a start command).
  • the control device 13 causes the high-performance consumer 11, here a catalytic converter heater, to be supplied with the part of the energy which is not required at short notice with very high power.
  • the catalytic converter immediately reaches operating temperature, for example, and is thus ready for the material conversion of harmful exhaust gases at the first ignitions.
  • step S7 the internal combustion engine 1 is started using the energy portion remaining in the capacitor store 8.
  • step S11, S12 and S13 reference is made to the above statements relating to steps S1, S2 and S3, which also apply here fully apply.
  • step S14 on the basis of the result in step S13 and the known value of the amount of energy stored in the capacitor store 8, that portion of the energy is determined which must be taken from it at the current temperature of the on-board electrical system battery 10 for the starting process.
  • step S15 - in accordance with the above statements on step S5 - a query is made as to whether a start command has been given.
  • step S16 the control unit 13 finally initiates the start of the internal combustion engine 1 with energy being drawn from the capacitor store 8 and, if appropriate, from the on-board electrical system battery 10 Proportion determined in step S14.
  • steps S14 and S16 are frequently repeated in the course of the starting process in order to to take into account any change in the energy portion to be taken in the course of the starting process.
  • Such a time dependency can occur, for example, in that the capacitor store 8 discharges in the course of the charging process and can only deliver less energy towards the end of its discharging process, so that the portion to be removed from the on-board electrical system battery 10 increases.
  • the power component is determined in step S14, which has to be removed from the on-board electrical system battery 10 at the present temperature and at the relevant time in the course of the starting process.
  • step S16 there is then a corresponding power withdrawal from the capacitor and the battery in accordance with the power component determined in step 14.
  • the invention is based on the idea of not taking the temperature dependence of the amount of energy required for starting into account when charging the short-term storage device, but rather during the discharge and / or starting process.
  • This is particularly advantageous for starter systems in which the short-term storage is to be at a predetermined level in terms of voltage, for example the level of the intermediate circuit of an inverter serving to supply the starter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Die Erfindung betrifft Startersysteme für Verbrennungsmotoren sowie Verfahren zum Starten solcher Motoren. Insbesondere betrifft die Erfindung ein Startersystem mit: einem elektrischen Starter (4), einem elektrischen Kurzzeitspeicher (8), insbesondere einem Kondensatorspeicher, der nach Aufladung zum Speisen des Starters dient; einer direkten oder indirekten Temperaturerfassung; einer Steuereinrichtung, die eine Entnahme eines Teils der im Kurzzeitspeicher gespeicherten Energie zum Speisen eines oder mehrerer Verbraucher vor dem Startvorgang veranlaßt, wobei die Größe dieses Teils temperaturabhängig ist, und zwar bei tiefen Temperaturen kleiner als bei hohen Temperaturen ist.

Description

Startersystβme für einen Verbrennungsmotor sowie Verfahren zum Start eines Verbrennungsmotors
Die vorliegende Erfindung betrifft Startersysteme für einen Verbrennungsmotor sowie Verfahren zum Starten eines Verbrennungsmotors .
Es ist bekannt, daß man einen Verbrennungsmotor mit Hilfe von Kondensatoren starten kann. Hierbei wird die zum Starten benötigte Energie von einer Bordnetzbatterie (mit 12 Volt oder 24 Volt) mit Hilfe eines hochsetzenden Gleichspannungs-Gleichspannungs-Wandlers (sog. Hochsetzsteller) auf ein höheres Spannungsniveau gebracht und in einem oder mehreren Kondensatoren gespeichert. Derartige
Startersysteme sind z.B. aus der SU 1265388 AI (MOSC AUTO ECH) sowie der EP 0 390 398 AI (ISUZU) bekannt. Bei einfacheren Systemen liegt der Kondensatorspeicher auf gleichem Spannungsniveau wie die Fahrzeugbatterie, hier ist al?o kein Hochsetzsteller zwischen- geschaltet. Beispiele hierfür geben die DE 41 35 025 AI (MAGNETI MARELLI) sowie US-PS 5 041 776 (ISUZU) . Bei allen vorgenannten Systemen ist die Batterie während des Startvorgangs vom Startermotor getrennt, das Starten erfolgt also ollständig mit der im Kondensatorspeicher gespeicherten Energie.
Bei einfachen Systemen der zweitgenanhten Art (ohne Hochsetzsteller) ist ferner in der JP 02175350 A (ISUZU) und JP 02175351 A (ISUZU) vorgeschlagen worden, die Batterie und den vorgeladenen Kondensator beim Starten parallel zu schalten, so daß beide Ener- giespeicher zum Startvorgang beitragen. Aus der EP 0 403 051 AI (ISUZU) ist es ferner bekannt, einen zum Speichern der Startenergie dienenden Kondensator nur bis zu einem bestimmten variablen Spannungspegel aufzuladen, der von der jeweils vorliegenden Temperatur des Motorkühlmittels abhängt.
Neben den obigen Vorschlägen, die eine Verwendung von Kondensatoren als Speicher für die Startenergie betreffen, gibt es auch Vorschläge für andere Anwendungen, z.B. als Speicher für die von elektrischen Heizungen benötigte Energie. So offenbaren die EP 0 533 037 Bl (MAGNETI MARELLI) eine elektrische Katalysatorheizung und die EP 0 420 379 Bl eine elektrische Glühanlage für einen Dieselmotor, wobei die Heizenergie jeweils in einem Kondensatorspeicher bereitgehalten wird.
Schließlich sind aus der O93/11003 (BOSCH) sowie der EP 0 688 698 A2 (BMW et al ) Bordnetzsysteme mit je einer Starterbatterie und einer Bordnetzbatterie bekannt, die gemeinsam geladen, beim Starten jedoch getrennt werden. Bei der letztgenannten Veröffentlichung sind die beiden Batterien über eine Reglereinheit verbunden, welche den Ladevorgang steuert.
Die bekannten Startersysteme mit Kondensatorspeicher gewährleisten ein sichereres Starten, insbesondere bei großer Kälte und erlauben eine kleinere Auslegung der - an sich für die KurzZeitentladung beim Starten wenig geeigneten - herkömmlichen Fahrzeugbatterie.
Die vorliegende Erfindung zielt darauf ab, verbesserte Startersysteme mit Kurzzeitspeicher, wie etwa einem Kondensatorspeicher, anzugeben. Dazu gehört auch die Bereitstellung entsprechender Verfahren zum Starten.
Gemäß einem ersten Aspekt der Erfindung umfaßt ein Startersystem für einen Verbrennungsmotor folgendes: einen elektrischen Starter, - einen elektrischen Kurzzeitspeicher, insbesondere einen Kondensatorspeicher, der nach Aufladung zum Speisen des Starters dient, einer direkten oder indirekten Temperaturerfassung, und eine Steuereinrichtung, die vor dem Startvorgang eine Entnahme eines Teils der im Kurzzeitspeicher gespeicherten Energie zum Speisen eines oder mehrerer Verbraucher veranlaßt, wobei die Größe des entnommenen Energieteils temperaturabhängig ist, und zwar bei tiefen Temperaturen kleiner als bei hohen Temperaturen (Anspruch 1) .
Diesem ersten Aspekt der Erfindung liegen folgende Erkenntnisse zugrunde: bei tiefen Temperaturen des Verbrennungsmotors, ins- besondere bei strengem Frost wie -20°C, ist die zum Starten benötigte elektrische Energie wesentlich größer als bei hohen Temperaturen, etwa bei Betriebstemperatur. Dies beruht im wesentlichen auf dem wesentlich größeren Widerstand, den der Verbrennungsmotor aufgrund der bei Kälte größeren Viskosität des Öls der Starter- drehung entgegensetzt. Das Startersystem muß für die tiefsten in der Praxis vorkommenden Temperaturen ausgelegt sein. Das heißt, die Kapazität des Kondensators ist für die meistens vorkommenden höheren Temperaturen stark überdimensioniert. Dies gilt insbesondere für Ausgestaltungen, bei denen der Kondensatorspeicher die gesamte zum Starten erforderliche Energie speichern soll und gilt in etwas abgeschwächtem Ausmaß aber auch für solche Ausgestaltungen, bei denen ein Teil der Startenergie der Langzeitbatterie entnommen wird und nur ein Teil vom Kurzzeitspeicher zu speichern ist. Um nicht bei den meist vorkommenden höheren Temperaturen den Kondensator mit mehr Energie zu beladen als beim Starten benötigt wird, schlägt die obengenannte EP 0 403 051 AI (ISUZU) vor, mit steigender Temperatur geringere Energiemengen zu speichern.
Die Erfindung (erster Aspekt) geht hingegen einen anderen Weg: denn auch eine temperaturabhängige Beladung des Kurzzeitspeichers ändert nichts daran, daß dieser für die tiefste vorkommende Temperatur dimensioniert sein muß - und damit überdimensioniert ist. Es wurde erkannt, daß - bei höheren Temperaturen nicht benötigte - Anteil der Kurzzeitspeicherkapazität in den Dienst anderer Ver- braucher (als den Starter) gestellt werden kann, um diese vorzugsweise bereits vor dem Starten des Verbrennungsmotors kurzzeitig mit hoher Leistung versorgen zu können. Bei hohen Temperaturen, wie z.B. Betriebstemperatur, steht für diese zusätzlichen Verbraucher ein relativ großer Energie- und Leistungswert vor dem Starten zur Verfügung. Mit abnehmender Temperatur des Verbrennungsmotors sinkt dieser Betrag, da für den Startvorgang ein größerer Energieanteil vorgehalten werden muß. Bei entsprechender Dimensionierung des Kondensatorspeichers bleibt bei der tiefsten vorkommenden Temperatur gerade keine Energie für die zusätzlichen Verbraucher übrig. Ihre Speisung kann - in diesem relativ selten auftretenden Fall - z.B. auf die Zeit unmittelbar nach dem Starten verschoben werden, wenn ein vom Verbrennungsmotor angetriebener Generator ausreichend Energie liefert.
Unter "Kurzzeitspeicher" wird vorzugsweise jeder Speicher für elektrische Energie verstanden, bei dem der größte Teil (z.B. 97%) der gespeicherten Maximalenergie zerstörungsfrei innerhalb von 60 Sekunden, vorzugsweise innerhalb von 30 Sekunden und besonders vorzugsweise innerhalb von 15 Sekunden entnommen werden kann. Neben Kondensatoren können sich hierfür auch chemische Energiespeicher für hohe Leistungsentnahme handeln, z.B. um sog. alkalische SekundärSysteme, z.B. alkalische Nickel/Kadmium-Systeme oder Nickel/Eisen-Systeme, die z.B. Sinter-Elektroden oder Faser- struktur-Elektroden enthalten können. "Langzeitspeicher" ist hingegen ein Speicher, dem nach voller Aufladung die gesamte gespeicherte Energie nur in Zeiträumen größer als 10 min entnommen werden kann.
Vorteilhaft handelt es sich bei dem Verbraucher um eine elektrische Heizung vorzugsweise eine Katalysatorheizung (Anspruch 2) . Zur Erfüllung zukünftiger strenger Abgasbestimmungen wird es voraussichtlich erforderlich werden, die Abgaskatalysatoren bei Otto-Motoren bereits vor dem Starten des Verbrennungsmotors elek- trisch zu beheizen. Hierdurch erreicht man, daß der Katalysator bereits bei den ersten Zündungen auf seiner Betriebstemperatur liegt und damit effektiv arbeitet. Die Erfindung erlaubt eine schnelle Vorheizung des Katalysators praktisch ohne baulichen Zusatzaufwand, indem der - andernfalls überdimensionierte - Kurz- zeitspeicher bei nicht zu tiefen Temperaturen des Verbrennungsmotors als Zwischenspeicher für die Katalysator-Heizenergie dient. Anders als bei Speisung aus einer herkömmlichen Langzeitbatterie (die typischerweise minimale Entladezeiten größer als 30 Minuten aufweist) wird der Kurzzeitspeicher unter geringer Leistungsauf- nähme aus der Batterie oder - bei einem früheren Fahrzyklus - aus dem Bordnetz langsam aufgeladen und zum Aufheizen des Katalysators praktisch schlagartig entladen (Anspruch 2) . Gegenüber einem herkömmlichen Blei-Säure-Akkumulator erfolgt die Beheizung mit hoher elektrischer Leistung, und damit sehr schnell, etwa innerhalb einer oder einigen wenigen Sekunden. Auch andere Heizungen, z.B. Scheibenheizungen, können vorteilhaft vor dem Starten mit hoher Leistung gespeist werden.
Ein zweiter Aspekt der Erfindung betrifft ein Startersystem für einen Verbrennungsmotor, mit einem elektrischen Starter; einem elektrischen Kurzzeitspeicher, insbesondere einem Kondensatorspeicher, der nach Aufladung zum Speisen des Starters dient;
- einem elektrischen Langzeitspeicher; und einer Koppelschaltung, die beim Starten eine gleichzeitige Energieausnahme aus dem Kurzzeitspeicher und dem Langzeitspeicher erlaubt, wobei der Anteil der dem Langzeitspeicher und/oder dem Kurzzeitspeicher entnommenen Energie und/oder Leistung aktiv steuerbar ist (Anspruch 3).
Diesem zweiten Aspekt liegt der Gedanke zugrunde, den Kurzzeitspeicher nicht so groß zu dimensionieren, daß er auch bei ganz tiefen Temperaturen den Verbrennungsmotor alleine starten kann, sondern vielmehr dem Kurzzeitspeicher und dem Langzeitspeicher (z.B. in Form eines herkömmlichen Schwefelsäure-Bleiakkumulators) gleichzeitig Energie zu entnehmen. Einfache Parallelschaltungen von Batterie und Kondensatorspeicher sind - wie oben erwähnt - aus den japanischen Veröffentlichungen 02175350 A (ISUZU) sowie 02175351 A (ISUZU) bekannt. Es handelt sich hierbei aber um ganz einfache Startersysteme. In der Entwicklung fortgeschrittenere bekannte Systeme weisen hingegen einen Hochsetzsteller von der Batterie zum Kondensatorspeicher auf, der beim Starten die beiden Speicher voneinander getrennt hält (siehe z.B. die eingangs erwähnte SU 1265388 AI (MOSK AUTOMECH) ) . Er dient dazu, den Kondensatorspeicher auf ein gegenüber dem Langzeitspeicher erhöhtes Spannungsniveau zu laden. Die Erfindung (zweiter Aspekt) geht einen anderen Weg, indem sie eine aktiv steuerbare Kopplung zwischen den beiden Energiespeichern nicht (nur) beim Laden des Kurzzeitspeichers vorsieht, sondern auch beim Entladen während des Startvorgangs. Die Beteiligung beider Energiespeicher erlaubt eine kleinere Dimensionierung des Kurzzeitspeichers bei gleichzeitiger Anpassung der relativen Leistungsentnahme an die i.a. unterschiedlichen Charakteristika der beiden verschiedenen Speichertypen. Unter "aktiv steuerbar" wird nicht (nur) die Möglichkeit einer Zu- und Abschaltung des Langzeitspeichers und/oder Kurzeitspeichers verstanden, sondern die Möglichkeit einer kontinuierlichen Vorstellung ds Anteils der Energie und/oder Leistung, welche dem Langzeitspeicher und/oder dem Kurzzeitspeicher beim Starten entnommen wird.
Vorteilhaft wird dem Langzeitspeicher hierbei nur gerade so viel Leistung entnommen, wie unter voller Ausnutzung des Kurzzeitspeichers zum Starten erforderlich ist (Anspruch 4) . Wie oben ausgeführt wurde, hängt die zum Starten erforderliche Leistung u.a. stark von der Temperatur des Verbrennungsmotors ab. Der Betrag der dem Langzeitspeicher entnommenen Leistung kann daher auf der
Grundlage einer Messung des momentanen Temperaturwerts anhand einer bekannten Temperaturabhängigkeitsfunktion gesteuert werden. Diese Ausgestaltung führt zu einer minimalen Kurzzeitbelastung des Langzeitspeichers .
Bei einer anderen vorteilhaften Ausgestaltung wird dem Kurzzeitspeicher nur gerade so viel Leistung entnommen, wie unter voller Ausnutzung des Langzeitspeichers zum Starten erforderlich ist (Anspruch 5) . Dies erlaubt es, den bei der jeweiligen Temperatur maximal möglichen Anteil der im Kurzzeitspeicher gespeicherten
Energie für andere Zwecke als zum Starten zu verwenden, insbesondere für die Speisung anderer Verbraucher vor dem Starten, wie den im Zusammenhang mit Anspruch 2 erwähnten Heizungen (insb. Katalysatorheizung) .
Vorteilhafterweise entnimmt man dem Langzeitspeicher die größtmögliche Leistung (Anspruch 6) . Dies erzielt man, indem die Koppelschaltung den Langzeitspeicher mit optimaler Anpassung belastet, d.h. daß der effektive Innenwiderstand der Koppelschal-
ERSATZBLAπ(REGEL 26) tung ungefähr gleich dem Innenwiderstand des Langzeitspeichers ist. Bei dieser Anpassung sind Widerstände zwischen der Langzeitbatterie und der Koppelschaltung zu berücksichtigen (indem man sie entweder dem Eingangswiderstand der Koppelschaltung oder dem Innenwiderstand des Langzeitspeichers zuschlägt) . Diese Ausgestaltung weist dem Langzeitspeicher einen vergleichsweise größeren Anteil an der Gesamtleistung zu und erlaubt damit eine vergleichsweise kleinere Dimensionierung des Kurzzeitspeichers. Bei Abwandlungen dieser Ausgestaltung wird dem Langzeitspeicher nur ein bestimmter Bruchteil der größtmöglichen Leistung entnommen, z.B. Bruchteile im Bereich von 50 bis 100%, vorteilhaft 65 bis 100%, vorzugsweise 75 bis 100% und besonders vorzugsweise 90 bis 100% der größtmöglichen Leistung.
Vorzugsweise arbeitet der Kurzzeitspeicher auf einem anderen, insbesondere einem höheren Spannungsniveau als der Langzeitspeicher (Anspruch 7) . Vorzugsweise umfaßt dann die Koppelschaltung einen Spannungswandler, z.B. einen Hochsetzsteller, der Strom von dem einen auf das andere Spannungsniveau bringen kann. Die ver- schiedenen Spannungsniveaus können vorteilhaft den verschiedenen technischen Eigenheiten der beiden verschiedenen Speichertypen angepaßt sein. So erreicht ein Kondensatorspeicher i.a. seine größte Energiespeicherdichte bei einem relativ hohen Spannungsniveau (z.B. bei 300 Volt), während eine Akkumulatorbatterie - je nach verwendetem Batterietyp und Anzahl der in Serie geschalteten
Zellen - in der Regel niedrigere Spannungen liefert, die i.a. der Spannung eines Niederspannungsbordnetzes entsprechen (z.B. 12 Volt oder 24 Volt). Die Koppelschaltung ist z.B. ein Hochsetzsteller auf der Grundlage einer Induktionspu pschaltung. Eine solche ist z.B. aus einer Serienschaltung einer Induktivität und eines elektronischen Schalters aufgebaut, die bei geschlossenem Schalter von Strom aus dem Langzeitspeicher durchflössen ist. Zwischen diesen beiden Elementen befindet sich eine Abzweigung zu dem auf höherem Spannungsniveau liegenden Kurzzeitspeicher, welche mit einer rückflußverhindernden Diode ausgerüstet ist. Durch Öffnen des Schalters entsteht durch Induktion eine (im Prinzip beliebig hohe) Spannungsspitze, welche den Strom kurzfristig zum hohen Spannungsniveau fließen läßt und damit hochsetzt. Durch Vergrößern oder Verkleinern der Schaltfrequenz des Schalters läßt sich die hochgesetzte Strommenge entsprechend vergrößern bzw. verkleinern.
Vorteilhaft wird der Starter von einem Wechselrichter mit Gleich- spannungs-Zwischenkreis gespeist, wobei der Kurzzeitenergiespeicher auf dem Spannungsniveau des Gleichspannungs-Zwischenkreises liegt (Anspruch 8) . Ein Gleichspannungs-Zwischenkreis-Wechselrich- ter schneidet beispielsweise aus einer konstant gehaltenen Zwischenkreis-Gleichspannung mit Hilfe von elektronischen Schaltern (z.B. Feldeffekttransistoren oder IGBT's) breitenmodulierte Pulse heraus, die - gemittelt durch die Induktivität des Generators - zu nahezu glatten Gleichströmen gewünschter Spannung oder Wechselströmen gewünschter Frequenz, Amplitude und Phase führen. Besonders vorteilhaft ist daher der Starter als Drehstrommaschine (auch Drehfeldmaschine genannt) ausgebildet. Hierunter wird - im Gegensatz zu einer Stromwendermaschine - eine insbesondere komutatorlo- se Maschine verstanden, in der z.B. der Ständer ein magnetisches Drehfeld erzeugt, welches um 360° umläuft und den Läufer mitnimmt. Der Starter kann insbesondere als Asynchronmaschine, z.B. mit Kurzschlußläufer, oder als Synchronmaschine, z.B. mit Läufer mit ausgeprägten Magnetpolen ausgebildet sein. Der Kurzschlußläufer bei der Asynchronmaschine kann z.B. ein Kä-figläufer mit Kurzschlußstäben in Axialrichtung sein. Bei anderen Ausgestaltungen der Asynchronmschine weist der Läufer Wicklungen auf, die z.B. über Schleifringe extern kurzgeschlossen werden können. Die ausgeprägten Magnetpole des Läufers bei der Synchronmaschine realisiert man z.B. durch Permanentmagnete oder durch Elektromagnete, die z.B. über Schleifringe mit Erregerstrom gespeist werden können. Der Starter kann indirekt, etwa über Ritzel, Vorgelege etc. mit der Verbrennungsmotorwelle gekoppelt sein. Vorteilhaft sitzt aber ein Teil des Starters, insbesondere der Läufer, direkt auf der Motorwelle und ist vorzugsweise drehtest mit ihr gekoppelt oder koppelbar. Der Läufer kann beispielsweise auf der zum Getriebe führenden Welle sitzen, oder an der anderen Seite des Verbren- nungsmotors auf dem dort blind endenden Wellenstummel. Ein anderer Teil des Starters, insbesondere der Ständer, ist drehfest mit einem nicht drehbaren Teil verbunden oder lösbar verbindbar, z.B. dem Motor- oder Getriebegehäuse. Eine wechselrichtergesteuerte Drehstrommaschine kann neben der Starterfunktion vorteilhaft eine oder mehrere Zusatzfunktionen haben, z.B. die Funktion eines Generators für die Bordnetzversorgung, einer zusätzlichen Fahrzeugantriebsmotor, als zusätzliche Fahrzeugbremse und/oder einer aktiven Glättungsvorrichtung für Drehungleichförmigkeiten, die bei Verbrennungsmotoren aufgrund deren diskontinuierlicher Arbeitsweise auftreten. Die Umsteuerung vom Motor- in den Generatorbetrieb erfolgt durch entsprechende Umsteuerung der magnetischen Felder anhand entsprechender Wech- selrichteransteuerung.
Die Erfindung ist auch auf Verfahren zum Starten eines Verbrennungsmotors gerichtet. Bezüglich der Merkmale, Ausgestaltungen und Vorteile der erfindungsgemäßen Verfahren wird auf die Ansprüche 9 und 10 sowie die vorstehenden und folgenden Ausführungen zum Star- tersystem und dessen Ausgestaltungen und Ausführungsbeispiele verwiesen.
Die Erfindung wird nun anhand von Ausführungsbeispielen und der angefügten schematischen Zeichung näher erläutert. In der Zeichnung zeigen:
Fig. 1 ein Diagramm der für einen Verbraucher entnehmbaren relativen Energie als Funktion der Temperatur (erster Aspekt) ; Fig. 2 ein Diagramm der vom Kurzzeitspeicher und vom Langzeitspeicher gelieferten Leistungsanteile als Funktion der Temperatur (zweiter Aspekt) ; Fig. 3 eine Schemadarstellung der wichtigsten Funktionseinheiten der Startersysteme (erster und zweiter Aspekt) ; Fig. 4 ein Flußdiagramm eines Verfahrens zum Starten (erster Aspekt) ; Fig. 5 ein Flußdiagramm eines anderen Verfahrens zum Starten (zweiter Aspekt) .
Fig. 1 veranschaulicht die Energieverhältnisse bei einem Ausführungsbeispiel des ersten Aspekts der Erfindung. Aufgetragen ist der Anteil ev der im Kondensator gespeicherten Energie, der für den Verbraucher abgezweigt wird, als Funktion der Temperatur des Verbrennungsmotors. Der Anteil ev ist definiert als Verhältnis des für den Verbraucher abgezweigten Energiebetrags Ev und des Betrags der gesamten im Kondensator gespeicherten Energie EtoIa|. Bei dem einen Extremwert, der tiefsten vorkommenden Temperatur Tmin, ist der Verbraucherenergienteil ev gleich null. Zum Starten wird die gesamte gespeicherte Energie benötigt, d.h. der Startenergieanteil e stArt/k-it ist gleich eins. Bei der höchsten vorkommenden Temperatur T.^, z.B. der Betriebstemperatur des Verbrennungsmotors, wird nur ein Teil der gespeicherten Energie zum Starten benötigt, d.h. der Startenergieanteil eSülI1ywarm ist deutlich kleiner als eins. Der verbleibende Energiebetrag kann hier zur Speisung eines Verbrauchers vor dem Starten dienen, d.h. der Verbraucherenergieanteil ev rm ist gleich der Differenz von eins und eStart/waπn. Fig. 1 veranschaulicht schematisch ev für alle Werte zwischen Tmm und Tmax. Aufgrund des mit zunehmender Temperatur abnehmenden Widerstands , den der Verbrennungsmotor dem Starter entgegensetzt, sowie der abnehmenden Startdrehzahl, handelt es sich bei der dargestellten Abhängigkeit um eine stetige und nur ansteigende (oder konstante) Funktion.
Fig. 2 veranschaulicht die Leistungsverhältnisse bei einem Ausführungsbeispiel gemäß dem zweiten Aspekt der Erfindung. Aufgetragen ist hier die (für einen bestimmten Moment) beim Starten erforderliche Gesamtleistung als Funktion der Temperatur. Entsprechend den obigen Ausführungen ist die Gesamtleistung bei der tiefsten vorkommenden Temperatur Tmιn maximal und nimmt mit steigender Temperatur bis zur höchsten Temperatur Tmax ab. Gestrichelt dargestellt ist die maximale Leistungsentnah e aus dem Kurzzeitspeicher, welche temperaturunabhängig - und damit in der Darstellung eine horizontale Gerade - ist. Da beim zweiten Aspekt der Erfin- düng Kurzzeitspeicher und Batterie beim Starten zusammenwirken, liegt die maximale KurzZeitspeicherleistung unterhalb der maximalen Gesamtleistung bei der tiefsten vorkommenden Temperatur ^, bildet also eine Art Sockel. Der Batterie wird nur in demjenigen (schraffiert dargestellten) Temperaturbereich Energie entnommen, bei dem die Gesamtleistungskurve über diesem Sockel liegt. Dies ist in Figur 2 beispielhaft für eine Temperatur etwas oberhalb Tmin dargestellt. Bei mittleren Temperaturen unterschreitet die Kurve der Gesamtleistung den Sockel. Das heißt, bei Temperaturen oberhalb des Schnittpunkts erfolgt das Starten ausschließlich aus dem Kurzzeitspeicher, die Batterie trägt hier nicht bei. Zu anderen (nicht gezeigten) Zeitpunkten kann die maximale Kurzzeitspeicherleistung auch bei T,^ die erforderliche Gesamtleistung unterschreiten, so daß dann die Batterie beitragen muß. Bei anderen (nicht gezeigten) Ausführungsformen kann die maximale Kurzzeitspeicherleistung zu allen Zeitpunkten unterhalb der erforderlichen Gesamtleistung bei T^ liegen, so daß zu allen Zeitpunkten die Batterie zum Starten beiträgt.
Ein Startersystem weist gemäß Fig. 3 (für ein Kraftfahrzeug, z.B. einen Personenkraftwagen), einen Verbrennungsmotor 1 auf, der Drehmoment über eine Antriebswelle 2 (z.B. die Kurbelwelle des Verbrennungsmotors 1) , eine Kupplung 3 und weitere (nicht gezeigte) Teile eines Antriebsstrangs auf die Antriebsräder des Fahr- zeugs abgibt. Bei der hier interessierenden Starterfunktion ist die Kupplung 3 geöffnet. Auf der Antriebswelle 2 sitzt eine als Starter dienende elektrische Maschine 4, hier eine Asynchron- Drehstrommaschine. Sie weist einen direkt auf der Antriebswelle 2 sitzenden und drehtest mit ihr verbundenen Läufer 5 sowie einen z.B. am Gehäuse des Verbrennungsmotors 1 abgestützten Ständer 6 auf. Der Starter 4 (sowie die unten näher beschriebenen Einrichtungen zu seiner Speisung und zur Energiespeicherung) sind so dimensioniert, daß der Verbrennungsmotor 1 vorzugsweise direkt (d.h. ohne Schwungradfunktion oder ähnliches) gestartet werden kann und vorzugsweise auch keine Über- oder Untersetzung zwischen Starter 4 und Verbrennungsmotor 1 angeordnet ist, so daß beide permanent zusammenlaufen können. Die (nicht dargestellte) Wicklung des Ständers 6 wird durch einen Wechselrichter 7 mit elektrischen Strömen und Spannungen praktisch frei einstellbarer Amplitude, Phase und Frequenz gespeist. Es handelt sich z.B.- um einen Gleich- spannungs-Zwischenkreis-Wechselrichter , welcher aus einer im wesentlichen konstanten Zwischenkreis-Gleichspannung mit Hilfe von elektronischen Schaltern z.B. sinusbewertete breitenmodulierte Pulse herausschneidet, die -ge ittelt durch die Induktivität der elektrischen Maschine 4 - zu nahezu sinusförmigen Strömen der gewünschten Frequenz, Amplitude und Phase führen. Der Wechselrichter ist im wesentlichen aus einem maschinenseitigen Gleichspan- nungs-Wechselspannungsumrichter 7a, einem Zwischenkreis 7b und einem bordnetzseitigen Gleichspannungs-Wandler 7c aufgebaut. Ein Kurzzeitenergiespeicher 8, z.B. ein Kondensatorspeicher, liegt - elektrisch gesehen - im Zwischenkreis 7b. Der Wandler 7c ist mit einem Fahrzeugbordnetz 9 und einem Langzeitenergiespeicher, hier einer Bordnetzbatterie 10, gekoppelt. Das Bordnetz 9 und die Batterie 10 liegen auf einem niedrigen Spannungsniveau, z.B. 12 oder 24 Volt. Der Zwischenkreis 7b liegt demgegenüber auf einer erhöhten Spannung, die vorteilhafterweise im Bereich zwischen 48 und 350 Volt liegt. Die elektrische Maschine 4 kann nach dem Startvorgang, bei dem sie elektrische Energie benötigt, als Gene- rator fungieren, d.h. elektrische Energie liefern. Der Wandler 7c ist daher als bidirektionaler Wandler ausgebildet, um einerseits für den Startvorgang bzw. dessen Vorbereitung elektrische Energie aus der Bordnetzbatterie 10 in den Zwischenkreis 7b bringen zu können, und um andererseits beim Generatorbetrieb Energie aus dem Zwischenkreis 7b auf die Niederspannungsseite zu überführen, um Verbraucher des Bordnetzes 9 zu speisen und die Bordnetzbatterie 10 zu laden. Der Umrichter 7a wandelt im Motorbetrieb die Gleichspannung des Zwischenkreises 7b in Wechselspannung um, im Generatorbetrieb speist er die von der elektrischen Maschine 4 geliefer- te Energie nach Gleichrichtung in den Zwischenkreis 7b ein. Der
Kondensatorspeicher 8 ist in der Lage, Spannungspulse mit einer für eine hohe Pulsfrequenz (vorteilhaft im Bereich von 20 kHz bis 100 kHz) mit der erforderlichen Flankensteilheit zu liefern. Er dient ferner als Energiespeicher für die zum Starten benötigte Energie, ggf. im Zusammenwirken mit der Batterie 10. Bei anderen (nicht gezeigten) Ausführungsformen ist für die Bereitstellung flankensteiler Pulse ein gesonderter, besonders schnell entladbarer Kondensatorspeicher vorgesehen, der nur über geringere Kapazität zu verfügen braucht. Die Aufladung des Kondensatorspei- chers 8 kann entweder im Generatorbetrieb durch die elektrische
Maschine 4 über den Umrichter 7a, oder bei Stillstand des Fahrzeuges aus der Batterie 10 über den Wandler 7c erfolgen. Ein Hochleistungsverbraucher 11, z.B. eine elektrische Katalysatorheizung, ist über ein Verbrauchersteuergerät 12 elektrisch mit dem Zwischenkreis 7b gekoppelt. Die Speisung des Hochleistungsverbrauchers 11 erfolgt vorteilhaft auf einem hohen Spannungsniveau, z.B. dem Spannungsniveau des Zwischenkreises 7b. In diesem Fall dient das Verbrauchersteuergerät 12 nicht als Spannungswandler, sondern nur als Stromsteuergerät. Bei anderen Ausführungsformen hat es zusätzlich die Funktion eines Spannungswandlers zu höheren oder niedrigeren Spannungen. Ein übergeordnetes Steuergerät 13 steuert den Wechselrichter 7, und zwar den Umrichter 7a und den Wandler 7c, sowie das Verbrauchersteuergerät 12. Es gibt dem Umrichter 7a /Amplitude, Phase und Frequenz des an den Starter 4 zu liefernden Dreiphasenstroms vor. Dem Wandler 7c gibt es den Strombetrag, die Stromrichtung und den Betrag des Spannungsherauf- bzw. -herabsetzung vor. Dem Verbrauchersteuergerät 12 gibt es schließlich vor, welchen Strombetrag dieses aus dem Zwischenkreis 7b entnehmen soll und ggf. welche Spannungsdifferenz dabei zu überwinden ist. Das Steuergerät 13 empfängt Eingangssignale von einem Temperatursensor 14, der Information z.B. über die Kühlmitteltemperatur des Verbrennungsmotors 1 liefert. Es empfängt ferner Eingangssignale von einem (nicht gezeigten) Drehwinkelgeber, aus denen es die momentane Drehzahl der Antriebswelle 2 ermitteln kann. Ferner kann es eine Reihe weiterer Informationen erhalten, z.B. betreffend die Stellung der Drosselklappe des Verbrennungsmotors 1, den Zündzeitpunkt etc..
Im folgenden wird die Funktion des Startersystems von Fig. 3 gemäß dem ersten Aspekt der Erfindung anhand des Flußdiagramms gemäß Fig. 4 erläutert: Im Schritt Sl wird der Kondensatorspeicher 8 aufgeladen. Die Aufladung erfolgt auf einen feststehenden vorgegebenen Wert, der z.B. durch den Sollwert der Zwischenkreis- Spannung vorgegeben ist. Nach Möglichkeit erfolgt die Ladung des Kondensatorspeichers 8 bereits bei laufendem Verbrennungsmotor aub. der dann als Generator fungierenden elektrischen Maschine 4. Bei längerem Fahrzeugstillstand entlädt sich der Kondensatorspeicher 8 aber allmählich, so daß er dann ganz oder teilweise durch Ener- gieentnahme aus der Bordnetzbatterie 10 aufzuladen ist. Im Schritt S2 ermittelt das Steuergerät 13 die momentane Temperatur des Verbrennungsmotors anhand der vom Temperatursensor 14 gelieferten Meßinformation. Im Schritt S3 ermittelt das Steuergerät 13 z.B. anhand eines abgespeicherten Kennfeldes diejenige Energiemenge, die erwartungsgemäß bei der im vorangegangenen Schritt ermittelten Temperatur zum Starten benötigt wird. Auf der Grundlage der ermittelten benötigten Energiemenge und dem bekannten Wert der im Kondensatorspeicher gespeicherten Energiemenge ermittelt das Steuergerät im Schritt S4 denjenigen Teil der im Kondensator- Speicher 8 gespeicherten Energie, der bei der vorliegenden Temperatur nicht zum Starten benötigt wird. Im Schritt S5 fragt das Steuergerät 13 ab, ob ein Kommando zum Start des Verbrennungsmotors - etwa durch Betätigung des Zündschlüssels - gegeben wurde. Falls dies nicht der Fall ist, führt das Steuergerät 13 die Schritte S2 bis S5 wiederholt aus. Falls hingegen ein Startkommando gegeben wurde, schreitet es zum folgenden Schritt S6 fort. (Bei anderen (nicht gezeigten) Ausführungsformen befindet sich das Programm in einem passiven Wartezustand; erst nach Erhalt eines Startkommandos führt es dort Aktionen gemäß den Schritten S2 und S4 durch). Im Schritt S6 veranlaßt das Steuergerät 13, daß der Hochleistungsvrbraucher 11, hier eine Katalysatorheizung, mit kurzfristig sehr hoher Leistung mit dem nicht benötigten Teil der Energie gespeist wird. Der Katalysator kommt dadurch sofort z.B. auf Betriebstemperatur und steht damit bereits bei den ersten Zündungen für die stoffliche Umsetzung schädlicher Abgase bereit. Im Schritt S7 wird schließlich der Verbrennungsmotor 1 unter Verwendung des im Kondensatorspeicher 8 verbliebenen Energieanteils gestartet.
Das Flußdiagramm gemäß Fig. 5 erläutert eine Abwandlung der Funktionsweise des Startersystems von Fig. 3 gemäß dem zweiten Aspekt der Erfindung: Bezüglich der Schritte Sll, S12 und S13 wird auf die obigen Auführungen zu den Schritten Sl, S2 und S3 verwiesen, die auch hier vollinhaltlich zutreffen. Im Schritt S14 wird auf der Grundlage des Ergebnisses im Schritt S13 sowie dem bekannten Wert der im Kondensatorspeicher 8 gespeicherten Energiemenge derjenige Energieanteil ermittelt, der diesem bei der vorliegenden Temperatur der Bordnetzbatterie 10 für den Startvorgang entnommen werden muß. Im Schritt S15 wird - entsprechend den obigen Ausführungen zum Schritt S5 - abgefragt, ob ein Startkommando gegeben wurde. (Auch bei dieser Ausführungsform kann die Startkommando- Abfrage vor Ausführung der Schritte S12, S13 und S14 erfolgen.) Im Schritt S16 veranlaßt das Steuergerät 13 schließlich das Starten des Verbrennungsmotors 1 unter Energieentnahme aus dem Kondensatorspeicher 8 und ggf. aus der Bordnetzbatterie 10 entsprechend dem im Schritt S14 ermittelten Anteil. Bei einer anderen (nicht gezeigten) Ausführungsform werden die Schritte S14 und S16 im Verlauf des Startvorgangs häufig wiederholt durchlaufen, um auch eine ggf. vorhandene zeitliche Veränderung des zu entnehmenden Energieanteils im Verlauf des Startvorgangs zu berücksichtigen. Eine solche Zeitabhängigkeit kann z.B. dadurch auftreten, daß sich der Kondensatorspeicher 8 im Verlauf des Ladevorgangs entlad und gegen Ende seines Entladungsvorgangs nur noch weniger Energie liefern kann, so daß der der Bordnetzbatterie 10 zu entnehmende Anteil zunimmt. Genau genommen wird bei dieser Ausführungsform also im Schritt S14 der Leistungsanteil ermittelt, der bei der vorliegenden Temperatur und zu dem betreffenden Zeitpunkt im Verlauf des Startvorgangs der Bordnetzbatterie 10 entnommen werden muß. Im Schritt S16 erfolgt dann eine entsprechende Leistungs- entnahme aus dem Kondensator und der Batterie entsprechend dem im Schritt 14 ermittelten Leistungsanteil.
Zusammenfassend liegt der Erfindung also der Gedanke zugrunde, die Temperaturabhängigkeit der zum Starten benötigten Energiemenge nicht bei der Aufladung des Kurzzeitspeichers zu berücksichtigen, sondern beim Entladungs- und/oder Startvorgang. Dies ist besonders vorteilhaft für solche Startersysteme, bei denen der Kurzzeit- Speicher spannungsmäßig auf einem vorgegebenen Niveau liegen soll, etwa dem Niveau des Zwischenkreises eines der Speisung des Starters dienenden Wechselrichters.

Claims

Patentansprüche
1. Startersystem für einen Verbrennungsmotor (1) , mit: - einem elektrischen Starter (4) , einem elektrischen Kurzzeitspeicher (8) , insbesondere einem Kondensatorspeicher, der nach Aufladung zum Speisen des Starters (4) dient; einer direkten oder indirekten Temperaturerfassung; - einer Steuereinrichtung (13) , die eine Entnahme eines Teils der im Kurzzeitspeicher gespeicherten Energie zum Speisen eines oder mehrerer Verbraucher (11) vor dem Startvorgang veranlaßt, wobei die Größe dieses Teils temperaturabhängig ist, und zwar bei tiefen Te peratu- ren kleiner als bei hohen Temperaturen ist.
2. Startersystem nach Anspruch 1, bei welchem der Verbraucher (11) eine elektrische Heizung, insbesondere eine Katalysatorheizung ist.
3. Startersystem für einen Verbrennungsmotor (1), mit einem elektrischen Starter (4) ; - einem elektrischen Kurzzeitspeicher (8) , insbesondere einem Kondensatorspeicher, der nach Aufladung zum Spei- sen des Starters (4) dient; einem elektrischen Langzeitspeicher (10) ; und einer Koppelschaltung (7c) , die beim Starten eine gleichzeitige Energieausnahme aus dem Kurzzeitspeicher (8) und dem Langzeitspeicher (10) erlaubt, wobei der Anteil der dem Langzeitspeicher (10) und/oder dem Kurzzeitspeicher (8) entnommenen Energie und/oder Leistung aktiv steuerbar ist.
4. Startersystem nach Anspruch 3, wobei dem Langzeitspeicher (10) nur so viel Leistung entnommen wird, wie unter maximaler
Abgabeleistung des Kurzzeitspeichers (8) zum Starten erforderlich ist. Startersystem nach Anspruch 3, wobei dem Kurzzeitspeicher (8) nur so viel Leistung entnommen wird, wie unter maximaler Abgabeleistung des Langzeitspeichers (10) zum Starten erforderlich ist.
Startersystem nach einem der Ansprüche 3 bis 5, wobei dem Langzeitspeicher (10) in optimaler Anpassung die größtmögliche Leistung oder ein bestimmter Bruchteil hiervon entnommen wird.
Startersystem nach einem der Ansprüche 3 bis 6, wobei der Kurzzeitspeicher (8) auf einem anderen, insbesondere höheren Spannungsniveau als der Langzeitspeicher (10) arbeitet, und die Koppelschaltung (7c) einen Spannungswandler umfaßt.
Startersystem nach einem der Ansprüche 1 bis 7, wobei der Starter von einem Wechselrichter (7) mit Gleichspannungs-Zwi- schenkreis (7b) gespeist wird, und der Kurzzeitspeicher (8) im Gleichspannungs-Zwischenkreis (7b) liegt.
9. Verfahren zum Starten eines Verbrennungsmotors (1), mit folgenden Schritten:
Aufladen eines Kurzzeitspeichers (8) durch Energieentnahme aus einem Langzeitspeicher (10); - Ermitteln der Energiemenge, die zum Starten des Verbrennungsmotors (1) benötigt wird;
- aufgrund eines Startkommandos Entnahme des nicht zum Starten benötigten Teils der gespeicherten Energie und Speisen eines oder mehrerer Verbraucher (11) mit dieser Energie; und
Starten des Verbrennungsmotors (1) unter Verwendung des im Kurzzeitspeicher (8) verbliebenen Energieanteils.
10. Verfahren zum Starten eines Verbrennungsmotors (1), mit folgenden Schritten:
- Aufladen eines Kurzzeitspeichers (8) durch langsame Energieentnahme aus einem Langzeitspeicher (10); Starten des Verbrennungsmotors (1) unter gleichzeitiger Energieentnahme aus dem Kurzzeitspeicher (8) und dem Langzeitspeicher (10), wobei der dem Langzeitspeicher (10) und/oder dem Kurzzeitspeicher (8) entnommene Energieanteil aktiv steuerbar ist.
PCT/EP1998/001297 1997-03-06 1998-03-06 Startersysteme für einen verbrennungsmotor sowie verfahren zum start eines verbrennungsmotors WO1998039565A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP53817598A JP2001513863A (ja) 1997-03-06 1998-03-06 内燃機関用のスタータシステム並びに内燃機関を始動させる方法
EP98913670A EP0964995B1 (de) 1997-03-06 1998-03-06 Startersysteme für einen verbrennungsmotor sowie verfahren zum start eines verbrennungsmotors
DE59807311T DE59807311D1 (de) 1997-03-06 1998-03-06 Startersysteme für einen verbrennungsmotor sowie verfahren zum start eines verbrennungsmotors
IL13367698A IL133676A0 (en) 1997-07-01 1998-07-01 Animal stall with two different positions for an animal related means
US09/389,992 US6202615B1 (en) 1997-03-06 1999-09-03 Methods and apparatus for starting an internal combustion engine
US09/389,549 US6109229A (en) 1997-03-06 1999-09-03 Auxiliary starter unit for use with a diesel engine, and method for starting a diesel engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19709298.5 1997-03-06
DE19709298A DE19709298C2 (de) 1997-03-06 1997-03-06 Startersysteme für einen Verbrennungsmotor sowie Verfahren zum Starten eines Verbrennungsmotors

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1998/001298 Continuation WO1998039566A1 (de) 1997-03-06 1998-03-06 Starthilfsanlage für einen dieselmotor sowie verfahren zum starten eines dieselmotors
US09/389,992 Continuation US6202615B1 (en) 1997-03-06 1999-09-03 Methods and apparatus for starting an internal combustion engine

Publications (1)

Publication Number Publication Date
WO1998039565A1 true WO1998039565A1 (de) 1998-09-11

Family

ID=7822515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001297 WO1998039565A1 (de) 1997-03-06 1998-03-06 Startersysteme für einen verbrennungsmotor sowie verfahren zum start eines verbrennungsmotors

Country Status (5)

Country Link
US (1) US6202615B1 (de)
EP (1) EP0964995B1 (de)
JP (1) JP2001513863A (de)
DE (2) DE19709298C2 (de)
WO (1) WO1998039565A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061271A1 (de) * 2001-01-30 2002-08-08 Epcos Ag Bordstromspeicher 12volt und/oder 42volt kfz-bordnetze sowie vorrichtung zum starten
EP1044852A3 (de) * 1999-04-16 2005-02-16 Volkswagen Aktiengesellschaft Bordnetz für Kraftfahrzeuge
FR2933357A1 (fr) * 2008-07-02 2010-01-08 Peugeot Citroen Automobiles Sa Systeme de gestion electrique multi tension pour vehicule hybride.

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817497A1 (de) * 1998-04-20 1999-10-28 Isad Electronic Sys Gmbh & Co Verfahren und Startersystem zum Starten eines Verbrennungsmotors
DE19847392B4 (de) * 1998-10-14 2008-06-19 Robert Bosch Gmbh Bordnetz mit zwei unterschiedlichen Gleichspannungsniveaus
DE19859036A1 (de) * 1998-12-24 2000-06-29 Audi Ag Bordnetz für ein Kraftfahrzeug
JP4064016B2 (ja) * 1999-09-13 2008-03-19 本田技研工業株式会社 内燃機関の始動制御装置
JP3775189B2 (ja) * 1999-12-28 2006-05-17 国産電機株式会社 内燃機関用スタータジェネレータ
US6433990B1 (en) * 2000-02-02 2002-08-13 Nea Electronics, Inc. Frangible actuator with redundant power supply
US6380701B1 (en) * 2000-03-31 2002-04-30 Visteon Global Tech., Inc. Vehicle charge assembly
US6398511B1 (en) * 2000-08-18 2002-06-04 Bombardier Motor Corporation Of America Fuel injection driver circuit with energy storage apparatus
US6420793B1 (en) * 2000-09-21 2002-07-16 Ford Global Technologies, Inc. Power delivery circuit with boost for energetic starting in a pulsed charge starter/alternator system
US6717291B2 (en) * 2000-10-10 2004-04-06 Purkey's Electrical Consulting Capacitor-based powering system and associated methods
DE10116463A1 (de) 2001-04-03 2002-10-10 Isad Electronic Sys Gmbh & Co System zur Speicherung von elektrischer Energie, sowie Verfahren zum Betreiben eines solchen Energiespeichersystems
US6616573B2 (en) * 2001-09-21 2003-09-09 Club Car, Inc. Method and apparatus for eliminating power drainage in power sources used with starter-generators
JP3750608B2 (ja) * 2002-01-23 2006-03-01 トヨタ自動車株式会社 車両における蓄電装置の制御装置
DE10231379B3 (de) * 2002-05-24 2004-01-15 Daimlerchrysler Ag Antriebssystem für ein Kraftfahrzeug mit einem Verbrennungsmotor und einer elektrischen Maschine
DE10231091A1 (de) 2002-07-10 2004-01-22 Robert Bosch Gmbh Aktivgleichrichter-Modul für Drehstromgeneratoren von Fahrzeugen
EP1424494A1 (de) 2002-11-27 2004-06-02 Continental ISAD Electronic Systems GmbH & Co. oHG Hybridantriebssystem sowie Verfahren zur gemeinsamen Aufbringung von Antriebs-Drehmoment
DE10259879A1 (de) * 2002-12-20 2004-07-01 Zf Friedrichshafen Ag Schaltungsanordnung zur Bereitstellung von Energie an elektrische Verbraucher unterschiedlichen Energiebedarfs
US7023107B2 (en) * 2003-01-24 2006-04-04 Mitsubishi Denki Kabushiki Kaisha Power circuit for battery
WO2004071814A1 (ja) * 2003-02-17 2004-08-26 Denso Corporation 車両用電源システム
JP4120418B2 (ja) * 2003-02-17 2008-07-16 株式会社デンソー 自動車用電源装置
US7342382B1 (en) 2004-02-03 2008-03-11 Dana Corporation Method of determining transition from starter to alternator function by monitoring battery voltage or current
EP1564862B2 (de) * 2004-02-16 2016-10-05 catem DEVELEC GmbH Kraftfahrzeug-Bordnetz mit einem Spannungswandler
US7319306B1 (en) 2004-06-25 2008-01-15 Sure Power Industries, Inc. Supercapacitor engine starting system with charge hysteresis
US7107956B2 (en) * 2004-07-30 2006-09-19 Ford Global Technologies, Llc Vehicle and method for controlling engine start in a vehicle
JP4320630B2 (ja) * 2004-10-22 2009-08-26 株式会社デンソー エンジン制御システム
DE102004062939B4 (de) * 2004-12-28 2019-02-21 Volkswagen Ag Verfahren und Vorrichtung zum optimierten Starten eines Verbrennungsmotors
AU2006210785C1 (en) * 2005-02-02 2009-12-17 Brp Us Inc. Method of controlling a pumping assembly
ITRM20050055U1 (it) * 2005-05-02 2006-11-03 Enea Ente Nuove Tec Sistema di accumulo energetico integrato.
US7278388B2 (en) * 2005-05-12 2007-10-09 Ford Global Technologies, Llc Engine starting for engine having adjustable valve operation
US8210145B2 (en) * 2005-05-17 2012-07-03 Panasonic Corporation Engine start device
FR2888891B1 (fr) * 2005-07-19 2010-09-17 Valeo Equip Electr Moteur Dispositif de demarrage d'un moteur a combustion interne, en particulier d'un moteur diesel
US7267090B2 (en) * 2005-11-21 2007-09-11 Gm Global Technology Operations, Inc. Method of starting a hybrid vehicle
US20100031911A1 (en) * 2006-09-22 2010-02-11 Bertrand Gessier Device for starting an internal combustion engine, particularly a diesel engine
FR2912190B1 (fr) * 2007-02-07 2013-06-14 Peugeot Citroen Automobiles Sa Procede de demarrage du moteur thermique d'un vehicule automobile hybride
CA2677940C (en) * 2007-02-16 2013-10-22 Universal Supercapacitors Llc Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device
US8134343B2 (en) * 2007-04-27 2012-03-13 Flextronics International Kft Energy storage device for starting engines of motor vehicles and other transportation systems
US7761198B2 (en) * 2007-06-25 2010-07-20 General Electric Company Methods and systems for power system management
US7889524B2 (en) 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
FR2935156A1 (fr) * 2008-08-25 2010-02-26 Peugeot Citroen Automobiles Sa Procede et dispositif de demarrage d'un moteur thermique, support d'enregistrement pour ce procede et vehicule equipe de ce dispositif.
DE102009006665A1 (de) * 2009-01-29 2010-08-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Bordnetz eines Kraftfahrzeuges und zugehöriges Betriebsverfahren
DE102009007545A1 (de) 2009-02-04 2010-08-05 Wenzl, Heinz, Dr. Starthilfesystem
JP2010270747A (ja) * 2009-04-23 2010-12-02 Denso Corp エンジン自動制御装置
DE102009027407A1 (de) * 2009-07-01 2011-01-05 Robert Bosch Gmbh Verfahren zum Betreiben einer Startersteuerung, Computerprogrammprodukt und Startersteuerung
DE102009027398A1 (de) * 2009-07-01 2011-01-05 Robert Bosch Gmbh Startvorrichtung für eine Brennkraftmaschine und Verfahren zum Betreiben einer Startvorrichtung
DE102009029526B4 (de) * 2009-09-17 2019-07-18 Seg Automotive Germany Gmbh Verfahren zum Betreiben einer Starteranlage
CA2740480A1 (en) * 2010-05-18 2011-11-18 Canadian Energy Efficiency Alliance System, apparatus and method for vehicle idling reduction
FR2964708B1 (fr) * 2010-09-15 2012-08-24 Peugeot Citroen Automobiles Sa Procede de commande d'une interface homme-machine d'un vehicule automobile
FR2965309B1 (fr) * 2010-09-29 2012-08-31 Peugeot Citroen Automobiles Sa Procede de gestion de l'arret et du redemarrage automatique d'un moteur thermique de vehicule automobile et vehicule automobile correspondant
FR2966205B1 (fr) * 2010-10-19 2018-01-12 Psa Automobiles Sa. Procede pour la mise en œuvre d'un dispositif de demarrage equipant un moteur d'un vehicule automobile
FI123903B (en) * 2012-10-24 2013-12-13 Waertsilae Finland Oy Internal combustion engine fluid detection system
US10119514B2 (en) 2015-05-05 2018-11-06 Ariel—University Research and Development Company Ltd. Ultracapacitor-based power source
US10876510B2 (en) 2016-03-02 2020-12-29 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US10124793B2 (en) * 2016-03-02 2018-11-13 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US10886583B2 (en) 2016-03-02 2021-01-05 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
JP6881341B2 (ja) * 2018-01-31 2021-06-02 トヨタ自動車株式会社 車両の制御装置
JP7124619B2 (ja) 2018-10-04 2022-08-24 トヨタ自動車株式会社 エンジンの始動装置およびエンジンの始動方法
DE102019126449A1 (de) * 2019-10-01 2021-04-01 Toyota Jidosha Kabushiki Kaisha Maschinenanlasser und Maschinenanlassverfahren
DE102020202192A1 (de) * 2020-02-20 2021-08-26 Vitesco Technologies GmbH Verfahren zum Betrieb eines Heizkatalysators und Heizkatalysatorsteuersystem
WO2021257592A1 (en) 2020-06-15 2021-12-23 Magnetic Energy Charging, Inc. Battery charger and method for charging a battery
EP4424984A1 (de) * 2023-03-03 2024-09-04 Volvo Truck Corporation Verfahren zum betreiben eines fahrzeugs und mit einem solchen verfahren betriebenes fahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403051A1 (de) * 1989-06-14 1990-12-19 Isuzu Motors Limited Verbrennungsmotor-Anlassersystem
DE4135025A1 (de) * 1990-10-25 1992-04-30 Magneti Marelli Spa System zum anlassen einer brennkraftmaschine fuer kraftfahrzeuge
JPH07305672A (ja) * 1994-05-11 1995-11-21 Isuzu Motors Ltd エンジン始動装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469141A (fr) 1965-12-28 1967-02-10 Accumulateurs Fixes Installation électrique d'alimentation pour véhicules et engins à moteur à combustion interne
DE3713835A1 (de) 1987-04-24 1988-11-03 Beru Werk Ruprecht Gmbh Co A Verfahren und vorrichtung zum schnellaufheizen einer elektrischen heizvorrichtung
US5175439A (en) 1987-12-21 1992-12-29 Robert Bosch Gmbh Power supply circuit for motor vehicles
DE3743317A1 (de) 1987-12-21 1989-06-29 Bosch Gmbh Robert Fahrzeugbordnetzsystem
JPH02175351A (ja) 1988-12-27 1990-07-06 Isuzu Motors Ltd 車両用補助電源
JP2518368B2 (ja) 1988-12-27 1996-07-24 いすゞ自動車株式会社 車両用電源装置
JPH02259277A (ja) 1989-03-31 1990-10-22 Isuzu Motors Ltd エンジン始動装置
JPH0669270B2 (ja) 1989-08-10 1994-08-31 いすゞ自動車株式会社 コンデンサの充電装置
JPH03117685A (ja) 1989-09-29 1991-05-20 Isuzu Motors Ltd エンジン予熱装置
DE4028242C2 (de) 1990-09-06 1997-08-07 Bayerische Motoren Werke Ag Bordnetz für Kraftfahrzeuge
IT1251206B (it) * 1991-09-18 1995-05-04 Magneti Marelli Spa Impianto elettrico di un autoveicolo, comprendente almeno un supercondensatore.
DE4138943C1 (de) 1991-11-27 1993-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4422256A1 (de) 1994-06-24 1996-01-04 Bayerische Motoren Werke Ag Bordnetz für ein Kraftfahrzeug
DE4422231C2 (de) * 1994-06-24 1997-08-28 Bayerische Motoren Werke Ag Bordnetz für ein Kraftfahrzeug
DE19541001A1 (de) 1995-08-14 1997-02-20 Holger Voigt Vorglüheinrichtung
DE19532163A1 (de) 1995-08-31 1997-03-06 Clouth Gummiwerke Ag System zur aktiven Verringerung von Drehungleichförmigkeiten einer Welle, insbesondere der Triebwelle eines Verbrennungsmotors, und Verfahren hierzu
WO1997008440A1 (de) 1995-08-31 1997-03-06 Isad Electronic Systems Gmbh & Co. Kg Antriebssystem, elektrische maschine zur verwendung in einem antriebssystem und verfahren zum betreiben einer elektrischen maschine in einem antriebssystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403051A1 (de) * 1989-06-14 1990-12-19 Isuzu Motors Limited Verbrennungsmotor-Anlassersystem
DE4135025A1 (de) * 1990-10-25 1992-04-30 Magneti Marelli Spa System zum anlassen einer brennkraftmaschine fuer kraftfahrzeuge
JPH07305672A (ja) * 1994-05-11 1995-11-21 Isuzu Motors Ltd エンジン始動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 096, no. 003 29 March 1996 (1996-03-29) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044852A3 (de) * 1999-04-16 2005-02-16 Volkswagen Aktiengesellschaft Bordnetz für Kraftfahrzeuge
WO2002061271A1 (de) * 2001-01-30 2002-08-08 Epcos Ag Bordstromspeicher 12volt und/oder 42volt kfz-bordnetze sowie vorrichtung zum starten
FR2933357A1 (fr) * 2008-07-02 2010-01-08 Peugeot Citroen Automobiles Sa Systeme de gestion electrique multi tension pour vehicule hybride.

Also Published As

Publication number Publication date
EP0964995B1 (de) 2003-02-26
EP0964995A1 (de) 1999-12-22
DE19709298C2 (de) 1999-03-11
DE59807311D1 (de) 2003-04-03
JP2001513863A (ja) 2001-09-04
DE19709298A1 (de) 1998-09-24
US6202615B1 (en) 2001-03-20

Similar Documents

Publication Publication Date Title
WO1998039565A1 (de) Startersysteme für einen verbrennungsmotor sowie verfahren zum start eines verbrennungsmotors
EP0961874B1 (de) Antriebssystem, insbesondere für ein kraftfahrzeug und verfahren zum entgegenwirken einer änderung der leerlaufdrehzahl in einem antriebssystem
DE60014291T2 (de) Motor-/Generatorgerät für ein Kraftfahrzeug
DE19840819C1 (de) Startersystem für einen Verbrennungsmotor sowie Verfahren zum Starten eines Verbrennungsmotors
EP1013506B1 (de) Bordnetz für ein Kraftfahrzeug
EP0847487B1 (de) Antriebssystem mit antriebsmotor, elektrischer maschine und batterie
DE102004020025A1 (de) Leistungsverbesserung eines integrierten Starter und Drehstromgenerators durch Ändern der Statorwicklungsschaltung
DE4311230A1 (de) Nicht-spurgebundenes Fahrzeug mit Elektromotor
EP0964996B1 (de) Starthilfsanlage für einen dieselmotor sowie verfahren zum starten eines dieselmotors
DE10148248A1 (de) Verfahren und elektrisches System zum energiereichen Anlassen eines Motors eines Kraftfahrzeuges
EP1034092B1 (de) Bordnetz für ein kraftfahrzeug
DE102011007874A1 (de) Vorrichtung und Verfahren zum Starten eines in einem Fahrzeug angeordneten Verbrennungsmotors
DE10202237B4 (de) Verfahren und Vorrichtung zur Steuerung einer induktions-Maschine
DE19903427A1 (de) Einrichtung zur Ladung eines Kondensators
EP1410482B1 (de) Antrieb für ein kraftfahrzeug
DE10059038B4 (de) Verfahren zum Starten eines Verbrennungsmotors und Anordnung dafür
DE19809399C2 (de) Startanlage für einen Dieselmotor
DE19858348B4 (de) Fahrzeug-Antriebssystem
EP1186463A1 (de) Verfahren zum Betrieb eines Antriebes mit einer Verbrennungsmaschine und einer elektrischen Maschine
DE29723175U1 (de) Startersysteme für einen Verbrennungsmotor
EP1469586B1 (de) Vorrichtung zur Verbesserung des Start-Stopp-Betriebes eines Fahrzeuges
DE19829442A1 (de) Motor zur Verwendung als Starter und Generator in einem Kraftfahrzeug
DE102004061600B4 (de) Maschinenanlasser-Steuersystem
EP1000242B1 (de) Verfahren zum starten eines dieselmotors sowie antriebssystem mi t einem dieselmotor
DE102020207872B4 (de) Verfahren und Vorrichtung zum Betreiben einer elektrischen Heizung eines Katalysators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998913670

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09389992

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 538175

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1998913670

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998913670

Country of ref document: EP