WO1998028837A1 - Regulateur de moteur - Google Patents

Regulateur de moteur Download PDF

Info

Publication number
WO1998028837A1
WO1998028837A1 PCT/JP1997/003148 JP9703148W WO9828837A1 WO 1998028837 A1 WO1998028837 A1 WO 1998028837A1 JP 9703148 W JP9703148 W JP 9703148W WO 9828837 A1 WO9828837 A1 WO 9828837A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
motor
inertia
unit
time
Prior art date
Application number
PCT/JP1997/003148
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Tsuruta
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to US09/331,319 priority Critical patent/US6157156A/en
Priority to EP97939210A priority patent/EP0948124B1/en
Priority to DE69739104T priority patent/DE69739104D1/de
Publication of WO1998028837A1 publication Critical patent/WO1998028837A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/90Specific system operational feature
    • Y10S388/906Proportional-integral system

Definitions

  • the present invention relates to a control device for a robot, a machine tool, or the like, and particularly to a motor control device having a function of identifying an inertia and adjusting a gain according to the inertia when the inertia fluctuates during operation.
  • This device simulates a speed control unit that determines the torque command so that the input speed command matches the actual motor speed and controls the motor speed, and simulates the speed control unit so that the model speed matches the motor speed.
  • An estimating unit that identifies the inertia by a ratio of a value obtained by time-integrating the speed deviation of the speed control unit in a predetermined section and a value obtained by integrating the speed deviation of the estimating unit with time in the same section; If the speed deviation of the estimator is zero and the motor speed is not zero within a predetermined section, the time integral of the speed deviation of the speed controller and the time integral of the speed deviation of the estimator performed in the identification unit When the speed command and the motor speed of the speed control unit are zero, the time integration in the identification unit is not performed. Since this device identifies in real time for any speed command, it can identify the inertia even if the inertia changes every moment.
  • the torque command or motor current includes a friction compensation component and a disturbance compensation component in addition to the command response component, so that these effects must be eliminated. Since it is difficult to match the actual speed and the model speed, it is necessary to perform several trials and calculations to identify the inertia, which takes time to identify.As a result, tuning in real time can be performed with high accuracy. I could't do it. Disclosure of the invention
  • An object of the present invention is to provide a motor control device having a function of real-time identification of inertia and adjustment of a control gain associated therewith with only a simple calculation using actual speed as a model speed command. It is in.
  • the transfer function from the torque command or the motor current to the speed is expressed only by the inertia. If the speed is not zero, the torque The inertia can be easily obtained from the command or the ratio of the time integral of the motor current to the speed. Utilizing this relationship, the same speed command is input to the actual speed control unit and its model, and if the actual speed and the model speed are different and the values match, each torque command or motor current The inertia can be obtained from the time integration value and the speed of.
  • the present invention assumes that friction and disturbance are compensated to some extent by an integrator in the speed control unit, and reduces the effects of friction and disturbance by integrating the speed deviation over time instead of the torque command or motor current.
  • the actual speed was used as the model speed command so that the condition that the actual speed and the model speed matched with a non-zero value could be satisfied as much as possible. Therefore, according to the present invention, the inertia can be identified in a short time with only a very simple calculation, so that real-time tuning can be accurately performed.
  • the present invention provides a speed control unit that determines a torque command so that the input speed command matches the actual motor speed and controls the motor speed.
  • the estimator simulates the speed controller so that the speed of the model matches the motor speed, and the speed deviation of the estimator is the same as the value obtained by integrating the speed deviation of the speed controller over a predetermined interval.
  • An identification unit that identifies the inertia based on the ratio of the value obtained by integrating with time is provided.Only when the motor speed in the speed control unit and the model speed in the estimation unit match with each other, the Inertia is identified from the ratio of the value obtained by time-integrating the absolute value of the speed deviation of the speed controller in a predetermined section and the value obtained by integrating the absolute value of the speed deviation of the estimator in the same section.
  • the integrators used for obtaining the time integral of the absolute value of the speed deviation of the speed control unit and the time integral of the absolute value of the speed deviation of the estimator are respectively used for the speed controller and the estimator.
  • the integrators are switched at regular intervals, and the switched integrators are cleared to zero and restart the time integration of the absolute value of the speed deviation of the speed controller and the absolute value of the speed deviation of the estimator again.
  • the present invention provides a speed control unit that determines a torque command so that the input speed command matches the actual motor speed and controls the motor speed, and a speed control unit that controls the motor speed so that the model speed matches the motor speed. And a value obtained by integrating the absolute value of the value obtained by passing the speed deviation of the speed control unit through a predetermined filter in a predetermined section over time, From the ratio of the absolute value of the speed deviation of the estimator to the value obtained by time integration in the same section, the inertia of the inertia is determined only when the motor speed in the speed controller and the speed of the model in the estimator are different.
  • An identification unit for performing identification and an adjustment unit for adjusting a control gain based on a value obtained by passing a predetermined filter to a ratio of the inertia identified in the identification unit to the inertia in the estimation unit.
  • the filter that passes the speed deviation of the speed control unit is a transfer function from the speed command of the speed control unit to the motor speed.
  • control method in the speed control unit is PI (proportional integral control), IP (integral ratio control) or PID (proportional integral derivative control)
  • PI proportional integral control
  • IP integrated ratio control
  • PID proportional integral derivative control
  • FIG. 1 is a block diagram of a motor control system according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing each configuration of a speed control unit, an estimation unit, and an identification unit in FIG. 1,
  • FIG. 3 is a diagram for explaining details of the identification unit in FIG. 2,
  • Fig. 4 is a diagram showing an operation example using an AC servo motor
  • FIG. 5 is a block diagram of a motor control system according to a second embodiment of the present invention.
  • FIG. 6 is a block diagram showing each configuration of a speed control unit, an estimation unit, an identification unit, and an adjustment unit.
  • FIG. 7 is a diagram showing a response example by simulation.
  • B) is a diagram showing a case where this is not the embodiment.
  • FIG. 1 is a block diagram of a motor control system according to a first embodiment of the present invention.
  • the command generator 11 outputs the speed command V ref to the speed controller 12.
  • the speed control unit 12 outputs the motor speed V fb in the speed control unit to the estimation unit 13 and outputs the speed deviation V e and the speed V fb to the identification unit 14.
  • the estimating unit 13 simulates the speed control unit 12 so that the motor speed V fb matches the model speed V fb ′, and outputs the speed deviation V e ′ and the speed V fb ′ to the identification unit 14 I do.
  • the identification unit 14 inputs the speed deviation Ve and speed Vfb from the speed control unit 12 and the speed deviation Ve 'and speed Vfb' from the estimation unit 13 Then ask for Ina Isha J.
  • FIG. 2 is a diagram showing the configuration of the speed control unit 12, the estimation unit 13, and the identification unit 14.
  • the speed control unit 12 receives the speed command Vref from the command generation unit 11 and forms a speed loop such that the motor speed Vfb matches the speed command Vref.
  • a PI (proportional-integral) controller 12 1 is used, a torque command T ref is output to a current controller 122 driving a motor 123, and a speed V fb is output to an estimating unit 13.
  • the speed deviation Ve between the speed command and the motor speed and the motor speed Vfb are output to the identification unit 14. It is assumed that a load J L is attached to the motor 123 and the motor 123 outputs the speed V fb.
  • the estimating unit 13 uses the motor speed V ib in the speed control unit 12 as a speed command, and, like the speed control unit 12, uses the PI controller 13 1, the current controller model 13 2, and the control target 1 / J'S and a controlled object model 1 3 3 modeled, and outputs the speed deviation Ve 'and the speed Vfb' to the identification unit 14.
  • the identification unit 14 receives the speed deviation Ve and the speed Vfb output from the speed control unit 12 and the speed deviation Ve 'and the speed Vfb' output from the estimation unit 13 and calculates the absolute value of each speed deviation.
  • the values are used to perform time integration in a predetermined section [a, b] by the integrator 14 1, and the obtained time integrated values
  • J (
  • the calculation of equation (1) is performed only when the speed Vfb in the speed control unit and the speed Vfb 'in the estimation unit match with a non-zero value.
  • the method of setting the integration interval [a, b] and the reading interval of the integration value will be described with reference to FIG. Here, it is assumed that there are two integrators each for integrating the absolute value of the speed deviation V e in the speed controller and the speed deviation V e 'in the estimator.
  • the two integrators are switched alternately with a half cycle shift as seen in MODE 0 and MODE 1, respectively.
  • the reading period of the integrated value from the integrator is the second half of the integration interval, in which the effect of the error is reduced, 1, 2, 3-.
  • equation (1) Is performed in parallel with the integration, and at time t1, the mode shifts to MODE 1 in the lower part of the figure.
  • Start.
  • the operation of equation (1) is performed in parallel with the integration in MODE 1 at time t2.
  • the operation returns to MODE 0 at the same time as the integrator used in MODE 1. Value
  • are cleared to zero and integration is started again.
  • FIG. 4 is a diagram showing an operation example using an AC servomotor.
  • (1) is the speed command V ref, which was set to 2.
  • 2 is the speed V fb of the motor in the speed control unit 12, 2 'is the speed V fb' in the estimation unit 13, 3 is the inertia J identified in the identification unit 13 and the inertia in the estimation unit 13 J 'ratio
  • the identification of the inertia has been described in the first embodiment described above. However, by providing an adjusting unit as in the following second embodiment, the control gain can be adjusted by identifying the inertia.
  • FIG. 5 is a block diagram of a motor control system according to a second embodiment of the present invention.
  • the command generator 11 outputs the speed command V ref to the speed controller 12.
  • the speed control unit 12 outputs the motor speed V fb in the speed control unit to the estimation unit 13, and outputs the speed deviation V e and the motor speed V fb to the identification unit 14.
  • the estimation unit 13 simulates the speed control unit 12 so that the model speed V ib ′ matches the motor speed V fb.
  • Identification unit 1 4 inputs the speed deviation Ve from the speed controller 12 and the motor speed Vfb and c and the speed deviation Ve 'and the speed Vfb' from the estimation unit 13 to obtain the inertia J, and calculates the inertia ratio.
  • the adjustment unit 15 receives the inertia ratio J / J ′, determines the proportional gain KV and the integral gain K i in the speed control unit 12 based on the value passed through a predetermined filter, and the c Fig. 6 to adjust the value of the integrator speed controller 1 2 and the estimating unit 1 3 is a view to showing the configuration of the identification unit 1 4 and the adjustment unit 1 5 and.
  • the speed controller 12 receives the speed command V ref from the speed command generator 11 and forms a speed loop such that the speed V fb is equal to the speed command V ref.
  • the PI (proportional-integral) controller is set to 1 2 1, the torque command T ref is output to the current controller 1 2 2 that drives the motor, the speed V fb is output to the estimation unit 13, and the speed deviation V e and the velocity V fb are output to the identification unit 14. It is assumed that a load JL is attached to the motor, and the speed V fb is output from the motor.
  • the estimating unit 13 uses the motor speed V fb in the speed control unit 12 as a speed command and, like the speed control unit 12, uses the PI controller 13 1, the current controller model, and the control target as 1 / J. ′
  • the speed deviation V e ′ and the speed V fb ′ are output to the identification unit 14.
  • the identification unit 14 receives the speed deviation Ve and the speed Vfb output from the speed control unit 12 and the speed deviation Ve 'and the speed Vfb' output from the estimation unit 13 and outputs the speed deviation Ve.
  • the absolute values of the value FV e and the speed deviation V e ′ obtained through a filter modeled on the transfer function from the speed command V ref to the speed V fb of the control unit are taken.
  • a, b] the time integral IS FV e
  • the two integrators are switched alternately with a half cycle shift as seen in MODE 0 and MODE 1, respectively.
  • the reading period of the integrated value from the integrator is the latter half of the integration interval in which the effect of the error is reduced, 1, 2, 3...
  • Fig. 7 shows a response example by simulation.
  • (A) is a response example when the present invention is used, and (B) is a response example when the present invention is not used.
  • is the speed command V ref, which was 2.0 Hz at the maximum speed of 1,500 rpm.
  • 2 is the speed V fb simulating the motor speed
  • 3 is the speed deviation V e
  • 5 is the ratio (two JZJ,) of the inertia J identified in the identification unit 13 to the inertia J' in the estimation unit 13. It is a value passed through a primary filter with a time constant of 50 ms in the adjustment unit 15 and is displayed for each control cycle.
  • the inertia changes from 5 times ⁇ 20 times ⁇ 10 times ⁇ 5 times, the inertia can be accurately and quickly identified by using the present invention. A stable response can be obtained without being affected.
  • a motor control device capable of real-time identification of an inertia that changes every moment without being limited to an integration section in which an input speed command or a speed deviation is time-integrated. Can be provided.
  • the influence of friction, disturbance, and the like can be reduced as much as possible, and the actual speed and the model speed command are set so that the condition that the actual speed and the model speed match with a non-zero value can be satisfied. Therefore, it is possible to identify the inertia in a short time with only a very simple operation, and it is possible to provide a motor control device having a control gain adjustment function capable of performing real-time tuning with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)

Description

明 細 書 モータ制御装置
技 術 分 野 本発明は、 ロボッ トや工作機械等の制御装置、 特に動作中にイナーシャ変動が ある場合にイナ一シャの同定およびそれに伴うゲイン調整を行う機能を有するモ —タ制御装置に関する。 背 景 技 術
モータ制御におけるイナ一シャを同定する装置として、 例えば、 本出願人が特 願平 8— 2 3 0 7 1 3号において提案した装置がある。
この装置は、 入力された速度指令と実際のモータ速度が一致するようにトルク 指令を決定しモータ速度を制御する速度制御部と、 モータ速度にモデルの速度が 一致するように速度制御部をシミュレ一トする推定部と、 速度制御部の速度偏差 を所定の区間で時間積分した値と推定部の速度偏差を同じ区問で時間積分した値 との比によりイナ一シャを同定する同定部とを備え、 所定の区間内で、 推定部の 速度偏差がゼロでモータ速度がゼロでない場合は、 同定部内で行なう速度制御部 の速度偏差の時間積分値と推定部の速度偏差の時間積分値との比によりイナーシ ャを同定する演算を行い、 速度制御部の速度指令とモータ速度がゼロの場合は、 同定部内での時間積分を行なわない。 この装置は、 任意の速度指令に対してリア ルタイムで同定するため、 時々刻々とイナ一シャが変化してもイナ一シャの同定 が可能である。
モータ制御におけるイナ一シャを調整する他の装置として、 特開平 4一 3 2 5 8 8 6号公報に記載された電動機サーボ系の制御装置がある。 その公報には、 モータとモータに取付けられた機械系からなる制御対象をフィードバック制御す るモータサーボ系の制御装置であって、 負荷イナ一シャの大きさがモータに流れ る電流の時間積分値に直接反映されることから、 同じ位置指令値を加えた場合の 実際のサーボ系とそのシミュレーション部での電流検出値の時間積分値を求め、 その比較結果に応じてイナーシャ仮定値を修正しながら制御対象の負荷ィナーシ ャの大きさを同定し、 この同定値に基づいてフィードバック制御ループ内の制御 ゲインを調整するため、 負荷イナ一シャが変わった場合でも最適な動作を容易に 実現できることが開示されている。
しかし、 入力された速度指令や速度偏差を時間積分する積分区間によっては、 速度制御部内の速度偏差の積分値または推定部内の速度偏差の積分値がゼロにな る場合には、 イナ一シャを同定することができなかった。
また、 摩擦や外乱が存在する場合は、 トルク指令または電動機電流に指令応答 成分の他に摩擦補償成分と外乱捕償成分が含まれるためにこれらの影響を除去し なければならず、 イナーシャによっては実速度とモデル速度が一致しづらいため、 イナ一シャを同定するための試行や演算を数回行う必要があることから同定に時 間がかかってしまい、 結果的にリアルタイムでのチューニングを精度良く行うこ とができなかった。 発 明 の 開 示
本発明の目的は、 実速度をモデルの速度指令とし、 簡単な演算のみでリアルタ ィムによるイナ一シャ同定およびそれに伴う制御ゲイン調整を行なうことのでき る機能を有するモータ制御装置を提供することにある。
ここで本発明におけるイナ一シャを同定する原理について簡単に説明する。 ト ルク指令または電動機電流の時問積分値からイナ一シャを正確に求めるには、 ト ルク指令または電動機電流から速度までの伝達関数がイナ一シャのみで表され、 速度がゼロでない場合、 トルク指令または電動機電流の時間積分値と速度の比か ら簡単にイナ一シャを求めることができる。 この関係を利用して、 実際の速度制 御部とそのモデルに同じ速度指令を入力し、 実速度とモデル速度がゼ口でなレ、値 で一致する場合に、 それぞれのトルク指令または電動機電流の時間積分値と速度 からイナ一シャを求めることができる。 しかし、 実際には摩擦や外乱が存在する ので、 トルク指令または電動機電流には指令応答成分の他に摩擦補償成分と外乱 補償成分が含まれるためにこれらの影響を除去しなければならず、 また、 イナ一 シャによっては実速度とモデル速度がー致しづらいため、 同定するための試行や 演算を数回行う必要があり、 同定に時間がかかってしまい、 結果的にリアルタイ ムでのチューニングを精度良く行うことができなくなる。
そこで本発明は、 摩擦や外乱は速度制御部内の積分器である程度補償されるも のと仮定し、 トルク指令または電動機電流の代わりに速度偏差を時間積分するこ とにより摩擦や外乱等の影響をできるだけなくすようにし、 また、 実速度とモデ ル速度がゼロでない値で一致するという条件をできるだけ満たせるように実速度 をモデルの速度指令とした。 したがって本発明では、 非常に簡単な演算のみで短 時間にイナ一シャの同定ができるため、 リアルタイムでのチューニングを精度良 く行うことができる。
このイナーシャ同定原理に基づいて上記問題を解決するために、 本発明は、 入 力された速度指令と実際のモータ速度が一致するようにトルク指令を決定しモー タ速度を制御する速度制御部と、 モータ速度にモデルの速度が一致するように速 度制御部をシミュレ一トする推定部と、 速度制御部の速度偏差を所定の区間で時 間積分した値と推定部の速度偏差を同じ区間で時間積分した値との比によりイナ —シャを同定する同定部とを備え、 速度制御部内のモータ速度と推定部内のモデ ルの速度がゼ口でなレ、値で一致する場合にのみ、 速度制御部の速度偏差の絶対値 を所定の区間で時間積分した値と、 推定部の速度偏差の絶対値を同じ区間で時間 積分した値との比からイナ一シャを同定する。
また、 速度制御部の速度偏差の絶対値の時間積分値と、 推定部の速度偏差の絶 対値の時間積分値を求める際に用いる積分器を、 速度制御部用と推定部用をそれ ぞれ 2個以上備え、 ある間隔ごとに切り替えて、 切り替えられた積分器はゼロク リァして再び速度制御部の速度偏差の絶対値及び推定部の速度偏差の絶対値の時 間積分を開始する。
さらに、 本発明は、 入力された速度指令と実際のモータ速度が一致するように トルク指令を決定しモータ速度を制御する速度制御部と、 モータ速度にモデルの 速度が一致するように速度制御部をシミュレートする推定部と、 速度制御部の速 度偏差に所定のフィルタを通した値の絶対値を所定の区間で時間積分した値と、 推定部の速度偏差の絶対値を同じ区間で時間積分した値との比から速度制御部内 のモータ速度と推定部内のモデルの速度がゼ口でなレ、値で一致する場合にのみィ ナーシャの同定を行う同定部と、 同定部内で同定されたイナーシャと推定部内の イナ一シャの比に所定のフィルタを通した値に基づいて制御ゲインの調整を行う 調整部とを備える。 また、 速度制御部の速度偏差に通すフィルタを、 速度制御部 の速度指令からモータ速度までの伝達関数とする。
さらに、 速度制御部内の制御方式を P I (比例積分制御) 方式、 I P (積分比 例制御) 方式または P I D (比例積分微分制御) 方式とした場合の積分器の値を 調整部における制御ゲインによって調節する。 図面の簡単な説明
第 1図は本発明の第 1実施例のモータ制御システムのプロック図、
第 2図は第 1図における速度制御部、 推定部及び同定部の各構成を示すプロック 図、
第 3図は第 2図における同定部の詳細を説明する図、
第 4図は A Cサーボモータを用いた動作例を示す図、
第 5図は本発明の第 2実施例のモータ制御システムのブロック図、
第 6図は速度制御部、 推定部、 同定部及び調整部の各構成を示すブロック図、 第 7図はシミュレーションによる応答例を示す図でであり、 (A) が本実施例の 場合、 (B ) が本実施例でない場合を示す図である。 発明を実施するための最良の形態
第 1図は本発明の第 1実施例のモータ制御システムのプロック図である。 指令 発生部 1 1は速度指令 V r e f を速度制御部 1 2に出力する。 速度制御部 1 2は 速度制御部内のモータ速度 V f bを推定部 1 3に出力し、 速度偏差 V e と速度 V f bを同定部 1 4に出力する。 推定部 1 3は、 モータ速度 V f bとモデルの速度 V f b ' がー致するよう速度制御部 1 2をシミュレートし、 速度偏差 V e ' と速 度 V f b ' を同定部 1 4に出力する。 同定部 1 4は速度制御部 1 2からの速度偏 差 V eと速度 V f b及び推定部 1 3からの速度偏差 V e ' と速度 V f b ' を入力 しイナ一シャ Jを求める。
第 2図は速度制御部 1 2と推定部 1 3及び同定部 1 4の構成を示す図である。 速度制御部 1 2は、 指令発生部 1 1からの速度指令 V r e f を受け、 速度指令 V r e f にモータの速度 V f bがー致するように速度ループを組んでいる。 ここで は P I (比例積分) 制御器 1 2 1 とし、 トルク指令 T r e f をモータ 1 23を駆 動する電流制御器 1 22に出力し、 速度 V f bを推定部 1 3に出力し、 また、 速 度指令とモータ速度の速度偏差 V e及びモータ速度 V f bを同定部 1 4に出力す る。 なお、 モータ 1 23には負荷 J Lが取り付けられており、 モータ 1 23から は速度 V f bが出力されているとする。
推定部 1 3は速度制御部 1 2内のモータ速度 V i bを速度指令として、 速度制 御部 1 2と同じく、 P I制御器 1 3 1 と、 電流制御器モデル 1 3 2と、 制御対象 を 1 / J ' Sでモデル化した制御対象モデル 1 3 3とで構成し、 速度偏差 V e ' 及び速度 V f b ' を同定部 1 4に出力する。
同定部 14は、 速度制御部 1 2から出力された速度偏差 V e と速度 V f b及び 推定部 1 3から出力された速度偏差 V e ' と速度 V f b ' を受け取り、 それぞれ の速度偏差の絶対値をとつて積分器 1 4 1により所定の区間 [a, b] で時間積 分を行い、 求められた時間積分値 | SV e | と | SV e, | 及び推定部のィナー シャ J ' (既知の一定値) から速度制御部のイナーシャ Jを、
J = ( | SV e | / | SV e ' | ) *J ' (1 ) により演算器 1 4 2で求める。 但し、 ( 1 ) 式の演算を行うのは速度制御部内の 速度 V f bと推定部内の速度 V f b ' がゼロでない値で一致する場合のみである。 次に積分区間 [a, b] および積分値の読出期問の設定方法について第 3図を 用いて説明する。 速度制御部内の速度偏差 V eと推定部内の速度偏差 V e ' の絶 対値を積分する積分器をここではそれぞれ 2個持っているものとする。
2個の積分器は、 それぞれの積分区間が MODE 0と MODE 1に見られるよ うに半周期ずれて交互に切替えられる。 また、 積分器からの積分値の読出期間は 誤差の影響が少なくなる積分区間の後半の期間 1、 2、 3 - · とし、 これら期間 のある時点で読み出される。
時刻 tOから t l (期間 1 ) においては図中上段の MODE 0を用いて ( 1 ) 式 の演算を積分と並行して行い、 時刻 t 1で図中下段の MODE 1に移ると同時に MODE 0で用いた積分器の値 | S V e | と | SV e, | をゼロクリァして再び 積分を開始する。 時亥 Ij t lカゝら t 2 (期間 2) においては MODE 1で ( 1 ) 式の 演算を積分と並行して行い、 時刻 t 2で再び MODE 0に移ると同時に MODE 1で用いた積分器の値 | SV e | と | SV e, | をゼロクリアして再び積分を開 始する。
これらの一連の作業を繰り返しながら期間をシフト (期間 1→期間 2→期間 3 →期間 4→期間 5→ · · ) することにより、 速度偏差の絶対値の時間積分値がォ 一バーフローすることもなく、 負荷変動により影響を受けた速度偏差に反応よく イナ一シャの同定を行うことができる。 なお、 速度偏差を時間積分する区間 [a, b] を上記期間 3を例にあげて説明すると、 時刻 aは時刻 t 1に相当し、 時刻 b は時亥 IJ t2力ゝら時亥 lj t 3までの読み出すある時点に相当する。
第 4図は ACサ一ボモータを用いた動作例を示す図である。 ①は速度指令 V r e f であり、 最高速度 1 500 r p mで 2. OH zの速度指令とした。 ②は速度 制御部 1 2内のモータの速度 V f b、 ②' は推定部 1 3内の速度 V f b ' 、 ③は 同定部 1 3内で同定されたイナーシャ J と推定部 1 3内のイナーシャ J ' の比
(③ =JZJ' ) であり、 制御周期ごとに表示している。 この値は { (モータイ ナーシャ JM) + (負荷イナーシャ J L = 9. 0* JM} / (モータイナーシャ JM) = 1 0. 0とほぼ一致している。 ここで、 推定部のイナーシャ J ' は J ' = J Mとしてシミユレ一トし、 また、 V ί b = V f b ' ≠ 0でない場合は、 ( 1 ) 式の演算は行わずに前制御時刻での同定値とした。
以上の第 1実施例でィナーシャの同定を説明したが、 次の第 2実施例のように 調整部を設けることにより、 イナ一シャの同定によって制御ゲインの調整を行な うことができる。
第 5図は本発明の第 2実施例のモータ制御システムのブロック図である。 指令 発生部 1 1は速度指令 V r e f を速度制御部 1 2に出力する。 速度制御部 1 2は 速度制御部内のモータの速度 V f bを推定部 1 3に出力し、 速度偏差 V eとモー タ速度 V f bを同定部 1 4に出力する。 推定部 1 3は、 モータ速度 V f bにモデ ルの速度 V i b ' がー致するよう速度制御部 1 2をシミュレートする。 同定部 1 4は速度制御部 1 2からの速度偏差 V e とモータ速度 V f b及 cび推定部 1 3か らの速度偏差 V e ' と速度 V f b ' を入力しイナーシャ Jを求め、 イナ一シャ比 J / J ' を調整部 1 5に出力する。 調整部 1 5はイナ一シャ比 Jノ J ' を受け取 り所定のフィルタを通した値に基づいて前記速度制御部 1 2内の比例ゲイン K V 及び積分ゲイン K iを決定するとともに、 速度制御部内の積分器の値を調節する c 第 6図は速度制御部 1 2と推定部 1 3,と同定部 1 4及び調整部 1 5の構成を示 す図である。 速度制御部 1 2は、 速度指令発生部 1 1からの速度指令 V r e f を 受け、 速度指令 V r e f に速度 V f bがー致するように速度ループを組まれてい る。 ここでは P I (比例積分) 制御器 1 2 1 とし、 トルク指令 T r e f をモータ を駆動する電流制御器 1 2 2に出力し、 速度 V f bを推定部 1 3に出力し、 また、 速度偏差 V e及び速度 V f bを同定部 1 4に出力する。 なお、 モータには負荷 J Lが取り付けられており、 モータからは速度 V f bが出力されているとする。 推定部 1 3は、 速度制御部 1 2内のモータ速度 V f bを速度指令として、 速度 制御部 1 2と同じく、 P I制御器 1 3 1 と、 電流制御器モデルと、 制御対象を 1 / J ' Sでモデル化した制御対象モデル 1 3 3とで構成し、 速度偏差 V e ' 及び 速度 V f b ' を同定部 1 4に出力する。
同定部 14は、 速度制御部 1 2から出力された速度偏差 V e と速度 V f b及び 推定部 1 3から出力された速度偏差 V e ' と速度 V f b ' を受け取り、 速度偏差 V eに速度制御部の速度指令 V r e f から速度 V f bまでの伝達関数をモデルと したフィルタを通した値 F V e と速度偏差 V e ' の絶対値をとり、 積分器 1 4 1 でそれぞれを所定の区間 [ a, b] で時間積分を行い、 求められた時間積分値 I S FV e | と | SV e, | 及び推定部のイナ一シャ J ' (既知の一定値) から速 度制御部のイナーシャ Jを、
J = ( I S F V e Iゾ I S V e ' | ) * J ' (2)
により演算器 1 4 2で求める。 但し、 (2) 式の演算を行うのは速度制御部内の 速度 V f bと推定部内の速度 V f b ' がゼロでない値で一致する場合のみである。 次に積分区間 [ a, b] と積分値の読出期問の設定方法について第 3図を用い て説明する。 第 1実施例と同じように、 速度制御部内の速度偏差 V eをフィルタ リングした値 F V eと推定部内の速度偏差 V e ' の絶対値を積分する積分器をこ こではそれぞれ 2個持っているものとする。
2個の積分器は、 それぞれの積分区間が MODE 0と MODE 1に見られるよ うに半周期ずれて交互に切替えられる。 また、 積分器からの積分値の読出期間は 誤差の影響が少なくなる積分区問の後半の期間 1、 2、 3 · · とし、 これら期問 のある時点で読み出される。
時亥 iJ tOカゝら t l (期間 1) においては図中上段の MODE 0を用いて (2) 式 の演算を積分と並行して行い、 時刻 t 1で図中下段の MODE 1に移ると同時に MODE 0で用いた積分器の値 | S FV e | と | SV e, | をゼロクリァして再 び積分を開始する。 時刻 t lから t2 (期間 2) においては MODE 1で (2) 式 の演算を積分と並行して行い、 時刻 t 2で再び MODE 0に移ると同時に MOD E 1で用いた積分器の値 | S FV e | と | S V e, | をゼロクリアして再び積分 を開始する。
これらの一連の作業を繰り返しながら期間をシフト (期間 1→期間 2→期間 3 →期間 4→期間 5→ · · ) することにより、 速度偏差の絶対値の時間積分値がォ 一バーフローすることもなく、 負荷変動により影響を受けた速度偏差に反応よく イナ一シャの同定を行うことができる。 なお、 速度偏差を時間積分する区間 [a, b ] を上記期間 3を例にあげて説明すると、 時刻 aは時亥 IJ t 1に相当し、 時刻 b は時亥 lj t 2から時刻 t 3までの読み出すある時点に相当する。
調整部 1 5は同定部 1 4内で求められたイナ一シャの比 (=JZJ, ) に所定 のフィルタを通した値に基づいて前記速度制御部 1 2内の比例ゲイン K V及び積 分ゲイン K iの更新を行うとともに、 前記速度制御部内の積分器の値の調節を行 ラ。
次に、 シミュレーションによる応答例を第 7図に示す。 (A) は本発明を用い た場合の応答例であり、 (B) は本発明を用いない場合の応答例である。 図中① は速度指令 V r e f であり、 最高速度 1 500 r pmで 2. 0 H zの速度指令と した。 ②はモータ速度をシミュレートした速度 V f b、 ③は速度偏差 V e、 ④は シミュレーションで設定した総負荷イナーシャ J N (J N= JM+ J L) と推定 部 1 3内のイナーシャ J ' の比 (④ = J N/ J ' ) であり、 ⑤は同定部 1 3内で 同定されたイナーシャ Jと推定部 1 3内のイナーシャ J ' の比 (二 JZJ, ) に 調整部 1 5において時定数 5 0 m sの 1次フィルタを通した値であり、 制御周期 ごとに表示している。 ここでは、 J ' = J Mとしてシミュレートし、 V f b = V f b ' ≠ 0でない場合は (2 ) 式の演算は行わずに前制御周期での同定値とした c また、 調整部 1 5においてイナーシャ比⑤に応じて速度制御部内の比例ゲイン K Vを K V = K V *⑤の演算を調整部で行つて制御周期ごとに更新し、 積分ゲイン K iは比例ゲイン K vに適した値とした。 図から明らかなように、 イナ一シャが 5倍→2 0倍→ 1 0倍→5倍に変化した場合でも、 本発明を用いればイナーシャ を精度良く、 かつ、 素早く同定できるため、 イナーシャ変動に左右されることな く安定した応答を得ることができる。
これまでの第 2実施例の説明から明らかなように、 第 1実施例においても調整 部を設けることで、 さらに、 イナ一シャの同定によって制御ゲインの調整を行な うことは当業者にとって容易にできることである。 産業上の利用可能性
以上に説明したように、 本発明によれば、 入力された速度指令や速度偏差を時 間積分する積分区間に制限されることなく、 時々刻々変化するイナーシャに対し てリアルタイムで同定できるモータ制御装置が提供できる。
また、 本発明によれば、 摩擦や外乱等の影響をできるだけ少なくすることがで き、 また、 実速度とモデル速度がゼロでない値で一致するという条件を満たせる ように実速度をモデルの速度指令としているため、 非常に簡単な演算のみで短時 間にイナ一シャの同定が可能となって、 リアルタイムでのチューニングを精度良 く行なえる制御ゲイン調整機能のあるモータ制御装置が提供できる。

Claims

請 求 の 範 囲
1 . 入力された速度指令と実際のモータ速度が一致するようにトルク指令を決定 しモータ速度を制御する速度制御部と、 モータ速度にモデルの速度が一致するよ う速度制御部をシミュレートする推定部と、 速度制御部の速度偏差を所定の区間 で時間積分した値と推定部の速度偏差を同じ区間で時間積分した値との比により イナ一シャを同定する同定部とを有し、 速度制御部内のモータ速度と推定部内の モデルの速度がゼ口でない値で一致する場合にのみイナ一シャの同定を行うモー タ制御装置であって、
速度制御部の速度偏差の絶対値を所定の区間で時間積分した値と、 推定部の速 度偏差の絶対値を同じ区間で時間積分した値との比からイナ一シャを同定するモ ータ制御装置。
2 . 前記速度制御部の速度偏差の絶対値の時間積分値と、 前記推定部の速度偏差 の絶対値の時間積分値を求める際に用いる積分器を、 速度制御部用と推定部用を それぞれ 2個以上備え、 ある間隔ごとに切り替えて、 切り替えられた積分器はゼ ロクリアして再び速度偏差の絶対値及び速度偏差の絶対値の時間積分を開始する 請求項 1記載のモータ制御装置。
3 . 入力された速度指令と実際のモータ速度が一致するようにトルク指令を決定 しモータ速度を制御する速度制御部と、 モータ速度にモデルの速度が一致するよ う速度制御部をシミュレートする推定部と、 速度制御部の速度偏差に所定のフィ ルタを通した値の絶対値を所定の区問で時間積分した値と推定部の速度偏差の絶 対値を同じ区間で時間積分した値との比からイナ一シャの同定を速度制御部内の モータ速度と推定部内のモデルの速度がゼロでない値で一致する場合にのみ行う 同定部と、 同定部内で同定されたイナーシャと推定部内のイナ一シャの比に所定 のフィルタを通した値に基づいて制御ゲインの調整を行う調整部とを備えること を特徴とするモータ制御装置。
4 . 前記速度制御部の速度偏差に通すフィルタを、 速度制御部の速度指令からモ ータ速度までの伝達関数とする請求項 3記載のモータ制御装置。
5 . 前記速度制御部内の制御方式を P I (比例積分制御) 方式、 I P (積分比例 制御) 方式または P I D (比例積分微分制御) 方式とした場合の積分器の値を調 整部における制御ゲインによつて調節する請求項 1または 3記載のモータ制御装
PCT/JP1997/003148 1996-12-20 1997-09-05 Regulateur de moteur WO1998028837A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/331,319 US6157156A (en) 1996-12-20 1997-09-05 Motor controller
EP97939210A EP0948124B1 (en) 1996-12-20 1997-09-05 Motor controller
DE69739104T DE69739104D1 (de) 1996-12-20 1997-09-05 Motorregler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34138796A JP3185857B2 (ja) 1996-12-20 1996-12-20 モータ制御装置
JP8/341387 1996-12-20

Publications (1)

Publication Number Publication Date
WO1998028837A1 true WO1998028837A1 (fr) 1998-07-02

Family

ID=18345675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003148 WO1998028837A1 (fr) 1996-12-20 1997-09-05 Regulateur de moteur

Country Status (8)

Country Link
US (1) US6157156A (ja)
EP (1) EP0948124B1 (ja)
JP (1) JP3185857B2 (ja)
KR (1) KR100442034B1 (ja)
CN (1) CN1082743C (ja)
DE (1) DE69739104D1 (ja)
TW (1) TW434997B (ja)
WO (1) WO1998028837A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079533A1 (fr) * 2002-03-20 2003-09-25 Kabushiki Kaisha Yaskawa Denki Dispositif de commande a fonction de reglage constant
CN101895252A (zh) * 2010-07-09 2010-11-24 上海新时达电气股份有限公司 电机伺服驱动器控制器参数自动调整装置及其方法
CN106802637A (zh) * 2015-11-26 2017-06-06 发那科株式会社 根据主轴负载控制进给速度的数值控制装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539549B1 (en) 1999-09-28 2009-05-26 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US7308322B1 (en) 1998-09-29 2007-12-11 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US6326758B1 (en) * 1999-12-15 2001-12-04 Reliance Electric Technologies, Llc Integrated diagnostics and control systems
EP1118436B1 (en) * 1999-04-05 2012-08-15 Sony Corporation Robot, servo circuit, actuator, robot control method, and actuator control method
JP3462819B2 (ja) 1999-12-07 2003-11-05 株式会社日立ハイテクインスツルメンツ 電子部品供給装置及び電子部品供給方法
US7301296B1 (en) * 2001-07-23 2007-11-27 Rockwell Automation Technologies, Inc. Integrated control and diagnostics system
KR100586509B1 (ko) * 2000-02-11 2006-06-07 삼성전자주식회사 서보시스템의 관성추정방법 및 관성추정장치
JP4660941B2 (ja) * 2001-02-23 2011-03-30 アイシン精機株式会社 電動モータの制御装置
AU2003250427A1 (en) * 2002-08-07 2004-02-25 Koninklijke Philips Electronics N.V. Method and device for identification of the parameters of an electro-mechanical system
JP2005056172A (ja) * 2003-08-05 2005-03-03 Yaskawa Electric Corp サーボ制御装置の最大ゲイン抽出方法
JP4367058B2 (ja) 2003-09-04 2009-11-18 株式会社安川電機 モータ制御装置
US7102324B2 (en) * 2003-09-12 2006-09-05 A.O. Smith Corporation Fixed speed drive
US7327118B2 (en) * 2003-09-12 2008-02-05 A. O. Smith Corporation Electric machine and method of operating the electric machine
US7268505B2 (en) * 2003-09-12 2007-09-11 A. O. Smith Corporation Electric machine and method of operating the electric machine
JP2005172788A (ja) * 2003-11-21 2005-06-30 Yaskawa Electric Corp モータの負荷慣性モーメント推定方法
JP4632171B2 (ja) * 2005-01-17 2011-02-16 株式会社安川電機 モータ制御装置および制御方法
CN101093975A (zh) 2006-06-23 2007-12-26 富士电机机器制御株式会社 电动机的速度控制装置
US7627440B2 (en) * 2007-08-28 2009-12-01 Rockwell Automation Technologies, Inc. Inertia and load torque estimating method and apparatus
KR100967665B1 (ko) * 2008-04-01 2010-07-07 부산대학교 산학협력단 저속 영역에서의 전동기 속도 제어 시스템 및 속도 제어방법
KR101005432B1 (ko) 2008-08-29 2011-01-05 주식회사 동아일렉콤 토크 제어용 pⅰ제어기를 이용하여 유도전동기를 모델링하는 방법
JP4565034B2 (ja) * 2008-12-16 2010-10-20 ファナック株式会社 イナーシャ推定を行う制御装置及び制御システム
CN102906995B (zh) * 2010-05-26 2016-03-30 三菱电机株式会社 电动机控制装置
US8706346B2 (en) * 2010-11-01 2014-04-22 GM Global Technology Operations LLC Robust motor torque performance diagnostics algorithm for electric drive systems in hybrid vehicles
JP5644409B2 (ja) * 2010-11-19 2014-12-24 株式会社明電舎 電動機の位置制御装置
JP5943875B2 (ja) * 2013-05-09 2016-07-05 三菱電機株式会社 モータ制御装置
KR101656649B1 (ko) * 2013-10-11 2016-09-09 미쓰비시덴키 가부시키가이샤 다축 제어 시스템 설정·조정 기능 지원 장치
JP6312584B2 (ja) * 2014-12-05 2018-04-18 山洋電気株式会社 モータ制御装置
DE102016222214A1 (de) * 2016-11-11 2018-05-17 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Verfahren zur Bestimmung eines mehrphasigen Motorstroms und elektromotorischer Antrieb
DE102018209094B4 (de) * 2017-06-14 2021-10-28 Fanuc Corporation Motorsteuereinheit
CN116700372B (zh) * 2023-07-04 2024-03-22 广东兴颂科技有限公司 基于改进型的pi算法的伺服一体机速度控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126884A (ja) * 1985-11-27 1987-06-09 Shinko Electric Co Ltd 負荷推定回路
JPH0678579A (ja) * 1992-06-26 1994-03-18 Meidensha Corp モータイナーシャ推定装置およびオートチューニング方法
JPH06217578A (ja) * 1992-11-30 1994-08-05 Meidensha Corp 2慣性ねじり振動系の速度制御におけるイナーシャ推定方法
JPH0793003A (ja) * 1993-09-27 1995-04-07 Mitsubishi Heavy Ind Ltd 電動機の制御装置
JPH07131992A (ja) * 1993-11-01 1995-05-19 Hitachi Ltd モータの制御装置と機械負荷慣性モーメント値推定装置
JPH08205571A (ja) * 1995-01-19 1996-08-09 Toyo Electric Mfg Co Ltd 電動機制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290706A (ja) * 1990-04-09 1991-12-20 Mitsubishi Electric Corp 数値制御装置
JP2954378B2 (ja) * 1991-04-25 1999-09-27 三菱電機株式会社 電動機サーボ系の制御装置
US5495158A (en) * 1994-09-30 1996-02-27 Allen-Bradley Company, Inc. Apparatus and method used with AC motors for controlling motor operation
US5637974A (en) * 1995-04-21 1997-06-10 Itt Automotive Electrical Systems, Inc. Method and apparatus for hybrid direct-indirect control of a switched reluctance motor
EP0827265B1 (en) * 1995-05-17 2002-04-10 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
JP3674653B2 (ja) * 1996-08-30 2005-07-20 株式会社安川電機 モータ制御装置
JP3239789B2 (ja) * 1997-02-21 2001-12-17 松下電器産業株式会社 制御装置および制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126884A (ja) * 1985-11-27 1987-06-09 Shinko Electric Co Ltd 負荷推定回路
JPH0678579A (ja) * 1992-06-26 1994-03-18 Meidensha Corp モータイナーシャ推定装置およびオートチューニング方法
JPH06217578A (ja) * 1992-11-30 1994-08-05 Meidensha Corp 2慣性ねじり振動系の速度制御におけるイナーシャ推定方法
JPH0793003A (ja) * 1993-09-27 1995-04-07 Mitsubishi Heavy Ind Ltd 電動機の制御装置
JPH07131992A (ja) * 1993-11-01 1995-05-19 Hitachi Ltd モータの制御装置と機械負荷慣性モーメント値推定装置
JPH08205571A (ja) * 1995-01-19 1996-08-09 Toyo Electric Mfg Co Ltd 電動機制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0948124A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079533A1 (fr) * 2002-03-20 2003-09-25 Kabushiki Kaisha Yaskawa Denki Dispositif de commande a fonction de reglage constant
US7030588B2 (en) 2002-03-20 2006-04-18 Kabushiki Kaisha Yaskawa Denki Control constant adjusting apparatus
CN1307782C (zh) * 2002-03-20 2007-03-28 株式会社安川电机 控制常数调整装置
CN101895252A (zh) * 2010-07-09 2010-11-24 上海新时达电气股份有限公司 电机伺服驱动器控制器参数自动调整装置及其方法
CN106802637A (zh) * 2015-11-26 2017-06-06 发那科株式会社 根据主轴负载控制进给速度的数值控制装置
CN106802637B (zh) * 2015-11-26 2019-03-01 发那科株式会社 根据主轴负载控制进给速度的数值控制装置
US10488849B2 (en) 2015-11-26 2019-11-26 Fanuc Corporation Numerical controller for controlling feed rate based on spindle load

Also Published As

Publication number Publication date
TW434997B (en) 2001-05-16
EP0948124B1 (en) 2008-11-12
EP0948124A4 (en) 2002-04-03
CN1247645A (zh) 2000-03-15
JPH10178793A (ja) 1998-06-30
DE69739104D1 (de) 2008-12-24
US6157156A (en) 2000-12-05
KR20000057636A (ko) 2000-09-25
KR100442034B1 (ko) 2004-07-30
EP0948124A1 (en) 1999-10-06
JP3185857B2 (ja) 2001-07-11
CN1082743C (zh) 2002-04-10

Similar Documents

Publication Publication Date Title
WO1998028837A1 (fr) Regulateur de moteur
JP3637597B2 (ja) 制御定数同定装置
WO2002082202A1 (fr) Organe de commande de moteur et procede de mesure de caracteristiques d'un mecanisme
CN108818541B (zh) 一种柔性关节机器人的自适应神经网络跟踪控制方法
JP4367058B2 (ja) モータ制御装置
US7030588B2 (en) Control constant adjusting apparatus
JP2000089826A (ja) 移動体経路制御装置
JPH11313495A (ja) 電動機サーボ系の制御装置
JP3674653B2 (ja) モータ制御装置
JP2006074896A (ja) モータ制御装置
JPH10323070A (ja) モータ制御装置
JP2817171B2 (ja) 電動機の速度制御装置
JPH03240109A (ja) ロボットの制御方法
JPH1189267A (ja) 制御定数調整装置
JP2003274684A (ja) サーボ制御装置
JPH0954601A (ja) パラメータ同定装置
JP2000020104A (ja) 速度制御ゲイン調整方法および装置
JP7491190B2 (ja) 二慣性系模擬装置
JP2004102556A (ja) 位置決め制御装置
JP2541245B2 (ja) ロボット軌跡制御方法
JPH09182479A (ja) 制御定数同定装置
JP3204274B2 (ja) 位置決め制御方法
JPH06214656A (ja) 制振要素を持つスライディングモード制御方法
JPS6166580A (ja) モ−タの制御装置
JPH03268102A (ja) オートチューニングコントローラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97181910.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997005437

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09331319

Country of ref document: US

Ref document number: 1997939210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997939210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997005437

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997005437

Country of ref document: KR