WO1997033026A1 - Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen - Google Patents

Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen Download PDF

Info

Publication number
WO1997033026A1
WO1997033026A1 PCT/EP1996/005686 EP9605686W WO9733026A1 WO 1997033026 A1 WO1997033026 A1 WO 1997033026A1 EP 9605686 W EP9605686 W EP 9605686W WO 9733026 A1 WO9733026 A1 WO 9733026A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
blown
plasticizer
fleece
cellulose
Prior art date
Application number
PCT/EP1996/005686
Other languages
English (en)
French (fr)
Inventor
Günter Maurer
Paul Rustemeyer
Eberhard Teufel
Original Assignee
Rhodia Acetow Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Acetow Ag filed Critical Rhodia Acetow Ag
Priority to DE59605210T priority Critical patent/DE59605210D1/de
Priority to US09/077,044 priority patent/US6207601B1/en
Priority to AT96944588T priority patent/ATE192789T1/de
Priority to EP96944588A priority patent/EP0885321B1/de
Priority to AU13022/97A priority patent/AU1302297A/en
Publication of WO1997033026A1 publication Critical patent/WO1997033026A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/013Regenerated cellulose series
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/067Use of materials for tobacco smoke filters characterised by functional properties
    • A24D3/068Biodegradable or disintegrable
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/08Use of materials for tobacco smoke filters of organic materials as carrier or major constituent
    • A24D3/10Use of materials for tobacco smoke filters of organic materials as carrier or major constituent of cellulose or cellulose derivatives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • D04H3/077Stick, rod or solid cylinder shaped
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/603Including strand or fiber material precoated with other than free metal or alloy
    • Y10T442/607Strand or fiber material is synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/668Separate nonwoven fabric layers comprise chemically different strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/68Melt-blown nonwoven fabric

Definitions

  • the invention relates to a melt-blown nonwoven based on cellulose esters, in particular cellulose acetate. with fibers with an average fiber diameter of less than about 10 microns. a method which is particularly suitable for the production thereof and advantageous uses of the melt-blown nonwoven.
  • a material is referred to as a nonwoven fabric if a) the fiber content is more than 50% by weight (except chemically digested vegetable fibers) and the fibers have a slenderness ratio of greater than 300 or b) the following conditions are met: 1) the fiber content is more than 30 % By weight (except chemically digested plant fibers) and the fibers have a slenderness ratio greater than 300 and 2) the density is less than 0.40 g / cm 3 .
  • melt-blown process can be represented as follows, without wishing to see any limitation here; i.e., the melt blown filaments, fibers and nonwovens are generally produced as follows:
  • the respective plastic is placed in an extruder in which it is melted. From the extruder, the melt reaches the spinning head, which contains the melt-blown nozzle, which is a central component of the process. Here the melt is brought to the required processing temperature.
  • the nozzle itself contains a series of capillary holes. Openings for the pressurized primary process air are located on both sides of the nozzle bores.
  • the fiber lengths are usually in the order of 5 to 50 cm.
  • the fiber diameter is very small and, for example in connection with the invention described below, is less than about 10 ⁇ m.
  • US Pat. No. 4,869,275 also addresses the melt-blown process for producing a nonwoven from various starting materials.
  • Suitable starting materials are polyolefins (polypropylene, polyethylene and ethylene / propylene copolymers), polystyrene, polyester (polyethylene terephthalate), nylon (6, 66 and 610), polymethylene methacrylates and generally also cellulose acetate.
  • This patent does not contain any statements as to what degree of substitution this cellulose acetate has when it is used in the process described. Even the unusual hint that even cellulose acetate is suitable ("even cellulose acetate" / see Sp. 5, Paragraph 1), indicates that this is only suitable to a limited extent.
  • cellulose acetate is not taken into account in the description of the particularly practical embodiments. Due to the decomposition of cellulose acetate, which can be expected by the known method, the quality of the melt-blown nonwoven obtained would also deteriorate insofar as a satisfactory degree of whiteness does not develop. With regard to the decomposition of cellulose acetates at higher temperatures, it should be noted that a noticeable chemical decomposition occurs from 180 ° C., which can be recognized by the formation of furfural, among other things.
  • Example 5 of US Pat. No. 3,509,009 a part of cellulose acetate and a part of diethyl phthalate (as a plasticizer) are melt-spun at a temperature of 170 ° C.
  • a plasticizer a part of diethyl phthalate
  • decomposition of the cellulose ester used is largely ruled out, but the product properties are undesirably dominated by the plasticizer.
  • Such a high plasticizer content limits the use properties to the extent that the melting point is too low and plasticizer migration or exudation and evaporation can occur.
  • the invention is based on the object of further developing a melt-blown fleece of the type described at the outset. form that it is not thermoplastic up to a temperature of about 180 ° C, has a desirably high reflection factor or whiteness and, if desired, advantageous filter materials, in particular filter materials of cigarettes and the filtration of gases or liquids, especially of Blood.
  • the invention proposes a particularly advantageous method for producing such a melt-blown nonwoven.
  • this object is achieved in that it contains about 0 to 10% by mass of an extractable plasticizer, a reflection factor (R ⁇ ), determined according to DIN 53 145 Part 1 (1992), of more than about 60% and the cellulose ester one
  • the invention thus provides access to melt-blown nonwovens made of cellulose ester which contain little or no plasticizer, which could not previously be considered possible.
  • the melt-blown fleece according to the invention contains fibers from cellulose esters. This can be, for example, cellulose acetate, acetobutyrate, acetopropionate and propionate and the like. Cellulose acetate is preferred.
  • the degree of substitution DS of the cellulose esters used according to the invention is between about 1.5 to 3.0, in particular between about 1.7 and 2.7, the range from about 2.2 to 2.6 being very particularly preferred. If the value falls below 1.5, damage to the polymer structure through dehydration is to be feared. Although the desired success can also be achieved with a degree of substitution of approximately 3.0, undesired crystallization and phase separation can already occur at this value. These undesirable disadvantages can be countered with a higher extractable plasticizer content of up to about 10% by mass. However, if a lower plasticizer content is desired, then it is advantageous to simultaneously increase the degree of substitution DS to at least about 2.7, in particular lower at least about 2.6.
  • the melt-blown nonwoven according to the invention contains only up to about 10% by mass, in particular about 2 to 8% by mass, of an extractable plasticizer, in particular in the form of a water-extractable plasticizer.
  • the invention thus takes account of the relevant uses in which the plasticizer content must not be too high, since otherwise the product is undesirably dominated by the plasticizer. Rather, the product properties should largely go back to the cellulose ester.
  • the exact setting of the plasticizer content within the specified range of about 0 to 10% by mass depends on the particular intended use of the fleece. Accordingly, it is left to the person skilled in the art to quantitatively optimize the amount of plasticizer in the scope of the invention in individual cases.
  • a plasticizer content of about 5 to 10% by mass especially if triacetin is used as the plasticizer. It is known that triacetin has a positive effect on the taste of tobacco smoke and the specific retentions of cellulose acetate. A plasticizer content exceeding 10% by mass would limit the use properties to such an extent that the melting point is too low, and plasticizer migration or exudation and exhalation and, moreover, undesirable sticking can occur. Furthermore, if used in filter rods, a high plasticizer content would have a negative influence on the filter rod hardness. In the case of applications which are subject to the provisions of food law, the plasticizer content is kept as low as possible within the scope of the invention, in particular set to near 0. The same applies to medical applications, such as in blood filters.
  • the plasticizer used in the invention does not only have to have a plasticizing effect. Rather, the plasticizer made from the melt-blown fleece, which, after the completion of the production process, has a plasticizer content of more than 10% by mass, can be extracted with a suitable solvent to such an extent that the scope according to the invention is adjusted from about 0 to 10% by mass.
  • the chemical and physical structure of the cellulose ester fibers should remain largely unchanged. Triacetin, ethylene and propylene carbonate, citric acid triethyl ester have proven suitable as plasticizers.
  • Triethylene glycol diacetate Triethylene glycol diacetate, Carbowax ® (polyethylene glycols with a MW of 200 to 14000, manufactured by UCC, USA) and / or sulfolane (tetrahydrothiophene-l, l-dioxide). Triacetin is particularly useful because it can be extracted quickly and effectively with water.
  • the degree of polymerization DP of the cellulose esters mentioned, in particular of the cellulose acetate, is not critical and can be in a relatively wide range. However, particularly advantageous results are achieved if it is between about 150 to 400, in particular between about 180 to 350. If the degree of polymerization fell below about 150, the proportion of oligomers would be too high, so that when the plasticizer was extracted, a large part of the cellulose ester would be extracted at the same time. If the upper limit value of approximately 400 is exceeded, the melt index in the melt-blown process explained below becomes too high, which would have a disadvantageous effect. Although this problem could be reduced in individual cases by increasing the plasticizer content, this would mean additional effort in realizing the invention, in particular in connection with the removal or recovery of the plasticizer.
  • a minimum reflection factor, also called whiteness, of the fleece is of critical importance in the context of the invention with regard to the various fields of application in which the melt-blown fleece according to the invention can be used.
  • the reflection factor or whiteness is measured in accordance with DIN 53 145 Part 1 (1992) in accordance with ISO 2469 (1977).
  • an Elrepho device from Zeiss used.
  • a fleece sample placed on top of each other in 8 layers is diffusely exposed and measured perpendicular to the sample plane (measurement geometry d / 0) at 457 nm (using a spectral band filter).
  • measurement geometry d / 0 the sample plane
  • the reflection factor or whiteness in the context of the invention is more than 60%, in particular more than 70% or even about 90%.
  • the degree of whiteness is in particular a measure of the purity of the product according to the invention. If this were brownish or yellowish, then this means that undesired and uncontrollable decomposition products have been produced. Customers would therefore reject such a product if it was used in the cigarette industry.
  • white pigments such as titanium dioxide
  • the disadvantage of an unsatisfactory degree of whiteness cannot be remedied by the incorporation of white pigments, such as titanium dioxide, during the production process. It is therefore a particularly clear statement about the chemical purity of the cellulose ester fibers. This aspect plays an outstanding role in various areas, for example in the use of the fleece in the bio-medical area, in particular in blood filtration.
  • the cellulose acetate may be in the form of a polymer blend, in particular with aliphatic polyesters and / or acetylated starches. Not only can this optimize the desired properties, for example the biodegradability in connection with aliphatic polyesters (cf. DE-C-39 14 022), but there is also the possibility of cost savings. In another area of application, this results from EP-A-0 622 407, to which reference is made.
  • the fiber diameter as is generally obtained by the melt-blown process, must be below approximately 10 ⁇ m, in particular between approximately 2 to 8 ⁇ m.
  • the standard diameter of a filament obtained by the dry spinning process is generally between about 15 and 40 ⁇ m. Fibers of a smaller diameter have the advantage that they deliver a larger specific surface area and thus also a greater activity in the desired fields of application, in particular in the filtration. Within the scope of the invention, fibers with an average fiber diameter of less than approximately 8 ⁇ m can be adjusted without further notice. The particularly advantageous practical range is between approximately 5 and 8 ⁇ m.
  • the fiber diameter is the average diameter. Here, a number of fibers are measured by scanning electron microscopy and then the average is formed.
  • active substances can be added to the melt obtained by the melt-blown process according to the invention described below, e.g. Agroactive ingredients, pharmaceutical active ingredients, selective and other filtration aids, e.g. for selective retention, flavorings, additives for biodegradability, etc. They are preferably compatible with the melt.
  • the melt-blown nonwoven according to the invention can advantageously be produced in that a cellulose ester, in particular cellulose acetate, with a degree of substitution DS of approximately 1.5 to 3.0, in particular approximately 1.7 to 2.7, with a plasticizer in one mass Ratio of about 2: 1 to 1: 4 mixed with heating and transferred to a melt, the mixture of plasticizer and cellulose ester having a melt index MFI (210 / 2.16) according to DIN 53 735 of about 400 to 5 g / 10 min, in particular 300 to 50 g / 10 min, the melt processed in a melt-blown spinning device to form a melt-blown fleece and then the plasticizer to a proportion of about 0 to 10% by mass with a solvent for the plasticizer is extracted.
  • a cellulose ester in particular cellulose acetate
  • a degree of substitution DS of approximately 1.5 to 3.0, in particular approximately 1.7 to 2.7
  • the starting materials are preferably heated to a temperature of more than about 100 ° C.
  • the particularly suitable melting temperature depends on the individual case and can be determined purely by a person skilled in the art. However, a temperature of 240 ° C should not be exceeded, since otherwise undesirable signs of decomposition occur.
  • the melt-blown nonwoven obtained according to the invention has a low proportion of extractable plasticizer of about 0 to 10% by mass. Decomposition of the cellulose ester used is largely ruled out by the process according to the invention. It is not necessary to work in a protective gas atmosphere to avoid undesirable oxidative processes. It is advantageous if the melt is subjected to the melt-blown process immediately after its production, since otherwise undesirable degradation reactions can occur.
  • a particular advantage of the method according to the invention is that it can be carried out continuously. Mixing and spinning are advantageously carried out in a single operation, in that the mixture of the extruder is immediately fed to the melt-blown nozzle.
  • the method according to the invention thus represents a significant simplification in terms of the methodology.
  • the mass ratio of plasticizer to cellulose ester is set to about 3: 2 to 2: 3, consequently in the practical embodiment preferably to about 1: 1, which is also the case Requirement of US Pat. No. 3,509,009 corresponds.
  • the present invention differs in the course of the process from the teaching according to US Pat. No. 3,509,009 in that it requires the use of a suitable solvent for the plasticizer. Accordingly, according to the invention, a solvent is used to extract the plasticizer, which, however, does not adversely affect the chemical and physical structure of the cellulose ester fibers.
  • the type of mixing of plasticizer and cellulose ester, if appropriate with further additives, is not subject to any significant restrictions. It has been shown that the cellulose ester and plasticizer are particularly advantageously mixed in a twin-screw extruder. This achieves the shear necessary for optimal mixing of the starting materials, which leads to a particularly advantageous homogenization of the starting materials. It is preferred to use a co-rotating twin screw extruder.
  • the process according to the invention is controlled particularly advantageously in the melt-blown spinning device when a temperature of approximately 180 to 240 ° C., in particular approximately 200 to 230 ° C., is set on the spinneret and the spinning head of the spinning device. If the value falls below about 180 ° C, this can lead to insufficient fineness of the process product. If the upper limit of 240 ° C is exceeded, undesired degradation begins.
  • Plasticizer in the form of triacetin In the case of a water-extractable plasticizer, the melt-blown fleece obtained is simply passed into a water bath to extract the plasticizer.
  • the process according to the invention can be carried out here with the particular advantage that a normal water bath (about room temperature), i.e. can be used for extraction without heating. If the plasticizer content is high, the use of a hot extraction bath is even disadvantageous because the melt-blown nonwoven then has such a melting range that its structure is impaired or even destroyed.
  • the fleece leaving the melt-blown spinning device is transferred to a depositing device, in particular in the form of a sieve or sieve belt or a sieve drum, pressed to set the desired strength and then the plasticizer is extracted.
  • a depositing device in particular in the form of a sieve or sieve belt or a sieve drum, pressed to set the desired strength and then the plasticizer is extracted.
  • the melt-blown fleece can also be structured during pressing. The structuring is done in order for the later
  • meltblown fleece leaving the spinning device is deposited on a carrier to form a composite structure, in particular in the form of a fleece made of a cellulose acetate filter tow, a flatly prepared filter tow or paper.
  • a carrier fleece is used, the person skilled in the art can easily determine the suitable fleece, depending on the end use.
  • a cellulose acetate fleece would preferably be assumed.
  • any closed supports are also possible, such as the paper already mentioned.
  • the composite structures obtained in each case can advantageously be pressed and / or structured to regulate their strength.
  • a particular advantage of the method according to the invention is that the desired melt-blown nonwoven can be produced without the need for special additives, such as any processing aids.
  • the meltblown nonwoven according to the invention is particularly advantageously suitable as a filter material.
  • the fleece is e.g. in tobacco smoke filters, in particular in cigarette filters, and here in particular in double filters for ultralight cigarettes, for the filtration of gases and liquids, for example sterile filtration of beverages and very particularly advantageously for the filtration of blood.
  • melt-blown fleece according to the invention is used in cigarette filters, these can be easily disintegrated. Furthermore, a low degree of substitution DS leads Cellulose esters, especially cellulose acetate, to a particularly favorable biodegradability.
  • the filter materials according to the invention not only show a better filter effect than the previously known materials, but they also fully meet the taste requirements. This applies in particular to cellulose acetate in connection with a residual content of triacetin plasticizer.
  • Cellulose acetate with a DP of 220 and a DS of 2.5 was added by means of a gravimetric metering device into the filling opening of the 1st zone of a co-rotating 2-screw laboratory extruder with a screw diameter of 25 mm, a length of 48 D and 15 zones .
  • triacetin was supplied as a plasticizer in a ratio of 2: 3 (1: 1.5) using a reciprocating pump.
  • the temperatures of the zones in the 1st and 2nd zone 30 in the 3rd 110th in the 4th were 150 ° C.
  • the temperatures of zones 5-11 were 150 and zones 12-15 175 ° C.
  • a homogeneous melt was obtained at a screw speed of 150 rpm.
  • the melt obtained in this way was continuously transferred into a strand via a round die, and the strand was cooled below the melting temperature and comminuted into cylindrical granules of 2 mm in diameter and 3 mm in length with the aid of a strand granulator.
  • the granules obtained in this way were fed to a melt-blown laboratory spinning device consisting of extruder, intermediate block, melting tube, spinneret nozzle, hot air device, tray and winder.
  • the temperatures in the extruder of the melt-blown laboratory spinning device were increased from 100 ° C. at the inlet to 170 ° C. at the extruder outlet.
  • the intermediate block and the melting tube were set to 200 ° C.
  • the temperature in the spinning head was 230 ° C.
  • the air temperature was 265 ° C.
  • the air volume was set to 70 m 3 / h. With these process parameters a melt pressure of 125 bar was established.
  • the mass throughput was 7.7 kg / h.
  • the fibers produced with the spinning device were placed on a storage belt and continuously drawn off under the spinning device in such a way that a weight per unit area of 132 g / m 2 was obtained.
  • the fleece was wound up into a roll by means of a winding device.
  • the fleece roll was then fed to a washing device filled with water consisting of two troughs connected in series and the plasticizer contained in the fleece was washed out to a residual content of 0.3%.
  • the fleece was then dried with a drying device at 160 ° C. to a residual moisture content of 4.8%.
  • the average fiber diameter of the fleece thus obtained was 8.4 ⁇ m.
  • the reflection factor (R ⁇ ) was 65% based on the barium sulfate white standard.
  • Cellulose acetate with a DP of 220 and a DS of 2.5 was added by means of a gravimetric metering device into the filling opening of the 1st zone of a co-rotating 2-screw laboratory extruder with a screw diameter of 25 mm, a length of 48 D and 15 zones.
  • triacetin was supplied as a plasticizer in a ratio of 3: 2 (1.5: 1, 0) by means of a reciprocating pump.
  • the temperatures in the 1st and 2nd zone were 50 in the 3rd 100 and in the 4th zone 120 ° C.
  • the temperatures of zones 5-10 were 140 and zones 1 1-15 150 ° C.
  • the mass throughput was 3.2 kg / h.
  • a homogeneous melt was obtained at a screw speed of 190 rpm.
  • the melt obtained in this way was fed directly to a laboratory melt-blown spinning device described in Example 1, which, in contrast to Example 1, no longer required an extruder, since the material to be processed was already in the form of a melt.
  • the melt-blown spinning unit was connected directly after the co-rotating 2-screw laboratory extruder.
  • the intermediate block and the melting tube were set to 170 ° C.
  • the Fibers produced with the spinning device were placed on a storage belt and continuously drawn off under the spinning device in such a way that a weight per unit area of 176 g / m 2 resulted.
  • the fleece obtained in this way was fed directly into a washing device as described in Example 1 and the plasticizer contained in the fleece was washed out to a residual content of 5.5%.
  • the fleece was then dried with a drying device at 150 ° C. to a residual moisture content of 6.3%.
  • the average fiber diameter of the fleece thus obtained was 5.7 ⁇ m.
  • the reflection factor (R ⁇ ) was 74% based on the barium sulfate white standard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

Beschrieben wird ein Melt-blown-Vlies auf der Basis von Celluloseestern, mit Fasern eines mittleren Faserdurchmessers von weniger als etwa 10 νm. Dieses zeichnet sich dadurch aus, daß es etwa 0 bis 10 Masse-% eines extrahierbaren Weichmachers enthält, einen Reflexionsfaktor (R ), bestimmt nach DIN 53 145 Teil 1 (1992), von mehr als etwa 60 % und der Celluloseester einen Substitutionsgrad DS von etwa 1,5 bis 3,0 aufweist. Vorzugsweise ist der Weichmacher wasserextrahierbar. Triacetin ist als Weichmacher besonders gut geeignet. Hergestellt wird ein derartiges Melt-blown-Vlies mit dem Celluloseester dadurch, daß ein Celluloseester, insbesondere Celluloseacetat, eines Substitutionsgrades DS von etwa 1,5 bis 3,0, insbesondere von etwa 1,7 bis 2,7, mit einem Weichmacher in einem Masse-Verhältnis von etwa 2:1 bis 1:4 unter Erwärmen gemischt und in eine Schmelze überführt wird, wobei die Mischung aus Weichmacher und Celluloseester einen Schmelzindex MFI (210/2.16) nach DIN 53 735 von etwa 400 bis 5 g/10 min, insbesondere 300 bis 50 g/10 min, aufweist, die Schmelze in einer Melt-blown-Spinneinrichtung zu einem Melt-blown-Vlies verarbeitet und anschließend der Weichmacher bis zu einem Anteil von etwa 0 bis 10 Masse-% mit einem Lösungsmittel für den Weichmacher extrahiert wird. Das erhaltene Melt-blown-Vlies ist insbesondere als Filtermaterial geeignet.

Description

Melt-blown- Vlies. Verfahren zu dessen Herstellung und dessen Verwendungen
Die Erfindung betrifft ein Melt-blown-Vlies auf der Basis von Celluloseestern, insbesondere von Celluloseacetat. mit Fasern eines mittleren Faserdurchmessers von weniger als etwa 10 μm. ein zu dessen Herstellung besonders geeignetes Verfahren sowie vorteilhafte Verwendungen des Melt-blown-Vlieses.
Melt-blown- Vliese folgen der ISO-Definition für Vliesstoffe (ISO 9092: 1988). Danach wird ein Material als Vliesstoff bezeichnet, wenn a) der Faseranteil mehr als 50% Gewichtsanteil (ausgenommen chemisch aufgeschlossene Pflanzenfasern) beträgt und die Fasern einen Schlankheitsgrad von größer 300 haben oder b) folgende Bedingungen erfüllt sind: 1) der Faseranteil beträgt mehr als 30% Gewichtsanteil (ausgenommen chemisch aufgeschlossene Pflanzenfasern) und die Fasern haben einen Schlankheitsgrad von größer als 300 und 2) die Dichte ist kleiner als 0,40 g/cm3.
Dieser ISO- Vorschrift folgen auch die nachfolgend näher erläuterten Vliese, wobei diese nach dem Melt-blown-Verfahren bzw. einer Schmelzblas-Technik hergestellt werden. Das Melt-blown-Verfahren läßt sich, ohne hierin eine Einschränkung sehen zu wollen, wie folgt darstellen; d.h., die Melt-blown-Filamente, -Fasern und -Vliese werden allgemein wie folgt erzeugt:
Der jeweilige Kunststoff wird in einen Extruder gegeben, in dem er aufgeschmolzen wird. Vom Extruder gelangt die Schmelze in den Spinnkopf, der die Melt-blown-Düse beinhaltet, die zentraler Bestandteil des Verfahrens ist. Hier wird die Schmelze auf die erforderliche Verarbeitungstemperatur gebracht. Die Düse selbst enthält eine Reihe von Kapillarbohrungen. Auf beiden Seiten der Düsenbohrungen befinden sich Öffnungen für die unter Druck stehende Primärprozeßluft. Unterhalb der Düse ist eine Ablegevorrich- tung in Form eines angetriebenen Siebbandes oder einer Siebtrommel angeordnet, durch welche die Fasern angesaugt und zu einem Vlies abgelegt werden.
Beim Austritt der Schmelze aus den Düsenbohrungen kommt diese mit sich entspannender heißer Primärprozeß luft mit hoher Geschwindigkeit in Kontakt. Hierbei wird die Schmelze jeder Kapillarbohrung zerrissen und zu einer großen Anzahl von feinen Fasern verstreckt. Bei diesem Prozeß reißen die Filamente vorwiegend zu Fasern ab. Dies steht im Gegensatz zu anderen Spinnvliesprozessen, bei denen ein Faserbruch verhindert werden muß. Durch den Primärprozeßluftstrom wird kalte Umgebungsluft, welche als SekundäTluft bezeichnet wird, angesaugt und an die sich bildenden Fasern und
Filamente geleitet. Die erzeugten Filamente und Fasern werden somit unmittelbar unter der Düse abgekühlt. Nachfolgend werden die Fasern auf der oben erwähnten
Ablegevorrichtung zu einem Vlies abgelegt und aufgewickelt. Eine Schmelzbindung zwischen den Fasern findet regelmäßig nicht statt. Die Faserlängen liegen in der Regel in der Größenordnung von 5 bis 50 cm. Der Faserdurchmesser ist sehr klein und liegt beispielsweise im Zusammenhang mit der nachfolgend geschilderten Erfindung unter etwa 10μm.
Weitergehende Informationen zum Melt-blown-Verfahren ergeben sich aus der US-PS 3 825 379 (der Exxon Research and Ingeneering Co.) sowie der US-PS 4 714 647 (der Kimberly Clark Corp.).
Auch die US-PS 4 869 275 spricht das Melt-blown-Verfahren zur Herstellung eines Vlieses aus verschiedenen Ausgangsmaterialien an. Als geeignete Ausgangsmaterialien werden Polyolefine (Polypropylen, Polyethylen und Ethylen/Propylen-Copoiymere), Polystyrol, Polyester (Polyethylenterephthalat), Nylon (6, 66 und 610), Polymethylen- methacrylate und allgemein auch Celluloseacetat genannt. Aussagen darüber, welchen Substitutionsgrad dieses Celluloseacetat besitzt, wenn es in dem beschriebenen Verfahren eingesetzt wird, finden sich in dieser Patentschrift nicht. Schon der ungewöhnliche Hinweis, daß sogar Celluloseacetat geeignet sei ("even cellulose acetate" / sh. Sp. 5, Abs. 1), deutet darauf hin, daß dieses nur bedingt geeignet ist. Dies steht auch mit den fachmännischen Erkenntnissen in Übereinstimmung, daß das enge Temperaturintervall zwischen Schmelztemperatur und Zersetzungsbereich die Überführung der Celluloseester in verarbeitbare Schmelzen, z.B. beim Cellulosetriacetat. weitgehend ausschließt und bei niedriger schmelzenden Celluloseacetopropionaten noch immer mit beginnender Produktschädigung verbunden ist (vgl. Kunststoffhandbuch 3/1 Hansa-Verlag, 1992, S. 411). Sollte tatsächlich Celluloseacetat zu einem Melt-blown-Vlies bei einer zugrunde zu legenden hohen "Schmelztemperatur" verarbeitet werden, dann wäre damit ein unerwünschter starker Abbau verbunden. Die Abbauprodukte würden bei verschiedenen Verwendungen sehr nachteilig wirken, so insbesondere auch beim Einsatz als Filtermaterialien in Tabakrauchfiltern. Dieser Verwendungszweck wird gerade in der US-PS 4 869 275 herausgestellt. Allerdings wird bei der Beschreibung der besonders praktischen Ausführungsformen Celluloseacetat nicht in Betracht gezogen. Aufgrund der Zersetzung von Celluloseacetat, die nach dem bekannten Verfahren zu erwarten ist, würde die Qualität des erhaltenen Melt-blown- Vlieses auch insofern verschlechtert, als sich kein befriedigender Weißgrad einstellt. Im Hinblick auf die Zersetzung von Celluloseacetaten bei höheren Temperaturen sei bemerkt, daß ab 180°C eine merkliche chemische Zersetzung eintritt, die durch u.a. Bildung von Furfural erkennbar wird.
Nach Beispiel 5 der US-PS 3 509 009 wird ein Teil Celluloseacetat und ein Teil Diethylphthalat (als Weichmacher) bei einer Temperatur von 170°C schmelzversponnen. Hierdurch wird zwar ein Zersetzen des eingesetzten Celluloseesters weitgehend ausgeschlossen, jedoch werden die Produkteigenschaften unerwünschterweise vom Weichmacher dominiert. Ein derartig hoher Weich machergehalt grenzt die Verwendungseigenschaften dahingehend ein, daß sich ein zu niedriger Schmelzpunkt einstellt sowie Weichmachermigration bzw. -ausschwitzen und -ausdünsten auftreten können.
Ausgehend von dem vorstehend geschilderten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Melt-blown-Vlies der eingangs bezeichneten Art so weiter- zubilden, daß es bis zu einer Temperatur von etwa 180°C nicht thermoplastisch ist, einen wünschenswert hohen Reflexionsfaktor bzw. Weißgrad aufweist und, wenn gewünscht, sich zu vorteilhaften Filtermaterialien, insbesondere zu Filtermaterialien von Zigaretten und zur Filtration von Gasen oder Flüssigkeiten, insbesondere von Blut, einsetzen läßt. Darüber hinaus schlägt die Erfindung ein besonders vorteilhaftes Verfahren zur Herstellung eines derartigen Melt-blown-Vlieses vor.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß es etwa 0 bis 10 Masse- % eines extrahierbaren Weichmachers enthält, einen Reflexionsfaktor (R∞), bestimmt nach DIN 53 145 Teil 1 (1992), von mehr ais etwa 60% und der Celluloseester einen
Substitutionsgrad DS von etwa 1 ,5 bis 3,0 aufweist.
Die Erfindung liefert somit Zugang zu Melt-blown- Vliesen aus Celluloseester, die wenig oder sogar keinen Weichmacher enthalten, was bisher nicht für möglich gehalten werden konnte.
Das erfindungsgemäße Melt-blown-Vlies enthält Fasern aus Celluloseestern. Dabei kann es sich beispielsweise um Celluloseacetat, -acetobutyrat, -acetopropionat und -propionat und dergleichen handeln. Bevorzugt wird Celluloseacetat.
Der Substitutionsgrad DS der erfindungsgemäß eingesetzten Celluloseester liegt zwischen etwa 1,5 bis 3,0, insbesondere zwischen etwa 1,7 bis 2,7, wobei der Bereich von etwa 2,2 bis 2,6 ganz besonders bevorzugt wird. Wird der Wert von 1,5 unterschritten, dann ist eine Schädigung des Polymergerüstes durch Dehydratisierung zu befürchten. Zwar läßt sich der angestrebte Erfolg auch mit einem Substitutionsgrad von etwa 3,0 erreichen, jedoch kann bei diesem Wert bereits eine unerwünschte Kristallisation und Phasenseparation eintreten. Diesen unerwünschten Nachteilen kann zwar mit einem höheren Gehalt an extrahierbarem Weichmacher von bis zu etwa 10 Masse- % begegnet werden. Wird jedoch ein niedrigerer Weichmachergehalt angestrebt, dann ist es vorteilhaft, gleichzeitig den Substitutionsgrad DS auf mindestens etwa 2,7, insbesondere mindestens etwa 2,6 zu senken.
Trotz des ungewöhnlich guten Weißgrades, auf den noch eingegangen wird, enthält das erfindungsgemäße Melt-blown-Vlies lediglich bis zu etwa 10 Masse- %, insbesondere etwa 2 bis 8 Masse- % , eines extrahierbaren Weichmachers, insbesondere in Form eines wasserextrahierbaren Weichmachers. Die Erfindung trägt damit den relevanten Verwendungszwecken Rechnung, bei denen der Weichmacheranteil nicht zu hoch sein darf, da das Produkt andernfalls unerwünschterweise durch den Weichmacher dominiert wird. Vielmehr sollen die Produkteigenschaften weitgehend auf den Celluloseester zurückgehen. Die genaue Einstellung des Weichmachergehaltes innerhalb des angegebenen Rahmens von etwa 0 bis 10 Masse- % richtet sich nach dem jeweiligen Verwendungszweck des Vlieses. Demzufolge bleibt es dem Fachmann überlassen, hier im Einzelfall den Weichmacheranteil quantitativ im erfindungsgemäßen Rahmen zu optimieren. So hat es sich bei der Verwendung des Melt-blown-Vlieses in Filterzigaretten als wünschenswert erwiesen, einen Weichmachergehalt von etwa 5 bis 10 Masse- % einzustellen, insbesondere wenn als Weichmacher Triacetin herangezogen wird. So ist es bekannt, daß Triacetin den Geschmack des Tabakrauchs und die spezifischen Retentionen von Celluloseacetat positiv beeinflußt. Ein über 10 Masse- % hinausgehender Weichmachergehalt würde die Verwendungeigenschaften dahingehend eingrenzen, daß sich ein zu niedriger Schmelzpunkt einstellt sowie Weichmacher¬ migration bzw. -ausschwitzen und -ausdünsten und darüber hinaus unerwünschte Verklebungen auftreten können. Ferner würde im Falle der Verwendung in Filterstäben ein hoher Weichmachergehalt einen negativen Einfluß auf die Filterstabhärte haben. Bei Anwendungen, die den lebensmittelrechtlichen Bestimmungen unterliegen, wird der Weichmachergehalt im erfindungsgemäßen Rahmen möglichst niedrig gehalten, insbesondere auf nahe 0 eingestellt. Gleiches gilt für medizinische Anwendungen, wie z.B. in Blutfiltern.
Der im Rahmen der Erfindung eingesetzte Weichmacher muß nicht nur eine Plastifi- zierungswirkung entfalten. Vielmehr muß der Weichmacher aus dem Melt-blown-Vlies, das nach Abschluß des Herstellungsverfahrens einen über 10 Masse- % liegenden Gehalt an Weichmacher aufweist, so weit mit einem geeigneten Lösungsmittel extrahierbar sein, daß der erfindungsgemäße Rahmen von etwa 0 bis 10 Masse- % eingestellt wird. Dabei sollen die Celluloseester-Fasern in ihrer chemischen und physikalischen Struktur weitgehend unverändert bleiben. Als Weichmacher haben sich als geeignet erwiesen Triacetin, Ethylen- und Propylencarbonat, Zitronensäuretriethylester. Triethylenglykol- diacetat, Carbowax® (Polyethylenglykole eines MW von 200 bis 14000, hergestellt von der Firma UCC, USA) und/oder Sulfolan (Tetrahydrothiophen-l , l-dioxid). Mit besonderem Vorteil wird Triacetin herangezogen, da es sich schnell und effektiv mit Wasser extrahieren läßt.
Der Polymerisationsgrad DP der angesprochenen Celluloseester, insbesondere des Celluloseacetats, ist nicht kritisch und kann in einem relativ weiten Bereich liegen. Es werden jedoch besonders vorteilhafte Ergebnisse erreicht, wenn er zwischen etwa 150 bis 400, insbesondere zwischen etwa 180 bis 350 liegt. Beim Unterschreiten eines Polymerisationsgrades von etwa 150 würde ein zu hoher Anteil an Oligomeren vorliegen, so daß beim Extrahieren des Weichmachers gleichzeitig ein großer Teil des Celluloseesters extrahiert würde. Wird der obere Grenzwert von etwa 400 überschritten, dann wird der Schmelzindex bei dem nachstehend erläuterten Melt-blown-Verfahren zu hoch, wodurch dieses nachteilig beeinflußt werden würde. Dieses Problem könnte sich zwar in Einzelfällen durch Anhebung des Weichmachergehaltes reduzieren, dies würde aber bei der Verwirklichung der Erfindung einen zusätzlichen Aufwand bedeuten, insbesondere im Zusammenhang mit der Entfernung bzw. Rückgewinnung des Weichmachers.
Von kritischer Bedeutung ist im Rahmen der Erfindung im Hinblick auf die verschiedenen Anwendungsbereiche, in denen das erfindungsgemäße Melt-blown-Vlies eingesetzt werden kann, ein Mindestreflexionsfaktor, auch Weißgrad genannt, des Vlieses. Der Reflexionsfaktor bzw. der Weißgrad wird nach DIN 53 145 Teil 1 (1992) entsprechend ISO 2469 (1977) gemessen. Hierbei wird ein Elrephogerät der Firma Zeiß eingesetzt. Eine in 8 Lagen übereinandergelegte Vliesprobe wird dabei mit einer Ullbrichtkugel diffus belichtet und senkrecht zur Probenebene (Meßgeometrie d/0) bei 457 nm (mittels Spektralbandfilter) gemessen. Bezogen wird hier auf den Bariumsulfat- Weißstandard. Der Reflexionsfaktor bzw. Weißgrad liegt im Rahmen der Erfindung bei mehr als 60% , insbesondere bei mehr als 70% oder sogar bei etwa 90%. Der Weißgrad ist insbesondere ein Maß für die Reinheit des erfindungsgemäßen Erzeugnisses. Wäre dieses nämlich bräunlich bzw. gelblich, dann bedeutet das, daß bei der Herstellung unerwünschte und nicht kontrollierbare Zersetzungsprodukte entstanden sind. Die Abnehmer würden deshalb ein derartiges Produkt im Falle der Verwendung in der Zigarettenindustrie ablehnen. Überraschenderweise kann der Nachteil eines unbefriedigenden Weißgrades auch nicht durch die Einarbeitung von Weißpigmenten, wie Titandioxid, während des Herstellungsverfahrens behoben werden. Er ist demzufolge eine besonders klare Aussage über die chemische Reinheit der Celluloseester-Fasern. Dieser Gesichtspunkt spielt in verschiedenen Bereichen eine herausragende Rolle, so beispielsweise bei dem Einsatz des Vlieses im bio-medizinischen Bereich, insbesondere bei der Blutfiltration.
In Einzelfällen kann es von Vorteil sein, daß das Celluloseacetat in Form eines Polymerblends, insbesondere mit aliphatischen Polyestern und/oder acetylierten Stärken, vorliegt. Hiermit lassen sich nicht nur die gewünschten Eigenschaften optimieren, wie beispielsweise die biologische Abbaubarkeit im Zusammenhang mit aliphatischen Polyestern (vgl. hierzu DE-C-39 14 022), sondern es besteht darüber hinaus die Möglichkeit einer Kosteneinsparung. Dies ergibt sich in einem anderen Anwendungs¬ bereich aus der EP-A- 0 622 407, auf die Bezug genommen wird.
Um die mit der Erfindung gewünschten Effekte zu erzielen, muß der Faserdurchmesser, wie er im allgemeinen nach dem Melt-blown-Verfahren erhalten wird, unter etwa 10 μm liegen, insbesondere zwischen etwa 2 bis 8 μm. Der Standarddurchmesser eines nach dem Trockenspinnverfahren erhaltenen Filaments liegt dagegen im allgemeinen zwischen etwa 15 und 40 μm. Fasern eines kleineren Durchmessers haben den Vorteil, daß sie eine größere spezifische Oberfläche und damit auch eine größere Aktivität in den gewünschten Einsatzgebieten, insbesondere bei der Filtration, liefern. Im Rahmen der Erfindung lassen sich ohne weiteres Fasern eines mittleren Faserdurchmessers von weniger als etwa 8 μm einstellen. Der besonders vorteilhafte praktische Bereich liegt zwischen etwa 5 und 8 μm. Beim Faserdurchmesser handelt es sich um den mittleren Durchmesser. Hier wird eine Anzahl von Faser rasterelektronenmikroskopisch vermessen und dann der Mittelwert gebildet.
Grundsätzlich können der nach dem anschließend beschriebenen erfindungsgemäßen Melt-blown-Verfahren erhaltenen Schmelze, falls gewünscht, Aktivsubstanzen beigefügt werden, wie z.B. Agro-Wirkstoffe, Pharma- Wirkstoffe, selektive und andere Filtrationshilfen, z.B. zur selektiven Retention, Aromastoffe, Zusätze zur biologischen Abbaubarkeit, etc. Sie sind vorzugsweise schmelzverträglich.
Das erfindungsgemäße Melt-blown-Vlies läßt sich vorteilhafterweise dadurch herstellten, daß ein Celluloseester, insbesondere Celluloseacetat, eines Substitutionsgrades DS von etwa 1,5 bis 3,0, insbesondere von etwa 1 ,7 bis 2,7, mit einem Weichmacher in einem Masse- Verhältnis von etwa 2: 1 bis 1 :4 unter Erwärmen gemischt und in eine Schmelze überführt wird, wobei die Mischung aus Weichmacher und Celluloseester einen Schmelzindex MFI (210/2.16) nach DIN 53 735 von etwa 400 bis 5 g/10 min, insbesondere 300 bis 50 g/10 min, aufweist, die Schmelze in einer Melt-blown- Spinneinrichtung zu einem Melt-blown-Vlies verarbeitet und anschließend der Weichmacher bis zu einem Anteil von etwa 0 bis 10 Masse- % mit einem Lösungsmittel für den Weichmacher extrahiert wird. Um die Ausgangsmaterialien in eine Schmelze zu überführen, werden diese vorzugsweise auf eine Temperatur von mehr als etwa 100°C erwärmt. Die besonders geeignete Schmelztemperatur hängt vom Einzelfall ab und läßt sich vom Fachmann rein handwerklich ermitteln. Jedoch sollte eine Temperatur von 240°C nicht überschritten werden, da sonst unerwünschte Zersetzungserscheinungen auftreten. Das erfindungsgemäß erhaltene Melt-blown-Vlies weist, wie gezeigt, einen niedrigen Anteil an extrahierbaren Weichmacher von etwa 0 bis 10 Masse- % auf. Durch die erfindungsgemäße Verfahrensführung wird ein Zersetzen des eingesetzten Celluloseesters weitgehend ausgeschlossen. Dabei ist es nicht erforderlich, zur Vermeidung unerwünschter oxidativer Vorgänge in einer Schutzgasatmosphäre zu arbeiten. Von Vorteil ist es, wenn die Schmelze unmittelbar nach ihrer Herstellung dem Melt-blown- Verfahren unterworfen wird, da andernfalls unerwünschte Abbaureaktionen auftreten können. Somit liegt ein besonderer Vorteil des erfindungsgemäßen Verfahrens darin, daß es kontinuierlich durchgeführt werden kann. So erfolgt das Mischen und das Spinnen vorteilhafterweise in einem einzigen Arbeitsgang, indem die Mischung des Extruders sofort der Melt-blown-Düse zugeführt wird. Das erfindungsgemäße Verfahren stellt somit in bezug auf die Verfahrensführung eine deutliche Vereinfachung dar.
Zur Durchführung des erfindungsgemäßen Melt-blown-Verfahrens ist es vorteilhaft, wenn das Masse- Verhältnis von Weichmacher zu Celluloseester auf etwa 3:2 bis 2:3, demzufolge bei der praktischen Ausführungsform vorzugsweise auf etwa 1: 1, eingestellt wird, was auch der Forderung der US-PS 3 509 009 entspricht. Jedoch unterscheidet sich die vorliegende Erfindung im Verfahrensablauf von der Lehre nach der US-PS 3 509 009 dadurch, daß sie zwingend den Einsatz eines geeigneten Lösungsmittels für den Weichmacher vorsieht. Demzufolge wird erfindungsgemäß ein Lösungsmittel zur Extraktion des Weichmachers verwendet, das jedoch die chemische und physikalische Struktur der Celluloseester-Fasern nicht beeinträchtigt.
Die Art des Vermischens von Weichmacher und Celluloseester, gegebenenfalls mit weiteren Additiven, unterliegt keinen wesentlichen Beschränkungen. Es hat sich gezeigt, daß das Mischen von Celluloseester und Weichmacher besonders vorteilhaft in einem Zweischneckenextruder durchgeführt wird. Darin erreicht man die zum optimalen Vermischen der Ausgangsmaterialien notwendige Scherung, was zu einer besonders vorteilhaften Homogenisierung der Ausgangsmaterialien führt. Dabei wird es bevorzugt, einen gleichlaufenden Zweischneckenextruder zu verwenden. Das erfindungsgemäße Verfahren wird in der Melt-blown-Spinneinrichtung dann besonders vorteilhaft gesteuert, wenn an der Spinndüse und dem Spinnkopf der Spinneinrichtung eine Temperatur von etwa 180 bis 240 °C, insbesondere von etwa 200 bis 230°C, eingestellt wird. Wird der Wert von etwa 180°C unterschritten, dann kann das zu einer nicht ausreichenden Feinheit des Verfahrensprodukts führen. Bei Überschreiten des oberen Grenzwertes von 240°C setzt ein unerwünschter Abbau ein.
Auf die im Rahmen der Erfindung einsetzbaren Weichmacher wurde vorstehend bereits eingegangen, insbesondere auf den vorteilhaften Einsatz des wasserextrahierbaren
Weichmachers in Form von Triacetin. Im Falle eines wasserextrahierbaren Weichmachers wird dabei das erhaltene Melt-blown-Vlies zur Extraktion des Weichmachers einfach in ein Wasserbad geleitet. Das erfindungsgemäße Verfahren läßt sich hier mit dem besonderen Vorteil ausführen, daß ein normales Wasserbad (etwa Raumtemperatur), d.h. ohne Aufheizen, zur Extraktion herangezogen werden kann. Bei hohem Weichmachergehalt ist die Anwendung eines heißen Extrahierbades sogar von Nachteil, da das Melt-blown-Vlies dann einen solchen Schmelzbereich aufweist, daß dessen Struktur beeinträchtigt bzw. sogar zerstört wird.
Besonders vorteilhaft ist es, wenn das die Melt-blown-Spinneinrichtung verlassende Vlies auf eine Ablagevorrichtung, insbesondere in Form eines Siebs bzw. Siebbandes oder einer Siebtrommel, überführt, zur Einstellung der gewünschten Stärke gepreßt und dann der Weichmacher extrahiert wird. Grundsätzlich ist es auch möglich, die Extraktion vor dem Verpressen durchzuführen. Wenn gewünscht, kann das Melt-blown-Vlies beim Pressen auch strukturiert werden. Das Strukturieren erfolgt, um die für die spätere
Verwendung vorteilhafte Struktur zu erhalten, beispielsweise im Falle der Verwendung in Zigarettenfiltern eine Längsriffelung, verbunden mit einer Oberflächenvergrößerung.
Schließlich kann es in Einzelfällen von Vorteil sein, bei der Ausbildung des Melt-blown- Vlieses gleichzeitg Filamente. insbesondere Celluloseacetat-Filamente, einzubringen. Hier bestehen grundsätzlich zwei Möglichkeiten, die in der DE 35 21 221 detailliert beschrieben sind. Es wird diesbezüglich ausdrücklich auf diese verwiesen. Im allgemeinen führt die Einverleibung von Filamenten zu einer Verbesserung der mechanischen Eigenschaften, insbesondere der Zugfestigkeit, des Materials.
Von besonderem Vorteil ist es auch, wenn das die Spinneinrichtung verlassende Melt- blown-Vlies zur Ausbildung eines Verbundgebildes auf einen Träger, insbesondere in Form eines Vlieses aus einem Celluloseacetat-Filtertow, einem flächig aufbereiteten Filtertow oder aus Papier, abgelegt wird. Im Falle der Verwendung eines Trägervlieses kann der Fachmann, je nach Endverwendungszweck, das jeweils geeignete Vlies problemlos ermitteln. Beispielsweise wäre im Falle der Weiterverwendung des erfindungsgemäßen Melt-blown- Vlieses in Filterzigaretten vorzugsweise von einem Celluloseacetat- Vlies auszugehen. In Frage kommen aber auch beliebige geschlossene Träger, wie beispielsweise das bereits erwähnte Papier. Die jeweils erhaltenen Verbundgebilde können zur Regulierung ihrer Stärke vorteilhafterweise gepreßt und/oder strukturiert werden.
Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß das angestrebte Melt-blown-Vlies hergestellt werden kann, ohne daß es besonderer Zusatzstoffe, wie beispielsweise irgendwelchen Verarbeitungshilfsmitteln, bedarf.
Aufgrund der angesprochenen Eigenschaften eignet sich das erfindungsgemäße Melt- blown-Vlies besonders vorteilhaft als Filtermaterial. Dabei wird das Vlies z.B. in Tabakrauchfiltern, insbesondere in Zigarettenfiltern, und hier besonders in Doppelfiltern für Ultraleichtzigaretten, zur Filtration von Gasen und Flüssigkeiten, wie beispielsweise Sterilfiltration von Getränken sowie ganz besonders vorteilhaft zur Filtration von Blut herangezogen.
Wird das erfindungsgemäße Melt-blown-Vlies in Zigarettenfiltern verwendet, dann sind diese leicht desintegrierbar. Des weiteren führt ein niedriger Substitutionsgrad DS des Celluloseesters, insbesondere des Celluloseacetats, zu einer besonders günstigen biologischen Abbaubarkeit.
Die erfindungsgemäßen Filtermaterialien zeigen nicht nur eine bessere Filterwirkung als die bisher bekannten Materialien, sondern sie erfüllen auch uneingeschränkt die geschmacklichen Anforderungen. Dies gilt insbesondere für Celluloseacetat in Verbindung mit einem Restgehalt an Triacetinweichmacher.
Nachfolgend wird die Erfindung anhand von Beispielen noch näher erläutert.
Beispiel 1
Celluloseacetat mit einem DP von 220 und einem DS von 2,5 wurde mittels einer gravimetrischen Dosiervorrichtung in die Einfüllöffnung der 1. Zone eines gleich- läufigen 2-Schnecken-Laborextruders mit dem Schneckendurchmesser von 25 mm, einer Länge von 48 D und 15 Zonen gegeben. In der 2. Zone wurde Triacetin als Weichmacher im Verhältnis 2:3 (1 : 1,5) mittels einer Hubkolbenpumpe zugeführt. Die Temperaturen der Zonen betrugen in der 1. und 2. Zone 30 in der 3. 110. in der 4. 150°C. Die Temperaturen der Zonen 5-11 wiesen 150 und die Zonen 12- 15 175°C auf. Bei einer Schneckendrehzahl von 150 UPM wurde eine homogene Schmelze erhalten. Die so erhaltene Schmelze wurde über eine Runddüse kontinuierlich in einen Strang überführt und dieser unter die Schmelztemperatur abgekühlt und mit Hilfe eines Stranggranulators in zylindrische Granulate von 2 mm Durchmesser und 3 mm Länge zerkleinert. Das so erhaltene Granulat wurde einer Melt-Blown Labor-Spinneinrichtung, bestehend aus Extruder, Zwischenblock, Schmelzerohr, Spinnkopfdüse, Heißluft¬ einrichtung, Ablage und Wickler zugeführt. Die Temperaturen im Extruder der Melt- Blown Labor-Spinneinrichtung wurden von 100°C am Eingang auf 170°C am Extruder¬ austritt gesteigert. Der Zwischenblock und das Schmelzerohr waren auf 200°C eingestellt. Die Temperatur im Spinnkopf betrug 230°C. Die Lufttemperatur betrug 265 °C. Die Luftmenge war auf 70 m3/h eingestellt. Bei diesen Verfahrensparametern stellte sich ein Schmelzedruck von 125 bar ein. Der Massedurchsatz betrug 7,7 kg/h. Die mit der Spinneinrichtung erzeugten Fasern wurden auf einem Ablageband abgelegt und kontinuierlich so unter der Spinneinrichtung abgezogen, daß ein Flächengewicht von 132 g/m2 erhalten wurde. Mittels einer Aufwickeleinrichtung wurde das Vlies zu einer Rolle aufgewickelt. Die Vliesrolle wurde anschließend einer mit Wasser gefüllten Wasch¬ einrichtung bestehend aus zwei hintereinander geschalteten Trögen zugeführt und der im Vlies enthaltene Weichmacher bis auf einen Restgehalt von 0,3 % ausgewaschen. Das Vlies wurde anschließend mit einer Trocknungsvorrichtung bei 160°C bis auf einen Restfeuchtegehalt von 4,8 % getrocknet. Der mittlere Faserdurchmesser des so erhaltenen Vlieses lag bei 8,4 μm. Der Reflexionsfaktor (R∞) betrug, bezogen auf den Bariumsulfat- Weißstandard, 65 % .
Beispiel 2
Celluloseacetat mit einem DP von 220 und einem DS von 2,5 wurde mittels einer gravimetrischen Dosiervorrichtung in die Einfüllöffnung der 1. Zone eines gleichläufigen 2-Schnecken Laborextruders mit dem Schneckendurchmesser von 25 mm einer Länge von 48 D und 15 Zonen gegeben. In der 3. Zone wurde Triacetin als Weichmacher im Verhältnis 3:2 (1 ,5: 1 ,0) mittels einer Hubkolbenpumpe zugeführt. Die Temperaturen betrugen in der 1. und 2. Zone 50 in der 3. 100 und in der 4. Zone 120°C. Die Temperaturen der Zonen 5-10 wiesen 140 und die Zonen 1 1-15 150°C auf. Der Massedurchsatz betrug 3,2 kg/h. Bei einer Schneckendrehzahl von 190 UPM wurde eine homogene Schmelze erhalten. Die so erhaltene Schmelze wurde direkt einer unter Beispiel 1 beschriebenen Labor-Melt-Blown-Spinneinrichtung zugeführt, die jedoch im Unterschied zu Beispiel 1 keinen Extruder mehr benötigte, da das zu verarbeitende Material bereits als Schmelze vorlag. In diesem Falle war die Melt-Blown Spinneinheit direkt dem gleichläufigen 2-Schnecken- Laborextruder nachgeschaltet. Der Zwischenblock und das Schmelzerohr waren auf 170°C eingestellt. Die Temperatur im Spinnkopfdüse
3 betrug 210°C, Lufttemperatur 255°C. Die Luftmenge war auf 60 m /h eingestellt. Bei diesen Verfahrensparametern stellte sich ein Schmelzedruck lediglich von 73 bar ein. Die mit der Spinneinrichtung erzeugten Fasern wurden auf einem Ablageband abgelegt und kontinuierlich so unter der Spinneinrichtung abgezogen, daß sich ein Flächengewicht von 176 g/m2 ergab. Das auf diese Weise erhaltene Vlies wurde direkt in eine wie in Beispiel 1 beschriebene Wascheinrichtung geführt und der im Vlies enthaltene Weichmacher bis auf einen Restgehalt von 5,5 % ausgewaschen. Das Vlies wurde anschließend mit einer Trocknungsvorrichtung bei 150°C bis auf einen Restfeuchtegehalt von 6.3 % getrocknet. Der mittlere Faserdurchmesser des so erhaltenen Vlieses lag bei 5,7μm. Der Reflexionsfaktor (R∞) betrug, bezogen auf den Bariumsulfat- Weißstandard, 74 % .
***

Claims

Patentansprüche
1. Melt-blown-Vlies auf der Basis von Celluloseestern, insbesondere von Celluloseacetat, mit Fasern eines mittleren Faserdurchmessers von weniger als etwa 10 μm, dadurch gekennzeichnet, daß es etwa 0 bis 10 Masse- % eines extrahierbaren Weichmachers enthält, einen Reflexionsfaktor (R∞), bestimmt nach DIN 53 145 Teil 1 (1992), von mehr als etwa 60% und der Celluloseester einen Substitutionsgrad DS von etwa 1 ,5 bis 3,0 aufweist.
2. Melt-blown-Vlies nach Anspruch 1, dadurch gekennzeichnet, daß der Weichmacher wasserextrahierbar ist.
3. Melt-blown-Vlies nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Weichmacher in Form von Triacetin, Ethylen- und Propylencarbonat, Zitronen- säuretriethylester, Triethylenglykoldiacetat, Polyethylenglykol mit niedrigem Molekular¬ gewicht und/oder Sulfolan vorliegt.
4. Melt-blown-Vlies nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Substitutionsgrad DS etwa 1 ,7 bis 2,7, insbesondere etwa 2,2 bis 2,6, beträgt.
5. Melt-blown-Vlies nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Celluloseester einen Polymerisationsgrad DP von etwa 150 bis 400, insbesondere etwa 180 bis 350, besitzt.
6. Melt-blown-Vlies nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Gehalt an Weichmacher etwa 2 bis 8 Masse- % beträgt.
7. Melt-blown-Vlies nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Reflexionsfaktor (R∞) mehr als etwa 70% beträgt.
8. Melt-blown-Vlies nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Celluloseacetat in Form eines Polymerblends, insbesondere mit aliphatischen Polyestern und/oder acetyl ierten Stärken, vorliegt.
9. Verfahren zur Herstellung eines Melt-blown- Vlieses nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Celluloseester, insbesondere Celluloseacetat, eines Substitutionsgrades DS von etwa 1,5 bis 3,0, insbesondere von etwa 1,7 bis 2,7, mit einem Weichmacher in einem Masse- Verhältnis von etwa 2: 1 bis 1 :4 unter Erwärmen gemischt und in eine Schmelze überführt wird, wobei die Mischung aus Weichmacher und Celluloseester einen Schmelzindex MFI (210/2.16) nach DIN 53 735 von etwa 400 bis 5 g/10 min, insbesondere 300 bis 50 g/10 min, aufweist, die Schmelze in einer Melt-blown-Spinneinrichtung zu einem Melt- blown-Vlies verarbeitet und anschließend der Weichmacher bis zu einem Anteil von etwa 0 bis 10 Masse- % mit einem Lösungsmittel für den Weichmacher extrahiert wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Masse- Verhältnis von Weichmacher zu Celluloseester auf etwa 3:2 bis 2:3 eingestellt wird.
11. Verfahren nach Anspruch 9 oder 10. dadurch gekennzeichnet, daß die Temperatur beim Mischen des Weichmachers mit dem Celluloseester auf etwa 140 bis 180°C eingestellt wird.
12. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, daß die Temperatur am Spinnkopf und der Düse der Melt-blown-Spinneinrichtung auf etwa 180 bis 240°C, insbesondere etwa 200 bis 230°C, eingestellt wird.
13. Verfahren nach mindestens einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß das Mischen von Cellulose und Weichmacher in einem gleichlaufenden Zweischneckenextruder durchgeführt wird.
14. Verfahren nach mindestens einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß ein wasserextrahierbarer Weichmacher verwendet wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß das erhaltene Melt- blown-Vlies zur Extraktion des Weichmachers in ein Wasserbad geleitet wird.
16. Verfahren nach mindestens einem der Ansprüche 9 bis 15. dadurch gekennzeichnet, daß das die Melt-blown-Spinneinrichtung verlassende Vlies auf eine Ablagevorrichtung überführt, zur Einstellung der gewünschten Stärke gepreßt und dann extrahiert wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das Melt-blown-Vlies beim Pressen strukturiert wird.
18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß das Melt-blown- Vlies auf ein Sieb bzw. ein Siebband oder eine Siebstrommel abgelegt wird.
19. Verfahren nach mindestens einem der Ansprüche 9 bis 18, dadurch gekennzeichnet, daß bei der Ausbildung des Melt-blown- Vlieses gleichzeitg Filamente, insbesondere Celluloseacetat-Filamente, eingebracht werden.
20. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das die Spinneinrichtung verlassende Melt-blown-Vlies zur Ausbildung eines Verbundgebildes auf einen Träger abgelegt wird.
21. Verfahren nach Anspruch 20. dadurch gekennzeichnet, daß der Träger ein Vlies aus einem Celluloseacetat-Filtertow. einem flächig aufbereiteten Filtertow oder aus Papier
22. Verfahren nach Anspruch 20 oder 21 , dadurch gekennzeichnet, daß das Verbundgebilde zur Regulierung seiner Stärke gepreßt und/oder strukturiert wird.
23. Verwendung eines Melt-blown- Vlieses nach mindestens einem der Ansprüche 1 bis 8 als Filtermaterial.
24. Verwendung eines Melt-blown- Vlieses nach Anspruch 23 in Tabakrauchfiltern. insbesondere in Zigarettenfiltern.
25. Verwendung eines Melt-blown- Vlieses nach Anspruch 24 in Doppelfiltern für Ultraleichtzigaretten.
26. Verwendung eines Melt-blown- Vlieses nach Anspruch 23 zur Filtration von Gasen oder Flüssigkeiten.
27. Verwendung eines Melt-blown-Vlieses nach Anspruch 26 zur Filtration von Blut.
PCT/EP1996/005686 1996-03-08 1996-12-18 Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen WO1997033026A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59605210T DE59605210D1 (de) 1996-03-08 1996-12-18 Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen
US09/077,044 US6207601B1 (en) 1996-03-08 1996-12-18 Melt-blown nonwoven fabric, process for producing same and the uses thereof
AT96944588T ATE192789T1 (de) 1996-03-08 1996-12-18 Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen
EP96944588A EP0885321B1 (de) 1996-03-08 1996-12-18 Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen
AU13022/97A AU1302297A (en) 1996-03-08 1996-12-18 Melt-blown non woven fabric, process for producing same and the uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19609143.8 1996-03-08
DE19609143A DE19609143C1 (de) 1996-03-08 1996-03-08 Melt-blown-Vlies, Verfahren zu dessen Herstellung und dessen Verwendungen

Publications (1)

Publication Number Publication Date
WO1997033026A1 true WO1997033026A1 (de) 1997-09-12

Family

ID=7787707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/005686 WO1997033026A1 (de) 1996-03-08 1996-12-18 Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen

Country Status (7)

Country Link
US (1) US6207601B1 (de)
EP (1) EP0885321B1 (de)
JP (1) JP3251018B2 (de)
AT (1) ATE192789T1 (de)
AU (1) AU1302297A (de)
DE (2) DE19609143C1 (de)
WO (1) WO1997033026A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026496A3 (de) * 1997-11-21 1999-08-12 Reemtsma H F & Ph Biologisch abbaubarer filter für cigaretten
US8979961B2 (en) 2009-10-19 2015-03-17 Eurofilters Holding N.V. Vacuum cleaner filter bag
CN110325674A (zh) * 2016-12-21 2019-10-11 格罗兹-贝克特公司 通过溶液喷吹纺丝来生产纤维和非织造织物的方法以及由此生产的非织造织物

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951062C2 (de) * 1999-10-22 2002-04-04 Rhodia Acetow Gmbh Hochleistungs-Zigarettenfilter
US6716309B2 (en) * 2001-12-21 2004-04-06 Kimberly-Clark Worldwide, Inc. Method for the application of viscous compositions to the surface of a paper web and products made therefrom
US8124676B2 (en) * 2003-03-14 2012-02-28 Eastman Chemical Company Basecoat coating compositions comprising low molecular weight cellulose mixed esters
US8461234B2 (en) * 2003-03-14 2013-06-11 Eastman Chemical Company Refinish coating compositions comprising low molecular weight cellulose mixed esters
US7585905B2 (en) * 2003-03-14 2009-09-08 Eastman Chemical Company Low molecular weight cellulose mixed esters and their use as low viscosity binders and modifiers in coating compositions
US8039531B2 (en) * 2003-03-14 2011-10-18 Eastman Chemical Company Low molecular weight cellulose mixed esters and their use as low viscosity binders and modifiers in coating compositions
CN100497769C (zh) 2004-03-26 2009-06-10 东丽株式会社 衣料用布帛及其制造方法
JP4885134B2 (ja) * 2004-08-05 2012-02-29 エイカーズ バイオサイエンスィズ インコーポレイテッド 血液分離装置、及び全血からの液体成分画分の分離方法
GB0525504D0 (en) 2005-12-14 2006-01-25 Bristol Myers Squibb Co Antimicrobial composition
US20080085953A1 (en) * 2006-06-05 2008-04-10 Deepanjan Bhattacharya Coating compositions comprising low molecular weight cellulose mixed esters and their use to improve anti-sag, leveling, and 20 degree gloss
US20070282038A1 (en) * 2006-06-05 2007-12-06 Deepanjan Bhattacharya Methods for improving the anti-sag, leveling, and gloss of coating compositions comprising low molecular weight cellulose mixed esters
CN103657145A (zh) * 2008-08-01 2014-03-26 生物风险公司 用于物质的纯化、分离、脱盐或缓冲液/溶剂交换的装置和方法
US8664129B2 (en) * 2008-11-14 2014-03-04 Exxonmobil Chemical Patents Inc. Extensible nonwoven facing layer for elastic multilayer fabrics
US10161063B2 (en) * 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
US9498932B2 (en) * 2008-09-30 2016-11-22 Exxonmobil Chemical Patents Inc. Multi-layered meltblown composite and methods for making same
US9168718B2 (en) 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
US20100266818A1 (en) * 2009-04-21 2010-10-21 Alistair Duncan Westwood Multilayer Composites And Apparatuses And Methods For Their Making
CN102333644B (zh) * 2009-02-27 2015-07-22 埃克森美孚化学专利公司 多层非织造原位层压体及其制备方法
EP2311359B1 (de) 2009-10-19 2016-04-27 Eurofilters Holding N.V. Staubsaugerfilterbeutel
US8668975B2 (en) * 2009-11-24 2014-03-11 Exxonmobil Chemical Patents Inc. Fabric with discrete elastic and plastic regions and method for making same
GB0922253D0 (en) 2009-12-21 2010-02-03 British American Tobacco Co Sheet filter materials with additives
TWI392781B (zh) * 2009-12-31 2013-04-11 Preparation of Natural Cellulose Nonwoven by Wet Spunbond Method
TWI392779B (zh) * 2009-12-31 2013-04-11 A method for preparing natural cellulose nonwoven fabric by wet meltblowing
TWI392780B (zh) * 2009-12-31 2013-04-11 Wet melt with a mold, antibacterial and deodorant function of cellulose non-woven system
CN102127841B (zh) * 2010-01-13 2014-07-16 聚隆纤维股份有限公司 以湿式熔喷具有防霉、抗菌及除臭功能纤维素不织布的制法
CN102127842B (zh) * 2010-01-13 2014-07-16 聚隆纤维股份有限公司 使用湿式熔喷方式制备天然纤维素不织布的方法
US8980050B2 (en) 2012-08-20 2015-03-17 Celanese International Corporation Methods for removing hemicellulose
EP2600741A2 (de) 2010-08-05 2013-06-12 Altria Client Services Inc. Rauchlose zusammengesetzte tabakprodukte, systeme und verfahren
RU2580483C2 (ru) 2010-08-05 2016-04-10 Олтриа Клайент Сервисиз Инк. Материал с табаком, спутанным со структурными волокнами
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
GB2489491A (en) * 2011-03-31 2012-10-03 British American Tobacco Co Cellulose acetate and plasticizer blends
US8986501B2 (en) 2012-08-20 2015-03-24 Celanese International Corporation Methods for removing hemicellulose
EP2935688A2 (de) * 2012-12-20 2015-10-28 ConvaTec Technologies Inc. Verarbeitung von chemisch modifizierten cellulosefasern
US9693582B2 (en) 2013-03-14 2017-07-04 Altria Client Services Llc Product portion enrobing machines and methods
CA2905062C (en) 2013-03-15 2021-03-30 Altria Client Services Llc Pouch material for smokeless tobacco and tobacco substitute products
WO2015107565A1 (ja) * 2014-01-15 2015-07-23 株式会社ダイセル 酢酸セルロース繊維、酢酸セルロース繊維成形体、およびこれらの製造方法
EP3957190A3 (de) 2014-03-14 2022-05-04 Altria Client Services LLC Polymereingekapselte rauchfreie tabakprodukte
EP3597052B1 (de) 2014-03-14 2023-12-27 Altria Client Services LLC Produktteilbeschichtungsverfahren und -vorrichtung
GB201405757D0 (en) * 2014-03-31 2014-05-14 British American Tobacco Co Filter materials and filters made thereform
WO2017131035A1 (ja) * 2016-01-26 2017-08-03 富士フイルム株式会社 ナノファイバーおよび不織布
EP3339409B1 (de) * 2016-12-22 2020-04-15 The Procter & Gamble Company Weichspülerzusammensetzung mit verbesserter gefrier-/auftaustabilität
EP3339411B1 (de) * 2016-12-22 2019-12-11 The Procter & Gamble Company Weichspülerzusammensetzung mit verbesserter viskositätsstabilität
EP3339408B1 (de) * 2016-12-22 2020-01-29 The Procter & Gamble Company Weichspülerzusammensetzung mit verbesserten ausgabeeigenschaften
US10676694B2 (en) * 2016-12-22 2020-06-09 The Procter & Gamble Company Fabric softener composition having improved detergent scavenger compatibility
EP3404086B1 (de) * 2017-05-18 2020-04-08 The Procter & Gamble Company Weichmacherzusammensetzungen für stoffe
CN112272685B (zh) * 2018-08-14 2022-05-31 株式会社大赛璐 热成型用乙酸纤维素组合物、成型体及热成型用乙酸纤维素组合物的制造方法
DE202020103075U1 (de) 2020-05-28 2021-09-01 Eurofilters Holding N.V. Atemschutzmaske
EP3915648A1 (de) 2020-05-28 2021-12-01 Eurofilters Holding N.V. Atemschutzmaske

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006412A1 (en) * 1987-02-24 1988-09-07 American Filtrona Corporation Ultra-high filtration filter
DE3914022A1 (de) * 1989-04-28 1990-10-31 Aeterna Lichte Gmbh & Co Kg Biologisch abbaubare kunststoffmaterialien
EP0622407A1 (de) * 1993-04-28 1994-11-02 Hoechst Celanese Corporation Polymermischung aus Celluloseacetat und Stärkeacetat, die zur Formung von Fasern, Filmen und Kunststoffmaterialien verwendet wird; Verfahren zur Herstellung dieser Mischung
EP0632970A2 (de) * 1993-07-09 1995-01-11 Rhone-Poulenc Rhodia Aktiengesellschaft Aus Celluloseacetat geformte Gebilde, deren Verwendung zur Herstellung von Filtertow,Verwendung des Filtertows zur Herstellung eines Tabakrauchfilterelements sowie Filtertow und Tabakrauchfilterelement
WO1995016369A1 (en) * 1993-12-14 1995-06-22 American Filtrona Corporation Bicomponent fibers and tobacco filters formed therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1560800A1 (de) * 1966-02-10 1971-01-07 Lutravil Spinnvlies Verfahren und Vorrichtung zur Herstellung von Mischvliesen durch Schmelzspinnen
US3825379A (en) * 1972-04-10 1974-07-23 Exxon Research Engineering Co Melt-blowing die using capillary tubes
DE3521221A1 (de) * 1985-06-13 1986-12-18 Rhodia Ag, 7800 Freiburg Verfahren zur herstellung von spinnvliesen
US4714647A (en) * 1986-05-02 1987-12-22 Kimberly-Clark Corporation Melt-blown material with depth fiber size gradient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006412A1 (en) * 1987-02-24 1988-09-07 American Filtrona Corporation Ultra-high filtration filter
DE3914022A1 (de) * 1989-04-28 1990-10-31 Aeterna Lichte Gmbh & Co Kg Biologisch abbaubare kunststoffmaterialien
EP0622407A1 (de) * 1993-04-28 1994-11-02 Hoechst Celanese Corporation Polymermischung aus Celluloseacetat und Stärkeacetat, die zur Formung von Fasern, Filmen und Kunststoffmaterialien verwendet wird; Verfahren zur Herstellung dieser Mischung
EP0632970A2 (de) * 1993-07-09 1995-01-11 Rhone-Poulenc Rhodia Aktiengesellschaft Aus Celluloseacetat geformte Gebilde, deren Verwendung zur Herstellung von Filtertow,Verwendung des Filtertows zur Herstellung eines Tabakrauchfilterelements sowie Filtertow und Tabakrauchfilterelement
WO1995016369A1 (en) * 1993-12-14 1995-06-22 American Filtrona Corporation Bicomponent fibers and tobacco filters formed therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026496A3 (de) * 1997-11-21 1999-08-12 Reemtsma H F & Ph Biologisch abbaubarer filter für cigaretten
CZ297655B6 (cs) * 1997-11-21 2007-02-21 Reemtsma Cigarettenfabriken Gmbh Filtr pro tabákové výrobky
US8979961B2 (en) 2009-10-19 2015-03-17 Eurofilters Holding N.V. Vacuum cleaner filter bag
CN110325674A (zh) * 2016-12-21 2019-10-11 格罗兹-贝克特公司 通过溶液喷吹纺丝来生产纤维和非织造织物的方法以及由此生产的非织造织物

Also Published As

Publication number Publication date
US6207601B1 (en) 2001-03-27
JPH11506175A (ja) 1999-06-02
EP0885321B1 (de) 2000-05-10
DE59605210D1 (de) 2000-06-15
AU1302297A (en) 1997-09-22
JP3251018B2 (ja) 2002-01-28
DE19609143C1 (de) 1997-11-13
ATE192789T1 (de) 2000-05-15
EP0885321A1 (de) 1998-12-23

Similar Documents

Publication Publication Date Title
EP0885321B1 (de) Melt-blown-vlies, verfahren zu dessen herstellung und dessen verwendungen
DE69719796T2 (de) Verfahren zur herstellung eines vliesstoffes
DE19951062C2 (de) Hochleistungs-Zigarettenfilter
DE69210519T2 (de) Biologisch abbaubarer Vliesstoff und Verfahren zu seiner Herstellung
DE102005029793B4 (de) Vliesstoffe, Verfahren zu deren Herstellung sowie deren Verwendung
DE1230702B (de) Verfahren und Vorrichtung zum Herstellen von Filtern fuer Tabakrauch oder andere Gase
DE69733415T2 (de) Auf fibrillen basierende fasern, methode zu deren herstellung, dabei verwendete spinndüse und damit hergestellte formkörper
DE4136694A1 (de) Staerkefaser, verfahren zu ihrer herstellung sowie ihre verwendung
EP0518003A1 (de) Spinnvliesstoff aus thermoplastischen Endlosfilamenten und Verfahren zu seiner Herstellung
EP0574870A1 (de) Verfahren zur Herstellung von Cellulose-Formkörpern
DE112014005114T5 (de) Bikomponentenfasern, Produkte, die daraus gebildet sind, und Verfahren zum Herstellen derselben
DE60125964T2 (de) Gekräuselte faser und verfahren zu deren herstellung
DE10137171A1 (de) Verfahren zur Herstellung von cellulosischen Formkörpern mit superabsorbierenden Eigenschaften
EP0797696B1 (de) Verfahren zur herstellung cellulosischer fasern
DE3544523C2 (de)
DE4219658C3 (de) Verfahren zur Herstellung von Cellulosefasern -filamenten und -folien nach dem Trocken-Naßextrusionsverfahren
EP0541552B1 (de) Verfahren und spinnvorrichtung zur herstellung von mikrofilamenten
EP0608744B1 (de) Celluloseacetat-Filamente, eine optisch isotrope Spinnlösung hierfür sowie deren Verwendung zur Herstellung der Filamente
DE1964060C3 (de) Verfahren zur Herstellung von Wirrvliesen aus Hochpolymeren
EP2824224A1 (de) Spinnvliese und Fäden aus ligninhaltigen faserbildenden Polymeren
DE4007693C2 (de) Filterschicht
DE2744796A1 (de) Filtermaterial, seine herstellung und verwendung
DE2009971C3 (de) Bikomponenten-Synthesefaden des Matrix/Fibrillen-Typs
DE19959532C1 (de) Verfahren und Vorrichtung zur Herstellung von filtrationsaktiven Fasern
DE4013293C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996944588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09077044

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 531379

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996944588

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1996944588

Country of ref document: EP