WO1998037541A1 - μ/4-ABSORBER MIT EINSTELLBARER BANDBREITE - Google Patents

μ/4-ABSORBER MIT EINSTELLBARER BANDBREITE Download PDF

Info

Publication number
WO1998037541A1
WO1998037541A1 PCT/CH1998/000041 CH9800041W WO9837541A1 WO 1998037541 A1 WO1998037541 A1 WO 1998037541A1 CH 9800041 W CH9800041 W CH 9800041W WO 9837541 A1 WO9837541 A1 WO 9837541A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber
resonator
absorber according
resonators
absorbers
Prior art date
Application number
PCT/CH1998/000041
Other languages
English (en)
French (fr)
Inventor
Robert Van Ligten
Original Assignee
Rieter Automotive (International) Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rieter Automotive (International) Ag filed Critical Rieter Automotive (International) Ag
Priority to DE59802792T priority Critical patent/DE59802792D1/de
Priority to US09/355,636 priority patent/US6167985B1/en
Priority to EP98900841A priority patent/EP0962013B1/de
Priority to JP53612098A priority patent/JP3242931B2/ja
Publication of WO1998037541A1 publication Critical patent/WO1998037541A1/de

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the present invention relates to a ⁇ / 4 absorber for absorbing sound, such as that generated by machines, in particular vehicles, with a multiplicity of tubular ⁇ / 4 resonators, the mouth of which adjoins a sound-reflecting surface.
  • Fiber insulation materials or open-pore foams are used, which are placed around the noise sources or. be installed in their immediate vicinity.
  • their use is restricted in heavily polluting environments, since these open-pore materials quickly accumulate with oil, water or dust and thereby lose their sound-absorbing effectiveness.
  • This difference lies essentially in the simultaneously appearing mass and compressibility of the air in the resonator and can be recognized in particular by the fact that in the ⁇ / 4 resonators the resonance frequency is determined directly by the standing wave, the wavelength of which is a quarter of the length of the is a tubular resonator, while the acoustic functioning and resonance of Helmholtz resonators has to be described and determined by a spring-mass system. In the case of practical versions of the Helmholtz resonators, various assumptions that are made for the pre-calculation of the resonance frequency cannot be realized.
  • the walls of the Helmholtz resonators cannot be built so stiff that they do not deform under the pressure fluctuations during resonance, or the mass of the air in the neck area of the Helmholtz resonators cannot be determined exactly.
  • the advantages of the ⁇ / 4 resonators compared to the Helmholtz resonators are essentially to be seen in the more precise predeterminability of the absorption effect, its lower risk of contamination and their simpler dimensioning and manufacture.
  • Such a ⁇ / 4 absorber is described, for example, in WO 96/23294 and comprises a large number of tubular resonators, the sound openings of which adjoin a surface in such a way that the interaction zones (in which the incident sound wave and that in the individual resonators) trained standing waves destructively interfering) of the individual resonator openings are distributed as far as possible and at the same time do not substantially overlap.
  • Such ⁇ / 4 resonators basically absorb in a narrow frequency range around their resonance frequency f Q. The width of this frequency range depends on the quality factor Q of the resonators, respectively. from the big one the energy losses that occur during resonance.
  • ⁇ / 4 absorbers can be embedded in any dense, reverberant material, such as, for example, metal, plastic, ceramic or glass.
  • any dense, reverberant material such as, for example, metal, plastic, ceramic or glass.
  • a ⁇ / 4 absorber with the features of claim 1 and in particular by means of changing the sound energy losses, respectively.
  • the sound impedance Z mouth in the mouth area and / or the sound energy losses respectively.
  • the sound impedance Z ⁇ in the bottom area of the ⁇ / 4 resonators is provided.
  • the sound impedance Z mouth in the mouth region of the ⁇ / 4 resonators is increased, or respectively, by a perforated head part. generate additional energy losses in the floor area through the use of soft and / or heat-exchanging material in order to reduce Z ⁇ .
  • a heat sink with a large contact area with the air in the bottom region of the resonators, where the pressure fluctuations are very large.
  • a heat sink is formed by any material which can absorb and dissipate heat from the temperature fluctuations in the air caused by pressure fluctuations. The expert Such materials are well known in the field of noise protection. Another practical possibility is seen in the use of a plug made of closed-pore viscoelastic foam. Another option is in the mouth area
  • a - low - air flow resistance e.g. a "grid”.
  • a “grid” can be produced by not removing the end to be opened, but rather only perforating it.
  • the present invention thus allows efficient ⁇ / 4 absorbers for the first time industrially, i.e. inexpensive to manufacture.
  • the present invention also enables the construction of multifrequency absorbers in a simple manner by combining a plurality of differently dimensioned ⁇ / 4 resonators with an increased acoustic energy loss in the mouth and / or bottom area to form a wider resonance frequency band.
  • Fig. 1 Schematic diagram of how the ⁇ / 4 resonators work
  • FIG. 3a View of a first embodiment of a resonator with a slotted head part for the ⁇ / 4 absorber according to the invention
  • 3d View of a special embodiment of a resonator in which the mouth area and the bottom area are inclined towards one another;
  • Fig. 4 cross section of a practical embodiment of the ⁇ / 4 absorber according to the invention.
  • the opening of the ⁇ / 4 resonator 2 lies in a sound-reflecting surface A.
  • Z Q is used to denote the characteristic impedance of the air.
  • the sound impedance in the floor area 3 is referred to below as Z- and, in this simplified model, encompasses all sound energy losses inside the resonator (where Z ⁇ is proportional to the quality factor Q).
  • Z ⁇ is proportional to the quality factor Q.
  • an interaction zone S is formed on the reflecting surface A. in which the incident sound wave destructively interferes with the standing wave formed in the resonator 2.
  • This interaction zone S- j ⁇ is also known as an "equivalent absorption area". With a 100% absorption, the sound impedance is essentially in the range of
  • Interaction zone S j correspond to the characteristic impedance Z 0 of the air. If one also assumes that in the case of 100% absorption in the mouth area 4 of the ⁇ / 4 resonator 2 the sound pressure and the particle flow are continuous, the following simple equation can be established:
  • this can be achieved by using soft, ie viscoelastic, closed-cell foams or other heat-exchanging materials in the bottom region of the ⁇ / 4 resonators, it being possible to choose all materials which lead to energy dissipation in the event of high pressure fluctuations .
  • the present invention also makes use of the knowledge that the resonance frequency for the
  • Impedance ratio Z ⁇ / Z 0 in the bottom area 3 and the impedance ratio Z 0 / Z mouth in the mouth area 4 the following relationship applies:
  • FIG. 2b clearly shows the absorption behavior of the multifrequency absorber according to the invention.
  • an absorption behavior is shown, as shown by curve V.
  • the curve V results from the sum of the absorption characteristics S lt S 2 and S 3 generated by the individual narrowband absorbers.
  • This curve V shows the disadvantages of the multifrequency absorbers created with conventional narrowband absorbers.
  • This curve V follows the frequency response of the individual narrowband absorbers and falls sharply between the corresponding resonance frequencies f lf f 2 and f 3 ⁇ t, ie shows a poor absorption in this intermediate range.
  • the ⁇ / 4 absorbers according to the invention it is possible to create a broad absorption band W with a constantly high absorption capacity. It is clear from FIG. 2b that the ⁇ / 4 absorbers according to the invention have a larger bandwidth B than the conventional narrowband absorbers. This leads in multifrequency absorbers to substantial overlaps of the absorption characteristics T x , T 2 and T 3 of the individual ⁇ / 4 absorbers in the areas between the individual resonance frequencies f lf f 2 and f 3 . These overlaps mean that the sum W of the absorptions lf T 2 and T 3 generated by the individual absorbers according to the invention also leads to an almost 100% absorption in the region between the resonance frequencies f lt f 2 and f 3 . The curve W shows this clearly. This also makes it clear that multi-frequency absorbers with any absorption characteristic can be created with the ⁇ / 4 absorbers according to the invention.
  • Figures 3a, 3b, 3c and 3d show embodiments of the ⁇ / 4 absorber according to the invention.
  • the resonator 2 has a head part 5, in which a multiplicity of perforations, in particular slots 6, are introduced.
  • a soft or heat-exchanging material 7 can be attached to the bottom region 3 of the resonator 2 (FIGS. 3a, 3c).
  • holes 8 can also be provided instead of slit-like perforations 6 (FIG. 3b).
  • the geometrical design of the resonator 2, the choice of the heat-exchanging material 7 and the shape, dimensioning and number of perforations 6, 8 are in the range of the usual professional action.
  • a special embodiment is shown in FIG. 3d, in which the ⁇ / 4 resonator is designed as a spatial body with two trapezoidal side surfaces. This leads to the mouth region 4 and the base region 3, or rather the opening surface and the base surface, being inclined towards one another. So that can. the area of the floor area 3 is enlarged in the intended manner and thus its discriminatory effectiveness is influenced. The same way range 4 are inclined.
  • Suitable energy-dissipating materials 7 are those materials which have a large thermal capacity and a surface which is as large as possible relative to air, such as, for example, open-cell foam with small cells, cotton wool-like fibers, granular material or porous ceramic material. Closed-pore, viscoelastic foams or other materials that dissipate energy in the event of high pressure fluctuations are suitable as soft materials.
  • FIG. 4 shows another multifrequency absorber 9 which can be implemented industrially in a simple manner and has a multiplicity of resonators 2 of different dimensions.
  • this has a carrier layer 10 made of a nonwoven fabric or foam, into which tubular depressions 11 are formed. These tubular depressions 11 can be coated with an adhesive layer 12, on the one hand to close the pores of the carrier layer 10 in this area, and on the other hand to attach a cover film 13 to this carrier layer 10.
  • the holes 8 or slots 6 according to the invention can be made in this cover film 13.
  • the shaped carrier layer 10 instead of being provided with a cover film 11, on a solid outer skin, e.g. a bonnet, and the perforations 8, 6 in the deformed area 14 of the carrier layer 10.
  • the ⁇ / 4 absorbers according to the invention can be manufactured industrially in a simple manner.
  • these can be extruded in a known manner, for example as extruded plates with tube-like depressions, which are covered with a second plate.
  • these absorbers according to the invention can also be produced with the aid of deep-drawing or injection molding technology.
  • corrugated cardboard-like material into which the perforations according to the invention are made can be used directly.
  • the ⁇ / 4 resonators according to the invention can be suitably dimensioned and / or differently dimensioned ⁇ / 4 resonators can be combined with one another to form a broadband absorber.
  • the resonators according to the invention can be produced and used individually, in groups with resonators of the same type (monofrequency absorbers) or in groups with resonators of different dimensions (multifrequency absorbers).
  • the absorbers according to the invention can also be combined with conventional fibrous or foamed absorbers and, in particular, so coordinated that they are effective against low frequencies in the region of the absorption drop. Your preferred application is seen in land and aircraft as well as in transformers, generators, gearboxes or other machines of any kind.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)

Abstract

μ/4-Absorber mit einstellbarer Bandbreite bestehend aus mindestens einem μ/4-Resonator (2), dessen Mündungsbereich (4) einen perforierten Kopfteil (5) aufweist. Eine Weiterbildung dieses μ/4-Absorbers weist im Bodenbereich (3) ein weiches und/oder wärmetauschendes Material (7) auf.

Description

λ/4-Absorber mit einstellbarer Bandbreite
Die vorliegende Erfindung betrifft einen λ/4-Absorber zur Absorption von Schall, wie er von Maschinen, insbesondere von Fahrzeugen, erzeugt wird, mit einer Vielzahl röhrchen- förmiger λ/4-Resonatoren, deren Mündung an eine schall- reflektierende Fläche angrenzt.
Das Bestreben der modernen Fahrzeug- und Maschinenindustrie ist es, die von den Maschinen resp. Fahrzeugen erzeugten Geräusche zu verringern oder ganz zu eli ininieren. Zur Schallabsorption werden heute im wesentlichen Matten aus
Faserdämmstoffen oder offenporige Schäume verwendet, die um die Lärmquellen gelegt werden resp. in deren unmittelbarer Umgebung montiert werden. Deren Verwendung ist jedoch in stark verschmutzenden Umgebungen eingeschränkt, da sich diese offenporigen Materialien rasch mit Oel, Wasser oder Staub anreichern und dadurch ihre schallabsorbierende Wirksamkeit verlieren.
Es ist auch bekannt, Schallabsorber aus einer Vielzahl unterschiedlich dimensionierter Hel holtz-Resonatoren aufzubauen. Solche Helmholtz-Absorber haben sich in der Praxis aus verschiedenen Gründen nicht durchgesetzt. Insbesondere sind solche Helmholtz-Absorber nur schwierig zu dimensionieren und/oder zu fabrizieren und ungeeignet, um in stark verschmutzenden Umgebungen verwendet werden zu können.
Es sind deshalb auch schon Schallabsorber vorgeschlagen worden, die aus einer Vielzahl röhrchenförmiger Resonatoren bestehen. Diese röhrchenförmigen Resonatoren können derart montiert werden, dass sich allfällige Verschmutzungen oder Nässe darin nicht verfangen können. Darüberhinaus unterscheiden sich diese röhrchenförmigen Resonatoren in ihrer akustischen Funktionsweise von Hel holtz-Resonatoren und sind dem Fachmann unter dem Namen λ/4-Resonatoren bekannt. Dieser Unterschied liegt im wesentlichen in der gleichzeitig in Erscheinung tretenden Masse und Kompressibilität der Luft im Resonator und kann insbesondere daran erkannt werden, dass bei den λ/4-Resonatoren die Resonanzfrequenz direkt durch die stehende Welle bestimmt wird, deren Wellenlänge ein Viertel der Länge des röhrchenförmigen Resonators ist, während die akustische Funktionsweise und Reso- nanz von Helmholtz-Resonatoren durch ein Feder-Masse-System beschrieben und bestimmt werden muss. Bei praktischen Ausführungen der Helmholtz-Resonatoren lassen sich verschiedene Annahmen, welche zur Vorausberechnung der Resonanzfrequenz getroffen werden, nicht realisieren. So können bspw. die Wände der Helmholtzresonatoren nicht so steif gebaut werden, dass sich diese unter den Druckschwankungen bei Resonanz nicht deformieren, oder kann die Masse der Luft im Halsbereich der Helmholtzresonatoren nicht exakt bestimmt werden. Die Vorteile der λ/4-Resonatoren gegenüber den Helmholtz-Resonatoren sind also im wesentlichen in der genaueren Vorausbestimmbarkeit der Absorptionswirkung, deren geringeren Versch utzungεgefahr und deren einfacheren Dimensionierung und Fabrikation zu sehen.
Ein solcher λ/4-Absorber ist bspw. in der WO 96/23294 beschrieben und umfasst eine Vielzahl röhrchenförmiger Resonatoren, deren Schallöffnungen an eine Fläche angrenzen, derart, dass die Wechselwirkungszonen (in denen die auftreffende Schallwelle und die in den einzelnen Resona- toren ausgebildeten stehenden Wellen destruktiv interferierenden) der einzelnen Resonatorenöffnungen möglichst flächendeckend verteilt sind und gleichzeitig nicht wesentlich überlappen. Solche λ/4-Resonatoren absorbieren grundsätzlich in einem engen Frequenzbereich, um deren Resonanz- frequenz fQ. Die Breite dieses Frequenzbereichs ist abhängig vom Qualitätsfaktor Q der Resonatoren, resp. von der Grosse der Energieverluste, welche bei der Resonanz auftreten. λ/4-Absorber können, wie in dieser WO 96/23294 beschrieben, in einem beliebig dichten, schallharten Material eingebettet sein, wie bspw. Metall, Kunststoff, Keramik oder Glas. Bei der praktischen Anwendung dieser Absorber, insbesondere wenn ein breiteres Frequenzband durch eine Vielzahl von Resonatoren unterschiedlicher Länge erreicht werden soll, ist es wichtig, die Energieverluste in einfacher Weise beeinflussen zu können. Bei gewissen Ausführungsformen, z.B. bei tiefgezogenen Halbröhrchen, welche mit einer
Platte komplettiert werden, sind die Energieverluste sehr klein, d.h. der Q-Faktor und die Abschlussimpedanz sehr hoch. Dies führt zu unerwünscht schmalen Resonanz-Absorptionskurven.
Es ist also Ziel der vorliegenden Erfindung, akustisch hochwirksame λ/4-Absorber mit einstellbare Bandbreite in einfacher Weise herstellen zu können.
Erfindungsge äss wird dies durch einen λ/4-Absorber mit den Merkmalen des Anspruchs 1 erreicht und insbesondere durch Mittel zur Änderung der Schallenergieverluεte, resp. der Schallimpedanz ZMünd im Mündungsbereich und/oder der Schallenergieverluste, resp. der Schallimpedanz Zτ im Bodenbe- reich der λ/4-Resonatoren. Insbesondere wird vorgesehen, die Schallimpedanz ZMünd im Mündungsbereich der λ/4-Resona- toren durch einen perforierten Kopfteil zu erhöhen, resp. zusätzliche Energieverluste im Bodenbereich durch das Einsetzen von weichem und/oder wärmetauschendem Material zu erzeugen, um so Zτ zu reduzieren. Dies kann also dadurch erreicht werden, dass im Bodenbereich der Resonatoren, wo die Druckschwankungen sehr gross sind, eine Wärmesenke mit grosser Kontaktfläche zur Luft vorgesehen wird. Eine solche Wärmesenke wird durch jedes Material gebildet, welches aus den von Druckschwankungen erzeugten Temperaturfluktuationen der Luft Wärme aufnehmen und ableiten kann. Der Fachmann auf dem Gebiet des Lärmschutzes kennt solche Materialien zur Genüge. Eine andere praktische Möglichkeit wird in der Verwendung eines Pfropfens aus geschlossenporigem viskoela- stischen Schaum gesehen. Eine andere Möglichkeit besteht darin, im Mündungsbereich
Energieverluste herbeizuführen, indem man einen - niedrigen - Luftströmungwiderstand einbaut, z.B. ein "Gitter". Bei der Ausführungsform aus einer tiefgezogenen Folie mit Abdeckplatte kann ein solches "Gitter" erzeugt werden, indem man das zu öffnende Ende nicht entfernt, sondern nur perforiert.
Es erweist sich als überraschend, dass durch die Behinderung der Luftströmung im Mündungsbereich der λ/4-Absorber nicht grundsätzlich deren Absorptionsvermögen beeinträchtigt wird, sondern dass dadurch eine Absorption mit grösse- rer Bandbreite des Resonanzfrequenzgangs erreicht werden kann.
Die vorliegende Erfindung erlaubt also erstmals effiziente λ/4-Absorber industriell, d.h. kostengünstig herzustellen. Darüberhinaus ermöglicht die vorliegende Erfindung auch die Konstruktion von Multifrequenzabsorbern in einfacher Weise, indem zur Bildung eines breiteren Resonanzfrequenzbandes mehrere verschieden dimensionierte λ/4-Resonatoren mit erfindungsgemäss erhöhtem Schallenergieverlust im Mündungsund/oder Bodenbereich kombiniert werden.
Im folgenden soll die Erfindung anhand der Figuren und mit Hilfe von Ausführungsbeispielen näher erläutert werden. Dabei zeigen:
Fig. 1: Prinzipschema zur Funktionsweise der λ/4-Resona- toren ;
Fig. 2a: Diagramm zum Absorptionsverhalten des erfindungs- gemässen λ/4-Absorbers;
Fig. 2b: Diagramm zum Absorptionsverhalten des erfindungs- gemässen Multifrequenz-Absorbers ;
Fig. 3a: Ansicht einer ersten Ausführungsform eines Resonators mit geschlitztem Kopfteil für den erfindungs- gemässen λ/4-Absorber ;
Fig. 3b: Ansicht einer zweiten Ausführungsform eines Resonators mit gelochtem Kopfteil für den erfindungs- gemässen λ/4-Absorber;
Fig. 3c: Ansicht einer weiteren Ausführungsform eines Reso- nators mit wärmetauschendem Material im Bodenteil für den erfindungsgemässen λ/4-Absorber ;
Fig. 3d: Ansicht einer besonderen Ausführungsform eines Resonators bei dem Mündungsbereich und Bodenbe- reich gegeneinander geneigt sind;
Fig. 4: Querschnitt einer praktischen Ausführungsform des erfindungsgemässen λ/4-Absorbers .
Die prinzipielle Funktionsweise der erfindungsgemässen λ/4- Absorber 1 soll anhand der Figur 1 näher erläutert werden. Aus dieser Figur ist ersichtlich, dass die Öffnung des λ/4- Resonators 2 in einer schallreflektierenden Fläche A liegt. Im folgenden soll mit ZQ die charakteristische Impedanz der Luft bezeichnet werden. Die Schallimpedanz im Bodenbereich 3 wird im folgenden mit Z- bezeichnet und umfasst in diesem vereinfachten Modell alle Schallenergieverluste im Innern des Resonators, (wobei Zτ proportional zum Qualitätsfaktor Q ist) . Für eine vorgegebene Länge 1 und eine vorgegebenen Querschnittsfläche S2 des λ/4-Reεonators 2 bildet sich auf der reflektierenden Fläche A eine Wechselwirkungszone S aus, in welcher die auftreffende Schallwelle mit der im Resonator 2 gebildeten stehenden Welle destruktiv interferiert. Diese Wechselwirkungszone S-j^ ist auch als "äquivalente Absorptionsfläche" bekannt. Bei einer 100% Absorption wird im wesentlichen die Schallimpedanz im Bereich der
Wechselwirkungszone Sj der charakteristischen Impedanz Z0 der Luft entsprechen. Setzt man ausserde voraus, dass im Falle einer 100% Absorption im Mündungsbereich 4 des λ/4- Resonators 2 der Schalldruck und der Teilchenfluss kontinu- ierlich sind, lässt sich folgende einfache Gleichung aufstellen:
SτJ S2 = Zτ/Z0.
Dies gilt, wie in der genannten WO 96/23294 dargestellt, nicht nur für senkrecht zur Fläche stehende Resonatoren, sondern ebenso gut auch für an oder in dieser Fläche eingebaute Resonatoren. Wenn diese Gleichung nicht erfüllt ist, besteht keine 100% Absorption, d.h. besteht eine Restre- flektion, welche entweder von Reflektionen an der reflektierenden Fläche A oder von Reflektionen am Resonatorboden 3 dominiert wird. Wenn man einen Absorber 1 mit hohem Absorptionsvermögen konstruieren will, sind also Sl r S2 und Zτ nicht frei wählbar und müssen aufeinander abgestimmt werden. Darüberhinaus bestimmt die gewünschte Bandbreite des Frequenzgangs den Wert von Zτ. Demzufolge ist es wichtig, Zτ und damit die Energieverluste im Resonator in gewünschter Weise einstellen zu können. Dies kann erfindungs- ge äss durch das Einsetzen von weichen, d.h. viskoelasti- sehen, geschlossenporigen Schäumen oder andere wärmetauschende Materialien im Bodenbereich der λ/4-Resonatoren erzielt werden, wobei alle Materialien gewählt werden können, welche bei hohen Druckschwankungen zu Energiedis- sipationen führen.
Nimmt man bspw. einen Resonator 2 , für welchen das Flächen- Verhältnis S-L/S2 = 25 ist, dann ergibt sich für eine 100% Absorption ein Impedanzverhältnis Zτ/Z0 = 25. Da Z0 der charakteristischen Impedanz der Luft entspricht, also einen Wert von ca. 400 Ns/m3 aufweist, beträgt die erforderliche Schallimpedanz Z- im Bodenbereich ca. 25 * 400 Ns/m3. Leider sind derartig hohe Impedanzwerte heute nur schwierig zu realisieren.
Die vorliegende Erfindung macht darüberhinaus von der Erkenntnis Gebrauch, dass bei der Resonanzfrequenz für das
Impedanzverhältnis Zτ/Z0 im Bodenbereich 3 und das Impedanzverhältnis Z0/ZMünd im Mündungsbereich 4 folgende Beziehung gilt:
ZTJ Zo = Zo/ ZMünd
Dies führt zu der überraschenden Einsicht, dass anstelle einer Erhöhung der Energieverluste im Bodenbereich 3 des λ/4-Resonators 2, ebensogut die Energieverluste im Mün- dungsbereich 4 desselben erhöht werden können.
Für obiges Beispiel, bei welchem Sj/52 = 25 gewählt worden ist, ergibt sich damit ein Impedanzverhältnis Z0/ZMünd = 25, resp. ZMünd = 1/25 * Z0 = 1/25 * 400 Ns/m3. Dieser Wert entspricht etwa dem Strömungswiderstand, resp. der Schall- impedanz eines grobmaschigen Gitters (Fliegengitter) und kann damit in einfacher Weise, d.h. industriell realisiert werden.
Grundsätzlich könnte man jedoch an jeder Stelle des Resona- tors durch den Einbau geeigneter Luftströmungswiderstände die gewünschten Energiediεsipationen herbeiführen.
Diese Überlegungen können durch experimentelle Meεεungen, wie in Figur 2a dargeεtellt, beεtätigt werden. Kurve C in Figur 2a zeigt den Frequenzgang eines 84mm tiefen und 14mm Innendurchmesser aufweiεenden λ/4-Absorbers mit einem Flä- chenverhältnis von S-L/S2 = 50, welcher keine Mittel zur Erhöhung des Schallenergieverlustes aufweist. Der Frequenzgang, resp. die Absorptions-Charakteristik dieses Resonators weist eine Bandbreite Bc von lediglich 5.1% auf.
Kurve D in Figur 2a stellt den Frequenzgang eines erfindungsgemässen akuεtiεch optimierten λ/4-Abεorberε dar. Bei diesem Absorber beträgt das Flächenverhältnis S-L/S2 = 25 und weist die Absorptions-Charakteristik eine Bandbreite BD von ca. 11% auf.
Diese Kurven machen deutlich, dass durch die Veränderung des Luftströmungεwiderεtandes, resp. der Schallimpedanz im Mündungεbereich 4 und/oder im Bodenbereich 3 des Resonatorε 2 die Frequenzgangbreite B beeinflusst werden kann und gleichzeitig eine fast 100% Abεorption realiεierbar iεt.
Figur 2b macht das Absportionsverhalten des erfindungs- gemässen Multifrequenz-Absorbers deutlich. Bei der Ver- wendung konventioneller λ/4-Resonatoren (Schmalbandabsorber) mit unterschiedlicher Resonanzfrequenz zeigt sich ein Absorptionεverhalten, wie dies durch die Kurve V dargestellt ist. Die Kurve V ergibt sich aus der Summe der von den einzelnen Schmalbandabsorbern erzeugten Absorptions- Charakteristiken Sl t S2 und S3. Diese Kurve V macht die Nachteile der mit herkömmlichen Schmalbandabsorbern geschaffenen Multifrequenzabsorbern deutlich. Diese Kurve V folgt dem Frequenzgang der einzelnen Schmalbandabsorber und fällt zwiεchen den entεprechenden Reεonanzfrequenzen fl f f2 und f3 εtark ab, d.h. zeigt in diesem Zwischenbereich eine schlechte Absorption. Demgegenüber ist es mit den erfindungsgemässen λ/4-Absorbern möglich, ein breites Absorptionsband W mit konstant hohem Absorptionsvermögen zu schaffen. Aus Figur 2b wird deutlich, dass die erfindungs- gemäεεen λ/4-Abεorber gegenüber den konventionellen Schmalbandabsorbern eine grösεere Bandbreite B aufweisen. Dies führt bei Multifrequenzabεorbern zu weεentlichen Überlappungen der Abεorptionεcharakteristiken Tx , T2 und T3 der einzelnen λ/4-Absorber in den zwischen den einzelnen Resonanzfrequenzen flf f2 und f3 liegenden Bereichen. Diese Überlappungen führen dazu, dasε die Summe W der durch die erfindungεgemäεsen Einzelabsorber erzeugten Abεorptionen lf T2 und T3 auch im Bereich zwischen den Resonanzfrequenzen fl t f2 und f3 zu einer fast 100% Absorption führt. Dies zeigt die Kurve W deutlich. Damit wird auch deutlich, dass mit den erfindungsge äεεen λ/4-Abεorbern Multifrequenz- abεorber mit einer beliebigen Absorptionscharakteristik geschaffen werden können.
Figuren 3a, 3b, 3c und 3d zeigen Ausführungsformen der erfindungsgemässen λ/4-Absorber . Aus Figur 3a ist ersichtlich, dass der Resonator 2 einen Kopfteil 5 aufweist, in welchem eine Vielzahl von Perforationen, insbesondere Schlitze 6 eingebracht ist. Anstelle eines solchen Kopfteils 5 oder in Ergänzung eines solchen, kann erfindungs- gemäsε im Bodenbereich 3 des Resonators 2 ein weiches oder wärmetauschendes Material 7 angebracht sein (Figuren 3a, 3c) . In einer weiteren Ausgestaltung des gitterartigen Kopfteilε 5 können anεtelle von εchlitzartigen Perforationen 6 auch Löcher 8 vorgeεehen εein (Figur 3b) . Die geome- triεche Geεtaltung des Resonators 2, die Wahl des wärmetauschenden Materials 7 und die Form, Dimensionierung und Anzahl der Perforationen 6, 8 liegen im Bereich des gewöhnlichen fachmännischen Handelns. In Figur 3d ist eine besondere Ausführungsform dargestellt, bei welcher der λ/4- Resonator als Raumkörper mit zwei trapezförmigen Seitenflächen ausgebildet ist. Dies führt dazu, dass der Mündungsbereich 4 und der Bodenbereich 3 , respektive die Öffnungsfläche und die Bodenfläche gegeneinander geneigt sind. Damit kann bεpw. in vorgesehener Weise die Fläche des Bodenbereichs 3 vergrössert werden und damit dessen dis- εipative Wirkεamkeit beeinfluεst werden. Auf dieselbe Weise bereiches 4 geneigt werden. Alε geeignete energiediεεipie- rende Materialien 7 εind εolche Materialien zu betrachten, die relativ zu Luft eine groεεe Wärmekapazität und eine möglichεt groεεe Oberfläche aufweisen, wie bspw. offenporiger Schaum mit kleinen Zellen, watteartige Faserstoffe, körniges Marerial oder poröses Keramikmaterial. Als weiche Materialien kommen geschlossenporige, viskoelastische Schäume oder andere Materialien in Frage, die bei hohen Druckschwankungen Energie disεipieren.
Figur 4 zeigt einen anderen industriell in einfacher Weiεe realisierbaren Multifrequenzabsorber 9 mit einer Vielzahl unterschiedlich dimensionierter Resonatoren 2. In einer bevorzugten Ausführungεform weist dieser eine aus einem Faservlies oder Schaum gefertigte Trägerschicht 10 auf, in welche röhrchenförmige Vertiefungen 11 eingeformt sind. Diese röhrchenförmigen Vertiefungen 11 können mit einer Klebschicht 12 überzogen sein, um einerseits die Poren der Trägerschicht 10 in dieεem Bereich zu verεchlieεsen, und andererseits eine Deckfolie 13 an dieser Trägerschicht 10 zu befestigen. Die erfindungsge äsεen Löcher 8 oder Schlitze 6 können in dieser Deckfolie 13 eingebracht werden. Für bestimmte Anwendungen iεt auch vorgeεehen, die geformte Trägerschicht 10, statt mit einer Deckfolie 11 zu versehen, an einer festen Ausεenhaut, bεpw. einer Motorhaube, anzubringen und die Perforationen 8 , 6 im verformten Bereich 14 der Trägerεchicht 10 anzubringen.
Die erfindungεgemäεεen λ/4-Abεorber laεεen sich in ein- facher Weise industriell fertigen. Insbesondere können diese in bekannter Weise extrudiert werden, bspw. als ex- trudierte Platten mit röhrchenartigen Vertiefungen, welche mit einer zweiten Platte abgedeckt werden, hergestellt werden. Je nach Anwendungεbereich lassen sich diese erfin- dungsgemässen Absorber auch mit Hilfe der Tiefzieh- oder Spritzgiesεtechnik herεtellen. In einer weiteren Ferti- gungsform kann direkt wellkartonartiges Material, in wel- cheε die erfindungsgemäsεen Perforationen eingebracht werden, verwendet werden.
Eε verεteht εich, daεε für die jeweiligen Anwendungen, die erfindungsgemässen λ/4-Resonatoren in geeigneter Weise dimensioniert werden können und/oder unterschiedlich dimensionierte λ/4-Resonatoren zur Bildung eines Breitbandabsorbers miteinander kombiniert werden können. Es versteht sich auch, daεs die erfindungsgemäεεen Resonatoren, einzeln, in Gruppen mit gleichartigen Resonatoren (Monofrequenzabsor- ber) oder in Gruppen mit unterschiedlich dimensionierten Resonatoren (Multifrequenzabsorber) hergestellt und eingesetzt werden können. Selbstverständlich können die erfin- dungsgemäεεen Abεorber auch mit herkömmlichen faεerigen oder geschäumten Absorbern kombiniert werden und insbeεon- dere εo abgeεtimmt εein, daεε dieεe im Bereich deε Abεorp- tionεabfallε gegen tiefe Frequenzen wirkεam sind. Ihre bevorzugte Anwendung wird in Land- und Luftfahrzeugen ebenso geεehen, wie bei Transformatoren, Generatoren, Getrieben oder anderen Maschinen jeder Art.
Anwendungen im Fahrzeugbau liegen insbeεondere bei Absorptionsbauteilen an Motorhauben, an Stirnwänden und Radkä- sten, inεbeεondere otorεeitig, an Dachhimmeln, Türverkleidungen reεp. Türhohlkörpern und Kofferraumdeckeln, in Lieferwagen oder Lastwagen, im Ladebereich, am Dach oder an den Wänden. Es versteht sich, dass diese Absorber auch im Hochbau oder Strassenbau eingesetzt werden können, ins- besondere an Wänden und Decken von Wohn- oder Arbeitsräumen, in Fabrikhallen, Sporthallen, Tunnels oder an Schallschirmen entlang von Strassen oder Bahntrassees.

Claims

Patentansprüche
1. λ/4-Absorber zur Abεorption von Schall, wie er von Maεchinen, inεbeεondere von Fahrzeugen, erzeugt wird, mit mindestens einem röhrchenförmigen λ/4-Resonator
(2) , deεεen Mündung (4) an eine εchallreflektierende Fläche (A) angrenzt, dadurch gekennzeichnet, daεε zur Einstellung der Bandbreite (B) des Resonanzfrequenzgangs (C, D) des λ/4-Resonators (2) , dieser mit Mitteln (6, 8, 7) zur Änderung des Schallenergieverlustes im Resonator (2) versehen ist.
2. λ/4-Absorber nach Anεpruch 1, dadurch gekennzeichnet, daεε die Mittel (6, 8) zur Änderung des Energiever- luεteε im Mündungsbereich (4) des λ/4-Resonators (2) vorgesehen sind.
3. λ/4-Absorber nach Anεpruch 2 , dadurch gekennzeichnet, daεε die Mittel (6) zur Änderung deε Energieverlustes im Mündungsbereich (4) ein Kopfteil (5) mit einer
Mehrzahl schlitzförmiger Perforationen (6) umfaεsen.
4. λ/4-Absorber nach Anεpruch 2, dadurch gekennzeichnet, dass die Mittel (8) zur Änderung des Energieverlusteε im Mündungsbereich (4) ein Kopfteil (5) mit einer
Mehrzahl lochförmiger Perforationen (8) umfassen.
5. λ/4-Absorber nach Anspruch 2, dadurch gekennzeichnet, dass die Mittel (6, 8) zur Änderung des Energiever- lusteε im Mündungεbereich (4) ein gitterartigeε Kopf- teil (5) umfassen.
6. λ/4-Absorber nach einem der Anεprüche 3 biε 5, dadurch gekennzeichnet, daεε daε Kopfteil (5) integrierender Beεtandteil des λ/4-Absorbers (2) ist.
7. λ/4-Absorber nach Anεpruch 1, dadurch gekennzeichnet, daεs die Mittel (7) zur Änderung des Energieverlusteε im Bodenbereich (3) des λ/4-Resonators (2) vorgeεehen sind.
8. λ/4-Absorber nach Anspruch 7, dadurch gekennzeichnet, dass die Mittel (7) zur Änderung des Energieverlustes im Bodenbereich (3) ein im Bodenteil des Resonators (2) vorgesehenes weiches und/oder wärmetauschendes Material umfassen.
9. λ/4-Absorber nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dasε der Mündungsbereich (4) und der Bodenbereich (3) gegeneinander geneigt sind.
10. Verwendung eines λ/4-Absorbers nach einem der Ansprüche 1 bis 9 als Multifrequenz-Abεorber.
11. Verwendung eineε λ/4-Abεorbers nach einem der Ansprü- ehe 1 biε 9 alε Monofrequenz-Abεorber .
PCT/CH1998/000041 1997-02-19 1998-02-04 μ/4-ABSORBER MIT EINSTELLBARER BANDBREITE WO1998037541A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59802792T DE59802792D1 (de) 1997-02-19 1998-02-04 Lambda/4-absorber mit einstellbarer bandbreite
US09/355,636 US6167985B1 (en) 1997-02-19 1998-02-04 λ/4 absorber with an adjustable band width
EP98900841A EP0962013B1 (de) 1997-02-19 1998-02-04 Lambda/4-absorber mit einstellbarer bandbreite
JP53612098A JP3242931B2 (ja) 1997-02-19 1998-02-04 可変帯域幅を有するλ/4吸収器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH389/97 1997-02-19
CH00389/97A CH691942A5 (de) 1997-02-19 1997-02-19 Lambda/4-Absorber mit einstellbarer Bandbreite.

Publications (1)

Publication Number Publication Date
WO1998037541A1 true WO1998037541A1 (de) 1998-08-27

Family

ID=4185895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000041 WO1998037541A1 (de) 1997-02-19 1998-02-04 μ/4-ABSORBER MIT EINSTELLBARER BANDBREITE

Country Status (7)

Country Link
US (1) US6167985B1 (de)
EP (1) EP0962013B1 (de)
JP (1) JP3242931B2 (de)
AR (1) AR011841A1 (de)
CH (1) CH691942A5 (de)
DE (1) DE59802792D1 (de)
WO (1) WO1998037541A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006854A (ja) * 2000-04-21 2002-01-11 Mitsubishi Heavy Ind Ltd アクティブ減音装置及びこれを有するアクティブ遮音壁
US6616789B2 (en) 1999-03-10 2003-09-09 Burton J. Price Method for manufacturing a sound insulating structure and the structure produced thereby
EP3848651A1 (de) 2020-01-10 2021-07-14 Viessmann Werke GmbH & Co. KG Wärmetechnisches gerät

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508526C2 (sv) * 1997-02-12 1998-10-12 Saab Automobile Förfarande och anordning för ljuddämpning i hjul
AU2002237887A1 (en) * 2001-02-09 2002-08-28 Dow Global Technologies Inc. Sound absorbing foam
US6648100B2 (en) 2001-10-24 2003-11-18 Lear Corporation Method of tuning acoustical absorption in a vehicle interior
US7029242B2 (en) * 2003-11-14 2006-04-18 Tecumseh Products Company Hermetic compressor with one-quarter wavelength tuner
US7497301B2 (en) * 2005-01-27 2009-03-03 Fleetguard, Inc. Tubular acoustic silencer
US10072256B2 (en) * 2006-05-22 2018-09-11 Abbott Products Gmbh Process for separating and determining the viral load in a pancreatin sample
US8136630B2 (en) * 2007-06-11 2012-03-20 Bonnie Schnitta Architectural acoustic device
JP5326472B2 (ja) * 2007-10-11 2013-10-30 ヤマハ株式会社 吸音構造
EP2085962A2 (de) * 2008-02-01 2009-08-05 Yamaha Corporation Schallabsorbierende Struktur und Fahrzeugkomponente mit schallabsorbierenden Eigenschaften
US20090223738A1 (en) * 2008-02-22 2009-09-10 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorption property
US8006802B2 (en) * 2008-09-02 2011-08-30 Yamaha Corporation Acoustic structure and acoustic room
JP5691197B2 (ja) * 2009-03-06 2015-04-01 ヤマハ株式会社 音響構造体、プログラムおよび設計装置
JP2011057000A (ja) * 2009-09-07 2011-03-24 Yamaha Corp 音響共鳴装置
ITPI20100033A1 (it) * 2010-03-23 2011-09-24 Federico Nardini Dispositivo fonoassorbente particolarmente per barriere antirumore.
DE202010006419U1 (de) 2010-05-04 2010-09-02 Emico Gmbh Breitbandig dämpfende Vorrichtung zur Schalldämpfung bei Industrieeinrichtungen, Großanlagen oder Maschinen
JP5958523B2 (ja) * 2010-05-17 2016-08-02 ヤマハ株式会社 音響構造体
US8393437B2 (en) * 2011-02-15 2013-03-12 Westinghouse Electric Company Llc Noise and vibration mitigation system for nuclear reactors employing an acoustic side branch resonator
JP2013015118A (ja) * 2011-07-06 2013-01-24 Toyota Boshoku Corp 吸音構造体
JP5810884B2 (ja) * 2011-12-15 2015-11-11 ヤマハ株式会社 音響構造体
FR3010225B1 (fr) * 2013-08-29 2016-12-30 Centre Nat Rech Scient Panneau acoustique absorbant
JP6327932B2 (ja) * 2014-05-07 2018-05-23 大成建設株式会社 ヘルムホルツ共鳴を利用した吸音器
US9618151B2 (en) 2015-02-26 2017-04-11 Adriaan DeVilliers Compact modular low resistance broadband acoustic silencer
US11047304B2 (en) * 2018-08-08 2021-06-29 General Electric Company Acoustic cores with sound-attenuating protuberances
US11854522B2 (en) * 2020-11-10 2023-12-26 Toyota Motor Engineering & Manufacturing North America, Inc. Sound absorbing structure having one or more acoustic scatterers attached to a transparent panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2038410A (en) * 1978-12-27 1980-07-23 Rolls Royce Acoustic lining utilising resonance
DE3133844A1 (de) * 1981-08-27 1983-03-17 Intreprinderea de Prefabricate din Beton "Granitul", Bucuresti Fertigteilelement zur schalldaemmung
US4441578A (en) * 1981-02-02 1984-04-10 Rohr Industries, Inc. Encapsulated bulk absorber acoustic treatments for aircraft engine application
EP0292877A1 (de) * 1987-05-25 1988-11-30 Gec Alsthom Sa Absorbierende Wandverkleidung für akustische Wellen in einem flüssigen Medium
EP0367135A2 (de) * 1988-11-01 1990-05-09 Fuji Jukogyo Kabushiki Kaisha Verbundplatte und Verfahren zu ihrer Herstellung
DE9408118U1 (de) * 1994-05-17 1995-09-14 Faist M Gmbh & Co Kg Schallabsorber
WO1996023294A1 (de) * 1995-01-27 1996-08-01 Rieter Automotive (International) Ag μ/4-SCHALLABSORBER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160491A (en) * 1978-07-25 1979-07-10 Bridgestone Tire Co., Ltd. Perlite sound absorbing plate and sound insulating wall composed of the same
US5457291A (en) * 1992-02-13 1995-10-10 Richardson; Brian E. Sound-attenuating panel
JP3119193B2 (ja) * 1997-03-07 2000-12-18 日産自動車株式会社 遮音板構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2038410A (en) * 1978-12-27 1980-07-23 Rolls Royce Acoustic lining utilising resonance
US4441578A (en) * 1981-02-02 1984-04-10 Rohr Industries, Inc. Encapsulated bulk absorber acoustic treatments for aircraft engine application
DE3133844A1 (de) * 1981-08-27 1983-03-17 Intreprinderea de Prefabricate din Beton "Granitul", Bucuresti Fertigteilelement zur schalldaemmung
EP0292877A1 (de) * 1987-05-25 1988-11-30 Gec Alsthom Sa Absorbierende Wandverkleidung für akustische Wellen in einem flüssigen Medium
EP0367135A2 (de) * 1988-11-01 1990-05-09 Fuji Jukogyo Kabushiki Kaisha Verbundplatte und Verfahren zu ihrer Herstellung
DE9408118U1 (de) * 1994-05-17 1995-09-14 Faist M Gmbh & Co Kg Schallabsorber
WO1996023294A1 (de) * 1995-01-27 1996-08-01 Rieter Automotive (International) Ag μ/4-SCHALLABSORBER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KINSLER ET AL.: "Fundamentals of acoustics", 1962, WILEY AND SONS, NEW YORK, NY, USA, XP002065613 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616789B2 (en) 1999-03-10 2003-09-09 Burton J. Price Method for manufacturing a sound insulating structure and the structure produced thereby
US6821597B1 (en) 1999-03-10 2004-11-23 Magee Rieter Automotive Systems Method for manufacturing a sound insulating structure and the structure produced thereby
JP2002006854A (ja) * 2000-04-21 2002-01-11 Mitsubishi Heavy Ind Ltd アクティブ減音装置及びこれを有するアクティブ遮音壁
US7613307B2 (en) 2000-04-21 2009-11-03 Mitsubishi Heavy Industries, Ltd. Active sound reduction apparatus and active noise insulation wall having same
EP3848651A1 (de) 2020-01-10 2021-07-14 Viessmann Werke GmbH & Co. KG Wärmetechnisches gerät
DE102020100445A1 (de) 2020-01-10 2021-07-15 Viessmann Werke Gmbh & Co Kg Wärmetechnisches Gerät

Also Published As

Publication number Publication date
JP3242931B2 (ja) 2001-12-25
US6167985B1 (en) 2001-01-02
EP0962013A1 (de) 1999-12-08
AR011841A1 (es) 2000-09-13
JP2001512582A (ja) 2001-08-21
DE59802792D1 (de) 2002-02-28
EP0962013B1 (de) 2002-01-02
CH691942A5 (de) 2001-11-30

Similar Documents

Publication Publication Date Title
EP0962013B1 (de) Lambda/4-absorber mit einstellbarer bandbreite
DE10347084B4 (de) Abstimmbare, den Schall absorbierende, und die Luft filternde Dämpfungseinrichtung und Herstellungsverfahren
EP0806030B1 (de) l/4-SCALLABSORBER
DE4414566C2 (de) Luftschalldämpfer
EP1562743B1 (de) Schallisolierender hitzeschutzschild
EP0454949B1 (de) Luftschall absorbierendes Formteil
EP1697923B1 (de) Luftschallabsorbierendes bauteil
DE112018000866B4 (de) Schallabsorbierender Körper und schallabsorbierende Struktur
DE112005003232T5 (de) Schallschluckende Struktur
DE4413009A1 (de) Schallabsorber für Kraftfahrzeuge
DE10228395C1 (de) Schall-Absorber
DE102004050649A1 (de) Schallabsorbierender Hitzeschild
DE69824229T2 (de) Schalldämmende Plattenstruktur
DE4304628C2 (de) Schalldämpfende Gehäuseauskleidung
DE602004002864T2 (de) Bauteil zur geräuschmindenderung, insbesondere bodenplatte eines fahrzeuges
EP0683480B1 (de) Schallabsorber
EP0605784B1 (de) Akustikplatte
DE19939482B4 (de) Anordnung zur Abschirmung von abgasführenden Teilen von Kraftfahrzeugen
AT402435B (de) Abschlussteil oder abschirmteil für motorgehäuse von brennkraftmaschinen
EP0682335B1 (de) Lamellenabsorber
DE2437947C3 (de) Anordnung zur Absorption von Luftschall
DE3412432A1 (de) Schallabsorbierendes bauelement
DE102019128209B4 (de) Schallabsorbierende Vorrichtung mit Noppenfolienverbund und Verwendung
WO2005023594A1 (de) Schallabsorber für den motorraum
DE3334273A1 (de) Schalldaemmauskleidung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998900841

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 536120

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09355636

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998900841

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998900841

Country of ref document: EP