WO1998011020A1 - Procede pour preparer un mince film d'oxyde de titane et catalyseur de photodecomposition - Google Patents

Procede pour preparer un mince film d'oxyde de titane et catalyseur de photodecomposition Download PDF

Info

Publication number
WO1998011020A1
WO1998011020A1 PCT/JP1997/003155 JP9703155W WO9811020A1 WO 1998011020 A1 WO1998011020 A1 WO 1998011020A1 JP 9703155 W JP9703155 W JP 9703155W WO 9811020 A1 WO9811020 A1 WO 9811020A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
thin film
production method
complex compound
fluoride ion
Prior art date
Application number
PCT/JP1997/003155
Other languages
English (en)
French (fr)
Inventor
Takeshi Yao
Koji Sato
Hisayoshi Toratani
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to US09/068,659 priority Critical patent/US6066359A/en
Priority to JP50782798A priority patent/JP4304235B2/ja
Priority to EP97939217A priority patent/EP0861805B1/en
Priority to DE69728516T priority patent/DE69728516T2/de
Priority to KR1019980703540A priority patent/KR19990067518A/ko
Publication of WO1998011020A1 publication Critical patent/WO1998011020A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/02Halides of titanium
    • C01G23/028Titanium fluoride

Definitions

  • the present invention relates to a method for forming a titanium oxide thin film on a substrate surface, and more particularly, to a method for forming a titanium oxide thin film by a liquid phase deposition method. Further, the present invention relates to a photolysis catalyst comprising the titanium oxide thin film thus produced.
  • Titanium oxide generates O H radicals having large energy equivalent to 120 kcal / mol by light irradiation. This energy is greater than the energy of each of the C--C bond, C--H bond, C--N bond, C-10 bond, 0--H bond, and N--H bond of the organic compound. Can be easily disassembled. Because of this action, organic substances can be easily decomposed, and titanium oxide is used as a catalyst for photodecomposition reaction to decompose various organic substances, for example, harmful substances or odorous substances dissolved in water or suspended in air. It can be used for decomposition, sterilization, etc., and its application to environmental purification, epidemic prevention, etc. has been put to practical use.
  • Such a catalyst can be effectively used by forming a titanium oxide thin film on the surface of a substrate such as ceramics or inorganic fibers such as glass and tile.
  • a titanium oxide thin film formed on the surface of a light-transmitting substance such as glass has a high refractive index and is chemically stable, and is used for optical applications such as optical lens coating.
  • it is also expected to be a Tayohuoike that enables low-cost solar power generation.
  • Methods for forming a titanium oxide thin film on a substrate surface include methods such as CVD, ion plating, and sputtering. However, these methods require special and expensive equipment, and it is difficult to form a thin film on a large-sized substrate or a uniform thin film on a surface of a substrate having a complicated shape.
  • titanium alkoxides such as tetraethyl titanate, tetra-n-propyl titanate, tetraisopropyl titanate, and tetrabutyl n-butyl titanate; or titanium such as titanium acetyl acetate
  • a solution in which a chelate compound is dissolved in an organic solvent is sprayed on the surface of a base material, or the base material is mixed with the solution to remove the solvent, and then oxidized at a high temperature to form a titanium oxide thin film. Can be exposed to the vapor of titanium tetrachloride. It is difficult to form a thin film on the surface.
  • a method of forming a titanium oxide thin film on the surface of the base material there is a method in which a mixture obtained by kneading a fine powder of titanium oxide with a binder and a dispersant is applied to the surface of the base material and dried.
  • a mixture obtained by kneading a fine powder of titanium oxide with a binder and a dispersant is applied to the surface of the base material and dried.
  • the photodegradation catalytic activity of titanium oxide decomposes the organic binder, so that the property of attaching to the substrate is not permanent.
  • a method of immersing a substrate in an aqueous solution containing fluorotitanic acid in the presence of a fluoride ion scavenger such as boric acid to form a titanium oxide coating layer on the surface of the substrate is disclosed in It is disclosed in Japanese Patent Application Publication No. 14441 and Japanese Patent Application Laid-Open No. Hei 11-93443. In the former case, the aqueous solution saturates the oxide, and there is a problem that Zn atoms are taken into the coating layer to cause unevenness in the refractive index.
  • the full-year rotitan acid acidity is 0.3-1.0 mol / L in the former and 0.1-3 mol / L in the latter, and in the embodiment, it is 0.5-3.0 mol / L.
  • a 4 mol / L full-year rotitanic acid solution is used. this P
  • An object of the present invention is to provide a method for overcoming the problems of the prior art and forming a titanium oxide thin film having excellent uniformity on the surface of a base material using a simple apparatus.
  • Another object of the present invention is to provide a photolysis reaction catalyst comprising a titanium oxide thin film formed on a substrate surface by such a method. Disclosure of the invention
  • the present inventors have made intensive studies to achieve the above object, a full old Rochitan complex compound concentration 1 0- 9 ⁇ 9 X 1 0 in the aqueous solution of used to deposit the titanium oxide thin film
  • the present inventors have found that the object can be achieved by limiting the concentration to a 2 mol / L diluted region, and have completed the present invention.
  • the method for manufacturing titanium oxide thin film of the present invention in an aqueous solution containing one or more full old port titanium complex compound ⁇ 0 one 9 ⁇ 9 X 1 0- 2 mol / L, fluoride ion-capturing
  • the method is characterized in that the base material is mixed in the presence of an agent to form a titanium oxide thin film on the surface of the base material.
  • the catalyst of the present invention comprises a titanium oxide thin film formed on the surface of a substrate by the above-mentioned production method, and is used for a photolysis reaction of an organic compound or a nitrogen oxide, for example, a trace amount of an organic compound.
  • FIG. 1 is an X-ray diffraction diagram of the titanium oxide film obtained in Example 4.
  • FIG. 2 is a diagram showing a photocatalytic reaction of a titanium oxide film formed on the surface of the heat-treated soda lime glass obtained in Example 13 with respect to oil.
  • the full-sized titanium complex compound used for forming the titanium oxide thin film has a general formula (I):
  • A represents a hydrogen atom which may be the same or different, an alkali metal atom, an ammonium group or coordinating water; a, b and c make the complex compound electrically neutral Is a number,
  • A includes, in addition to a hydrogen atom; alkali metal atoms such as lithium, sodium, potassium, rubidium and cesium; and an ammonium group and coordinating water.
  • alkali metal atoms such as lithium, sodium, potassium, rubidium and cesium
  • an ammonium group and coordinating water Where a is usually 2, and when b is 1, c is usually 6. That is, the complex compound is typically represented by A 2 T i F 6 , but a polynuclear complex compound having a plurality of T i atoms is also obtained.
  • Examples of such a full-sized rotitanium complex compound represented by the general formula (I) include H 2 Ti F 6 , (NH 4 ) 2 Ti F 6 , Na 2 Ti F 6 , and K 2 Ti F 6 and R b 2 T i F 6, C s 2 T i F 6 is exemplified.
  • the full-grown titanium complex compound used in the present invention may be produced by any method.
  • titanium oxide and powder may be treated with hydrofluoric acid to give full-year rotitanic acid.
  • hydrofluoric acid any of rutile type, anatase type, wurtzite type, and amorphous may be used.
  • a hydroxide or oxyhydroxide of titanium is dissolved in an aqueous solution of alkali metal hydrogen difluoride, such as ammonium hydrogen fluoride or sodium hydrogen difluoride, to form a full titanium oxide complex compound.
  • aqueous solution containing 10 to 9 to 9 X 10 to 2 mol / L of the full-length rotitanium complex ion is obtained.
  • the aqueous solution may be an aqueous solution containing an excess of hydrogen fluoride used for synthesizing the complex compound from titanium oxide as described above.
  • the aqueous solution includes those containing water and a soluble organic solvent.
  • water is the main component, for example, alcohols such as methanol and ethanol; ethers such as dimethyl ether and getyl ether; And ketones such as acetone; do not prevent the presence of other water-soluble organic solvents.
  • an a crystal for producing a titanium oxide thin film may be added to such an aqueous solution of a full-grown titanium complex compound.
  • the seed crystal used is preferably a titanium oxide crystal of interest.
  • the seed crystal may have a small average particle size of about 0.000 to 10 m, and the addition amount is arbitrary but may be small. By adding the seed crystal, the deposition rate of the crystalline titanium oxide thin film can be increased.
  • the fluoride ion scavenger used in the present invention includes a homogeneous system which is used by being dissolved in a liquid phase, and a heterogeneous system which is a solid. Depending on the purpose, one of these two may be used or both may be used.
  • Homogeneous fluoride ion scavengers react with fluoride ions to form stable fluorinated complexes and / or stable fluorides, which are used to deposit titanium oxide thin films on the substrate surface. It shifts the equilibrium of the decomposition reaction, and examples thereof include boron compounds such as orthoboric acid, metaboric acid, and boron oxide; and aluminum chloride, sodium hydroxide, and aqueous ammonia.
  • Heterogeneous fluoride ion scavengers include metals such as aluminum, titanium, iron, nickel, magnesium, copper, zinc, and germanium; ceramics such as glass; silicon; orthoboric acid, metaboric acid, and boron oxide. Boron compounds; and compounds such as calcium oxide, aluminum oxide, silicon dioxide, and magnesium oxide.
  • the insertion method and reaction conditions it is possible to deposit the titanium oxide thin film on the entire surface of the substrate immersed in the aqueous solution, or to limit the deposition to a selected local area, that is, the vicinity where the solid exists.
  • the main object of the present invention is to obtain a uniform titanium oxide thin film, but depending on the purpose, in some cases, by using a uniform and heterogeneous fluoride ion scavenger in combination, the The deposit thin film can be partially thickened.
  • Homogeneous type fluoride ion-capturing agent varies depending on the kind and shape of the precipitates, the amount corresponding to the equivalent amount of fluoride ions in the solution, typically 1 0 4 - 3 0 0 0% There is preferably used in 1 0 1 to 1, 0 0 0% coverage.
  • the heterogeneous fluoride ion scavenger is not particularly limited, and is preferably used in an amount that achieves the object and effects of the present invention.
  • the base material a wide range of substances can be used to support the formed titanium oxide thin film or to be coated for a specific purpose by the formed thin film and protected from oxidation and the like.
  • examples of such substances include metals, ceramics, and organic polymer materials.
  • the titanium oxide thin film when used as a catalyst for a photolysis reaction, or as a solar energy absorbing layer of a solar cell, or as a coating layer for optical purposes, a highly transparent substance such as glass is used. , Polycarbonate, acryl-based resin, etc. are used as the base material.
  • glass when glass is used as the substrate, the type does not matter.
  • the method of the present invention forms a film at a relatively low temperature, so that alkali components are eluted in the film, and the film is formed. Is less likely to deteriorate.
  • the time when the substrate is immersed in the aqueous solution of the full-blown titanium complex compound may be before, at the same time as, or after addition or addition of the fluoride scavenger.
  • the shape of the substrate is arbitrary, and is not limited to a plate shape, and a complex shape can be used.
  • the substrate can be slowly rotated at a rotation speed of, for example, 10 rpm or less, preferably 5 rpm or less.
  • the reaction temperature affects the deposition of the film, it is usually set in the range of 10 to 80 ° C, preferably 20 to 50 ° C, and more preferably 35 to 40 ° C.
  • the reaction time is also arbitrary. For example, when the amount of the target precipitate is large, the reaction time becomes longer accordingly. For example, in order to deposit a film having a thickness of about 0.2 m, the reaction time is preferably about 1.5 to 24 hours, more preferably about 3 to 10 hours. . If the reaction time is shorter than the above time, the film is not sufficiently deposited, while if it is longer than the above time, the film may be peeled off.
  • the thin film formed in this manner can be obtained as a crystallized titanium oxide thin film by appropriately setting the deposition conditions, without going through a heating step such as baking.
  • a step may be provided.
  • the heating step can be performed, for example, at 200 to 600 ° for about 0.5 to 5 hours.
  • the titanium oxide thin film thus formed on the surface of the base material has a thickness of, for example, 0.1 to 5. and a jump hardness of 6H to 7H or more.
  • a titanium oxide thin film can be easily formed on a substrate surface, particularly a substrate surface having a large or complicated shape, using a simple apparatus. Since a heating step for crystallizing the thin film thus obtained is not particularly required, no distortion occurs during cooling.
  • the titanium oxide thin film obtained by the present invention is robust, has corrosion resistance, has a high refractive index, and has a catalytic ability for a photoreaction. Utilizing these properties, it is extremely useful for photodecomposition catalysts for organic compounds and nitrogen oxides; solar cells; and optical applications such as optical lens coating. When used as a photodecomposition reaction catalyst, it does not require any heat treatment, so it can be applied to a wide range of base materials, and can be easily installed on site for purification equipment at home, wastewater treatment at factories, and the like.
  • the thin film was pulled up from the liquid, washed with water and dried.
  • the thin film was dense and firm, and no scratch was observed.
  • EDX energy dispersive X-ray spectroscopy
  • the substrate was taken out, washed with distilled water, air-dried, and observed with a scanning electron microscope (SEM). As a result, formation of a dense thin film was observed. In addition, when subjected to EDX, it was confirmed that crystals containing Ti were precipitated in all cases. Furthermore, as a result of X-ray diffraction (XRD), an XRD peak that coincided with the XRD of the anatase type ⁇ ⁇ 0 2 type powder was observed, and it was confirmed that a thin film containing anatase type T i 0 2 crystals was formed, The results are shown in Figure 1 (2).
  • XRD X-ray diffraction
  • Example 7 Except that the seed crystal and anatase-type T i 0 2 was subjected to the same experiment as in Example 5. As a result, as in Examples 4 and 5, the surface of the substrate immersed in 1 equivalent or 2 equivalents of orthoboric acid for 6 days was almost dense or completely dense Ti 0 2 A thin film was formed. The resulting T i 0 2 thin film were both amorphous.
  • Example 7
  • Example 10 The obtained substrate, Example 4 S EM, 0 say yes Oyobi (min prayer result in 3 ⁇ 40 in the same manner as it was confirmed that a transparent anatase T i 0 2 thin film was formed.
  • Example 10
  • a titanium oxide film was formed on both surfaces of a 50 ⁇ 70 ⁇ 1 mm soda-lime glass. Each film thickness was about 0.2.
  • the salad oil showed a remarkable reduction in the number of double stars, and it was confirmed that the titanium oxide film of the present invention decomposed the salad oil by its photocatalytic reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

明 細 害 酸化チタン薄膜の製造方法および光分解触媒 技術分野
本発明は、基材表面に酸化チタン薄膜を形成させる方法に関し、 さらに詳細には、 液相析出法によって、 酸化チタン薄膜を形成させる方法に関する。 さらに、本発明 は、 このようにして製造された酸化チタン薄膜からなる光分解触媒に関する。 背景技術
酸化チタンは、 光照射によって 1 2 0 kcal/mol相当の大きなエネルギーを有 する O Hラジカルを生じる。 このエネルギーは、有機化合物の C— C結合、 C一 H 結合、 C一 N結合、 C一 0結合、 0— H結合および N— H結合のそれぞれの結合ェ ネルギ一よりも大きく、 これらの結合を容易に分解できる。 この作用により、有機 物を容易に分解できるので、酸化チタンを光分解反応の触媒として用いて、各種の 有機物の分解反応、たとえば水中に溶解、または空気中に浮遊している有害物質や 悪臭物質の分解、 殺菌などに用いることができ、環境浄化、 防疫などへの応用が実 用化されてきている。
このような触媒としての利用は、 酸化チタン薄膜を、ガラス、 タイルなどのセラ ミックスや無機繊維のような基材の表面に形成することにより、効果的になされる。 一方、ガラスのような光透過性物質の表面に形成された酸化チタン薄膜は、その屈 折率が高く、化学的に安定であることを利用して、光学レンズのコーティングのよ うな光学的用途や、熱線反射ガラスに用いられるほか、低コストの太陽光発電を可 能にする太暘霍池としても期待されている。 基材表面に酸化チタン薄膜を形成させる方法としては、 C V D、イオンプレーテ イング、 スパッタリングなどの方法がある。 しかし、 これらの方法では、特殊で高 価な装置が必要であるほか、大面 «の基材における薄膜や、複雑な形状の基材の表 面における均質な薄膜の形成は困難である。
さらに、 チタン酸テ卜ラエチル、チタン酸テトラ— n—プロビル、 チタン酸テ卜 ライソプロピル、チタン酸テ卜ラー n—ブチルのようなチタンアルコキシド;また はチタンァセチルァセトナー卜のようなチタンキレート化合物を有機溶媒に溶解 させた溶液を基材表面に吹きつけ、または基材を該溶液に漫澳して溶媒を除去した 後、高温で酸化させて酸化チタン薄膜を形成させる方法、基材を四塩化チタンの蒸 気に暴露する方法もあるが、 いずれも方法が煩雑で、加水分解性物質の取扱いを必 要とし、 また大面積の基材ゃ複雑な形状を有する基材に、均一に薄膜を形成させる ことは困難である。
基材表面に酸化チタン薄膜を形成させる他の方法として、酸化チタンの微粉末を、 バインダーおよび分散剤と混練して得られた混和物を基材表面に塗布し、乾燥させ る方法もある。 しかし、 このような方法では、 十分に薄くて均質で、 かつ強度のあ る薄膜を形成させることは困難である。そのうえ、酸化チタンの有する光分解触媒 能によって、 有機物であるバインダーが分解して、基材への付 S性が永続しない。 フルォロチタン酸を含む水溶液に、ホウ酸のようなフッ化物イオン捕捉剤を存在 させて基材を浸 ¾し、基材表面に酸化チタン被覆層を形成させる方法が、特開昭 5 1 - 1 4 1 4 4 1号公報および特開平 1一 9 3 4 4 3号公報に開示されている。前 者は、該水溶液に酸化亜鋭を飽和させており、被覆層に Z n原子が取り込まれて、 屈折率にムラを生ずるという問題がある。 また、 フル才ロチタン酸澳度が、前者で は 0 . 3 - 1 . 0 mol/L であり、 後者では 0 . 1〜 3 mol/L とされ、 その実施 例では、 0 . 5〜3 . 4 mol/L のフル才ロチタン酸溶液が用いられている。 この P
3
ような高濂度のフル才口チタン酸を用いた場合、フッ化ィォン捕捉剤の添加ととも に多量の酸化チタンが溶液中に析出して溶液が白濁し、基材表面に薄膜を物質収支 よく形成できない。 そればかりか、形成された薄膜が不均質で、表面状態が悪く、 光の透過性やその均 S性が求められる光学的用途、および光反応触媒や太陽電池の ような用途には適さない。
本発明の目的は、 このような従来技術の問題点を克服して、簡単な装 Sにより、 均一性の優れた酸化チタン薄膜を基材表面に形成させる方法を提供することであ る。本発明のもうひとつの目的は、そのような方法によって基材表面に形成された 酸化チタン薄膜からなる光分解反応触媒を提供することである。 発明の開示
本発明者らは、上記の目的を達成するために鋭意研究を行った結果、酸化チタン 薄膜を析出させるのに用いるフル才ロチタン錯化合物の水溶液中における濃度を 1 0— 9〜9 X 1 0— 2 mol/L という希薄領域に限定することにより、その目的を達 成しうることを見出して、 本発明を完成するに至った。
すなわち、 本発明の酸化チタン薄膜の製造方法は、 1種または 2種以上のフル才 口チタン錯化合物〗 0一9〜 9 X 1 0— 2 mol/L を含む水溶液中に、フッ化物イオン 捕捉剤の存在下に基材を漫濱して、基材表面に酸化チタン薄膜を形成させることを 特徴とする。 また、本発明の触媒は、上記の製造方法によって基材表面に形成され た酸化チタン薄膜からなり、有機化合物や窒素酸化物、たとえば微量の有機化合物 の光分解反応に用いられる。 図面の簡単な説明
第 1図は、 実施例 4で得られた酸化チタン膜の X線回折図である。
第 2図は、実施例 1 3で得られた熱処理ソーダライムガラス表面に形成した酸化 チタン膜のオイルに対する光触媒反応を示す図である。 発明を実施するための最良の形態
本発明において、酸化チタン薄膜の形成に用いられるフル才ロチタン錯化合物は、 一般式 ( I ) :
AaT i bFc ( I )
式中、 Aはたがいに同一でも異なっていてもよい水素原子、 アルカリ金属原 子、 アンモニゥ厶基または配位水を表し; a、 bおよび cは、 該錯化合物を 電気的に中性にする数である、
で示される水に溶解する酸または塩が用いられる。 Aとしては、水素原子のほか; リチウム、 ナトリウム、 カリウム、 ルビジウムおよびセシウムのようなアルカリ金 厲原子;ならびにアンモニゥム基および配位水が挙げられる。式中、 aは通常 2で あり、 bが 1のとき、 cは通常 6である。 すなわち、 該錯化合物は、 代表的には A2T i F6で表されるが、 複数の T i原子を有する多核錯化合物も得られる。 こ のような一般式 ( I ) で示されるフル才ロチタン錯化合物としては、 H2T i F6、 (NH4) 2T i F6、 Na2T i F6、 K2T i F6、 R b2T i F6、 C s2T i F6 などが例示される。
本発明に用いられるフル才ロチタン錯化合物は、どのような方法で製造されたも のでもよい。 たとえば、酸化チタンと粉末をフッ化水素酸で処理して、 フル才ロチ タン酸としてもよい。 酸化チタンとしては、 ルチル型、 アナタース型、 ブルツカイ 卜型、 アモルファスのいずれを用いてもよい。 また、チタンの水酸化物またはォキシ水酸化物を、ニフッ ί匕水素アンモニゥ厶、 または二フッ化水素ナトリウムのような二フッ化水素アルカリ金属の水溶液に溶 解させて、 フル才ロチタン錯化合物を合成して、本発明の製造方法に用いてもよい c フル才ロチタン錯化合物は、 1 0— 9〜9 Χ 1 0— 2mol /し 好ましくは 1 0—6〜 6 X 1 0 2mol/L 、さらに好ましくは 1 0— 2~4 X 1 0 2mol/L の濂度の水溶 液に調製して用いられる。たとえば、酸化チタンを濃度 0. 00 〜 0. 6 mol/L のフッ化水素酸水溶液 400 mlに対し 0. 00 1 ~20 g程度混合させて、
1 0— 9~9 X 1 0— 2mol/L のフル才ロチタン錯イオンを含む水溶液が得られる。 1 0-9 mol/L 未満では基材表面に薄膜を形成できず、 9 X 1 0— 2mol/L を越え る水溶液を用いると、フッ化物イオン捕捉剤またはその溶液の添加とともに白濁を 生じ、 均質な酸化チタン薄膜を基材表面に形成できない。 ここに、 水溶液とは、前 述のような酸化チタンから前述の錯化合物を合成するために用いた過剰のフッ化 水素を含む水溶液であってもよい。 また、調製されたフル才ロチタン錯化合物の水 溶液 (以下、 上記の定義による) に、 さらに酸化チタンの過剰量を添加して、 上記 の錯化合物の飽和溶液にした後に、溶解しない酸化チタンをろ別して除いた水溶液 を用いてもよい。 なお、 本発明において、 水溶液とは、 水と可溶な有機溶媒を含有 するものも含み、 水が主成分である限り、 たとえば、 メタノール、エタノール等の アルコール類;ジメチルエーテル、 ジェチルエーテル等のエーテル類;アセトン等 のケトン類;その他水に可溶な有機溶媒が存在することを妨げない。
さらに、 このようなフル才ロチタン錯化合物の水溶液に、酸化チタン薄膜製造の ための a結晶を添加しても差支えない。用いる種結晶は、 目的とする酸化チタンの 結晶がよい。種結晶は平均粒径が 0. 00〗〜1 0 mほどの微少なものでよく、 その添加量は任意であるが微量でよい。種結晶の添加によって、結晶質酸化チタン 薄膜の析出速度を上げることができる。 本発明で用いられるフッ化物イオン捕捉剤には、液相内に溶解させて用いる均一 系と、 固形物である不均一系とがある。 目的に応じて、 これら両者の一方を用いて も、 併用しても差し支えない。
均一系フッ化物イオン捕捉剤は、フッ化物イオンと反応して安定なフル才ロ錯化 合物および または安定なフッ化物を形成することにより、基材表面に酸化チタン 薄膜を析出させるように加水分解反応の平衡を移動させるもので、オル卜ホウ酸、 メタホウ酸、 酸化ホウ素などのホウ素化合物のほか;塩化アルミニウム、水酸化ナ トリウム、 アンモニア水などが例示される。 たとえば、 オル卜ホウ酸を用いて Ha T i bFc (式中、 a~cは前述のとおり) から Τ ί 02を析出させる際には、 たと えば H2T i F6を例にとると、 式 (III) で示される反応が、 F—を消費する方向に 移動するので、 式 (II) で示される平衡が、 F—を生成する方向に移動し、 その結 果、 T i 02からなる薄膜が析出する。 このような捕捉剤は、 通常、 水溶液の形で 用いられるが、 粉末の形で添加して、系中に溶解させてもよい。該捕捉剤の添加は、 1回に、 または数回に分けて間欠的に行ってもよく、制御された供給速度、たとえ ば一定の速度で連続的に行ってもよい。
T i F6 2- + 2 Η20 Τ i 02 + 6 F- + 4Η+ (II)
Β 03 3- + 4 F- + 6 Η+ → B F4- + 3 Η20 (III)
不均一系フッ化物イオン捕捉剤としては、 アルミニウム、 チタン、 鉄、ニッケル、 マグネシウム、 銅、 亜鉛、 ゲルマニウムなどの金属;ガラスなどのセラミックス; ケィ素; オル卜ホウ酸、 メタホウ酸、 酸化ホウ素などのホウ素化合物;および酸 化カルシウム、 酸化アルミニウム、二酸化ケイ素、酸化マグネシウムなどの化合物 が例示される。 このような固形物を水溶液に添加または挿入すると、固形物近傍の F一が消費されて、 その濃度が減少するので、 その部分の化学平衡がシフトして、 酸化チタンが析出する。 このような固形物を用いると、その挿入方法と反応条件に より、水溶液に漫漬した基材表面の全体に酸化チタン薄膜を析出させることも、そ の析出を選択された局部、すなわち該固形物の存在する近傍に限定することも可能 である。本発明の主目的は均一な酸化チタン薄膜を得ることであるが、 目的に応じ て、場合によっては、均一系と不均一系のフッ化物イオン捕捉剤を併用することに より、 基材表面の析出物薄膜を部分的に厚くすることもできる。
均一系フッ化物イオン捕捉剤は、析出物の種類や形状によっても異なるが、溶液 中のフッ化物イオンの当量に相当する量に対して、 通常、 1 0— 4~ 3, 0 0 0 % であり、 好ましくは 1 0―1〜 1 , 0 0 0 %の範囲で用いられる。 不均一系フッ化 物イオン捕捉剤は、特に限定されず、本発明の目的および効果が達成されるような 量で使用されることが好ましい。
基材としては、形成される酸化チタン薄膜を担持するため、あるいは形成された 該薄膜によって特定の目的のためにコーティングされ、酸化などから保護されるた めの、 広範囲の物質を用いることができる。 このような物質としては、 金属、 セラ ミックス、 有機高分子材料などが例示される。
特に、 酸化チタン薄膜を光分解反応のための触媒、または太陽電池の太陽光エネ ルギー吸収層として用いる場合、あるいは光学的目的のためのコーティング層とし て用いる場合は、 透明度の高い物質、 たとえばガラス、 ポリカーボネー卜、 ァクリ ル系樹脂などを基材として用いる。ガラスを基材として用いる場合、その種類は問 わない。 特に、 ソーダライムガラスのようなアルカリ含有ガラスに対し、膜を形成 する場合であっても、本発明の方法では比較的低温で膜を形成するため、膜中にァ リカリ成分が溶出し、 膜を劣化させる恐れが少ない。
基材をフル才ロチタン錯化合物の水溶液に浸澳する時期は、フッ化物捕捉剤を添 加ないし投入する前でも、 同時でも、 後でも差し支えない。 ただし、 系によって侵 されるおそれのある基材を用いる場合は、 溶液の組成、反応条件、および浸漬する 時期に注意する必要がある。 基材の形状は任意であり、板状に限定されず、複雑な 形状のものも使用可能である。 また、膜の均質性を向上させる目的で、 たとえば、 1 0 rpm以下、好ましくは 5 rpm以下の回転速度で基材をゆつくりと回転させる ことができる。
反応温度は、 膜の析出に影響するため、 通常は、 1 0 ~ 8 0 °C、好ましくは 2 0 〜5 0 °C、 さらに好ましくは 3 5〜4 0 °Cの範囲で設定される。反応時間も任意で あり、 たとえば、 目的とする析出物が多いときは、 それに応じて長くなる。たとえ ば、 0 . 2 m程度の膜厚を有する膜を析出するためには、 反応時間は、 1 . 5〜 2 4時間程度とすることが好ましく、さらに好ましくは 3 ~ 1 0時間程度である。 反応時間が上記時間より短いと、 じゅうぶんに膜が析出されず、 一方、 上記時間よ り長いと膜が剥がれる恐れがあるからである。
このようにして、基材表面に均質で堅牢な酸化チタン薄膜を形成できる。このよ うにして形成された薄膜は、特に焼成のような加熱工程を経なくても、析出条件を 適宜設定することにより、結晶化した酸化チタン薄膜として得られるが、 目的に応 じて加熱工程を設けてもよい。 加熱工程は、 たとえば、 2 0 0〜6 0 0 °〇で0 . 5 ~ 5時間程度行うことができる。このようにして基材表面に形成された酸化チタン 薄膜は、 たとえば 0 . 1〜5 . の厚さと、 6 H〜7 H以上のェンピッ硬度 を有する。 産業上の利用可能性
本発明によって、 簡単な装置を用いて、 酸化チタン薄膜を、 基材表面、特に大型 または複雑な形状の基材表面に容易に形成できる。このようにして得られた薄膜を 結晶化するための加熱工程を特に必要としないので、 冷却の際の歪の発生がない。 本発明によって得られた酸化チタン薄膜は、 堅牢で、耐食性があり、屈折率が高 く、 また光反応に対する触媒能がある。 これらの諸性質を生かして、有機化合物や 窒素酸化物の光分解反応触媒;太陽電池;光学レンズのコーティングのような光学 的用途などに極めて有用である。光分解反応触媒として用いる塌合、特に加熱処理 を必要としないので、 基材の材質の対象が広範囲で、家庭における浄化装置、工場 における廃水処理などに、 容易に現場施工できる。 実施例
以下、 本発明を実施例によってさらに詳細に説明する。本発明は、 これらの実施 例によって限定されるものではない。
実施例 1
純水 5 0 0 m lに、 4 6 %フッ化水素酸 2 m lおよびルチル型酸化チタン粉末 7 gを加え、 温度 3 5 °Cで 2 4時間撹拌して溶解させ、反応させた。溶解しないで残 つた酸化チタン粉末を、 孔径 1 1 μ mのろ過によって除去した。 得られたフル才 口チタン酸溶液の-濃度は 1 0— 3 mol/L であり、フィルターを通った微量の数// m の酸化チタンが種結晶として存在していた。 これに温度 3 5 * で、あらかじめァセ 卜ンで洗浄したガラス基板を浸漬し、オル卜ホウ酸を 1時間間隔で 5 gずつ 6回添 加した。 この反応液をさらに 6時間静 Sしたところ、液は透明を保ちながら、基板 表面に、 均質で干渉色のない薄膜が形成された。
薄膜を液より引上げ、 水洗して乾燥した。 薄膜は緻密、 堅固で、スクラッチは認 められなかった。 これをエネルギー分散 X線光分析(E D X ) にかけたところ、基 材表面に Τ ίを含む結晶が存在していることが観察され、薄膜が酸化チタンである ことが確認された。 実施例 2
ルチル型酸化チタン粉末を 5 g用いたほかは実施例 1と同様にして、 濃度 4 X 1 0— 4mol/L で微量の種結晶を含むフルォロチタン酸溶液を得た。 これに、 オル 卜ホウ酸を 1時間間隔で 2 gずつ 5回添加し、 〗 2時間放置後、さらに同様に 6回 添加して、 3日間静置したところ、基板表面に均質で堅固な薄膜が形成された。実 施例 1と同様にして、 薄膜が酸化チタンであることを確認した。
実施例 3
46 %フッ化水素酸溶液の添加量を 1 mlとした以外は実施例 1 と同様にして、 澳度 1 0— 4mol/L で微量の種結晶を含むフルォロチタン酸溶液を得た。 これに、 オルトホウ酸を 2時間間隔で 5 gずつ 2回添加し、 5日間静置したところ、基板表 面に均質で堅固な薄膜が形成された。実施例 1と同様にして、薄膜が酸化チタンで あることを確認した。
実施例
純水 4 00 mlに (NH4) 2T i F60. 9 3 3 gを加え、 3 0°Cで 24時間撹 拌して溶解させ、 (N H4) 2丁 i F6の 1 . 1 7 9 X 1 0— 2mol/L水溶液を得た。 これを 2個のポリスチレン容器に 3 0 mlずっとり、 それぞれ、 あらかじめェタノ ール中で超音波洗浄したガラス板を基材として浸;貴して、 濃度 0. 5 mol/L の才 ルトホウ酸水溶液を、 1. 06 ml ( 1当量) または 2. 1 2 ml (2当量) 添加 して、 6日間、 30でに保持した。
基材を取り出して蒸留水で洗浄し、 風乾した後、 走査型電子顕微鏡(S EM)で 観察した。 その結果、 緻密な薄膜の形成が観察された。 また、 E DXにかけたとこ ろ、 いずれも T iを含む結晶が析出していることが確認された。 さらに、 X線回折 (X R D) の結果、 アナタース型 Τ ί 02型粉末の X R Dと一致する X R Dピーク が観察され、 アナタース型 T i 02結晶を含む薄膜が形成されたことが確認された, この結果を第 1図①に示す。ただし、オル卜ホウ酸添加量が 1当量である試料は、 X R Dパターンのピークが鋭くないので、 アモルファス Τ ί 02とアナタース型 T i o2が混合した薄膜が形成されたものと考えられる。 この結果を第 1図②に示す c 実施例 5
純水 700 mlに (NH4) 2T i F61. 75 gを加え、 3 で 24時間撹拌 して溶解させ、 (NH4) 2T i F6の 1. 263 X 1 0— 2mol /し 水溶液を得た。 これにルチル型 Τ ί 02粉末 1 7. 5 gを添加し、 さらに 24時間撹拌した。 つい で、 1 n mのろ紙で粉末 T i 02をろ別し、 ろ紙を通過した T i O2微粒子を種結 晶とした。 これを 4個のポリスチレン容器に 30 mlずっとり、 それぞれ、 あらか じめエタノール中で超音波洗浄したガラス板を基材として浸潰して、 濃度 0. 5 mol/L のオル卜ホウ酸水溶液を、 2個ずつの溶液に 1. 1 4 ml (1当量) また は 2. 28 ml (2当量) 添加して、 3日間または 6日間、 30°Cに保持した。 得られた基材について、 実施例 4と同様にして S EM、 £0 ぉょび [¾0で 分析した結果、浸瀵期間が長いほど、またオルトホウ酸添加量が多いほど析出量が 増し、 2当量のオル卜ホウ酸を加えて 6日間浸潰した基材の表面には、緻密な T i 02薄膜が形成されていることが確認された。 6日間浸潰した基材には、 実施例 4 と同様な傾向で T i 02結晶の形成が認められたが、 種結晶がルチル型であるにも かかわらず、 得られた薄膜の結晶はアナタース型であつた。
実施例 6
種結晶をアナタース型 T i 02とした以外は、 実施例 5と同様の実験を行った。 その結果、実施例 4および 5と同様に、 1当量または 2当量のオル卜ホウ酸を加え て 6日間浸滇した基材の表面には、 ほぼ緻密な、 または完全に緻密な T i 02薄膜 が形成されていた。 得られた T i 02薄膜は、 いずれもアモルファスであった。 実施例 7
純水 400 mlに (NH4) 2T ί F 60. 23 1 gを加え、 3 で 24時間撹 拌して溶解させ、 (NH4) 2T i F6の 2. 91 8X 1 0— 3mol/L水溶液を得た。 これを 3個のポリスチレン容器に 30 mlずっとり、 それぞれ、 あらかじめェタノ ール中で超音波洗浄したガラス板を基材として浸滇して、 港度 0. 25 mol/L の オル卜ホウ酸水溶液を、 0. 42 ml (0. 8当量) 、 0. 53 ml (1当量) ま たは 1. 05 ml (2当量) 添加して、 6日間、 30°Cに保持した。
基材を取り出して蒸留水で洗浄し、 風乾した後、 S EMで観察した結果、緻密な 薄膜の形成が観察された。 また、 X RDの結果、 いずれもアナタース型 T i 02型 粉末の X RDと一致する X RDピークが観察され、 アナタース型 T i 02結晶を含 む薄膜が形成されたことが確認された。 ピーク強度は、オル卜ホウ酸添加量が多い 方が大きかった。
実施例 8
長さ 350 mm, 内径 1 mmのガラス管の内面に、 実施例 1に準じた方法で、 厚さ 0. 4 mのアナタース型 Τ ί 02結晶の薄膜を形成させた。 これを 1 2, 0 00本束ねて、 その両端に、上記のガラス管束の形状と大きさに合わせた環状の蛍 光管を設置して、光触媒反応リアクターとした。 リアクターの両端の蛍光管により、 リアクターを構成するガラス管の内部に光が導かれるようにした。
このリアクターに光を当てながら、 その一端から、有機物で汚染され、 BOD値 1 80 mg/Lを有する原水を 2. 5 L/h の流速で流し、 他端から流出した水中の 有機物を分析し、 また臭気および菌の存在を調査したところ、 800値は1 mg/L 以下であり、 分析結果、 脱臭、 滅菌の結果も十分で、 満足できるものであった。 実施例 9 純水 500 mlに (NH4) 2T i F61. 0 gを加え、 30°Cで 24時間撹拌し て溶解させ、 (NH4) 2T i F6の 1. 0 1 X 1 0— 2mol/L 水溶液を得た。 これ にアナタース型 T i 02粉末 1 7. 5 gを添加し、 撹拌した。 ついで、 1 ΓΤΊのろ 紙で粉末 T i 02をろ別し、 ろ紙を通過した T i O2微粒子を種結晶とした。 これ をポリスチレン容器にとり、 あらかじめエタノール中で超音波洗浄したガラス板 (無アルカリガラス) を基材として浸淒して、 酸化ホウ素 (B 203) を 1 O g添 加して、 34 °Cで 5時間保持した。
得られた基材について、 実施例 4と同様にして S EM、 0乂ぉょび (¾0で分 祈した結果、 透明なアナタース型 T i 02薄膜が形成されていることが確認された。 実施例 1 0
純水 350 mlに (NH4) 2T i F61. 5 gを加え、 30^で 24時間撹拌し て溶解させ、 (NH4) 2T i F6の 2. 1 7X 1 0 - 2 mol/L 水溶液を得た。 これ にアナタース型 T i 02粉末 1 7. 5 gを添加し、 撹拌した。 ついで、 のろ 紙で粉末 T i 02をろ別し、 ろ紙を通過した T i 02微粒子を種結晶とした。 これ をポリスチレン容器にとり、 あらかじめエタノール中で超音波洗浄したガラス板 (無アルカリガラス) を基材として浸滇して、 酸化ホウ素 (B 203) を 30分間 隔で 5 gずつ 4回添加して、 35 Cで 5時間保持した。
得られた基材について、 実施例 4と同様にして S EM、 £0 ぉょび 80で分 祈した結果、 透明なアナタース型 T i 02薄膜が形成されていることが確認された。 実施例 1 1
純水 350 mlに (ΝΗ4) 2Τ ί F62. Ogを加え、 30°Cで 24時間撹拌し て溶解させ、 (NH4) 2T i F6の 2. 89X 1 0 2mol/L 水溶液を得た。 また アナタース型 T i 02粉末 1 7. 5 gを純水 400 mlに添加し、 撹拌した。 それ を 2日間放置後、 その上澄み液 2 mlを上記水溶液中に添加し、 種結晶とした。 こ れをポリスチレン容器にとり、あらかじめエタノール中で超音波洗浄したガラス板 (無アルカリガラス) を基材として漫澴して、 酸化ホウ素 (B203) を 1 O g添 加して、 35でで 5時間保持した。
得られた基材について、 実施例 4と同様にして S EM、 £0 ぉょび 80で分 祈した結果、 透明なアナタース型 T i 02薄膜が形成されていることが確認された。 実施例 1 2
純水 350 mlに (NH4) 2T i F62. 5 gを加え、 30°Cで 24時間撹拌し て溶解させ、 (NH4) 2T i F6の 3· 61 X 1 0 2mol/L 水溶液を得た。 これ にアナタース型 Τ ί 02粉末 1 7. 5 gを添加し、 撹拌した。 ついで、 1 w mのろ 紙で粉末 T i 02をろ別し、 ろ紙を通過した T i 02微粒子を種結晶とした。 これ をポリスチレン容器にとり、 あらかじめエタノール中で超音波洗浄したガラス板 (ソーダラィ厶ガラス) を基材として浸澴して、 酸化ホウ素 (B 203) を 1 0g 添加して、 40¾で 7時間保持した。
得られた基材について、 実施例 4と同様にして S EM、 EDXおよび XRDで分 祈した結果、 透明なアナタ一ス型 T i 02薄膜が形成されていることが確認された。 比較例 1
純水 350 mlに (NH4) 2T i F66. 3gを加え、 30°Cで 24時間撹拌し て溶解させ、 (ΝΗ4) 2Τ ί F6の 9. 1 0X 1 0— 2mol/L 水溶液を得た。 これ にアナタ一ス型 T i 02粉末 1 7. 5 gを添加し、 撹拌した。 ついで、 l " mのろ 紙で粉末 T i 02をろ別し、 ろ紙を通過した T i 02微粒子を種結晶とした。 これ をポリスチレン容器にとり、 あらかじめエタノール中で超音波洗浄したガラス板 (無アルカリガラス) を基材として浸滇して、 酸化ホウ素 (B 203) を 1 0 g添 加して、 35。Cで 5時間保持した。 得られた基材について、 実施例 4と同様にして S EM、 £0乂ぉょび乂80で分 祈した結果、 白濁したアナタース型 T i 02薄膜が形成されていることが確認され た。
実施例 1 3
上記実施例 1 1に記載したと同様の方法により、 50 x 70 x 1 mmのソーダラ ィ厶ガラスの両面に酸化チタン膜を形成した。それぞれの膜厚は約 0. 2 で あった。
この酸化チタン膜の表面に、 0. 03mgZcm2の割合でサラダオイルを 1 m g塗布し、 1 0Wのブラックライトで紫外線を照射したところ、第 2図に示すよう な結果が得られた。
第 2図に示したように、サラダオイルは顕著な重星減少を示し、本発明の酸化チ タン膜がその光触媒反応によリサラダオイルを分解することが確認された。

Claims

請 求 の 範 囲
1. 1種または 2種以上のフル才ロチタン錯化合物 1 0— 9~9 X 1 0 - 2 mol/L を 含む水溶液中に、 フッ化物イオン捕捉剤の存在下に基材を浸潰して、基材表面に酸 化チタン薄膜を形成させることを特徴とする酸化チタン薄膜の製造方法。
2. フル才ロチタン錯化合物の一部または全部が、酸化チタンをフッ化水素酸と反 応させて得られたものである請求の範囲第 1項記載の製造方法。 3. フル才ロチタン錯化合物が、 一般式 ( I ) :
AaT i bFc ( I )
式中、 Aはたがいに同一でも異なっていてもよい水素原子、 アルカリ金厲原 子、 アンモニゥ厶基または配位水を表し; a、 bおよび cは、 該錯化合物を 電気的に中性にする数である、
で示される化合物である請求の範囲第 1項記載の製造方法。
4. Aが、 水素原子;リチウム、 ナトリウム、 カリウム、 ルビジウム、 セシウム; アンモニゥ厶基および配位水からなる群より選択されたものである請求の範囲第 3項記載の製造方法。
5. 一般式 ( I ) で示される化合物が
Α,Τ i
式中、 Aは前記と同義である、 で表される化合物である請求の範囲第 3項記載の製造方法。
6. 一般式 ( I ) で示される化合物が、 Η2Τ ί F6、 (ΝΗ4) 2Τ ί F6、 N a2 T i F6、 K2T i F6、 R b2T i F6および C s 2T i F 6からなる群より選択され た少なくとも 1種である請求の範囲第 3項記載の製造方法。
7. フル才ロチタン錯化合物が、 1 0— 6〜6 X 1 0 2mol/Lの量で含有される請 求の範囲第 1項記載の製造方法。 8. フル才ロチタン錯化合物が、 1 0— 2~4 X 1 0— 2mol /しの量で含有される請 求の範囲第 1項記載の製造方法。
9. フッ化物イオン捕捉剤が、均一系フッ化物イオン捕捉剤または不均一系フッ化 物イオン捕捉剤である請求の範囲第 1項記載の製造方法。
1 0. 均一系フッ化物イオン捕捉剤がホウ素化合物、塩化アルミニウム、水酸化ナ 卜リウ厶およびアンモニア水からなる群より選択されたものである請求の範囲第
9項記載の製造方法。 1 1. ホウ素化合物がオル卜ホウ酸、メタホウ酸および酸化ホウ素から成る群より 選択された少なくとも 1種である請求の範囲第 1 0項記載の製造方法。
1 2. 均一系フッ化物イオン捕捉剤が、溶液中のフッ化物イオンの当量に相当する 量に対し、 1 0一4〜 3, 000%の量で添加される請求の範囲第 1 0項記載の製 造方法。
1 3. 溶液中に、酸化チタン薄膜製造のための種結晶を添加し、析出物を形成させ る請求の範囲第 1項記載の製造方法。
1 4.種結晶がアナタース型またはルチル型酸化チタンの結晶である請求の範囲第 1 3項記載の製造方法。
1 5. 酸化チタンが 0. 00 1〜1 0 の平均粒径を有する請求の範囲第 1 4項 記載の製造方法。
1 6. 請求の範囲第 1項〜第 1 5項のいずれかに記載の製造方法によって、基材表 面に形成された酸化チタン薄膜からなる光分解触媒。 1 7. 酸化チタンがアナタース型である請求の範囲第 1 6項に記載の光分解触媒。
補正書の請求の範囲
[1 998年 2月 1 3日 (1 3. 02. 98) 国際事務局受理:出願当初の請求の 範囲 1及び 7— 1 7は新しい請求の範囲 1及び 7—: 1 8に置き換えられた。 ;他の 請求の範脷は変更なし。 (3頁) ]
1. 1種または 2種以上のフルォロチタン錯化合物及び酸化チタン薄膜製造のため の «結晶を含む水溶液中に、フッ化物イオン捕捉剤の存在下に基材を漫清して、基 材表面に酸化チタン薄膜を形成させることを特徴とする酸化チタン薄睽の製造方 法。
2. フルォロチタン錯化合物の一部または全部が、酸化チタンをフッ化水素酸と反 応させて得られたものである請求の範囲第 1項記載の製造方法。
3, フルォロチタン錯化合物が、 一般式 ( I ) :
AaT i bFc ( I )
式中、 Aはたがいに同一でも異なっていてもよい水素原子、 アルカリ金属原 子、 アンモニゥ厶基または配位水を表し; a、 bおよび cは、 該錯化合物を 電気的に中性にする数である,
で示される化合物である請求の範囲第 1項記載の製造方法。
4. Aが、 水素原子; リチウム、 ナ卜リウム、 カリウム、 ルビジウム、 セシウム; アンモニゥ厶基および配位水からなる群より選択されたものである請求の範囲第 3項記載の製造方法。
5. 一般式 ( I ) で示される化合物が
A2T i 捕正された用紙 (条約第 19条) 式中、 Aは前記と同義である、
で表される化合物である請求の範囲第 3項記載の製造方法。
6. 一般式 ( I ) で示される化合物が、 H2T i F6、 (NH4) 2T i F6. N a2 T i F6、 K2T i F6、 R b2T i 「6ぉょび。 52丁 i F6からなる群より選択さ れた少なくとも 1種である請求の範囲第 3項記載の製造方法。
7. フル才ロチタン錯化合物が、 1 0— 9~9 X 1 0— 2mol /しの量で含有される請 求の範囲第 1項〜第 6項のいずれかに記載の製造方法。
8. フル才ロチタン錯化合物が、 1 0— 6~6 X 1 0— 2mol/Lの量で含有される請 求の範囲第 1項〜第 6項のいずれかに記載の製造方法。
9. フル才ロチタン錯化合物が、 1 0 2〜4 X 1 0— 2mol/Lの量で含有される請 求の範囲第 1項〜第 6項のいずれかに記載の製造方法。
1 0. フッ化物イオン捕捉剤が、均一系フッ化物イオン捕捉剤または不均一系フッ ィ匕物イオン捕捉剤である請求の範囲第 1項記載の製造方法。
1 1. 均一系フッ化物イオン捕捉剤がホウ素化合物、塩化アルミニウム、 水酸化ナ トリウムおよびアンモニア水からなる群より選択されたものである請求の範囲第 1 0項記載の製造方法。
補正された用紙 (条約第 I9条)
1 2. ホウ素化合物がオルトホウ酸、メタホウ酸および酸化ホウ素から成る群より 選択された少なくとも 1種である請求の範囲第 1 1項記載の製造方法。
1 3.均一系フッ化物イオン捕捉剤が、溶液中のフッ化物イオンの当量に相当する δ 量に対し、 1 0一4〜 3, 000%の量で添加される請求の範囲第 1 1項記載の製 造方法。
1 4.薄膜製造のための種結晶が酸化チタンの種結晶である請求の範囲第〗項記載 の製造方法。
0
1 5.種結晶がアナタース型またはルチル型酸化チタンの結晶である請求の範囲第 1 4項記載の製造方法。
1 6.酸化チタンから成る種結晶が 0. 001 ~1 0 mの平均粒径を有する請求 の範囲第 1 4項又は第 1 5項記載の製造方法。
1 7.請求の範囲第 1項〜第 1 6項のいずれかに記載の製造方法によって、基材表 面に形成された酸化チタン薄膜からなる光分解触媒。
1 8. 酸化チタンがアナタース型である請求の範囲第 1 7項に記載の光分解触媒。
補正された用紙 (条約第 19条) 条約 1 9条に基づく説明書 請求の範囲第〗項は、 「フル才ロチタン錯化合物」の配合量についての限定を除外 し、 原請求の範囲第 1 3項の内容を含むことを必須要件として、 引例との相違を明確 にした。
引用例には、本発明と重複する範囲のフル才ロチタン錯化合物を使用しているが、 酸化チタン薄膜製造のための種結晶を使用することについては全く記載がない。 本発明は、 酸化チタン薄膜製造のための種結晶を加えることにより、 簡単な装置を 用いて、 酸化チタン薄膜を、 基材表面、 特に大型または複雑な形状の基材表面に容易 に形成できるという効果を得たものである。
請求の範囲第 7項は、 第 1項において削除したフル才ロチタン錯化合物 Jの配合量 についての限定を新たに記載したものである。
請求の範囲第 8項〜第 1 3項は、原出願の請求の範囲第 7項〜第 1 2項をそれぞれ 置き換えたものであり、 従属関係を同時に補正したものである。
原請求の範囲第 1 3項は請求の範囲第 1項にその内容を加えたため削除した。 請求の範囲第 1 4項は酸化チタン薄膜製造のための種結晶が酸化チタンの種結晶 である旨、 新たに記載したものである。
請求の範囲第 1 5項〜第 1 8項は、原出願の請求の範囲第 1 4項〜第〗 7項をそれ ぞれ置き換えたものであり、 従属閟係を同時に補正したものである。
請求の範囲第 2項〜第 6項は変更なし。
PCT/JP1997/003155 1996-09-13 1997-09-08 Procede pour preparer un mince film d'oxyde de titane et catalyseur de photodecomposition WO1998011020A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/068,659 US6066359A (en) 1996-09-13 1997-09-08 Process for producing titanium oxide thin film, and photocatalyst
JP50782798A JP4304235B2 (ja) 1996-09-13 1997-09-08 酸化チタン薄膜の製造方法および光分解触媒
EP97939217A EP0861805B1 (en) 1996-09-13 1997-09-08 Process for preparing thin film of titanium oxide and photodecomposition catalyst
DE69728516T DE69728516T2 (de) 1996-09-13 1997-09-08 Verfahren zur herstellung einer dünnschicht aus titanoxid und katalysator für photodekomposition
KR1019980703540A KR19990067518A (ko) 1996-09-13 1997-09-08 산화티타늄 박막의 제조방법 및 광촉매

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/243770 1996-09-13
JP24377096 1996-09-13

Publications (1)

Publication Number Publication Date
WO1998011020A1 true WO1998011020A1 (fr) 1998-03-19

Family

ID=17108724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003155 WO1998011020A1 (fr) 1996-09-13 1997-09-08 Procede pour preparer un mince film d'oxyde de titane et catalyseur de photodecomposition

Country Status (6)

Country Link
US (1) US6066359A (ja)
EP (1) EP0861805B1 (ja)
JP (1) JP4304235B2 (ja)
KR (1) KR19990067518A (ja)
DE (1) DE69728516T2 (ja)
WO (1) WO1998011020A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679996B1 (en) 1999-10-05 2004-01-20 Hoya Corporation Metal oxide pattern forming method
JP2005298296A (ja) * 2004-04-14 2005-10-27 Daicel Chem Ind Ltd 酸化チタン結晶、光触媒、及び有機化合物の酸化方法
JP2012000524A (ja) * 2010-06-14 2012-01-05 Oita Univ 金属酸化物担持炭素材料の製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924164A3 (en) * 1997-12-18 2000-01-05 Hoya Corporation Methods for producing oxides or composites thereof
US6251803B1 (en) * 1998-09-28 2001-06-26 Winbond Electronics Corp. Method for forming a titanium dioxide layer
TW389942B (en) * 1998-09-28 2000-05-11 Winbond Electronics Corp Formation of a titanium dioxide film
US6482751B2 (en) * 1999-04-01 2002-11-19 Winbond Electronics Corp. Titanium dioxide layer serving as a mask and its removed method
JP3122432B1 (ja) * 1999-07-05 2001-01-09 モリオキ産業株式会社 酸化チタン膜形成用溶液の生成方法
US6524447B1 (en) 1999-11-22 2003-02-25 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
US6902653B2 (en) * 1999-11-22 2005-06-07 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of fluids
US20050224335A1 (en) * 1999-11-22 2005-10-13 Gary Carmignani Apparatus and method for photocatalytic purification and disinfection of fluids
TW490439B (en) * 1999-12-10 2002-06-11 Nat Science Council Method for preparing a barium fluorotitante (BaTiF6) powder and depositing a barium titanate (BaTiO3) thin film on a silicon wafer
US6683023B2 (en) * 2000-04-21 2004-01-27 Showa Denko K.K. Photocatalytic powder and polymer composition
JP4125560B2 (ja) * 2001-08-16 2008-07-30 株式会社神戸製鋼所 耐水素吸収性に優れたチタン合金材
US20030231997A1 (en) * 2002-06-18 2003-12-18 Norman Kettenbauer Titanium catalyst support substrate for selective catalytic reduction reactors
US6902601B2 (en) * 2002-09-12 2005-06-07 Millennium Inorganic Chemicals, Inc. Method of making elemental materials and alloys
US7521039B2 (en) * 2002-11-08 2009-04-21 Millennium Inorganic Chemicals, Inc. Photocatalytic rutile titanium dioxide
ES2380329T3 (es) * 2003-06-17 2012-05-10 Basf Se Procedimiento para la preparación de material orgánico revestido con óxido metálico mediante deposición por microondas
KR20060007503A (ko) * 2004-07-20 2006-01-26 삼성코닝 주식회사 가요성 기판 상의 고전도성 금속 패턴 형성 방법 및 이를이용한 전자파 차폐 필터
TWI304048B (en) * 2005-10-21 2008-12-11 Univ Nat Sun Yat Sen A media having crystals of ammonium oxotrifluorotitanate, a method for preparing the same, and a method for preparing madias having crystals of titanium dioxide
WO2009021292A1 (en) * 2007-08-16 2009-02-19 The University Of Queensland Titanate photocatalyst
GB0803194D0 (en) * 2008-02-21 2008-04-02 Microsphere Technology Ltd Process for the manufacture of titania coated microspheres
WO2009117770A1 (en) * 2008-03-25 2009-10-01 The University Of Queensland Crystalline inorganic species having optimised reactivity
US9347134B2 (en) 2010-06-04 2016-05-24 Prc-Desoto International, Inc. Corrosion resistant metallate compositions
CN102249296B (zh) * 2011-05-07 2013-06-19 南昌航空大学 一种光催化分解水制氢材料及其制备方法
US9504986B2 (en) * 2012-08-10 2016-11-29 University Of South Florida Metal-organic materials (MOMS) for polarizable gas adsorption and methods of using MOMS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285822A (ja) * 1990-03-30 1991-12-17 Nippon Sheet Glass Co Ltd 酸化チタン被膜の製造方法
JPH0426516A (ja) * 1990-05-18 1992-01-29 Nippon Sheet Glass Co Ltd 酸化チタン被膜の製造方法
JPH09249418A (ja) * 1996-01-12 1997-09-22 Matsushita Electric Works Ltd 光触媒活性酸化チタンの形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359449A (en) * 1980-12-15 1982-11-16 Occidental Research Corporation Process for making titanium oxide from titanium ore
JPS59141441A (ja) * 1983-02-01 1984-08-14 Nippon Sheet Glass Co Ltd 酸化チタン膜被覆ガラスを製造する方法
US4497779A (en) * 1983-10-14 1985-02-05 Amax Inc. Production of potassium hexafluotitanates using dilute hydrofluoric acid
JPH0735268B2 (ja) * 1987-03-24 1995-04-19 日本板硝子株式会社 酸化チタン被膜の製造方法
ES2037881T3 (es) * 1988-01-22 1993-07-01 Hitachi, Ltd. Aparato para eliminar olor desagradable.
DE68919665T2 (de) * 1988-12-28 1995-05-18 Ishihara Sangyo Kaisha Titandioxidaggregate, Verfahren zu ihrer Herstellung und elektrophotographisches, photosensibles Material, das diese Aggregate enthält.
JPH0664353B2 (ja) * 1989-02-02 1994-08-22 石原産業株式会社 電子写真用感光体
US5256616A (en) * 1989-09-25 1993-10-26 Board Of Regents, The University Of Texas System Materials and methods for photocatalyzing oxidation of organic compounds on water
JP2870170B2 (ja) * 1990-09-21 1999-03-10 日本板硝子株式会社 酸化チタン被膜の製造方法
JPH08310802A (ja) * 1995-03-15 1996-11-26 Takeshi Yao ペロブスカイト型複合酸化物析出物の製造方法
EP0767141B1 (en) * 1995-03-15 2003-08-13 Hoya Corporation Process for preparing precipitate of metal oxide
US5811192A (en) * 1996-01-12 1998-09-22 Matsushita Electric Works, Ltd. Titanium dioxide film having photocatalytic activity and substrate having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285822A (ja) * 1990-03-30 1991-12-17 Nippon Sheet Glass Co Ltd 酸化チタン被膜の製造方法
JPH0426516A (ja) * 1990-05-18 1992-01-29 Nippon Sheet Glass Co Ltd 酸化チタン被膜の製造方法
JPH09249418A (ja) * 1996-01-12 1997-09-22 Matsushita Electric Works Ltd 光触媒活性酸化チタンの形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0861805A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679996B1 (en) 1999-10-05 2004-01-20 Hoya Corporation Metal oxide pattern forming method
JP2005298296A (ja) * 2004-04-14 2005-10-27 Daicel Chem Ind Ltd 酸化チタン結晶、光触媒、及び有機化合物の酸化方法
JP4628011B2 (ja) * 2004-04-14 2011-02-09 ダイセル化学工業株式会社 酸化チタン結晶、光触媒、及び有機化合物の酸化方法
JP2012000524A (ja) * 2010-06-14 2012-01-05 Oita Univ 金属酸化物担持炭素材料の製造方法

Also Published As

Publication number Publication date
EP0861805B1 (en) 2004-04-07
DE69728516T2 (de) 2005-03-24
EP0861805A1 (en) 1998-09-02
DE69728516D1 (de) 2004-05-13
JP4304235B2 (ja) 2009-07-29
KR19990067518A (ko) 1999-08-25
US6066359A (en) 2000-05-23
EP0861805A4 (en) 1999-11-24

Similar Documents

Publication Publication Date Title
WO1998011020A1 (fr) Procede pour preparer un mince film d'oxyde de titane et catalyseur de photodecomposition
US6355308B1 (en) Methods for producing oxides or composites thereof
Çelik et al. Processing, characterization and photocatalytic properties of Cu doped TiO2 thin films on glass substrate by sol–gel technique
JP2002370034A (ja) 無機金属化合物を用いた酸化物光触媒材料およびその応用品
Temam et al. Photocatalytic activity of Al/Ni doped TiO2 films synthesized by sol-gel method: Dependence on thickness and crystal growth of photocatalysts
KR20020092067A (ko) 금속이 첨가된 고활성 광촉매 산화티탄-졸 제조 방법
Ren et al. Study on the superhydrophilicity of the SiO 2-TiO 2 thin films prepared by sol-gel method at room temperature
Samadi et al. Synthesis, characterization, and application of Nd, Zr–TiO 2/SiO 2 nanocomposite thin films as visible light active photocatalyst
JP5118068B2 (ja) 光触媒薄膜、光触媒薄膜の形成方法及び光触媒薄膜被覆製品
Masuda et al. Anatase TiO2 films crystallized on SnO2: F substrates in an aqueous solution
JP4203302B2 (ja) 抗菌性コーティング液及びその製造方法並びにコーティング方法
JP2001048538A (ja) チタン酸化物形成用溶液およびその製造方法
CN1613556A (zh) Ag与TiO2多相纳晶复合薄膜光催化剂的原位制备方法
EP3519089A1 (en) Mesoporous hydrogenated titanium dioxide
Hagiri et al. Preparation and characterization of silver orthophosphate photocatalytic coating on glass substrate
CN1205000A (zh) 氧化钛薄膜的制造方法和光分解催化剂
ES2968854T3 (es) Producción de nanopartículas dopadas
Funakoshi et al. Preparation of a superhydrophilic thin film on glass substrate surfaces with titanium alkoxide solution
JP5936735B1 (ja) アナターゼ型酸化チタンを含有する内装用複合膜の製造方法
JP2000102733A (ja) 光分解触媒の使用方法及び水素製造方法
JPH09308833A (ja) 光触媒含有繊維複合体の製造方法
RU2675808C1 (ru) Способ получения фотокаталитически активной пленки
KR100411953B1 (ko) 투과율이 우수한 광촉매성 산화티탄졸 및 이의 제조 방법및 코팅 방법
Islam Investigation of photocatalytic activities of metal oxide ald thin films
Ivanova et al. ENHANCED PHOTOCATALYTIC PROPERTIES OF MnOx CO-CATALYTIC MODIFIED ZnO NANOSTRUCTURED FILMS FOR ORGANIC DYE DEGRADATION

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191248.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09068659

Country of ref document: US

Ref document number: 1019980703540

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997939217

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997939217

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980703540

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997939217

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980703540

Country of ref document: KR