WO1998001414A1 - Verfahren zur reinigung von roh-acrylsäure durch kristallisation - Google Patents

Verfahren zur reinigung von roh-acrylsäure durch kristallisation Download PDF

Info

Publication number
WO1998001414A1
WO1998001414A1 PCT/EP1997/003304 EP9703304W WO9801414A1 WO 1998001414 A1 WO1998001414 A1 WO 1998001414A1 EP 9703304 W EP9703304 W EP 9703304W WO 9801414 A1 WO9801414 A1 WO 9801414A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic acid
weight
acid
crystallization
crude
Prior art date
Application number
PCT/EP1997/003304
Other languages
English (en)
French (fr)
Inventor
Klaus Lehnert
Klaus Joachim MÜLLER-ENGEL
Gerhard Nestler
Bernd Eck
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to MX9809574A priority Critical patent/MX203355B/es
Priority to AU33440/97A priority patent/AU3344097A/en
Priority to EP97929277A priority patent/EP0912486B1/de
Priority to JP10504708A priority patent/JP2000514069A/ja
Priority to BR9710217A priority patent/BR9710217A/pt
Priority to DE59702539T priority patent/DE59702539D1/de
Priority to US09/147,457 priority patent/US6063959A/en
Priority to KR19997000138A priority patent/KR100502603B1/ko
Publication of WO1998001414A1 publication Critical patent/WO1998001414A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation

Definitions

  • the present invention relates to a process for the purification of crude acrylic acid by crystallization.
  • Acrylic acid either alone or in the form of its salts or its esters, is particularly important for the preparation of polymers for a wide variety of applications (for example adhesives, superabsorbents, binders).
  • acrylic acid can be obtained by catalytic gas phase oxidation of propane, propene and / or acrolein. These starting gases, usually diluted with inert gases such as nitrogen, CO 2 and / or water vapor, are passed in a mixture with oxygen at elevated temperatures and, if appropriate, increased pressure, over transition-metal mixed oxide catalysts and oxidatively converted into a product mixture containing acrylic acid. Condensation of the product mixture or by absorption in a suitable absorbent (e.g. water or a mixture of 70 to 75% by weight of diphenyl ether and 25 to 30% by weight of diphenyl) can result in a basic separation of the acrylic acid from the product gas flow ( see e.g. EP-A 297 445 and DE-PS 21 36 396).
  • a suitable absorbent e.g. water or a mixture of 70 to 75% by weight of diphenyl ether and 25 to 30% by weight of diphenyl
  • an acrylic acid is often obtained, which is referred to here as crude acrylic acid.
  • This raw acrylic acid is not a pure product. Rather, it contains a spectrum of different impurities typical of the gas-phase catalytically oxidative production route. These are in particular acetic acid, propionic acid, water and low molecular weight aldehydes such as acrolein, methacrolein, propionaldehyde, n-butyraldehyde, benzaldehyde, furfural and crotonaldehyde.
  • Another typical component of crude acrylic acid is polymerization inhibitors.
  • Dibenzo- 1,4-thiazine is a colorless one, at 180 ° C
  • dibenzo- 1, 4 -thiazine is usually used either as the sole acrylic acid process stabilizer or in combination with other possible acrylic acid process stabilizers such as.
  • diacrylic acid is a slow process. If you leave a purity of> .99.5% by weight of acrylic acid at 25 ° C, 1 bar, the formation of diacrylic acid is about 150 ppm per day, based on the weight of acrylic acid. The total amount of other secondary components possibly contained in the crude acrylic acid, based on the weight of the crude acrylic acid, is generally not more than 10% by weight.
  • crude acrylic acid is to be understood as meaning acrylic acid which, if its content of acrylic acid oligomers 2) (Michael adducts) is disregarded,
  • the data in% by weight are based on the weight of the crude acrylic acid minus its content of acrylic acid oligomers.
  • crude acrylic acid is to be understood as meaning acrylic acid which, if its content of acrylic acid oligomers is disregarded,
  • crude acrylic acid used here thus also includes those acrylic acid which, if their content of acrylic acid oligomers is disregarded,
  • acrylic acid ohgomers always mean the corresponding Michael adducts and acrylic acid oggomers not formed by radical polymerization, since the formation of the latter is essentially suppressed by the presence of polymerization inhibitors > 90% by weight acrylic acid, ⁇ . 5% by weight of acetic acid,
  • the corresponding acetic and propionic acid esters would also be formed in side reactions, which reduces the yield of the desired acrylic acid ester, based on the amount of alkanol used .
  • the acrylic acid esters formed in the presence of the low molecular weight aldehydes are used in radical polymerizations, their content of the low molecular weight aldehydes usually has an effect, for example, B. disadvantageous in that it z. B. the induction time of polymerization reactions, d. H. , influence the period between reaching the polymerization temperature and the actual start of the polymerization. Furthermore, they generally influence the degree of polymerization and can also cause discoloration in the polymers.
  • esterification-compatible acrylic acid with a degree of purity of at least 98% by weight, based on the sum of all components, often even with a degree of purity of> 99% by weight.
  • Pure acrylic acid is therefore normally produced by directly processing freshly prepared crude acrylic acid, since it contains practically no acrylic acid oligomers formed. Pure acrylic acid produced is usually consumed fresh.
  • fractional crystallization is expediently used as the cleaning method, as is the case, for. B. is described in EP-A 616 998, since the fractional crystallization at low temperatures (according to Louis F. Fieser and Mary Fieser, Organic Chemistry, Verlag Chemie (1975), p. 422, Table 11.1.) Is Melting point of pure acrylic acid at 1 bar 13 ° C; the presence of foreign components lowers this position of the crystallization temperature) and low temperatures additionally inhibit both Michael addition and the radical polymerization of acrylic acid.
  • a disadvantage of the purification of crude acrylic acid by crystallization is, however, the low solubility of dibenzo-1,4-thiazine in acrylic acid, which is about 1.5% by weight at 25 ° C. and only about 0.9 at 15 ° C. % By weight, based on the solution consisting of acrylic acid and dibenzo-1,4-thiazine.
  • the presence of acetic acid and / or propionic acid in acrylic acid hardly influences these solubility values, whereas the presence of water still reduces the solubility of dibenzo-1,4-thiazine. The main consequence of this is as follows.
  • acrylic acid is accompanied by an enrichment of the dibenzo -1,4 -thiazine in the remaining melt until the eutectic composition is reached and no longer pure acrylic acid separates but the eutectic mixture of dibenzo-1,4-thiazine and acrylic acid.
  • the object of the present invention was therefore to increase the solubility of di-benzo-1,4-thiazine in acrylic acid by means of a suitable measure, thereby increasing the proportion of dibenzo-1,4-thiazine in the corresponding eutectic mixture and thus a to provide an improved process for the purification of crude acrylic acid by crystallization.
  • the solubility of dibenzo-1,4-thiazine in acrylic acid can be increased by more than 100%, especially at the temperatures relevant to crystallization.
  • a process for the purification of crude acrylic acid by crystallization which is characterized in that the diacrylic acid content of the crude acrylic acid before the crystallization step is at least 1% by weight, based on the weight the raw acrylic acid.
  • Processes according to the invention are accordingly processes for the purification of crude acrylic acid, the content of diacrylic acid prior to the crystallization step of 1 to 2% by weight, or 1 to 3% by weight, or 1 to 5% by weight. %, or 1 to 10% by weight, or 1 to 20% by weight, or 1 to 40% by weight.
  • a diacrylic acid content of the crude acrylic acid which is to be crystallisatively purified is generally not more than 50% by weight.
  • the process according to the invention is therefore applicable to crude acrylic acid, the content of dibenzo-1,4-thiazine based on the weight of the crude acrylic acid minus the amount of acrylic acid oligomers contained therein. 0.9% by weight, or> . 1% by weight, or> 1, 1% by weight, or> 1, 2 Ge. -%, or> 1.3% by weight, or> 1.4% by weight, or> 1.5% by weight.
  • the content of dibenzo-1,4-thiazine obtained in this way will not be more than 2% by weight.
  • the process according to the invention can also be used if the crude acrylic acid contains up to 5% by weight of hydroquinone.
  • diacrylic acid itself has an increased solubility in acrylic acid. It is also advantageous that diacrylic acid can be split back into acrylic acid using an elevated temperature.
  • the adjustment according to the invention of the diacrylic acid content of the crude acrylic acid to be crystallisatively cleaned can be achieved in different ways.
  • the crude acrylic acid to be cleaned can contain a small amount of a strong protic mineral acid such as. B. H 2 S0, HC1 or H 3 P0 can be added, which catalyzes the Michael addition of acrylic acid.
  • the presence of H 2 0 also favors diacrylic acid formation.
  • the catalytic effect of the mineral acid can be neutralized by adding a neutralizing base.
  • the diacrylic acid content can also be increased by adding some of the rest in the first separation steps separates contained components, z. B. by distillation and / or crystallization.
  • diacrylic acid can also be grown in pure acrylic acid, e.g. B. by distillation and add the crude acrylic acid to be purified crystallisatively.
  • the process according to the invention is normally carried out at normal pressure, ie. H. , carried out at a pressure of 1 bar.
  • the method according to the invention is usually implemented as fractional crystallization.
  • the individual crystallization stages can be implemented both as static and / or as dynamic crystallization.
  • Layer crystallization such as falling film crystallization as well as suspension crystallization can be used. A detailed description of these crystallization modes can be found in EP-A 616 998 and in the literature cited therein.
  • acrylic acid suitable for esterification is initially continuously produced. Since it must be process stabilized in the course of the esterification, dibenzo-1,4-thiazine still contained therein does not have a disadvantageous effect (for esterification-compatible acrylic acid, the upper limit of the dibenzo-1,4-thiazine content to be observed is 750 ppm (on the Based on weight) and the corresponding limit for diacrylic acid is 1.5% by weight; for pure acrylic acid the upper limit of the dibenzo -1,4 -thiazine content to be observed is 1 ppm and the corresponding limit for diacrylic acid is 0.2% by weight. -% in the case of use for conventional polymerizations and at 500 ppm in the case of use for the production of superabsorbers;).
  • the acrylic acid produced, suitable for esterification and containing dibenzo-1,4-thiazine, is then at least partially stored, whereby this temporary storage can last a few days, a week, a month, a quarter, a half year or longer.
  • Acrylic acid contained in this intermediate storage can then be used for the production of acrylic acid esters or for the crystallizative production of pure acrylic acid, as required.
  • the formation of diacrylic acid which occurs in the meantime during the storage and which is usually attempted to be prevented in the course of the production of pure acrylic acid has only a limited disadvantageous effect in the esterification, since via a cleavage ultimately involved in the processing of the esterification mixture, based on the alkanol used, Loss of yield can be prevented.
  • the diacrylic acid formed in the course of storage has an advantageous effect on the further purification of esterified acrylic acid to produce pure acrylic acid which is essentially free of dibenzo-1-thiazine.
  • Table 1 shows the increase in solubility of dibenzo-1,4-thiazine in acrylic acid associated with increasing diacrylic acid content for two temperatures used as a result of solubility tests.
  • Table 2 shows the solubility of di-benzo-1, - thiazine in acetic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)

Abstract

Ein Verfahren zur Reinigung von Dibenzo-1,4-thiazin enthaltender Roh-Acrylsäure durch Kristallisation, bei dem man den Gehalt der Roh-Acrylsäure an Diacrylsäure vor dem Kristallisationsschritt auf einen erhöhten Wert einstellt.

Description

Verfahren zur Reinigung von Roh-Acrylsäure durch Kristallisation
Beschreibung
Vorliegende Erfindung betrifft ein Verfahren zur Reinigung von Roh-Acrylsäure durch Kristallisation.
Acrylsäure, entweder für sich oder in Form ihrer Salze oder ihrer Ester, ist insbesondere zur Herstellung von Polymerisaten für die verschiedensten Anwendungsgebiete (z. B. Klebstoffe, Super - absorber, Bindemittel) von Bedeutung.
Unter anderem ist Acrylsäure durch katalytische Gasphasen - oxidationen von Propan, Propen und/oder Acrolein erhältlich. Dabei werden diese Ausgangsgase, in der Regel mit inerten Gasen wie Stickstoff, C02 und/oder Wasserdampf verdünnt, im Gemisch mit Sauerstoff bei erhöhten Temperaturen sowie gegebenenfalls erhöhtem Druck über übergangsmetallische Mischoxidkatalysatoren geleitet und oxidativ in ein Acrylsäure enthaltendes Produktgemisch umgewandelt. Durch Kondensation des Produktgemisches oder durch Aufnahme in ein geeignetes Absorptionsmittel (z. B. Wasser oder ein Gemisch aus 70 bis 75 Gew. -% Diphenylether und 25 bis 30 Gew. -% Diphenyl) kann eine Grundabtrennung der Acrylsäure aus dem Produktgasström erzielt werden (vgl. z. B. EP-A 297 445 und DE-PS 21 36 396) .
Durch Entfernung des Absorptionsmittels (und gegebenenfalls zuvor erfolgter Desorption von eine geringe Absorptionsmittellöslich- keit aufweisenden Verunreinigungen durch Abstreifen, z. B. mit Luft) über extraktive und/oder destillative Trennverfahren (z. B. Entfernung der Absorptionsmittels Wasser durch Destillation, azeotope Destillation oder extraktive Abtrennung der Säure aus der wäßrigen Lösung und anschließende destillative Entfernung des Extraktionsmittels) und/oder nach Anwendung von sonstigen Trennschritten wird häufig eine Acrylsäure erhalten, die hier als Roh- Acrylsäure bezeichnet wird.
Diese Roh-Acrylsäure ist kein reines Produkt. Vielmehr enthält sie ein Spektrum verschiedener, für den gasphasenkatalytisch oxidativen Herstellungsweg typische, Verunreinigungen. Diese sind insbesondere Essigsäure, Propionsäure, Wasser und niedermolekulare Aldehyde wie Acrolein, Methacrolein, Propionaldehyd, n-Butyraldehyd, Benzaldehyd, Furfurale und Crotonaldehyd. Ein weiterer typischer Bestandteil von Roh-Acrylsäure sind Polymerisationsinhibitoren. Diese werden im Verlauf der zur Herstellung von Roh-Acrylsäure angewandten Trennprozesse zugesetzt, wo sie eine mögliche radikalische Polymerisation der α, ß-mono- ethylenisch ungesättigten Acrylsäure unterdrücken sollen, weshalb sie auch als Prozeßstabilisatoren bezeichnet werden. Eine heraus - ragende Position unter den Acrylsäure- Prozeßstabilisatoren nimmt Dibenzo- 1,4- thiazin,
Figure imgf000004_0001
ein. Dibenzo- 1, 4 -thiazin ist eine farblose, bei 180°C
(Druck = 1 bar) schmelzende Substanz, die durch Erhitzen von Diphenylamin mit Schwefel erhältlich ist. Üblicherweise wird Dibenzo- 1, 4 -thiazin entweder als alleiniger Acrylsäure- Prozeßstabi - lisator oder in Kombination mit anderen möglichen Acrylsäure -Prozeßstabilisatoren wie z. B. Hydrochinon angewendet, weshalb Di- benzo-1, 4- thiazin ein charakteristischer Bestandteil der hier re- levanten Roh-Acrylsäure ist.
Weitere unerwünschte Begleiter von in kondensierter Phase befindlicher Acrylsäure sind die durch Michael -Addition von Acrylsäure an sich selbst sowie an das sich dabei bildende Acrylsäure -Dimere entstehenden Acrylsäure-Oligomere (Michael -Addukte) . Während diese Verbindungen in frisch erzeugter Roh-Acrylsäure normalerweise so gut wie nicht enthalten sind (üblicherweise beträgt ihr Gewichtsanteil < 0,01 Gew. -%) , entstehen sie in selbiger bei längerem sich selbst überlassen. Aus statistischen Gründen ist dabei lediglich die Bildung von Diacrylsäure,
0 CH3 O
CH2 CH C 0 C C OH
von Bedeutung, wohingegen die Bildung höherer Acrylsäure-Oligomere (Trimere, Tetramere etc.) im wesentlichen vernachlässigbar ist. Bereits die Bildung der Diacrylsäure ist ein langsamer Prozeß. Überläßt man eine eine Reinheit von >.99,5 Gew. -% aufweisende Acrylsäure bei 25°C, 1 bar sich selbst, so betragt die Bildung an Diacrylsäure -je Tag etwa 150 ppm, bezogen auf das Gewicht der Acrylsäure. Die Gesamtmenge an sonstigen in der Roh-Acrylsäure möglicherweise enthaltenen Nebenkomponenten betragt auf das Gewicht der Roh-Acrylsäure bezogen in der Regel nicht mehr als 10 Gew. -%.
Unter Roh-Acrylsäure soll in dieser Schrift deshalb solche Acrylsäure verstanden werden, die, läßt man ihren Gehalt an Acrylsau- re-Oligomeren 2) (Michael -Addukte) unberücksichtigt,
>. 70 Gew. -% Acrylsäure, < 20 Gew. -% Essigsaure,
< 5 Gew. -% Propionsaure <. 5 Gew. -% Wasser,
<. 5 Gew. - niedermolekulare Aldehyde und
>. 0,80 Gew. -% Dibenzo- 1,4 -thiazin
enthält; d. h. , die Angaben in Gew. -% sind auf das Gewicht der Roh-Acrylsäure abzüglich ihres Gehaltes an Acrylsaure-Oligomeren bezogen .
Insbesondere soll in dieser Schrift unter Roh-Acrylsäure solche Acrylsäure verstanden werden, die, läßt man ihren Gehalt an Acrylsäure-Oligomeren unberücksichtigt,
> 80 Gew. -% Acryls ure, < 15 Gew. -% Essigsaure,
< 5 Gew. - Propionsaure,
< 5 Gew. -% Wasser,
< 5 Gew. -% niedermolekulare Aldehyde und
> 0,80 Gew. -% Dibenzo- 1, -thiazin
enthält.
Damit umfaßt der hier verwendete Begriff Roh-Acrylsäure auch solche Acrylsäure, die, läßt man ihren Gehalt an Acrylsaure-Olgiome- ren unberücksichtigt,
1 ) Acrylsaure-Ohgomere meint in dieser Schπft stets die entsprechenden Michael- Addukte und nicht durch radikahsche Polymensation entstehende Acrylsäureohgomere, da die Bildung letzterer durch das Beisein von Pol mensationsinhibitoren im wesentlichen unterdrückt wird > 90 Gew. -% Acrylsäure, <. 5 Gew. -% Essigsäure,
< 2 Gew. -% Propionsaure,
< 2 Gew. -% Wasser, < 2 Gew. -% niedermolekulare Aldehyde und
> 0, 80 Gew. -% Dibenzo- 1, -thiazin
enthält.
Von den in den vorgenannten Roh-Acrylsäuren neben Acrylsäure enthaltenen Bestandteilen erweisen sich die meisten im Rahmen einer Acrylsäureverwendung als nachteilig.
Würde eine solche Roh-Acrylsäure beispielsweise zur Herstellung von Estern aus Ci- bis Cβ-Alkanolen und Acrylsäure verwendet, würden in Nebenreaktionen auch die entsprechenden Essigsäure- und Propionsäureester gebildet, was die Ausbeute an gewünschtem Acrylsäureester, bezogen auf die eingesetzte Menge an Alkanol, mindert. Setzt man die im Beisein der niedermolekularen Aldehyde gebildeten Acrylsäureester in radikalischen Polymerisationen ein, wirkt sich deren Gehalt an den niedermolekularen Aldehyden in der Regel z. B. insofern nachteilig aus, als sie z. B. die Induktionszeit von Polymerisationsreaktionen, d. h. , den Zeitraum zwischen dem Erreichen der Polymerisationstemperatur und dem tat- sächlichen Beginn der Polymerisation, beeinflussen. Ferner beeinflussen sie in der Regel den Polymerisationsgrad und können in den Polymerisaten auch Verfärbungen verursachen.
Vorgenannte Nachteile treffen normalerweise auch dann zu, wenn man die Roh-Acrylsäure unmittelbar als Acrylsäurequelle in Polymerisationen anwendet.
Es ist daher Aufgabe der Acrylsäurehersteller, die in der Roh- Acrylsäure enthaltenen Verunreinigungen weitestgehend abzutren- nen.
Üblicherweise werden zwei Reinheitsgrade zum käuflichen Erwerb angeboten:
- Reinacrylsäure, mit einem Reinheitsgrad von wenigstens
99 Gew. -%, bezogen auf die Summe aller Bestandteile, häufig sogar mit einem Reinheitsgrad von > 99,5 Gew. - ;
veresterungsgerechte Acrylsäure, mit einem Reinheitsgrad von wenigstens 98 Gew. -%, bezogen auf die Summe aller Bestandteile, häufig sogar mit einem Reinheitsgrad von > 99 Gew. -%. Reinacrylsäure wird insbesondere zur Herstellung von Super- absorbern (= Massen zur Aufnahme von Wasser auf der Grundlage von Polyacrylsäure und deren Salzen) verwendet und unterliegt diesbezüglich insbesondere dem Erfordernis möglichst keine Diacrylsäure und möglichst kein Dibenzo -1, 4- thiazin enthalten zu dürfen, da beide Bestandteile entweder bei der Superabsorberherstellung (insbesondere Dibenzo-1,4 -thiazin stört aufgrund seiner radikalische Polymerisationen extrem inhibierenden Wirkung bei der Herstellung von Superabsorbern empfindlich) oder beim Super- absorbergebrauch (Superabsorber finden insbesondere im Hygiene- bereich Verwendung (z. B. Babywindeln); ein Gehalt an nicht copo- lymerisierter Diacrylsäure (polymerisiert weniger ausgeprägt als Acrylsäure) ist in diesem Anwendungssektor nicht tolerabel) unerwünscht sind. Die Lagerstabilisierung von Reinacrylsäure gegen unerwünschte vorzeitige radikalische Polymerisation erfolgt daher üblicherweise mittels Hydrochinonmonomethylether oder -monoethyl- ether oder deren Gemischen. Diese Verbindungen wirken vergleichsweise weniger stark inhibierend, was dem bei der Lagerung vergleichsweise geringen Belastungsprofil angemessen ist.
Die Herstellung von Reinacrylsäure erfolgt deshalb normalerweise durch unmittelbare Weiterverarbeitung von frisch hergestellter Roh-Acrylsäure, da selbige praktisch noch keine gebildeten Acryl - säure-01igomeren enthält. Erzeugte Reinacrylsäure wird üblicher- weise frisch verbraucht.
Ferner wird als Reinigungsverfahren zweckmäßigerweise die fraktionierte Kristallisation angewendet, wie sie z. B. in der EP-A 616 998 beschrieben ist, da die fraktionierte Kristallisa- tion bei niedrigen Temperaturen (gemäß Louis F. Fieser und Mary Fieser, Organische Chemie, Verlag Chemie (1975), S. 422, Tabelle 11.1., beträgt der Schmelzpunkt von reiner Acrylsäure bei 1 bar 13°C; durch das Beisein von Fremdkomponenten wird diese Lage der Kristallisationstemperatur noch gesenkt) durchgeführt wird und niedere Temperaturen sowohl die Michael -Addition als auch die radikalische Polymerisation von Acrylsäure zusätzlich hemmen.
Nachteilig an der Reinigung von Roh-Acrylsäure durch Kristallisation ist jedoch die geringe Löslichkeit von Dibenzo-1, 4 -thiazin in Acrylsäure, die bei 25°C etwa 1,5 Gew. -% und bei 15°C nur noch etwa 0,9 Gew. -%, bezogen auf die aus Acrylsäure und Dibenzo- 1, 4 -thiazin bestehende Lösung, beträgt. Ein Beisein von Essigsäure und/oder Propionsaure in der Acrylsäure beeinflußt diese Löslichkeitswerte kaum, wohingegen ein Beisein von Wasser die Löslichkeit von Dibenzo- 1, 4 -thiazin noch verringert. Dies hat im wesentlichen folgendes zur Konsequenz. Geht man von einer Roh-Acrylsäure aus, deren Gehalt an Di- benzo-1, 4 -thiazin oberhalb des Gehaltes des eutektischen Gemisches mit Acrylsäure liegt und kühlt diese Roh-Acrylsäure ab, so fällt als erstes Dibenzo- 1, 4 -thiazin und nicht Acrylsäure aus. D. h. , reine Acrylsäure kann nicht abgeschieden werden. Geht man von einer Roh-Acrylsäure aus, deren Gehalt an Dibenzo-1, 4 - thia- zion unterhalb des Gehaltes des eutektischen Gemisches mit Acrylsäure liegt und kühlt diese Roh-Acrylsäure ab, so fällt zwar beim Abkühlen als erstes reine Acrylsäure aus und kann als solche ab- geschieden werden. Mit einer solchen Abscheidung von reiner
Acrylsäure geht jedoch eine Anreicherung des Dibenzo -1,4 -thiazin in der verbleibenden Schmelze einher, bis die eutektische Zusammensetzung erreicht ist und sich nicht mehr reine Acrylsäure sondern das eutektische Gemisch aus Dibenzo- 1, 4- thiazin und Acrylsäure abscheidet.
Je geringer die Löslichkeit eines Bestandteils in Acrylsäure bei einer bestimmten Temperatur ist, desto geringer ist normalerweise dessen Gewichtsanteil am eutektischen Gemisch. Ist nun aber be- reits bei einem sehr geringen Gehalt an Dibenzo -1, 4- thiazin die eutektischte Zusammensetzung erreicht, so ist mittels fraktionierter Kristallisation keine weitere Abscheidung reiner Acrylsäure möglich. Vielmehr stellt das eutektische Gemisch nicht verkäuflichen Abfall dar. Allenfalls durch Hilfsmaßnahmen wie Auf- schmelzen des eutektischen Gemisches und anschließendes selektives Fällen des enthaltenen Debenzo- 1,4 -thiazin durch Zusatz von selektiven Fällungsmitteln wie z.B. Wasser oder durch die Anwendung von besonderen Kristallisationverfahren, bei denen die Kristallisationsflächen z.B. mit Impfkristallen eines der Bestand- teile des eutektischen Gemisches bestückt werden, konnte hier bisher abgeholfen werden.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, mittels einer geeigneten Maßnahme die Löslichkeit von Di- benzo- 1,4 -thiazin in Acrylsäure zu erhöhen, dadurch den Anteil von Dibenzo- 1, 4- thiazin am entsprechenden eutektischen Gemisch zu erhöhen und so ein verbessertes Verfahren zur Reinigung von Roh- Acrylsäure durch Kristallisation zur Verfügung zu stellen.
Überraschenderweise wurde nun gefunden, daß mit zunehmendem
Gehalt der Acrylsäure an Diacrylsäure (Michael -Addukt der Acrylsäure an sich selbst) die Löslichkeit von Dibenzo- 1, 4 - thiazin in Acrylsäure insbesondere bei den kristallisationsrelevanten Temperaturen um mehr als 100 % erhöht werden kann. Erfindungsgemäß wird somit ein Verfahren zur Reinigung von Roh- Acrylsäure durch Kristallisation zur Verfügung gestellt, das dadurch gekennzeichnet ist, daß man den Gehalt der Roh-Acrylsäure an Diacrylsäure vorab des Kristallisationsschrittes auf einen Wert von wenigstens 1 Gew. -%, bezogen auf das Gewicht der Roh- Acrylsäure, einstellt.
Erfindungsgemäße Verfahren sind demnach solche Verfahren zur Reinigung von Roh-Acrylsäure, deren Gehalt an Diacrylsäure vorab des Kristallisationsschrittes auf einen wie vorstehend bezogenen Wert von 1 bis 2 Gew.-%, oder 1 bis 3 Gew. - , oder 1 bis 5 Gew.-%, oder 1 bis 10 Gew. -%, oder 1 bis 20 Gew. -%, oder 1 bis 40 Gew. -% eingestellt wird. Ein oberhalb von 50 Gew. -% liegender Diacryl- säuregehalt der kristallisativ zu reinigenden Roh-Acrylsäure ist erfindungsgemäß in der Regel nicht zweckmäßig.
Selbstverständliche ist das erfindungsgemäße Verfahren somit anwendbar auf Roh-Acrylsäure, deren Gehalt an Dibenzo- 1,4- thiazin, bezogen auf das Gewicht der Roh-Acrylsäure abzüglich der darin enthaltenen Menge an Acrylsäure-Oligomeren, .0,9 Gew. -%, oder >. 1 Gew. -%, oder > 1, 1 Gew. -%, oder > 1, 2 Ge . -%, oder > 1,3 Gew.-%, oder > 1,4 Gew. -%, oder > 1,5 Gew. -% beträgt. Normalerweise wird der so bezogene Gehalt an Dibenzo- 1, 4- thiazin nicht mehr als 2 Gew. -% betragen. Das erfindungsgemäße Verfahren ist auch dann anwendbar, wenn die Roh-Acrylsäure in Mengen von bis zu 5 Gew. - Hydrochinon enthält.
Vorteilhaft für das erfindungsgemäße Verfahren ist, daß Diacrylsäure in Acrylsäure selbst eine erhöhte Löslichkeit aufweist. Ferner ist es vorteilhaft, daß Diacrylsäure unter Anwendung erhöhter Temperatur in Acrylsäure rückgespalten werden kann.
Die erfindungsgemäß erforderliche Einstellung des DiacrylSäuregehaltes der kristallisativ zu reinigenden Roh-Acrylsäure kann auf unterschiedliche Art und Weise realisiert werden. Zum einen kann der zu reinigenden Roh-Acrylsäure eine geringe Menge einer starken protischen Mineralsäure wie z. B. H2S0 , HC1 oder H3P0 zugesetzt werden, die die Michael -Addition der Acrylsäure katalysiert. Beisein von H20 begünstigt ebenfalls die Diacrylsäurebil- düng. Nach ausreichender Diacrylsäurebildung, die gegebenenfalls mittels mäßiger Temperaturerhöhung zusätzlich unterstützt werden kann, kann die katalytische Wirkung der Mineralsäure durch Zusatz einer neutralisierenden Base wieder aufgehoben werden. Selbstverständlich kann der Gehalt an Diacrylsäure auch dadurch erhöht werden, daß man in ersten Trennschritten einen Teil der übrigen β enthaltenen Bestandteile abtrennt, z. B. durch Destillation und/ oder kristallisativ.
Alternativ zu den vorgenannten Maßnahmen kann man aber auch in reiner Acrylsäure Diacrylsäure züchten, sie z. B. auf destillativem Weg abtrennen und der kristallisativ zu reinigenden Roh-Acrylsäure zufügen.
Selbstredend wird das erfindungsgemäße Verfahren normalerweise bei Normaldruck, d. h. , bei einem Druck von 1 bar durchgeführt.
Üblicherweise wird das erfindungsgemäße Verfahren als fraktionierte Kristallisation verwirklicht. Die einzelnen Kristallisationsstufen können sowohl als statische und/oder als dynamische Kristallisation verwirklicht werden. Sowohl Schichtkristallisation wie Fallfilmkristallisation als auch Suspensionskristallisation können angewendet werden. Eine ausführliche Beschreibung dieser Kristallisationsweisen findet sich in der EP-A 616 998 sowie in der darin zitierten Literatur.
Von den Vorteilen des erfindungsgemäßen Verfahrens kann man im Rahmen einer geschickt gekoppelten Herstellung von veresterungs - gerechter Acrylsäure und Reinacrylsäure nicht nur dann Gebrauch machen, wenn von einer Roh-Acrylsäure gemäß der Definition in vorliegender Schrift ausgegangen wird, sondern auch dann, wenn von einer rohen Acrylsäure ausgegangen wird, die eine von 0 verschiedene, aber unterhalb der erfindungsgemäßen Grenze von 0,8 Gew. -% liegende, Menge an Dibenzo -1, 4- thiazin enthält.
Dabei wird in ersten Kristallisations- und/oder Destillations - schritten zunächst kontinuierlich veresterungsgerechte Acrylsäure erzeugt. Da selbige im Rahmen der Veresterung prozeßstabilisiert werden muß, wirkt sich in selbiger noch enthaltenes Dibenzo-1,4 -thiazin nicht nachteilig aus (für veresterungsgerechte Acrylsäure liegt die einzuhaltende Obergrenze des Gehaltes an Dibenzo-1,4 -thiazin bei 750 ppm (auf das Gewicht bezogen) und die entsprechende Grenze für Diacrylsäure liegt bei 1,5 Gew.- ; für Reinacrylsäure liegt die einzuhaltende Obergrenze des Gehaltes an Dibenzo -1,4 -thiazin bei 1 ppm und die entsprechende Grenze für Diacrylsäure liegt bei 0,2 Gew. -% im Fall einer Verwendung für übliche Polymerisationen und bei 500 ppm im Fall einer Verwendung zur Herstellung von Superabsorbern; ) .
Die erzeugte veresterungsgerechte, Dibenzo- 1, 4 -thiazin enthal- tende, Acrylsäure wird dann wenigstens teilweise zwischengelagert, wobei diese Zwischenlagerung wenige Tage, eine Woche, einen Monat, ein Vierteljahr, ein halbes Jahr oder länger dauern kann. In diesem Zwischenlager enthaltene Acrylsäure kann dann je nach Bedarf zur Herstellung von Acrylsäureestern oder zur kristallisa- tiven Herstellung von Reinacrylsäure eingesetzt werden. Während der Lagerung zwischenzeitlich erfolgende Bildung von Diacryl- säure, die üblicherweise im Rahmen der Reinacrylsäureherstellung zu verhindern versucht wird, macht sich bei der Veresterung nur begrenzt nachteilig bemerkbar, da via einer im Rahmen der Aufarbeitung der Veresterungsgemisches einbezogenen Rückspaltung letztlich, auf eingesetztes Alkanol bezogene, Ausbeuteverluste verhindert werden können. Wie im Rahmen dieser Schrift ausgewiesen wird, wirkt sich die im Verlauf der Lagerung gebildete Diacrylsäure jedoch vorteilhaft auf die kristallisative Weiterreinigung von veresterungsgerechter Acrylsäure zur Herstellung von an Dibenzo- 1, -thiazin im wesentlichen freier Reinacrylsäure aus .
Die nachfolgende Tabelle 1 weist die mit zunehmendem Diacrylsäu- regehalt einhergehende Löslichkeitszunähme von Dibenzo-1,4 -thiazin in Acrylsäure für zwei angewendete Temperaturen als Ergebnis von Löslichkeitsversuchen aus.
Tabelle 1 Löslichkeit von Dibenzo- 1,4 -thiazin (in Gew. -%, bezogen auf Säure)
Zusammensetzung der 15°C 25°C Säure
100 Gew. -% Acryl0,9 Gew. -% 1 , 5 Gew. -% säure
97 Gew. -% Acrylsäure 1,45 Gew. -% 2,10 Gew. -% 3 Gew. -% Diacrylsäure
95 Gew. -% Acrylsäure 1,71 Gew.-% 2,15 Gew. -% 5 Gew. -% Diacrylsäure
90 Gew. -% Acrylsäure 1,83 Gew. -% 2,25 Gew. -% 10 Gew. -% Diacrylsäure
80 Gew. -% Acrylsäure 2,01 Gew. -% 2,51 Gew. -% 20 Gew. -% Diacrylsäure 73 Gew.-% Acrylsäure 2,60 Gew. -% 27 Gew. -% Diacrylsäure
55 Gew. -% Acrylsäure 2,90 Gew. -% 45 Gew.-% Diacryl¬ säure
10 Gew. -% Acrylsäure 3,20 Gew. -% 90 Gew. -% Diacrylsäure
Die nachfolgende Tabelle 2 weist die Löslichkeit von Di- benzo-1, , - thiazin in Essigsäure aus.
Tabelle 2
Temperatur (°C) Löslichkeit (Gew.-%, bezogen auf Lösung)
5 0,28
10 0,89
20 1,25
30 1,53

Claims

Patentansprüche
1. Verfahren zur Reinigung von Roh-Acrylsäure, die, läßt man ih- ren Gehalt an Acrylsäure-Oligomeren unberücksichtigt,
>_ 70 Gew. -% Acrylsäure,
< 20 Gew.-% Essigsäure,
< 5 Gew. -% Propionsaure, 5 Gew. - Wasser,
< 5 Gew.-% niedermolekulare Aldehyde und >. 0,80 Gew. - Dibenzo- 1,4 -thiazin
enthält, durch Kristallisation, dadurch gekennzeichnet, daß man den Gehalt der Roh-Acrylsäure an Diacrylsäure vorab des Kristallisationsschrittes auf einen Wert von wenigstens 1 Gew. -%, bezogen auf das Gesamtgewicht (d. h. einschließlich der Acrylsäure-Oligomere) der Roh-Acrylsäure, einstellt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Gehalt der Roh-Acrylsäure an Diacrylsäure vorab des Kristallisationsschrittes auf einen Wert von wenigstens 5 Gew.-%, bezogen auf das Gesamtgewicht der Roh-Acrylsäure, einstellt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die kristallisativ zu reinigende Roh-Acrylsäure, läßt man ihren Gehalt an Acrylsäure-Oligomeren unberücksichtigt,
> 0,90 Gew.-% Dibenzo- 1, 4 -thiazin enthält.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die kristallisativ zu reinigende Roh-Acrylsäure, läßt man ihren Gehalt an Acrylsäure-Oligomeren unberücksichtigt,
>.1,0 Gew. - Dibenzo-1, 4 -thiazin enthält.
5. Verfahren zur Herstellung von veresterungsgerechter Acrylsäure sowie von Reinacrylsäure durch kristallisative Reinigung von roher, Dibenzo- 1, 4- thiazin enthaltender, Acrylsäure, dadurch gekennzeichnet, daß man aus der rohen Acrylsäure zu- nächst durch fraktionierte Kristallisation und/oder
Destillation veresterungsgerechte Acrylsäure erzeugt, die veresterungsgerechte Acrylsäure wenigstens teilweise zwischengelagert und bei Bedarf aus diesem Zwischenlager einen erhöhten Diacrylsäuregehalt aufweisende Acrylsäure ent- nimmt und anschließend kristallisativ zu Reinacrylsäure weiterreinigt. Verfahren zur Reinigung von Roh-Acrylsäure durch Kristallisation
Zusammenfassung
Ein Verfahren zur Reinigung von Dibenzo- 1, 4 -thiazin enthaltender Roh-Acrylsäure durch Kristallisation, bei dem man den Gehalt der Roh-Acrylsäure an Diacrylsäure vor dem Kristallisationsschritt auf einen erhöhten Wert einstellt.
PCT/EP1997/003304 1996-07-10 1997-06-24 Verfahren zur reinigung von roh-acrylsäure durch kristallisation WO1998001414A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX9809574A MX203355B (es) 1996-07-10 1997-06-24 Purificacion de acido acrilico crudo por cristalizacion
AU33440/97A AU3344097A (en) 1996-07-10 1997-06-24 Process for purifying crude acrylic acid by crystallization
EP97929277A EP0912486B1 (de) 1996-07-10 1997-06-24 Verfahren zur reinigung von roh-acrylsäure durch kristallisation
JP10504708A JP2000514069A (ja) 1996-07-10 1997-06-24 結晶化による粗製アクリル酸の精製法
BR9710217A BR9710217A (pt) 1996-07-10 1997-06-24 Processo para purificar por cristalização em ácido acrilico bruto
DE59702539T DE59702539D1 (de) 1996-07-10 1997-06-24 Verfahren zur reinigung von roh-acrylsäure durch kristallisation
US09/147,457 US6063959A (en) 1996-07-10 1997-06-24 Purification of crude acrylic acid by crystallization
KR19997000138A KR100502603B1 (ko) 1996-07-10 1997-06-24 결정화에 의한 조 아크릴산의 정제 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19627679.9 1996-07-10
DE19627679A DE19627679A1 (de) 1996-07-10 1996-07-10 Verfahren zur Reinigung von Roh-Acrylsäure durch Kristallisation

Publications (1)

Publication Number Publication Date
WO1998001414A1 true WO1998001414A1 (de) 1998-01-15

Family

ID=7799366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003304 WO1998001414A1 (de) 1996-07-10 1997-06-24 Verfahren zur reinigung von roh-acrylsäure durch kristallisation

Country Status (15)

Country Link
US (1) US6063959A (de)
EP (1) EP0912486B1 (de)
JP (1) JP2000514069A (de)
KR (1) KR100502603B1 (de)
CN (1) CN1072203C (de)
AU (1) AU3344097A (de)
BR (1) BR9710217A (de)
CA (1) CA2250806A1 (de)
CZ (1) CZ5099A3 (de)
DE (2) DE19627679A1 (de)
ID (1) ID17665A (de)
MX (1) MX203355B (de)
MY (1) MY116928A (de)
TW (1) TW427972B (de)
WO (1) WO1998001414A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043748A1 (de) 2007-09-13 2008-09-11 Basf Se Verfahren zur kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat
DE102007043759A1 (de) 2007-09-13 2008-09-11 Basf Se Verfahren zum Betreiben einer kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat
DE102007043758A1 (de) 2007-09-13 2008-10-23 Basf Se Verfahren zum Betreiben einer kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat des Zielproduktes X
DE102008040799A1 (de) 2008-07-28 2008-12-11 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enthaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
DE102008042008A1 (de) 2007-09-13 2009-04-09 Basf Se Verfahren zur kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat
DE102008041573A1 (de) 2008-08-26 2010-03-04 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enhaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
DE102010042216A1 (de) 2010-10-08 2011-06-09 Basf Se Verfahren zur Hemmung der unerwünschten radikalischen Polymerisation von in einer flüssigen Phase P befindlicher Acrylsäure
US8299299B2 (en) 2008-07-28 2012-10-30 Basf Se Process for separating acrylic acid present as a main constituent and glyoxal present as a by-product in a product gas mixture of a partial heterogeneously catalyzed gas phase oxidation of a C3 precursor compound of acrylic acid
CZ303896B6 (cs) * 2000-04-11 2013-06-12 Basf Aktiengesellschaft Zpusob cistení taveniny surové kyseliny akrylové
US9763801B2 (en) 2007-09-13 2017-09-19 Globus Medical, Inc. Transcorporeal spinal decompression and repair systems and related methods
WO2020020697A1 (de) 2018-07-26 2020-01-30 Basf Se Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure
WO2021191042A1 (de) 2020-03-26 2021-09-30 Basf Se Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19904820A1 (de) * 1999-02-05 2000-08-10 Stockhausen Chem Fab Gmbh Verfahren und Vorrichtung zur Reinigung von Stoffen mittels Kristallisation
DE10003498A1 (de) * 2000-01-27 2001-08-02 Basf Ag Reinigungsverfahren für (Meth)acrylsäure
DE10122788A1 (de) * 2001-05-10 2002-06-06 Basf Ag Verfahren der kristallisativen Reinigung einer Roh-Schmelze wenigstens eines Monomeren
DE10257449A1 (de) * 2002-12-09 2003-11-06 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogel-bildender Polymerisate
DE10347664A1 (de) 2003-10-09 2004-12-02 Basf Ag Verfahren der rektifikativen Auftrennung einer Acrylsäure enthaltenden Flüssigkeit
JP2005247731A (ja) * 2004-03-03 2005-09-15 Mitsubishi Chemicals Corp (メタ)アクリル酸組成物及びその製造方法
US7601866B2 (en) 2005-03-01 2009-10-13 Basf Aktiengesellschaft Process for removing methacrolein from liquid phase comprising acrylic acid as a main constituent and target product, and methacrolein as a secondary component
US7705181B2 (en) * 2005-03-01 2010-04-27 Basf Akiengesellschaft Process for removing methacrylic acid from liquid phase comprising acrylic acid as a main constituent and target product, and methacrylic acid as a secondary component
US8292863B2 (en) 2009-10-21 2012-10-23 Donoho Christopher D Disposable diaper with pouches
DE102012201913A1 (de) * 2012-02-09 2013-08-14 Tesa Se Haftklebebänder auf Basis biobasierter Monomere
EP3012244A1 (de) 2014-10-24 2016-04-27 Sulzer Chemtech AG Verfahren und Vorrichtung zur Reinigung von Acrylsäure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE786398A (fr) * 1971-07-21 1973-01-18 Basf Ag Procede de preparation de l'acide acrylique anhydre
DE3721865A1 (de) * 1987-07-02 1989-01-12 Basf Ag Verfahren zur herstellung von methacrylsaeure
TW305830B (de) * 1993-03-26 1997-05-21 Sulzer Chemtech Ag
DE4335172A1 (de) * 1993-10-15 1995-04-20 Basf Ag Verfahren zur Reinigung von Roh-(Meth)acrylsäure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
No relevant documents disclosed *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303896B6 (cs) * 2000-04-11 2013-06-12 Basf Aktiengesellschaft Zpusob cistení taveniny surové kyseliny akrylové
DE102007043759A1 (de) 2007-09-13 2008-09-11 Basf Se Verfahren zum Betreiben einer kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat
DE102007043758A1 (de) 2007-09-13 2008-10-23 Basf Se Verfahren zum Betreiben einer kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat des Zielproduktes X
DE102008042008A1 (de) 2007-09-13 2009-04-09 Basf Se Verfahren zur kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat
DE102008042009A1 (de) 2007-09-13 2009-04-09 Basf Se Verfahren zum Betreiben einer kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat des Zielproduktes X
DE102008042010A1 (de) 2007-09-13 2009-04-16 Basf Se Verfahren zum Betreiben einer kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat
DE102007043748A1 (de) 2007-09-13 2008-09-11 Basf Se Verfahren zur kontinuierlichen Abtrennung eines Zielproduktes X in Form von feinteiligem Kristallisat
US9763801B2 (en) 2007-09-13 2017-09-19 Globus Medical, Inc. Transcorporeal spinal decompression and repair systems and related methods
DE102008040799A1 (de) 2008-07-28 2008-12-11 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enthaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
US8299299B2 (en) 2008-07-28 2012-10-30 Basf Se Process for separating acrylic acid present as a main constituent and glyoxal present as a by-product in a product gas mixture of a partial heterogeneously catalyzed gas phase oxidation of a C3 precursor compound of acrylic acid
DE102008041573A1 (de) 2008-08-26 2010-03-04 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enhaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
DE102010042216A1 (de) 2010-10-08 2011-06-09 Basf Se Verfahren zur Hemmung der unerwünschten radikalischen Polymerisation von in einer flüssigen Phase P befindlicher Acrylsäure
US9212122B2 (en) 2010-10-08 2015-12-15 Basf Se Process for inhibiting unwanted free-radical polymerization of acrylic acid present in a liquid phase P
WO2012045738A1 (de) 2010-10-08 2012-04-12 Basf Se Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure
WO2020020697A1 (de) 2018-07-26 2020-01-30 Basf Se Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure
US11447439B2 (en) 2018-07-26 2022-09-20 Basf Se Method for inhibiting unwanted radical polymerisation of acrylic acid present in a liquid phase P
WO2021191042A1 (de) 2020-03-26 2021-09-30 Basf Se Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure

Also Published As

Publication number Publication date
CZ5099A3 (cs) 1999-05-12
MX203355B (es) 2001-07-30
CN1072203C (zh) 2001-10-03
MX9809574A (es) 1999-03-31
BR9710217A (pt) 1999-08-10
ID17665A (id) 1998-01-15
MY116928A (en) 2004-04-30
DE19627679A1 (de) 1998-01-15
JP2000514069A (ja) 2000-10-24
DE59702539D1 (de) 2000-11-30
US6063959A (en) 2000-05-16
KR20000023681A (ko) 2000-04-25
KR100502603B1 (ko) 2005-07-21
TW427972B (en) 2001-04-01
EP0912486B1 (de) 2000-10-25
CN1216975A (zh) 1999-05-19
AU3344097A (en) 1998-02-02
CA2250806A1 (en) 1998-01-15
EP0912486A1 (de) 1999-05-06

Similar Documents

Publication Publication Date Title
EP0912486B1 (de) Verfahren zur reinigung von roh-acrylsäure durch kristallisation
DE2804449C2 (de) Verfahren zum Inhibieren der Polymerisation einer leicht polymerisierbaren aromatischen Vinylverbindung
DD282909A5 (de) Verfahren zur gewinnung von reinem dimethylether (dme)
DE2164767A1 (de)
DE2121123C3 (de) Verfahren zum Abtrennen von Wasser aus wäßrigen Lösungen von Acrylsäure durch azeotrope Destillation
DE102008040799A1 (de) Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enthaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
EP2334631B1 (de) Verfahren zur auftrennung von in einem produktgasgemisch einer partiellen heterogen katalysierten gasphasenoxidation einer c3-vorläuferverbinding der acrylsäure als hauptbestandteil enthaltener acrylsäure und als nebenprodukt enthaltenem glyoxal
DE102008041573A1 (de) Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enhaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
EP0713854B1 (de) Verfahren zur Reinigung von Roh-(Meth)acrylsäure
DE69111382T2 (de) Polymerisationsinhibitor und Inhibierungsmethode für Vinylverbindungen.
DE2144920C3 (de) Verfahren zur Herstellung von p-Toluylsäure und Monomethylterephthalat
DE69114486T2 (de) Verfahren zur Reinigung von Glycidyl(meth)acrylat.
EP1286943B1 (de) Verfahren der diskontinuierlichen kristallisativen reinigung von roh-acrylsäure
DE3874667T2 (de) Verfahren zur reinigung von methacrylsaeure.
DE19923389A1 (de) Verfahren zum Lagern und/oder Transportieren von Reinacrylsäure
WO2010105894A2 (de) Für eine aufreinigung stabilisierte zusammensetzung und verfahren zur aufreinigung und zur herstellung von hydroxyalkyl(meth)acrylaten
EP0080023B1 (de) Verfahren zum kontinuierlichen Verestern von Methacrylsäure
EP1856021B1 (de) Verfahren zur abtrennung von methacrolein aus acrylsäure als hauptbestandteil sowie zielprodukt und methacrolein als nebenkomponente enthaltender flüssiger phase
EP1057805A1 (de) Verfahren zur Herstellung von Isobornylmethacrylat
DE3009946C2 (de) Verfahren zur Gewinnung von Methacrylsäure
AT404592B (de) Verfahren zur herstellung von wässrigen o-phthalaldehyd-glutaraldehydlösungen
EP1856020B1 (de) Verfahren zur abtrennung von methacrylsäure aus acrylsäure als hauptbestandteil sowie zielprodukt und methacrylsäure als nebenkomponente enthaltender flüssiger phase
WO2020020697A1 (de) Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure
DE2715293C2 (de)
EP0581222B1 (de) Verfahren zur Abtrennung von Methacrolein aus einem gasförmigen Gemisch

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97194221.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR CA CN CZ GE HU IL JP KR LT LV MX NO NZ PL RO SG SI SK TR UA US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1997929277

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2250806

Country of ref document: CA

Ref document number: 2250806

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/009574

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09147457

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PV1999-50

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1019997000138

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997929277

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1999-50

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019997000138

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997929277

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997000138

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV1999-50

Country of ref document: CZ