WO1998031998A1 - Halbleiter-drucksensor - Google Patents

Halbleiter-drucksensor Download PDF

Info

Publication number
WO1998031998A1
WO1998031998A1 PCT/DE1997/002541 DE9702541W WO9831998A1 WO 1998031998 A1 WO1998031998 A1 WO 1998031998A1 DE 9702541 W DE9702541 W DE 9702541W WO 9831998 A1 WO9831998 A1 WO 9831998A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
measuring
resistor
substrate
membrane
Prior art date
Application number
PCT/DE1997/002541
Other languages
English (en)
French (fr)
Inventor
Oliver Schatz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US09/341,742 priority Critical patent/US6234027B1/en
Priority to JP53349098A priority patent/JP2001509267A/ja
Priority to KR10-1999-7005932A priority patent/KR100507942B1/ko
Publication of WO1998031998A1 publication Critical patent/WO1998031998A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0055Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • G01L9/065Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices with temperature compensating means

Definitions

  • the invention is based on a pressure sensor according to the preamble of the independent claim.
  • a pressure sensor is already known from EP 0 146 709.
  • the pressure sensor is based on a silicon wafer in (001) -
  • the pressure sensor according to the invention with the characterizing features of the main claim has the advantage that the above-mentioned hysteresis effects are compensated.
  • the measures listed in the dependent claims allow advantageous developments and improvements of the pressure sensor specified in the main claim. It is particularly advantageous to arrange four measuring resistors on the membrane, which are connected as a Wheatstone bridge. This arrangement results in a particularly sensitive measurement of the electrical resistance or its changes due to the pressure applied from the outside.
  • the electrodes are also advantageous to manufacture from aluminum, since aluminum is particularly easy to process. It also has the advantage of generating an internal mechanical interference voltage due to its low yield point, which can be used for hysteresis compensation.
  • the silicon substrate in a (100) orientation, since this surface on the one hand allows easy manufacture of the membrane by potassium hydroxide etching, and on the other hand has two [011] directions in the substrate surface, in which the conductivity is particularly sensitive to the deformation.
  • FIG. 1 shows a plan view of a first pressure sensor with hysteresis compensation
  • FIG. 2 shows a cross section through a first pressure sensor with hysteresis compensation
  • FIGS. 3a-d shows a cross section through a substrate with a metallic electrode on one surface
  • FIG. 4 shows a second pressure sensor with hysteresis compensation .
  • FIG. 1 shows the top view of a first simple pressure sensor.
  • a sectional drawing of this pressure sensor along the section line A'A is shown in one of the following figures.
  • the pressure sensor is made of silicon on a substrate 2, which has a (100) orientation.
  • the boundary lines of the truncated pyramid are drawn with dashed lines in FIG. 1 and lie parallel to the [110] and
  • Silicon substrate 2 is also called carrier 11 below.
  • the measuring resistor 4 which runs in the [110] direction, is located on the membrane 10, near the membrane edge.
  • Electrode a compensation resistor 5.
  • the compensation resistor 5 is connected at one end to the measuring resistor 4 via a connecting conductor 7, and at its other end via a second connecting conductor 7 to the electrode 6.
  • the double arrows 30 and 31, 32 indicate mechanical ones
  • FIG. 2 shows a cross section through the pressure sensor of Figure 1.
  • the substrate 2 has a depression which is trapezoidal in cross section and which is delimited by the carrier 11 and the membrane 10.
  • the measuring resistor 4 is located in the surface of the membrane 10. The measuring resistor 4 is implemented by introducing a local doping zone into the silicon material.
  • the operation of the pressure sensor with hysteresis compensation will be explained with reference to Figure 1.
  • the pressure sensor is mechanically elastically deformed by an external pressure acting on the pressure sensor.
  • the thickness of the carrier 11 is typically several 100 ⁇ m, while the thickness of the membrane 10 is typically several ⁇ m. Because of the resulting different stiffnesses, the mechanical deformation in the carrier 11 is negligible compared to the mechanical deformation in the membrane 10.
  • the mechanical deformation 31 resulting from the external pressure is illustrated by an arrow, the length of which is a measure of the deformation.
  • the mechanical deformation is shown as an example at one point, namely at the location of the measuring resistor 4.
  • a first deformation 30 is present in the pressure sensor.
  • the cause of the first deformation 30 is a mechanical interference voltage, the cause of which will be discussed in more detail in the following section.
  • Such a first deformation can be assigned to each point in the pressure sensor, but only two points in the pressure sensor should be considered. These two points are the location of the measuring resistor 4 and the location of the compensation resistor 5.
  • the first deformation 30 is the same everywhere, but this restriction is not mandatory and is dropped in the description of FIG. 4.
  • the measuring resistor 4 and the compensation resistor 5 are dimensioned so that their piezoresistive coefficients are equal in terms of amount. Likewise, the absolute values of the electrical resistance are the same under the same external conditions. The changes in the electrical resistance in the measuring resistor 4 and in the compensation resistor 5 due to the first deformation 30 are therefore the same in amount. However, since the resistance is measured in the direction of the deformation and once perpendicular to the deformation, the a different sign for both resistance changes. The total change in resistance of the equivalent resistance for the series circuit comprising measuring resistor 4 and compensation resistor 5 due to the first deformation 30 is therefore zero. Thus, only the change in the measuring resistance due to the second deformation 31 remains, to which the compensation resistor 5, which is located on the carrier 11, is not exposed.
  • the vertical orientation of the compensation resistor 5 relative to the measuring resistor 4 is not essential. However, it is particularly advantageous for a silicon wafer with (100) orientation for various reasons. When implementing a corresponding circuit on other substrates or with different orientations, care must be taken to ensure that the resistances behave in the same amount but with opposite signs, and that the compensation resistor 5 is not subjected to a second deformation 31 due to the external pressure to be measured becomes.
  • FIGS. 3a to 3d A possible cause for the occurrence of an interference voltage is to be illustrated with the aid of FIGS. 3a to 3d.
  • a substrate 2 made of silicon with an electrode 6 located thereon is shown in cross section in FIG. 3a.
  • the coefficient of expansion of aluminum is significantly larger than that of silicon.
  • the effective expansion coefficient of a two-layer system made of aluminum and silicon lies between those of the individual materials; In the exemplary embodiment chosen here, the silicon layer is much thicker, so that the effective expansion coefficient of the two-layer system corresponds approximately to that of silicon.
  • the substrate and the electrode are shortened by cooling.
  • the electrode 6 shortens somewhat more on the side facing away from the substrate than on the side facing the substrate. There is also a tensile stress in the electrode. This situation is visible in Figure 3b.
  • the electrode 6 becomes plastically deformable. With further cooling, the aluminum shortens with the expansion coefficient of aluminum, while the substrate shortens with the expansion coefficient of silicon. The aluminum flows to compensate for the different shortenings. These different expansions continue until the internal stresses in the aluminum have been reduced just below the yield stress by the flow.
  • FIG. 3d occurs at the same temperature as in FIG. 3b: the silicon has the same dimensions as in FIG. 3b, but the aluminum is now under shear stress instead of under compressive stress, since it has a stronger contraction in contrast to Expansion has taken place.
  • These voltages are an example of the interference voltages described above. As the comparison of FIG. 3b with FIG. 3d shows, this interference voltage state depends not only on the temperature, which is the same in FIGS. 3b and 3d, but also on the temperature history.
  • Interference voltages are roughly inversely proportional to the distance from the edge of the aluminum layer.
  • the product of the resistance value and the distance of the resistance from the center of the interference voltage for the measuring resistor and the compensation resistor must be approximately equal, so that the effect of the interference voltage on the compensation resistor and the effect of the interference voltage on the measuring resistor cancel each other out.
  • FIG. 4 shows a further exemplary embodiment for a pressure sensor with hysteresis compensation.
  • the pressure sensor has a substrate 2, in which a membrane was realized in the manner known from FIG. 1.
  • a membrane was realized in the manner known from FIG. 1.
  • the metallization 12 is the collective term for the electrodes 6 as well as all other metallization layers which are necessary for the implementation of evaluation electronics.
  • Four measuring resistors are attached to the membrane, all four resistors being parallel to one another and close to the centers of the boundary lines of the membrane.
  • the pressure sensor has four compensation resistors 5, all of which are parallel to one another and perpendicular to the
  • Measuring resistors 4 are. Each compensation resistor 5 is assigned to another measuring resistor 4 and is located in its spatial proximity on the carrier segment, which is not provided with the metallization layer. The measuring resistors 4 and the compensation resistors 5 are included
  • the electrical resistance of the compensation resistor is correspondingly smaller than the electrical resistance of the measuring resistor.
  • each measuring resistor in the Wheatstone bridge experiences its individual hysteresis compensation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

Es wird ein Drucksensor vorgeschlagen, welcher auf dem piezoresistiven Effekt beruht. Hierbei bewirkt ein von außen wirkender Druck eine Deformation eines auf eines Membran angeordneten Widerstandes, welcher aufgrund dieser Deformation seinen Widerstand ändert. Da dieser Widerstand gleichermaßen empfindlich auf eine Deformation durch eine interne mechanische Störspannung reagiert, wird eine Anordnung vorgeschlagen, welche mit Hilfe eines Kompensationswiderstands den Effekt der inneren mechanischen Störspannung aufhebt. Diese Anordnung dient unter anderem der Kompensation von Temperaturhysteresen bei integrierten Sensoren, wobei diese Hysterese hautpsächlich durch Metallisierungsebenen im Drucksensor sowie deren temperaturabhängiges Kriechen verursacht wird.

Description

Halbleiter-Drucksensor
Stand der Technik
Die Erfindung geht aus von einem Drucksensor nach der Gattung des unabhängigen Anspruchs .
Aus der EP 0 146 709 ist schon ein Drucksensor bekannt. Der Drucksensor basiert auf einem Siliziumwafer in (001)-
Orientierung, welcher in einem kleinen Bereich, der die sensitive Zone darstellt, auf eine wenige Mikrometer dicke Membran herabgedünnt wurde. Diese Membran verformt sich durch einseitig eingeleiteten Druck. Diese Verformung wird unter Ausnutzung des piezoresistiven Effekts gemessen. Hierzu befinden sich auf der Membran vier Meßwiderstände, deren elektrischer Widerstand sich aufgrund der Verformung ändert. Die vier Meßwiderstände sind mit Elektroden verbunden, welche sich auf dem nicht gedünnten Teil des Substrats befinden. Über diese Elektroden ist eine Messung des elektrischen Widerstands des Meßwiderstands und somit auch des auf die Membran wirkenden Drucks möglich.
Durch das temperaturbedingte Fließen des Elektrodenmaterials kann es bei Drucksensoren dieser Art jedoch zu Änderungen in der Kennlinie des Bauteils kommen, welche von der Temperaturgeschichte abhängig sind, sogenannten Hystereseeffekten.
Vorteile der Erfindung
Der erfindungsgemäße Drucksensor mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß die oben genannten Hystereseeffekte kompensiert werden.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Drucksensors möglich. Besonders vorteilhaft ist es, auf der Membran vier Meßwiderstände anzuordnen, welche als Wheatstone-Brücke verschaltet sind. Durch diese Anordnung ergibt sich eine besonders empfindliche Messung des elektrischen Widerstands, bzw. dessen Änderungen durch den von außen angelegten Druck.
Weiterhin ist es vorteilhaft, die Elektroden aus Aluminium zu fertigen, da Aluminium besonders einfach zu verarbeiten ist. Darüber hinaus bietet es den Vorteil, durch seine niedrige Fließgrenze eine interne mechanische Störspannung zu erzeugen, welche für die Hysteresekompensation herangezogen werden kann.
Es ist vorteilhaft, jedem Meßwiderstand einen Kompensations- widerstand zuzuordnen, da hierdurch die größtmögliche Genauigkeit erzielt wird. Durch die Verwendung eines Halbleitersubstrats und das Erzeugen der Widerstände durch dotierte Zonen im Halbleiter ergibt sich eine besonders preisgünstige Möglichkeit, Widerstände auf eine Membran aufzubringen. Darüber hinaus stehen dann zur Produktion des Drucksensors mit Hystereseausgleich alle bekannten Möglichkeiten der Mikrome- chanik und Mikroelektronik zur Verfügung. Besonders vorteilhaft ist es, Silizium als Halbleiter zu verwenden, da dieses Material die Integration von Sensorelement und Auswerteelektronik auf einem Chip ermöglicht .
Schließlich ist es besonders vorteilhaft, das Siliziumsubstrat in einer (100) -Orientierung zu verwenden, da diese Oberfläche einerseits die einfache Herstellung der Membran durch Kaliumhydroxidätzen erlaubt, und andererseits zwei [011] -Richtungen in der Substratoberfläche aufweist, in wel- chen die Leitfähigkeit besonders empfindlich auf die Deformation reagiert.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Aufsicht auf einen ersten Drucksensor mit Hystereseausgleich, Figur 2 einen Querschnitt durch einen ersten Drucksensor mit Hystereseaus- gleich, Figuren 3a - d einen Querschnitt durch ein Substrat mit einer metallischen Elektrode auf einer Oberfläche, Figur 4 einen zweiten Drucksensor mit Hystereseausgleich.
Beschreibung
Figur 1 zeigt die Aufsicht auf einen ersten einfachen Drucksensor. Eine SchnittZeichnung dieses Drucksensors entlang der Schnittlinie A'A ist in einer der folgenden Figuren dargestellt. Der Drucksensor ist auf einem Substrat 2 aus Sili- zium hergestellt, welches eine (100) -Orientierung aufweist. Auf der Unterseite der Membran, welche in der hier gewählten Darstellung nicht sichtbar ist, befindet sich eine pyramidenstumpfförmige Vertiefung. Ihre Ausformung ist dergestalt, daß die Spitze der Pyramide dem Betrachter zugewandt ist, und daß am Ort des Pyramidenstumpfs nur Siliziummaterial ei- ner geringen Restdicke, die Membran 10, übrigbleibt. Die Begrenzungslinien des Pyramidenstumpfs sind in Figur 1 gestrichelt gezeichnet und liegen parallel zu den [110] - und
[ 110 ] -Richtungen, deren Verlauf in Figur 1 mit den Pfeilen 40 und 41 gekennzeichnet ist. Der nicht gedünnte Teil des
Siliziumsubstrats 2 wird im nachfolgenden auch Träger 11 genannt. Auf der Membran 10, nahe der Membrankante, befindet sich der Meßwiderstand 4, der in [110] -Richtung verläuft. Auf dem Träger 11 befinden sich zwei Elektroden 6, welche im hier gewählten Ausführungsbeispiel aus aufgedampftem Aluminium bestehen, wobei je eine Elektrode vor und eine Elektrode hinter dem Meßwiderstand 4 als langgezogene, senkrecht zum Meßwiderstand 4 verlaufende Metallisierung ausgebildet ist. Senkrecht zur Richtung des Meßwiderstands 4, in [ 110 ] -Richtung verlaufend, befindet sich bei der linken
Elektrode ein Kompensationswiderstand 5. Der Kompensations- widerstand 5 ist mit einem Ende über einen Verbindungsleiter 7 mit dem Meßwiderstand 4 verbunden, mit seinem anderen Ende über einen zweiten Verbindungsleiter 7 mit der Elektrode 6. Die Doppelpfeile 30 und 31, 32 kennzeichnen mechanische
Spannungen, welche bei der Erklärung der Funktionsweise des Drucksensors mit Hystereseausgleich zum Tragen kommen werden.
Figur 2 zeigt einen Querschnitt durch den Drucksensor aus Figur 1. Hierbei wurden gleiche Teile mit den gleichen Bezugszeichen versehen. Das Substrat 2 weist eine im Querschnitt trapezförmige Vertiefung auf, welche durch den Träger 11 und die Membran 10 begrenzt wird. In der Oberfläche der Membran 10 befindet sich der Meßwiderstand 4. Der Meßwiderstand 4 ist durch Einbringen einer lokalen Dotierungszone in das Siliziummaterial realisiert.
Die Funktionsweise des Drucksensors mit Hystereseausgleich sei anhand der Figur 1 erläutert. Durch einen von außen auf den Drucksensor einwirkenden Druck wird der Drucksensor mechanisch elastisch verformt. Die Dik- ke des Trägers 11 beträgt typischerweise mehrere 100 μm, während die Dicke der Membran 10 typischerweise mehrere μm beträgt . Wegen der hieraus resultierenden unterschiedlichen Steifigkeiten ist die mechanische Verformung im Träger 11 im Vergleich zur mechanischen Verformung in der Membran 10 vernachlässigbar. Die aus dem von außen anliegenden Druck re- sultierende mechanische Verformung 31 ist durch einen Pfeil, dessen Länge ein Maß für die Verformung ist, veranschaulicht. Die mechanische Verformung ist exemplarisch an einem Punkt, nämlich am Ort des Meßwiderstands 4, dargestellt.
Weiterhin ist im Drucksensor eine erste Deformation 30 vorhanden. Die Ursache der ersten Deformation 30 ist eine mechanische Störspannung, auf deren Ursache im folgenden Abschnitt näher eingegangen werden soll . Jedem Punkt im Drucksensor kann eine solche erste Deformation zugeordnet werden, jedoch sollen nur zwei Punkte im Drucksensor betrachtet werden. Diese beiden Punkte seien der Ort des Meßwiderstands 4 und der Ort des Kompensationswiderstands 5. Im hier gewählten Ausführungsbeispiel sei die erste Deformation 30 überall gleich, diese Einschränkung ist aber nicht zwingend und wird in der Beschreibung zu Figur 4 fallengelassen.
Der Meßwiderstand 4 und der Kompensationswiderstand 5 sind so dimensioniert, daß ihre piezoresistiven Koeffizienten betragsmäßig gleich sind. Ebenso seien die Absolutwerte des elektrischen Widerstands bei gleichen äußeren Bedingungen gleich. Somit sind die Änderungen des elektrischen Widerstands im Meßwiderstand 4 und im Kompensationswiderstand 5 aufgrund der ersten Deformation 30 betragsmäßig gleich. Da jedoch einmal der Widerstand in Richtung der Deformation und einmal senkrecht zur Deformation gemessen wird, weisen die beiden Widerstandsänderungen ein unterschiedliches Vorzeichen auf. Die Gesamtwiderstandsänderung des Ersatzwiderstands für die Serienschaltung aus Meßwiderstand 4 und Kompensationswiderstand 5 aufgrund der ersten Deformation 30 ist somit Null. Somit bleibt ausschließlich die Änderung des Meßwiderstands aufgrund der zweiten Deformation 31, welcher der Kompensationswiderstand 5, der sich auf dem Träger 11 befindet, nicht ausgesetzt ist.
Die senkrechte Orientierung des Kompensationswiderstands 5 relativ zum Meßwiderstand 4 ist nicht unumgänglich. Sie ist jedoch aus verschiedenen Gründen für einen Siliziumwafer mit (100) -Orientierung besonders vorteilhaft. Bei einer Realisierung einer entsprechenden Schaltung auf anderen Substra- ten oder mit anderen Orientierungen ist darauf zu achten, daß die Widerstände betragsmäßig gleiches, jedoch vorzeichenmäßig entgegengesetztes Verhalten zeigen, und daß der Kompensationswiderstand 5 nicht mit einer zweiten Deformation 31 aufgrund des zu messenden äußeren Drucks beaufschlagt wird.
Anhand der Figuren 3a bis 3d soll eine mögliche Ursache für das Auftreten einer Störspannung illustriert werden. In Figur 3a ist ein Substrat 2 aus Silizium mit einer darauf be- findlichen Elektrode 6 im Querschnitt dargestellt. Zum Verständnis des im Folgenden dargestellten Sachverhalts ist es wichtig zu bemerken, daß der Ausdehnungskoeffizient von Aluminium deutlich größer als der des Siliziums ist. Der effektive Ausdehnungskoeffizient eines Zweischichtsystems aus Aluminium und Silizium liegt zwischen denen der einzelnen Materialien; im hier gewählten Ausführungsbeispiel ist die Siliziumschiocht viel dicker, so daß der effektive Ausdehnungskoeffizient des Zweischichtsystems näherungsweise dem von Silizium entspricht. Durch Abkühlung verkürzt sich das Substrat sowie die Elektrode. In Folge des deutlich Ausdehnungskoeffizienten von Aluminium verkürzt sich die Elektrode 6 etwas stärker an der dem Substrat abgewandten Seite als an der dem Substrat zuge- wandten Seite. Außerdem herrscht in der Elektrode eine Zugspannung. Diese Situation ist in Figur 3b sichtbar.
Bei Erreichen der Fließgrenze von Aluminium durch weitere Abkühlung wird die Elektrode 6 plastisch verformbar. Bei weiterer Abkühlung verkürzt sich das Aluminium mit dem Ausdehnungskoeffizienten von Aluminium, während das Substrat sich mit dem Ausdehnungskoeffizienten von Silizium verkürzt. Zum Ausgleich der unterschiedlichen Verkürzungen fließt des Aluminium. Diese unterrschiedlciehn Ausdehnungen erfolgen so lange, bis durch das Fließen die internen Spannungen im Aluminium knapp unter die Fließspannung aubgebaut wurden.
Bei einer hierauf folgenden Erhöhung der Temperatur dehnt sich das Aluminium zusammen mit dem Silizium aus, wobei im Aluminium zuerst die Zugspannung abgebaut wird, bei weiterer Erhöhung der Temperatur eine Schubspannung aufgebuat wird, bevor es schließlich wiederum zum Fließen kommt. Bei der gleichen Temperatur wie in Figur 3b tritt die in Figur 3d gezeigte Situation ein: das Silizium hat die gleichen Abmes- sungen wie in Figur 3b, das Aluminium jedoch befindet sich nun unter Schubspannung anstatt unter Druckspannung, da es eine stärkere Kontraktion im Gegensatz zur Expansion vollzogen hat. Diese Spannungen sind ein Beispiel für die oben beschriebenen Störspannungen. Wie der Vergleich von Figur 3b mit Figur 3d ergibt, hängt dieser Störspannungszustand nicht nur von der Temperatur ab, welche in Figur 3b und 3d dieselbe ist, sondern auch von der Temperaturgeschichte. Dieses Verhalten macht den soeben geschilderten Effekt besonders bedeutsam, da er hysteretisches Verhalten zeigt. Es sind auch andere Quellen von StörSpannungen denkbar, welche nicht alle hysteretisches Verhalten zeigen. So können auch StörSpannungen entstehen, wenn ein Mehrschichtsystem mit verschiedenen Materialien mit verschiedenen Ausdehnungs- koeffizienten realisiert wird. Diese sind jedoch nicht hysteresbehaftet. Ebenso kann eine Störspannung durch nicht spannungsfreie Montage des Drucksensors induziert werden. Auch diese ist nicht hysteresbehaftet. Die beanspruchte Anordnung bewirkt eine Kompensation von StörSpannungen jeder Art. Elastische Störspannungen sind jedoch für die Ersetzbarkeit der Drucksensoren weniger bedeutsam; vielmehr ist es das hysteretische Verhalten, welches die Einsetzbarkeit des Drucksensors beeinträchtigt .
Die durch die Metallisierung induzierten hysteretischen
Störspannungen sind ungefähr umgekehrt proportional zum Abstand vom Rand der Aluminiumschicht. In einem solchen Fall muß das Produkt aus Widerstandswert und Abstand des Widerstands vom Zentrum der Störspannung für den Meßwiderstand und den Kompensationswiderstand etwa gleich sein, so daß der Effekt der Störspannung auf den Kompensationswiderstand und der Effekt der Störspannung auf den Meßwiderstand sich gegenseitig aufheben.
Hierbei ist es vorteilhaft, den Kompensationswiderstand möglichst klein zu wählen, und demzufolge möglichst nahe an der hystereseverursachenden Elektrode zu plazieren, da dies die Meßbarkeit des Meßwiderstands vergrößert, da er einen größeren Anteil am Ersatzwiderstand der Serienschaltung aus Meß- widerstand und Kompensationswiderstand hat.
Figur 4 zeigt ein weiteres Ausführungsbeispiel für einen Drucksensor mit Hystereseausgleich. Wiederum weist der Drucksensor ein Substrat 2 auf, in welchem in der aus Figur 1 bekannten Weise eine Membran realisiert wurde. In der Au- ßenzone des Trägers 11 befindet sich ein Bereich, welcher hier schematisch als Metallisierung 12 bezeichnet wurde. Die Metallisierung 12 ist hier der Sammelbegriff für die Elektroden 6 sowie alle anderen Metallisierungsschichten, welche zur Realisierung einer Auswerteelektronik notwendig sind. Auf der Membran sind vier Meßwiderstände angebracht, wobei alle vier Widerstände parallel zueinander und in der Nähe der Mitten der Begrenzungslinien der Membran liegen. Darüber hinaus weist der Drucksensor vier Kompensationswiderstände 5 auf, welche alle parallel zueinander und senkrecht zu den
Meßwiderständen 4 sind. Jeder Kompensationswiderstand 5 ist einem anderen Meßwiderstand 4 zugeordnet und befindet sich in dessen räumlicher Nähe auf dem Trägersegment, welches nicht mit der Metallisierungsschicht versehen ist. Die Meß- widerstände 4 und die Kompensationswiderstände 5 sind mit
Hilfe der Verbindungsleiter 7 zu einer Ringschaltung verbunden, in welcher sich Kompensationswiderstände und Meßwiderstände abwechseln, dergestalt, daß immer benachbarte Widerstände verbunden werden und ein möglichst großer Teil der Verbindungsleiter auf dem nicht mit der Metallisierung 12 bedeckten Träger 11 geführt wird.
Da hier der Kompensationswiderstand näher am hystereseverursachenden Element befindlich ist als der Meßwiderstand, und demzufolge größeren ersten mechanischen Deformationen 30 ausgesetzt ist als der letztere, ist der elektrische Widerstand des Kompensationswiderstands entsprechend kleiner als der elektrische Widerstand des Meßwiderstands.
Die so angeordneten Widerstände bilden eine hysteresekompensierte Wheatstone-Brücke, wobei das Ausgangssignal an einander diagonal gegenüberliegenden Ecken abgegriffen wird. Jeder Meßwiderstand in der Wheatstone-Brücke erfährt in diesem Ausführungsbeispiel seinen individuellen Hystereseausgleich.

Claims

Ansprüche
1. Halbleiter-Drucksensor zur Messung eines von außen anliegenden Drucks aus einem Halbleitersubstrat, wobei nur ein als Membran ausgebildeter Bereich des Substrats durch den von außen anliegenden Druck verformbar ist, wobei im Substrat eine innere mechanische Störspannung vorhanden ist, durch welche das gesamte Substrat verformt wird, mit mindestens einem auf der Membran angeordneten Meßwiderstand (4) , der einen durch die Verformung veränderlichen elektrischen Widerstand aufweist, dadurch gekennzeichnet, daß auf dem Substrat, außerhalb der Membran, mindestens ein durch eine Verformung veränderlicher Kompensationswiderstand (5) angeordnet ist, der mit dem Meßwiderstand (4) in Serie geschaltet ist, wobei die Änderung des elektrischen Wider- Stands aufgrund der internen mechanischen Störspannung für den Meß- und den Kompensationswiderstand betragsmäßig ungefähr gleich und von unterschiedlichem Vorzeichen ist.
2. Drucksensor nach Anspruch 1, dadurch gekennzeichnet, daß sich auf der Membran vier Meßwiderstände befinden, welche in einer Wheatstone-Meßbrücke angeordnet sind.
3. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jedem Meßwiderstand wenigstens ein Kompensationswiderstand zugeordnet ist.
4. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nur einer Brückenhälfte je ein Kompensationswiderstand einem Meßwiderstand zugeordnet ist.
5. Drucksensor nach Anspruch 2, dadurch gekennzeichnet, daß eine zweite Wheatstone-Brücke bestehend aus Kompensationswiderständen vorgesehen ist, mit deren Brückensignal das Brük- kensignal der Wheatstone-Meßbrücke aus Meßwiderstände in geeigneter Form beaufschlagbar ist .
6. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Meßwiderstände durch lokales Dotieren des Substrats erzeugt sind.
7. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Substrat aus Silizium besteht.
8. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Substrat eine (100) -Oberfläche aufweist, die Meßwiderstände in einer der { 011} -Richtungen verlaufen und der zugehörige Kompensationswiderstand senk- recht zum Meßwiderstand liegt.
PCT/DE1997/002541 1997-01-15 1997-11-03 Halbleiter-drucksensor WO1998031998A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/341,742 US6234027B1 (en) 1997-01-15 1997-11-03 Pressure sensor for semi-conductor
JP53349098A JP2001509267A (ja) 1997-01-15 1997-11-03 半導体圧力センサ
KR10-1999-7005932A KR100507942B1 (ko) 1997-01-15 1997-11-03 반도체용 압력 센서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19701055.5 1997-01-15
DE19701055.5A DE19701055B4 (de) 1997-01-15 1997-01-15 Halbleiter-Drucksensor

Publications (1)

Publication Number Publication Date
WO1998031998A1 true WO1998031998A1 (de) 1998-07-23

Family

ID=7817372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002541 WO1998031998A1 (de) 1997-01-15 1997-11-03 Halbleiter-drucksensor

Country Status (5)

Country Link
US (1) US6234027B1 (de)
JP (1) JP2001509267A (de)
KR (1) KR100507942B1 (de)
DE (1) DE19701055B4 (de)
WO (1) WO1998031998A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051113B4 (de) * 2004-10-21 2006-11-30 X-Fab Semiconductor Foundries Ag Verfahren und Messanordnung zur elektrischen Ermittlung der Dicke von Halbleitermembranen durch Energieeintrag

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957556A1 (de) * 1999-11-30 2001-05-31 Bosch Gmbh Robert Halbleiter-Drucksensor und Meßanordnung
DE10013904A1 (de) 2000-03-21 2001-09-27 Bosch Gmbh Robert Mikromechanisches Bauelement und Abgleichverfahren
DE10135806A1 (de) 2001-07-23 2003-02-13 Zeiss Carl Spiegel zur Reflexion elektromagnetischer Strahlung und Beleuchtungs- bzw. Abbildungsverfahren unter Einsatz desselben
DE10156951A1 (de) * 2001-11-20 2003-05-28 Wabco Gmbh & Co Ohg Elektrische Schaltungsanordnung
US20030188829A1 (en) * 2001-12-27 2003-10-09 Bharath Rangarajan Integrated pressure sensor for measuring multiaxis pressure gradients
DE10241450A1 (de) 2002-09-06 2004-03-18 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauteils mit einem Sensorelement, insbesondere eines Verformungssensors
JP3915715B2 (ja) * 2003-03-07 2007-05-16 株式会社デンソー 半導体圧力センサ
DE50313527D1 (de) 2003-07-03 2011-04-21 Grundfos As Differenzdrucksensor
US7055392B2 (en) 2003-07-04 2006-06-06 Robert Bosch Gmbh Micromechanical pressure sensor
DE102004006199B4 (de) * 2004-02-09 2015-09-03 Robert Bosch Gmbh Mikromechanischer Drucksensor für hohe Drücke
ATE470844T1 (de) * 2004-09-24 2010-06-15 Grundfos As Drucksensor
JP5069682B2 (ja) 2005-07-22 2012-11-07 エスティーマイクロエレクトロニクス エス.アール.エル. 二重測定スケールおよび高フルスケール値を有する集積化圧力センサ
DE102006009076A1 (de) * 2006-02-28 2007-08-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung des freien Falls
DE102008054408A1 (de) * 2008-12-09 2010-06-10 Robert Bosch Gmbh Messbrücke, Messeinheit und drehbar gelagerter Spiegel
JP5658477B2 (ja) * 2010-04-13 2015-01-28 アズビル株式会社 圧力センサ
DE102011018588B4 (de) 2011-04-26 2018-09-20 X-Fab Semiconductor Foundries Ag Verfahren zur Herstellung eines integrierten, eine Membrane aufweisenden Drucksensors als Bestandteil eines hochintegrierten Schaltkreises
WO2013057689A1 (en) 2011-10-21 2013-04-25 Ecole Polytechnique Federale De Lausanne (Epfl) SiC HIGH TEMPERATURE PRESSURE TRANSDUCER
US9021887B2 (en) 2011-12-19 2015-05-05 Infineon Technologies Ag Micromechanical semiconductor sensing device
JP5454628B2 (ja) 2012-06-29 2014-03-26 株式会社デンソー 圧力センサ
GB2521163A (en) 2013-12-11 2015-06-17 Melexis Technologies Nv Semiconductor pressure sensor
US10317297B2 (en) 2013-12-11 2019-06-11 Melexis Technologies Nv Semiconductor pressure sensor
DE102014200507A1 (de) * 2014-01-14 2015-07-16 Robert Bosch Gmbh Mikromechanische Drucksensorvorrichtung und entsprechendes Herstellungsverfahren
CN103921171B (zh) * 2014-04-17 2016-04-06 西安交通大学 一种大量程压阻式高频响固定式四分量铣削力传感器
DE102015222756A1 (de) * 2015-11-18 2017-05-18 Robert Bosch Gmbh Sensorelement für einen Drucksensor
CN106895886B (zh) * 2017-04-13 2023-06-16 南京信息工程大学 基于巨压阻传感器的高灵敏度气体流量测量装置及方法
DE102017214846A1 (de) * 2017-08-24 2019-02-28 Infineon Technologies Ag Gehäustes MEMS Bauteil mit Störgrößenkompensation
US11885704B2 (en) 2020-07-27 2024-01-30 Precision Biomems Corporation Flexible two-dimensional sheet array of electronic sensor devices
US11650110B2 (en) * 2020-11-04 2023-05-16 Honeywell International Inc. Rosette piezo-resistive gauge circuit for thermally compensated measurement of full stress tensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333349A (en) * 1980-10-06 1982-06-08 Kulite Semiconductor Products, Inc. Binary balancing apparatus for semiconductor transducer structures
EP0083496A2 (de) * 1982-01-04 1983-07-13 Honeywell Inc. Halbleiter-Druckwandler
DE3207833A1 (de) * 1982-03-04 1983-09-15 Siemens AG, 1000 Berlin und 8000 München Halbleiter-drucksensor
JPS60247129A (ja) * 1984-05-21 1985-12-06 Nippon Soken Inc 高圧用圧力検出器
EP0436920A2 (de) * 1990-01-08 1991-07-17 MANNESMANN Aktiengesellschaft Drucksensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772628A (en) * 1972-05-30 1973-11-13 Gen Electric Integral silicon diaphragms for low pressure measurements
US4530244A (en) * 1982-01-04 1985-07-23 Honeywell Inc. Semiconductor pressure transducer
DE3319605A1 (de) * 1983-05-30 1984-12-06 Siemens AG, 1000 Berlin und 8000 München Sensor mit polykristallinen silicium-widerstaenden
JPS60128673A (ja) * 1983-12-16 1985-07-09 Hitachi Ltd 半導体感圧装置
US4682503A (en) * 1986-05-16 1987-07-28 Honeywell Inc. Microscopic size, thermal conductivity type, air or gas absolute pressure sensor
JPH0257933A (ja) * 1988-08-24 1990-02-27 Aisan Ind Co Ltd 圧力センサ
JPH03249532A (ja) * 1990-02-28 1991-11-07 Yokogawa Electric Corp 半導体圧力計
JP2895262B2 (ja) * 1991-04-30 1999-05-24 株式会社日立製作所 複合センサ
JPH0579938A (ja) * 1991-09-24 1993-03-30 Toshiba Corp 半導体圧力センサ
JP3049532B2 (ja) * 1993-06-08 2000-06-05 株式会社共和電業 ひずみゲージ式変換器およびひずみゲージ式変換器の初期値変動量検出方法
JP3365028B2 (ja) * 1994-03-14 2003-01-08 株式会社デンソー 圧力検出装置
JPH0875581A (ja) * 1994-09-09 1996-03-22 Yamatake Honeywell Co Ltd 半導体圧力変換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333349A (en) * 1980-10-06 1982-06-08 Kulite Semiconductor Products, Inc. Binary balancing apparatus for semiconductor transducer structures
EP0083496A2 (de) * 1982-01-04 1983-07-13 Honeywell Inc. Halbleiter-Druckwandler
DE3207833A1 (de) * 1982-03-04 1983-09-15 Siemens AG, 1000 Berlin und 8000 München Halbleiter-drucksensor
JPS60247129A (ja) * 1984-05-21 1985-12-06 Nippon Soken Inc 高圧用圧力検出器
EP0436920A2 (de) * 1990-01-08 1991-07-17 MANNESMANN Aktiengesellschaft Drucksensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. DZIUBAN U.A.: "SELF-COMPENSATING PIEZORESISTIVE PRESSURE SENSOR", SENSORS AND ACTUATORS A., vol. A42, no. 1/3, 15 April 1994 (1994-04-15), LAUSANNE CH, pages 368 - 374, XP000449942 *
PATENT ABSTRACTS OF JAPAN vol. 10, no. 119 (P - 453)<2176> 6 May 1986 (1986-05-06) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051113B4 (de) * 2004-10-21 2006-11-30 X-Fab Semiconductor Foundries Ag Verfahren und Messanordnung zur elektrischen Ermittlung der Dicke von Halbleitermembranen durch Energieeintrag

Also Published As

Publication number Publication date
JP2001509267A (ja) 2001-07-10
KR100507942B1 (ko) 2005-08-17
KR20000069790A (ko) 2000-11-25
US6234027B1 (en) 2001-05-22
DE19701055B4 (de) 2016-04-28
DE19701055A1 (de) 1998-07-16

Similar Documents

Publication Publication Date Title
DE19701055B4 (de) Halbleiter-Drucksensor
DE69126501T2 (de) Kraftdetektor und Beschleunigungsdetektor
DE69936794T2 (de) Halbleiterdrucksensor und vorrichtung zur erfassung von drucken
DE102007033040B4 (de) Drucksensor und Verfahren zur Herstellung desselben
DE102008040525B4 (de) Mikromechanisches Sensorelement
DE3741941C2 (de)
DE3928542C2 (de) Halbleiter-Druckwandler
DE4135369C2 (de)
DE102013217726A1 (de) Mikromechanisches Bauteil für eine kapazitive Sensorvorrichtung und Herstellungsverfahren für ein mikromechanisches Bauteil für eine kapazitive Sensorvorrichtung
EP0494143B1 (de) Vorrichtung zur messung mechanischer kräfte und kraftwirkungen
DE3874653T2 (de) Si-kristall-kraftwandler.
DE102016210479A1 (de) Mikromechanisches Bauteil für eine Drucksensorvorrichtung
DE102006003562A1 (de) Beschleunigungssensor
DE4419267C2 (de) Halbleiterbeschleunigungssensor und Testverfahren dafür
DE10158526B4 (de) Strömungsgeschwindigkeitserfassungsvorrichtung für einen wärmesensitiven Flusssensor
DE19903585B4 (de) Halbleitersensor und Halbleitersensorchip und Halbleitersensorgehäuse
DE102007026827A1 (de) Aufnehmer zur Messung mechanischer Kräfte und Momente
DE112018008166T5 (de) Mehrachsiger tastsensor
DE102004023063A1 (de) Mikromechanische piezoresistive Drucksensorenvorrichtung
EP3631354B1 (de) Mehrgitter-dehnungsmessstreifen und metallband mit solch einem dehnungsmessstreifen
EP0140064B1 (de) Kraft- bzw. Druckmessgeber
EP0992778A2 (de) Sensor und Verfahren zu seiner Herstellung
DE102010024808A1 (de) Piezoresistiver Kraftsensor
DE19601077C2 (de) Kraftsensor
DE10036495C2 (de) Kraftmessvorrichtung in Form eines Biegebalkensensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1019997005932

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 533490

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09341742

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997005932

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997005932

Country of ref document: KR