WO1997006458A1 - Dispositif optique et procede pour le fabriquer - Google Patents

Dispositif optique et procede pour le fabriquer Download PDF

Info

Publication number
WO1997006458A1
WO1997006458A1 PCT/JP1996/002164 JP9602164W WO9706458A1 WO 1997006458 A1 WO1997006458 A1 WO 1997006458A1 JP 9602164 W JP9602164 W JP 9602164W WO 9706458 A1 WO9706458 A1 WO 9706458A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
substrate
light
optical fiber
optical device
Prior art date
Application number
PCT/JP1996/002164
Other languages
English (en)
French (fr)
Inventor
Tomoaki Uno
Jun Ohya
Genji Tohmon
Masahiro Mitsuda
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US08/809,976 priority Critical patent/US6406196B1/en
Priority to EP96925964A priority patent/EP0844503A4/en
Publication of WO1997006458A1 publication Critical patent/WO1997006458A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Definitions

  • the present invention relates to an optical device capable of receiving or transmitting/receiving an optical signal by connecting to an optical fiber transmission line, and a manufacturing method thereof.
  • Wavelength Division Multiplexing can increase the transmission capacity of an optical transmission system.
  • WDM Wavelength Division Multiplexing
  • wavelength division multiplexing can flexibly respond to the service requirements of optical transmission systems, and can be applied to various optical transmission systems such as repeater transmission systems, subscriber systems, and local transmission systems. It is possible.
  • FIG. 30 shows a conventional example of a light-receiving optical device applicable to bidirectional signal transmission.
  • This device is disclosed in Japanese Patent Application Laid-Open No. 6-331837.
  • the first optical fiber 2012 and the second optical fiber 2014 are connected in series with a gap (several meters) in between. .
  • One end of the first optical fiber 2012 is cut obliquely to the optical axis, and a semi-transmissive/semi-reflective surface 2011 that reflects part of the optical signal and transmits the rest is formed on that part. It is done.
  • one end of the second optical fiber 2014 is also cut obliquely to the optical axis, and that part has a semi-transmissive/semi-reflective surface that reflects part of the optical signal and transmits the rest.
  • the semi-transmitting/semi-reflecting surface 2013 of the second optical fiber faces the semi-transmitting/semi-reflecting surface 2011 of the first optical fiber 2012, and the respective optical axes are aligned.
  • the first and second optical fibers 2012 and 2014 are arranged so that
  • the optical signal propagating from the right side of the figure is reflected by the semi-transmitting/semi-reflecting surface 2011 of the first optical fiber 2012 and emitted from the optical fiber 2012 to the outside.
  • a first photodiode 2015 is arranged on the path of the optical signal and receives the optical signal to generate an electrical signal.
  • the optical signal propagating from the left side of the figure is reflected by the semi-transmitting/half-reflecting surface 2013 of the second optical fiber 2014 and emitted from the second optical fiber 2014 to the outside.
  • a second photodiode 2016 is arranged on the path of the optical signal and receives the optical signal to generate an electrical signal.
  • a semi-transmissive/semi-reflective surface is formed directly on the end surface of an obliquely cut optical fiber. For this reason, (1) a special cutting force is required to make the end face of the optical fiber smooth. (2) In order to form a semi-transmissive/semi-reflective surface on the end face of the optical fiber, it is necessary to deposit a thin film on the end face of the optical fiber. The process of inserting an optical fiber into a thin film deposition device such as a vacuum deposition device and depositing a thin film on the end face of the optical fiber reduces manufacturing throughput.
  • Another object of the present invention is to provide a bidirectional optical device for receiving or transmitting an optical signal by connecting to an optical fiber transmission line, and a manufacturing method thereof.
  • An optical device of the present invention comprises a substrate, at least one first groove formed in the substrate, an optical fiber arranged in the first groove, and at least one second groove diagonally crossing the optical fiber. and further comprising an optical member inserted into the second groove and having a surface that reflects or diffracts at least part of light propagating through the optical fiber.
  • a material having a refractive index nr substantially equal to the refractive index nf of the core portion of the optical fiber is embedded.
  • the material having the refractive index nr is made of resin.
  • the refractive index! Materials with ⁇ are formed from UV curable resin.
  • minute unevenness is present on the inner wall of the second groove.
  • the optical member selectively reflects light having a selected range of wavelengths.
  • the optical member selectively transmits light having a selected range of wavelengths.
  • the optical member comprises a base made of a material having a refractive index nb and a dielectric multilayer film formed on the base, wherein the refractive index nb and the There is a relationship of 0.9 ⁇ ( nb / nf ) ⁇ 1.1 with the refractive index nf .
  • the surface of the optical member has a diffraction grating.
  • the substrate is made of a material transparent to signal light propagating through the optical fiber.
  • the substrate is made of glass.
  • the substrate is made of ceramic.
  • the substrate is made of a semiconductor.
  • the normal to said surface of said optical member is not parallel to the optical axis of said optical fiber.
  • the second groove is inclined with respect to the upper surface of the substrate.
  • at least one optical element that receives light reflected or diffracted by the optical member is provided on the substrate.
  • At least one second optical member receives light transmitted through the optical member.
  • optical elements are further provided on the substrate.
  • the substrate has a top surface and a bottom surface, a first light receiving element disposed on the bottom surface of the substrate and receiving light reflected or diffracted by the optical member; A second light receiving element is disposed on the upper surface and receives light reflected or diffracted by the optical member.
  • the substrate has a top surface and a bottom surface with a reflector attached. a first light receiving element arranged on the upper surface of the substrate to receive light reflected or diffracted by the optical member; and a light receiving element arranged on the upper surface of the substrate to receive the light reflected or diffracted by the optical member. and a second light receiving element for receiving through the reflector.
  • the substrate has a top surface, a bottom surface and a plurality of side surfaces, a first light receiving element disposed on one of the plurality of side surfaces of the substrate and receiving light reflected or diffracted by the optical member; A second light receiving element arranged on the other one of the plurality of side surfaces of the substrate and receiving light reflected or diffracted by the optical member is further provided.
  • the optical element is a light-receiving element that generates an electrical signal according to received light.
  • the light receiving element is fixed on the substrate.
  • a material having a refractive index np substantially equal to the refractive index nf of the core portion of the optical fiber is embedded between the light receiving surface of the light receiving element and the substrate.
  • a low reflectance film is formed on the light receiving surface of the light receiving element.
  • the number of the second grooves is plural, and an optical member having different filter characteristics is inserted in each of the plural second grooves.
  • the number of said first grooves is plural, the number of said second grooves is singular, and said single second groove crosses said plurality of first grooves.
  • the number of the first grooves is plural, and the plurality of first grooves are arranged on the substrate so as to be substantially parallel.
  • a third groove is formed on the substrate along a direction intersecting the first groove, another optical fiber is provided in the third groove, and the light Light reflected or diffracted from the optical member is coupled into the other optical fiber.
  • laser light emitted from a semiconductor laser is coupled to the end of the optical fiber.
  • the substrate has a concave portion on the upper surface, the semiconductor laser is arranged in the concave portion of the substrate, the end of the front optical fiber is processed into a lens shape, and the Light emitted from the semiconductor laser is optically coupled to the optical fiber.
  • the end portion of the optical fiber has a movable portion capable of moving the position of the lens-shaped portion relative to the semiconductor laser element, and the light emitted from the semiconductor laser is The movable portion is fixed while being optically coupled to the optical fiber.
  • the substrate has a concave portion on the upper surface, and a semiconductor laser arranged in the concave portion of the substrate and a lens for optically coupling the emitted light of the semiconductor laser to the optical fiber.
  • a support member that supports the semiconductor laser and the lens is arranged in a concave portion of the substrate.
  • the semiconductor lasers arranged on the support member are arranged in recesses of the substrate after being screened.
  • the substrate is provided with a light receiving element that receives part of the laser light from the semiconductor laser.
  • the optical fiber has a first portion that functions as a single-mode fiber in the wavelength band of signal light propagating through the optical fiber, and a second portion that functions as a multimode fiber in the wavelength band of the signal light. and a connecting portion connecting the first portion and the second portion, and the core diameter of the connecting portion gradually and continuously changes from the first portion toward the second portion. ing.
  • the core diameter of the second portion of the optical fiber functioning as the multimode fiber is increased by heat-treating part of the single mode fiber.
  • the other optical fiber in the third groove is made of a multimode fiber, and the light reflected or diffracted from the optical member is passed through the other optical fiber. It further comprises a light-receiving element for receiving via the eyeba.
  • an electrical wiring pattern is formed on the substrate, and the light receiving element is connected to the electrical wiring pattern.
  • a semiconductor electric element for performing signal processing of the light receiving element is connected to the electric wiring pattern.
  • one end of the optical fiber is attached with an optical connector for connecting to another optical fiber.
  • a protective film is further provided to cover the upper surface of the substrate.
  • the substrate is housed in a body having an outlet for the optical fiber and a plurality of terminals for electrical connection with the outside.
  • the semiconductor laser is connected to the support member by a first solder material, and the support member is connected to the support member by a second solder material having a melting point higher than that of the first solder material. connected on the board.
  • the substrate is accommodated in a body having an outlet for the optical fiber and a plurality of terminals for electrical connection with the outside, and the substrate is the second solder material. It is connected to the bottom of the body by a third solder material having a lower melting point than the melting point of the body.
  • Another optical device of the present invention comprises a substrate, at least one first groove formed in the substrate, an optical fiber arranged in the first groove for propagating signal light in both directions, and the optical fiber and at least one second groove that obliquely crosses the optical fiber, and is further inserted into the second groove to reflect or An optical member having a diffractive surface; and two light receiving elements that respectively receive light reflected or diffracted by the optical member out of the bidirectional signal light.
  • a third groove that traverses the optical fiber, and inserted into the third groove, and a second optical member having a surface for reflecting and removing light of unnecessary wavelength components propagating through the optical fiber.
  • the second groove is perpendicular to the optical axis of the optical fiber. In one embodiment, the second groove and the third groove are arranged so as to prevent light reflected by the second optical member inserted into the third groove from mixing into the two light receiving elements. formed at different angles to the axis.
  • a material having a refractive index nr substantially equal to the refractive index nf of the core portion of the optical fiber is embedded.
  • the material having the refractive index nr is made of resin. In one embodiment, the material having the refractive index nr is made of UV curable resin.
  • minute unevenness is present on the inner wall of the second groove.
  • the optical member selectively reflects light having a selected range of wavelengths.
  • the optical member selectively transmits light having a selected range of wavelengths.
  • the optical member should be made of a material having a refractive index nb .
  • the surface of the optical member has a diffraction grating.
  • the certain plate is made of a material transparent to signal light propagating through the optical fiber.
  • the substrate is made of a glass material. In one embodiment, the substrate is made of a plastic material. In one embodiment, the bidirectional signal lights have mutually different wavelengths, and the optical member comprises: a transparent base having a refractive index substantially equal to that of an optical fiber; It has two reflective coats formed on two main surfaces, and the two reflective coats each exhibit different reflective properties.
  • the reflective coat is made of a thin metal film.
  • each of the two reflective coats has a multilayer thin film structure.
  • each of the two light-receiving elements is mounted by sealing on a can-shaped body, and two recesses are formed in the substrate so as to fit into the can-shaped body.
  • the two light receiving elements are connected to an electrical wiring pattern formed on the substrate.
  • the electrical wiring pattern is connected to an electrical integrated circuit element that detects and processes an electrical signal output from at least one of the two light receiving elements.
  • the optical fiber has a first portion that functions as a single-mode fiber in the wavelength band of signal light propagating through the optical fiber, and a second portion that functions as a multimode fiber in the wavelength band of the signal light. and a connecting portion connecting the first portion and the second portion, and the core diameter of the connecting portion gradually and continuously changes from the first portion toward the second portion. ing.
  • the substrate is housed in a body having an outlet for the optical fiber and a plurality of terminals for electrical connection with the outside.
  • the wavelength of the light propagating in the optical fiber in both directions belongs to the 1.3 mm band and/or the 1.5 mm band, and the unwanted light is removed by the second optical member.
  • the wavelength of light belongs to the 0, 98 m band or the 1.48 band.
  • the method for manufacturing an optical device according to the present invention includes the steps of forming a first groove in the upper surface of a substrate, embedding and fixing a portion of an optical fiber in the first groove, and cutting the optical fiber diagonally. forming a second groove; and inserting and fixing an optical member having a surface that reflects or diffracts at least part of light propagating through the optical fiber into the second groove.
  • the step of inserting and fixing the optical member into the second groove includes inserting the core portion of the optical fiber into the second groove and at least between the optical member and the optical fiber. It involves embedding a W material with a refractive index nr approximately equal to the refractive index ⁇ f .
  • the method further includes placing at least one light receiving element on the substrate.
  • the method further includes placing at least one light receiving element on the substrate.
  • Some embodiments further include disposing at least one optical element on the front substrate.
  • Another optical device manufacturing method of the present invention includes the steps of: forming a plurality of first grooves on the surface of a substrate; embedding and fixing a portion of an optical fiber in each of the plurality of first grooves; forming a second groove that obliquely crosses the plurality of optical fibers; and inserting and fixing an optical member having a surface that reflects or diffracts at least part of light propagating through the optical fiber into the second groove.
  • the angle between the normal direction of the surface of the optical member and the optical axis direction of the optical fiber is 5 degrees or more and 40 degrees or less.
  • An optical device of the present invention comprises a substrate, at least one first groove formed in the substrate, an optical fiber disposed in the first groove, and the substrate obliquely crossing the optical fiber. and a material having a refractive index substantially the same as the refractive index of the core portion of the optical fiber.
  • an optical member having a surface that reflects or diffracts at least part of the light propagating through the optical fiber; a light-receiving element that receives light reflected by the light-receiving element;
  • the light receiving element is arranged on the surface of the substrate on which the first groove is formed.
  • the light receiving element is arranged on the surface of the substrate opposite to the surface on which the first groove is formed.
  • it comprises a third groove that traverses the optical fiber, and a second optical member that is inserted into the third groove and reflects light in a specific wavelength region, the second optical member comprising: The light in the specific wavelength region propagating through the optical fiber is prevented from entering the light receiving element.
  • an optical member that reflects light in a specific wavelength region and is attached to the upper surface of the substrate with a resin material having a refractive index substantially the same as the refractive index of the core of the optical fiber. and the light receiving element is arranged on the optical member.
  • a light-receiving surface of the light-receiving element is formed with a filter having a dielectric multilayer structure.
  • the optical fiber is connected to an optical fiber optical transmission line.
  • the optical fiber is formed with a ferrule portion for connection to an optical fiber transmission line.
  • Another optical device manufacturing method of the present invention comprises the steps of: forming a first groove on a substrate; fixing an optical fiber in the first groove; cutting the optical fiber diagonally; forming an end surface on the substrate that is inclined with respect to the optical axis of the optical fiber; a step of attaching an optical member having a surface that reflects or diffracts at least a portion of light propagating through the fiber to the inclined end surface using a material having a refractive index substantially the same as that of the core portion of the optical fiber; arranging on the substrate a light-receiving element that receives light reflected or diffracted by the optical member.
  • an optical fiber is embedded in the groove of the substrate, and an optical member that reflects or diffracts the light propagating through the optical fiber is embedded, thereby extracting signal light in an arbitrary direction. making it possible.
  • the optical member is formed by embedding a layer having a multilayer film structure of a dielectric and a metal with a resin material having a refractive index approximately equal to that of the optical fiber on both sides of the substrate, or a surface different from the main surface of some kind of optical member.
  • the filter characteristics are improved by embedding a resin material with a refractive index approximately equal to that of the optical fiber.
  • the light extracted by diffraction is coupled to a semiconductor photodetector array, or extracted to the outside using another optical fiber, and only desired wavelengths can be demultiplexed and extracted from optical signals of multiple different wavelengths. Easy to do.
  • the optical fiber is a multimode optical fiber that is connected to a single mode fiber, and the core diameter of the connection part changes slowly and continuously.
  • Light can be easily coupled to an optical fiber by arranging a semiconductor laser in the recess of the substrate and using an optical fiber with a lens function.
  • the degree of coupling of light to the optical fiber can be further enhanced by adjusting the movable portion of the optical fiber after connecting the semiconductor laser to the substrate.
  • the characteristics of the semiconductor layer can be selected by inspection in advance, and then used, so that the yield of the optical device can be improved.
  • the light of the semiconductor laser can be coupled to the optical fiber with a loose accuracy of several meters.
  • An electric wiring pattern can be formed on the surface of the substrate for connection with the semiconductor light emitting/receiving element, and especially in the case of high frequency signals, it is possible to match the impedance with the electric circuit connected to the outside.
  • the semiconductor light emitting/receiving element if an electric element for processing electric signals is integrally formed, the electric matching becomes good and the size can be reduced.
  • the semiconductor elements arranged on the substrate surface can be protected from external moisture and atmosphere.
  • the substrate can be accommodated in a body having a direct fiber optic outlet and electrical connection terminals.
  • the first solder material between the semiconductor laser and the substrate, the second solder material between the substrate and the substrate, and the third solder material for connecting between the substrate and the above-mentioned parts are selected so that the melting point of the first solder material is higher than that of the second solder material.
  • FIG. 1A is a perspective view of the first embodiment of the optical device of the present invention.
  • FIG. 1B is a cross-sectional view along the optical fiber of the first embodiment of the optical device of the present invention
  • FIG. 2 is a cross-sectional view showing details of the reflecting substrate and its surroundings;
  • Figure 3 is a cross-sectional view showing details of another reflective substrate and its surroundings
  • FIG. 4A is a cross-sectional view of an optical fiber and a light receiving element
  • Fig. 4B is a vertical cross-sectional view of the optical fiber and photodetector
  • Fig. 4C is a vertical cross-sectional view showing refraction of signal light
  • FIG. 5 is a cross-sectional view along the optical fiber of the second embodiment of the optical device of the present invention.
  • FIG. 6 is an explanatory diagram showing the spacing dependence of coupling loss between fibers.
  • FIG. 7A is a circuit diagram of the third embodiment of the optical device of the present invention.
  • FIG. 7B is a perspective view of the third embodiment of the present invention.
  • FIG. 7C is a plan view of the third embodiment of the present invention.
  • FIG. 8 is a block diagram of the packaged third embodiment of the present invention.
  • FIG. 9A is a plan view of the fourth embodiment of the optical device of the present invention.
  • FIG. 9B is a cross-sectional view along the optical fiber of the fourth embodiment of the present invention.
  • FIG. 10A is a plan view of a fifth embodiment of the optical device of the present invention.
  • FIG. 10B is a cross-sectional view along the optical fiber of the fifth embodiment of the present invention.
  • FIG. 11A is a perspective view of a sixth embodiment of the optical device of the present invention.
  • FIG. 11B is a cross-sectional view of the sixth embodiment of the present invention.
  • FIG. 12A is a perspective view of a seventh embodiment of the optical device of the present invention.
  • FIG. 12B is a cross-sectional view of the seventh embodiment of the present invention.
  • FIG. 13 is a perspective view of an eighth embodiment of the optical device of the present invention.
  • FIG. 14 is a plan view of a ninth embodiment of the optical device of the present invention.
  • FIG. 15 is a cross-sectional view of the tenth embodiment of the optical device of the present invention
  • FIG. 16 is a cross-sectional view of the eleventh embodiment of the optical device of the present invention
  • FIG. 17 is a graph showing optical coupling loss characteristics in optical fibers with different core diameters.
  • FIG. 18A is a normal optical fiber
  • FIG. 18B is a schematic cross-sectional view of an optical fiber with a partially enlarged core.
  • FIG. 19 is a plan view of a twelfth embodiment of the optical device of the present invention.
  • FIG. 20 is a configuration diagram of the thirteenth embodiment of the optical device of the present invention'.
  • FIG. 21 is a cross-sectional view of a fourteenth embodiment of the optical device of the present invention.
  • FIG. 22 is a graph showing angle dependence of return loss in the fourteenth embodiment of the present invention.
  • FIG. 23A to 23D are perspective views showing the manufacturing method of the fourteenth embodiment.
  • FIG. 24 is a cross-sectional view of the fifteenth embodiment of the optical device of the present invention.
  • FIG. 25 is a cross-sectional view of the sixteenth embodiment of the optical device of the present invention.
  • 26A and 26B are configuration diagrams of the sixteenth embodiment.
  • FIG. 27 is a cross-sectional view of the seventeenth embodiment of the optical device of the present invention.
  • FIG. 28 is a cross-sectional view of the eighteenth embodiment of the optical device of the present invention.
  • 29A to 29E are perspective views showing the manufacturing method of the 18th embodiment.
  • FIG. 30 is a schematic diagram showing a conventional optical device.
  • FIG. 31A is a perspective view of the 19th embodiment of the optical device of the present invention
  • FIG. 31B is a cross-sectional view thereof. Best Mode for Carrying Out the Invention
  • An optical device is an optical device comprising an optical fiber arranged in a first groove of a substrate and at least one second groove diagonally crossing the optical fiber, wherein the optical device is inserted into the second groove. and includes an optical member that reflects or diffracts at least part of light propagating through the optical fiber.
  • the optical fiber It becomes possible to receive propagating light with a light-receiving element or the like arranged in-line.
  • a light-receiving element or the like arranged in-line.
  • the inner wall of the second groove has minute unevenness. Even if there is, the light propagating through the optical fiber is not affected by unnecessary scattering and refraction due to the inner wall of the second groove. This makes the formation of the second groove extremely easy, and for example eliminates the need to smooth the inner wall of the second groove by polishing.
  • the second groove is formed after the optical fiber is arranged in the first groove of the substrate, a special optical axis alignment process is not required, and the manufacturing process is extremely simplified.
  • FIG. 1A is a perspective view showing only the top of the first embodiment of the optical device (light receiving module) of this embodiment
  • FIG. 1B is a cross-sectional view taken along the optical fiber of the optical device. be.
  • This parallel groove 4 allows the optical fiber A slit is formed diagonally in the pipe 2, which separates it into two spatially separated parts.
  • the parallel grooves 4 are formed so that the normal to the inner wall of the parallel grooves 4 forms an angle of 30 degrees with respect to the optical axis.
  • V-groove 3 is designed to hold optical fiber 2 stably.
  • the depth of the V-groove 3 is preferably such that the optical fiber 2 can be completely contained inside, but there is no big problem even if the top of the optical fiber 2 is slightly above the top surface of the substrate 1. do not have.
  • a groove having a rectangular or U-shaped cross section on a plane perpendicular to the optical axis may be adopted.
  • the parallel groove 4 is preferably a groove with a groove width (interval between groove inner walls or distance between two separated optical fibers) of about 100 m or less.
  • an optical member is inserted into this parallel groove 4.
  • a light reflecting substrate (80 m thick) 5 having a filter characteristic of selectively reflecting light in the 1.55 m band is inserted in the parallel grooves 4 .
  • This light reflecting substrate 5 comprises a quartz substrate as a base, and a dielectric multilayer film (filament film) in which a silicon oxide film and a titanium oxide film are alternately laminated on at least one main surface thereof, This provides a filter characteristic that exhibits high reflectance for light within a specific wavelength range.
  • the light reflecting substrate 5 does not have to be completely accommodated in the parallel groove 4, and a part of the light reflecting substrate 5 may protrude above the upper surface of the substrate 1, and the light propagates through the optical fiber 2. It is sufficient if they are arranged so as to receive incoming signal light.
  • FIG. 2 is a cross-sectional view showing the vicinity of the parallel grooves 4 and the base 5 in more detail.
  • the inner wall of the parallel groove 4 more precisely, the end faces of the optical fiber 2 facing each other through the parallel groove 4 cross the optical axis of the optical fiber 2 obliquely. Therefore, if a material with a refractive index different from the refractive index nf of the core portion of the optical fiber exists inside the parallel groove 4, the optical fiber 2 will be Propagating light is refracted in the parallel grooves 4 .
  • the inner walls of the parallel grooves 4 are susceptible to damage (mechanical and chemical damage) due to the process of forming parallel grooves such as dicing, and fine unevenness is formed on the inner walls of the parallel grooves 4. It is often done.
  • the space between the inner wall of the parallel groove 4 and the light reflecting substrate 5 is filled with a material having a refractive index nr substantially equal to the refractive index nf of the core portion of the optical fiber 2. Then, the light propagating through the optical fiber 2 passes through the parallel grooves 4 and travels straight between the optical fibers without feeling minute unevenness and without changing the optical axis.
  • the relationship between the refractive index nr and the refractive index nf is preferably 0.9 ⁇ ( nrZnf ) ⁇ l.1.
  • all resins referred to in this specification have a refractive index that satisfies the above inequality.
  • An InGaAs semiconductor photodetector 6 for detecting the 1.55/im band signal light reflected by the light reflecting substrate 5 is arranged on the upper surface of the substrate 1 .
  • An electrode 8 is formed on the upper surface of the substrate 1 for interconnection between the semiconductor light receiving element 6 and an external circuit.
  • An arrow 9 in the figure indicates the course of the optical signal in the 1.55 m band transmitted from the other end of the optical fiber 2 . Since the light having a wavelength greatly shifted from the wavelength of the optical signal is hardly reflected by the light reflecting substrate 5, it passes through the light reflecting substrate 5 and does not reach the light receiving portion of the semiconductor light receiving element 6.
  • FIG. 3 shows an example in which a substrate having a diffraction grating formed thereon is inserted into the parallel groove 4 as an optical member instead of the light reflecting substrate 5 having the filter film formed thereon.
  • the diffraction grating diffracts the light propagating through the optical fiber 2 to form a plurality of diffracted lights.
  • the light-receiving part of the light-receiving element is arranged at a position where the diffracted light of the highest intensity can be received.
  • the diffraction angles differ according to their wavelengths.
  • each signal light By arranging the light receiving units (for example, photodiodes PD1, PD2, PD3) at different positions, each signal light can be detected separately. In order to miniaturize the light-receiving element, it is preferable to provide the plurality of light-receiving parts on one semiconductor substrate. Next, the traveling path of the signal light reflected by the substrate 5 will be described with reference to FIGS. 4A to 4C.
  • resin is provided between the optical fiber and the light receiving element in this embodiment.
  • a resin is selected whose refractive index n'r is approximately equal to the refractive index nf of the core portion of the optical fiber.
  • This resin is provided so as to fill at least the path of the signal light. If the resin does not fill the path of the signal light, the signal light will be refracted and scattered, and the light receiving element will not be able to receive the signal light efficiently. Moreover, in such a case, since the optical fiber has a columnar structure, the path of the signal light becomes complicated due to the lens effect.
  • the signal light is directed straight to the light receiving element as shown in FIG. 4B. can be incident on the light-receiving part of the child.
  • FIG. 4C schematically shows how the path of signal light changes depending on the presence or absence of resin. When refraction or scattering occurs, the spot size of the signal light on the light-receiving part increases, and the detection sensitivity and response speed of the light-receiving element decrease.
  • the relationship between the refractive index nf and the refractive index nf is preferably 0.9 ⁇ ( nr /nf) ⁇ 1.1. Materials other than resin may be used as long as they have the same refractive index.
  • the signal light selectively reflected by the light reflecting substrate 5 does not pass through the substrate 1 . Therefore, the substrate 1 does not necessarily have to be transparent to the signal light. Besides the glass substrate 1, a ceramic substrate or a semiconductor substrate may be used. When a semiconductor substrate is used, it is also possible to previously form a circuit connected to the light receiving element on the same semiconductor substrate.
  • An optical signal transmitted through the optical fiber 2 (for example, a laser beam in the 1.55 im band) is reflected by the light reflecting substrate 5 in the parallel groove 4 formed obliquely with respect to the optical axis of the optical fiber 2. Obliquely reflected.
  • the angle between the normal to the inner wall of the parallel groove 4 (more precisely, the "normal to the main surface of the light reflecting substrate 5") and the optical axis of the optical fiber 2 is about 30 degrees.
  • the signal light is reflected so that the angle between the reflected light and the optical axis of the optical fiber 2 is approximately 60 degrees.
  • light not belonging to the 1.55 nm band for example, light having a wavelength shifted from 1.55/m by about 0.2/m or more, is transmitted through the optical fiber 2, most of the light is , it will be transmitted through the light reflecting substrate 5 without being reflected.
  • the direction of the parallel grooves 4 is set so that the plane containing both the normal line and the optical axis of the optical fiber is perpendicular to the upper surface of the substrate 1. It is
  • optical signals within a desired wavelength range are selectively extracted from the upper surface of the glass substrate 1 to the outside of the substrate.
  • a semiconductor light receiving element 6 for optical signal detection is arranged at a position where the extracted optical signal can be received.
  • the semiconductor photodetector 6 converts the optical signal of the 1.55 Am band into an electrical signal, which is output from the electrode 8 to the outside.
  • the resin 7 is selected so that the electrodes of the semiconductor light-receiving element 6 are crimped and fixed to the electrodes 8, and at the same time, its refractive index is such that the optical signal taken out from the optical fiber 2 is not refracted or scattered.
  • the surface of the semiconductor light-receiving element 6 is previously coated with a low-reflectance coating so that the semiconductor layer surface (light-receiving surface) does not reflect the optical signal. Therefore, most of the optical signal with a wavelength of 1.55/zrn propagating through the optical fiber 2 is captured by the light receiving portion of the semiconductor light receiving element 6 .
  • the semiconductor light receiving element 6 used here uses an InP semiconductor crystal substrate transparent to the optical signal of wavelength 1.55, the incident direction of the optical signal may be either the crystal growth side or the crystal substrate side.
  • the distance between the light signal output point of the optical fiber 2 and the light-receiving part of the semiconductor light-receiving element is short (approximately 60 to 30'0 m), and the distance is constant with good reproducibility. can be set to the value of Therefore, it is suppressed that light spreads spatially from the optical signal emission point and reaches a region other than the light receiving portion of the semiconductor light receiving element.
  • V-groove 3 is formed on the upper surface of glass substrate 1 by mechanical cutting.
  • the conductive thin film is processed into a desired electrode pattern by a photolithography process and an etching process, thereby forming a pattern.
  • An electrode 8 is formed from the evening conductive film.
  • an "alignment mark" indicating the position where the parallel groove 4 should be formed and the position where the light receiving element should be arranged can be formed on the glass substrate 1. preferable.
  • the optical fiber 2 is embedded in the V-groove 3 using a resin material.
  • the parallel grooves 4 are formed on the glass substrate 1 at the positions indicated by the alignment marks.
  • the parallel grooves 4 can be easily formed by a cutting device called a wire saw or a dicing saw.
  • the light reflecting substrate 5 is inserted into the parallel grooves 4 together with resin, and the resin is cured.
  • the refractive index of the resin By setting the refractive index of the resin to the same level as the refractive index of the core portion of the optical fiber 2, excessive optical loss (scattering of optical signals) due to roughening of the inner walls (cut surfaces) of the parallel grooves 4 can be suppressed.
  • an ultraviolet curable resin is preferable. This is because there is no need to perform a heating process for curing.
  • the semiconductor light receiving element 6 is fixed on the glass substrate 1 at the position indicated by the alignment mark. Alignment is realized by aligning the positions of the alignment mark on the glass substrate 1 and the semiconductor light receiving element 6 while observing them from above the glass substrate 1 . If a mark indicating the position of the light-receiving part is formed in advance on the semiconductor light-receiving element 6 side as well, the alignment can be performed with higher accuracy.
  • the alignment marks can be formed at the same time. If a resin material that hardens when irradiated with ultraviolet light from the outside is used, the semiconductor light receiving element can be fixed at a predetermined position without requiring a long hardening time.
  • this light-receiving device When manufacturing this light-receiving device, it is not necessary to three-dimensionally adjust the position of each component while detecting the optical signal from the optical fiber. Therefore, it can be manufactured using a mounting apparatus that performs two-dimensional adjustment, such as that used for mounting technology in the field of silicon integrated circuit device manufacturing. Therefore, it is suitable for mass production in a short period of time, and low prices can be expected. (Example 2)
  • the same reference numerals are given to the same parts as the parts explained in relation to the above embodiment, and the detailed explanation of the parts may be omitted.
  • the glass substrate 1 It is formed in the glass substrate 1 at a predetermined angle with respect to the optical axis of 2.
  • the angles formed by the parallel grooves with respect to the optical axis are equal, but they may be different from each other.
  • the optical fiber 2 is fixed with resin in a groove formed on the upper surface of the glass substrate 1 as described in the first embodiment.
  • the operation of the optical device of this embodiment is as follows.
  • the light reflecting substrate 11 selectively reflects only the optical signal with a wavelength of 1.55 m and applies the reflected light to the semiconductor light receiving elements 1 ; 3 (path 16).
  • the semiconductor photodetector 13 generates an electrical signal in response to the received optical signal.
  • an optical signal with a wavelength of 1.3 is transmitted through the light reflecting substrate 11 and selectively reflected by the light reflecting substrate 12.
  • the reflected light is applied to the semiconductor light receiving element 14, and the semiconductor light receiving element 14 generates an electrical signal in response to the received optical signal.
  • the resin 7 is selected so that the electrodes of the light-receiving arms 13 and 14 are crimped and fixed to the electrode 8, and the refractive index does not cause reflection of the optical signal extracted from the optical fiber 2.
  • the surfaces of the semiconductor light receiving elements 13 and 14 are pre-applied with a low reflectance coating so that the optical signal is not reflected on the surface of the semiconductor layer.
  • An optical signal with a wavelength of 31/m is captured by the element 13 and captured by the semiconductor light receiving element 14 .
  • the distance between the light signal emission point of the optical fiber 2 and the light-receiving part of the semiconductor light-receiving element can be shortened (approximately 60 to 30 Owm) and can be set at a constant value with good reproducibility. Therefore, it is suppressed that the light from the optical signal emission point spreads spatially and reaches the area other than the light receiving portion of the semiconductor light receiving element.
  • FIG. 6 shows the calculated and experimental results of the optical loss caused by the gap in the single-mode fiber.
  • the solid line in FIG. 6 indicates the loss of the optical signal with a wavelength of 1 m
  • the dashed line indicates the loss of the optical signal with a wavelength of 1.55 m.
  • the refractive index of the resin used in this embodiment is about 1.5. From Fig. 6, the refractive index n
  • this light-receiving device When manufacturing this light-receiving device, it is not necessary to three-dimensionally adjust the position of each component while detecting the optical signal from the optical fiber. Therefore, it can be manufactured using a mounting apparatus that performs two-dimensional adjustment, such as that used for mounting technology in the field of silicon integrated circuit device manufacturing. Therefore, it is suitable for mass production in a short period of time, and low prices can be expected.
  • the light-receiving device of this embodiment may be improved so that it can detect three or more types of optical signals with different wavelengths.
  • FIG. 7A to 7B and 8. A third embodiment of the device according to the invention will now be described with reference to FIGS. 7A to 7B and 8.
  • FIG. 7A to 7B and 8. A third embodiment of the device according to the invention will now be described with reference to FIGS. 7A to 7B and 8.
  • the device of this embodiment is a light receiving device for receiving optical signals of two wavelengths as shown in FIG. A device and an electric amplifier are hybridly integrated on one substrate.
  • FIG. 7A is an equivalent circuit showing part of the circuit of the device
  • FIG. 7B is a schematic perspective view of the device
  • FIG. 7C is a plan view thereof.
  • the substrate 1 is formed with the light receiving elements 13 and 14 of FIG. , detects signal light in a wavelength band selected from light propagating through the optical fiber 2 embedded in the groove (not shown).
  • the light receiving element is represented by the photodiode symbol in FIG. 7A.
  • the electric amplifier amplifies the potential change and outputs it.
  • the first electric amplifier 21 is electrically connected to the first light receiving element 13
  • the second electric amplifier 22 is electrically connected to the second light receiving element 14.
  • the first light receiving element 13 is connected to the electrical wiring pattern 25 via the first resistor 23, and the second light receiving element 14 is connected to the electrical wiring pattern 25 via the second resistor 24. It is connected to the. '
  • the optical signal with a wavelength of 1.55 is converted into an electrical signal by the first light receiving element 13, input to the first electrical amplifier 21 and amplified, and then It is taken out by an electrode pattern not shown in FIG. 7B.
  • the optical signal with a wavelength of 1.31 m is not detected by the first light receiving element 13 and is converted into an electrical signal by the second light receiving element 14 and then input to the second electrical amplifier 22. is amplified. The amplified signal is picked up by an electrode pattern not shown in FIG. 7B.
  • the device of Figure 7B is manufactured as follows.
  • electrode wiring pattern 25 is formed on glass substrate 1 .
  • the electrode wiring pattern 25 is formed. It is formed by performing a photolithography process and an etching process. Through these steps, the electrode wiring pattern 2 can be formed, and various "alignment marks" can be formed from the conductive thin film.
  • the shaded area in FIG. 7C shows an example of the electrode wiring pattern.
  • FIG. 8 is a diagram showing the configuration of the device shown in FIG.
  • the receiving device of FIG. 7B is indicated by reference numeral 37.
  • the light receiving device 37 is fixed to the bottom of the package 31 with a conductive resin. After that, one end of each electrical connection terminal 33 passing through the package 31 and the electrode wiring pattern on the light receiving device 37 are connected by an electrical connection wire 35 made of aluminum.
  • the other end of the optical fiber extending from the light receiving device 37 in the package 31 to the outside through the optical fiber outlet 32 is connected to the optical connector 36 .
  • the surface of the light-receiving device 37 is covered with a protective resin to protect the light-receiving element from moisture and gas entering the inside of the package 31 from the outside.
  • the lid is attached to the package 31 after airtight treatment is performed by filling resin in the optical fiber extraction part.
  • it is not necessary to position each part with high precision in the direction perpendicular to the paper surface of FIG. Therefore, it can be easily fabricated using a normal mounting apparatus used in the field of mounting semiconductor integrated circuits.
  • all the components are fixed to the package 31, Highly reliable against mechanical vibration.
  • FIG. 9A is a plan view of this embodiment
  • FIG. 9B is a sectional view thereof.
  • a plurality of semiconductor laser elements are arranged in addition to a plurality of light receiving elements on a ceramic substrate 41 having recesses formed therein. Therefore, it is possible to transmit and receive signal light with a compact configuration.
  • the upper surface of the ceramic substrate 41 includes a first region in which a semiconductor laser element is arranged,
  • It is divided into a second region in which the optical element is formed.
  • the height of the first region is greater than the height of the second region, e.g. It is formed low, about 70 im.
  • the reason why the concave portion is formed on the upper surface of the substrate is to mount a light-emitting element such as a semiconductor laser element in this concave portion. In order to align the position of the light emitting portion of the light emitting element with the optical axis of the optical fiber, the relative height of the bottom surface of the recess is adjusted.
  • Three grooves are formed in the second region of the upper surface of the ceramic substrate 41, and an optical fiber 48 is embedded in each groove.
  • One parallel groove is formed so as to obliquely cross the three optical fibers 48 .
  • a sheet of light reflecting substrate 41 that reflects light with a wavelength of 1.55/zm and transmits light with a wavelength of 1.31/xm is inserted in this parallel groove.
  • a semiconductor laser array 44 that emits laser light with a wavelength of 1.31 m is arranged on a first region on the upper surface of the ceramic substrate 41 .
  • the semiconductor laser arrays 44 formed on the same semiconductor substrate are used.
  • Three semiconductor laser elements of each type may be arranged separately on the ceramic substrate 41 .
  • Three semiconductor light receiving elements 45 are arranged in parallel on a second region on the upper surface of the ceramic substrate 41 .
  • the semiconductor light receiving elements 45 are arranged directly above the corresponding optical fibers 48 and fixed with resin.
  • the semiconductor light receiving element 45 receives the optical signal with a wavelength of 1.55 m reflected by the reflecting substrate 41 .
  • a laser element electrode 47 is formed on the first region of the upper surface of the ceramic substrate 41, and a light receiving element electrode 46 is formed on the second region.
  • a lens 49 is formed at the tip of each optical fiber 48 by polishing the tip of the optical fiber 48 so as to have a constant curvature. The lens 49 allows the signal light emitted from the semiconductor laser array 44 to enter the corresponding optical fiber 48 efficiently. A method for manufacturing the optical device will be described below.
  • the light receiving element electrode 46 and the laser element electrode 47 are mounted on the substrate 41 by the same method as the method of forming the electrode wiring pattern described above. to form.
  • the laser element electrode 47 is formed on the bottom surface of the recess of the substrate 41 .
  • the semiconductor light receiving element 45 and the semiconductor laser array 44 are mounted at predetermined positions on the IR laminate substrate 41 using resin or solder material. At this time, the positions of the semiconductor light receiving element 45 and the semiconductor laser array 44 are adjusted with respect to the already formed electrodes 46 and 47, respectively.
  • the semiconductor laser element array 44 is arranged such that the lens 49 formed at the tip of the optical fiber 48 faces the corresponding laser light emitting portion of the semiconductor laser element array 44 . Therefore, an array of laser beams can be coupled to each optical fiber array at once. In addition, if the projection distance of the lens 49 into the concave portion is increased, the portion of the optical fiber exposed to the concave portion becomes longer. It becomes easy to adjust for 4 emission areas.
  • optical signals with a wavelength of 1.55 m transmitted in parallel by an optical fiber array composed of a plurality of optical fibers can be separately received by the semiconductor photodetector array, and at the same time, signals with a wavelength of 1.3 m can be received.
  • An optical signal of 1 jm can be transmitted. This enables multiple bidirectional optical signal transmissions with a single device.
  • the above-described electric circuit for performing signal processing for each of the light emitting and light receiving element arrays is provided on the same substrate, a more compact and economical optical device can be obtained more easily.
  • FIG. 10A is a plan view of this embodiment
  • FIG. 10B is a sectional view thereof.
  • a light-receiving element and a semiconductor laser element are arranged on a glass substrate 51 having recesses formed therein.
  • the upper surface of the glass substrate 51 is divided into a first area where the semiconductor laser element is arranged and a second area where the light receiving element is formed.
  • the first region corresponds to the bottom surface of recess 54 formed in glass substrate 51 .
  • a groove is formed in the second region of the upper surface of the glass substrate 51, and an optical fiber 52 whose tip is changed into a multimode fiber 53 is embedded in the groove.
  • the core diameter of the single mode fiber 52 is 10 ⁇
  • the core diameter of the multimode fiber 53 is 50 m.
  • the core diameter gradually and continuously changes from 10 ⁇ m to 50 ⁇ m.
  • a parallel groove (not shown) is formed so as to cross the optical fiber 52 obliquely.
  • a piece of reflective substrate (not shown) that reflects light with a wavelength of 1.55im and transmits light with a wavelength of 1.31111 is inserted in this parallel groove.
  • a semiconductor laser element 56 that emits laser light with a wavelength of 1.31 ⁇ is arranged on a first region on the upper surface of the substrate 51 .
  • a semiconductor light receiving element (not shown) is arranged on the second region of the upper surface of the glass substrate 51, and receives an optical signal with a wavelength of 1.55 m reflected by the reflecting substrate.
  • a laser element electrode 58 is formed on the first region on the upper surface of the glass substrate 51 .
  • the semiconductor laser element 56 is placed on the ceramic substrate 55 in advance using a solder material with a melting point of 230°C together with the lens 57, and its characteristics are inspected by applying current from the electrode 58, Only those with good characteristics are selected. Since the semiconductor laser element 56 with defective characteristics is removed at this stage, there is no need to connect it to the optical fiber unnecessarily, and economic efficiency can be achieved.
  • a ceramic substrate 55 on which a semiconductor laser element 56 is arranged is connected to a recess 54 on a glass substrate 51 using a solder material having a melting point of 180 degrees.
  • a laser beam emitted from a semiconductor laser element 56 is enlarged by a lens 57 to a spot size of about 50 m.
  • the laser light coupled to the multimode fiber 53 is connected to the single mode fiber 52 after the core system changes slowly and continuously. be done.
  • the loose mounting accuracy of the optical fiber coupling system also has a large degree of contribution to the economic efficiency of this optical device.
  • 61 is a glass substrate
  • 62 is a single mode fiber
  • 63 is a multimode fiber
  • 64 is 50% for an optical signal with a wavelength of 1.31 m
  • 65 is a semiconductor photodetector
  • 66 is a reflecting substrate that transmits signal light with a wavelength of 1.31 m and reflects signal light with a wavelength of 1.55 ⁇ m.
  • a signal light with a wavelength of 1.55 im transmitted from the single-mode optical fiber 62 is reflected by the reflecting substrate 66 and taken into the multi-mode fiber 63 .
  • FIG. 12A is a perspective view of a device for light receiving and emitting light
  • FIG. 12B is a sectional view thereof.
  • 71 is a glass substrate
  • 72 is a single-mode film.
  • Iba 73 is a reflecting substrate wavelength that transmits signal light with a wavelength of 1.31/im and reflects a signal light with a wavelength of 1.55 m
  • 74 has a reflectance of 50% for an optical signal with a wavelength of 1.3'1.
  • 75 is a semiconductor light receiving device for receiving signal light with a wavelength of 1.55 zm;
  • 76 is a semiconductor light receiving device for receiving signal light with a wavelength of 1.31 m;
  • a semiconductor laser with a wavelength of 1.31 ⁇ m is connected, and 78 is a lens formed by processing the end of the fiber to have a predetermined curvature.
  • the signal light with a wavelength of 1.55 ⁇ m is reflected by the reflecting substrate 73 and taken into the semiconductor photodetector 75 .
  • Signal light with a wavelength of 31/m is reflected by the reflecting substrate 74 and received by the semiconductor light receiving element 76 .
  • the laser light emitted from the semiconductor laser 77 is coupled to the lens-like fiber 78, and 50% of the light is transmitted through the light reflecting substrate 74, making it possible to transmit optical signals in both directions.
  • the semiconductor laser element 77 may be formed on a substrate similar to the glass substrate 71 and may be accommodated in a separate body. (Example 8)
  • 81 is a silicon semiconductor substrate
  • 82 is a single-mode optical fiber
  • 83 is a semiconductor light receiving element for receiving signal light with a wavelength of 1.55 m
  • 84 is a semiconductor light emitting device for receiving signal light with a wavelength of 1.31 m
  • Element 85 is a semiconductor laser with a wavelength of 1.31 m
  • a light reflecting substrate (not shown) is arranged so as to cross the optical fiber 82 obliquely.
  • the optical fiber 82, the light receiving elements 83, 84, and the light emitting element 85 are coupled through these light reflecting substrates.
  • the light emitting element 85 is a surface emitting laser, and is arranged on the upper surface of the silicon substrate 81 together with the light receiving elements 83 and 84 .
  • This optical device can be manufactured by the same mounting method as that for assembling a normal semiconductor integrated circuit. It is also highly reliable.
  • optical devices with wavelengths of 1.55/zm and 1.31/m were mainly described, but other combinations of wavelengths may also be used. It goes without saying that the constituent materials and the like shown in the examples are not limited.
  • FIG. 14 is a plan view of this embodiment.
  • a first groove (depth of 300 m) 103 having a cross section is formed on the top surface of a glass substrate 101 having flat top and bottom surfaces and vertical side surfaces.
  • Glass substrate 101 is made of a material that is substantially transparent to light of 1.55 m wavelength.
  • a single mode optical fiber (diameter 200/zm) 102 covered with a transparent film made of UV resin is fixed by resin.
  • a second groove (groove width of about 100 m) 104 forms a predetermined angle (60 degrees) with respect to the optical axis of the optical fiber 102, and is perpendicular to the upper surface of the substrate 101, in the glass substrate 101. formed.
  • a light reflecting substrate (thickness of about 8 ⁇ ) 105 having filter characteristics is inserted in the second groove 104 and fixed with a resin 108 .
  • the resin 108 is made of an epoxy-based material transparent to 1.55 light, and its refractive index is approximately equal to that of the optical fiber.
  • the light reflecting substrate 105 is designed to selectively reflect only signal light with a wavelength of 1.55 //m at a rate of 10%.
  • Such a light reflecting substrate 105 is obtained, for example, by alternately laminating a silicon oxide film and a titanium oxide film on a quartz substrate.
  • optical signals with a wavelength of 1.55 m propagating bidirectionally in the optical fiber are denoted by reference numerals 100 and 100', respectively.
  • a first InGaAs semiconductor photodetector 106 is attached to one side, and a second InGas semiconductor photodetector 106 is attached to the other side.
  • a GaAs semiconductor photodetector 107 is attached.
  • a part of the optical signal 100 propagated from the left side of the figure is reflected by the reflecting substrate 105 and enters the first semiconductor light receiving element 106 as the first reflected light 109 .
  • the rest of the optical signal 100 passes through the reflective substrate 105 and propagates rightward through the optical fiber 102 .
  • part of the optical signal 100' propagating from the right side of the figure is reflected by the reflecting substrate 105 and enters the second semiconductor light receiving element 107 as second reflected light 110.
  • FIG. The rest of the optical signal 100' is transmitted through the reflective substrate 105 and propagates leftward through the optical fiber 102.
  • This device is inserted into an optical fiber transmission line, and optical signals 100 and 100' are bi-directionally transmitted through the optical fiber 102.
  • the surfaces of the semiconductor light receiving elements 106 and 107 are preliminarily coated with a low reflectance coating so as not to cause reflection of the optical signal on the surface of the semiconductor layer. are taken into the semiconductor light receiving elements 106 and 107. Since the semiconductor light receiving elements 106 and 107 used here use an I nP semiconductor crystal substrate transparent to optical signals with a wavelength of 1.55/1 m, the incident direction of the optical signals is the crystal growth layer side or the crystal substrate side. Either one is fine.
  • the transmission loss of the optical fiber portion can be reduced to about 2.0 dB.
  • the distance between the light signal emitting point from the optical fiber 102 and the light receiving part of the semiconductor light receiving element can be set constant and within several millimeters, the light signal spreads spatially and the light receiving part of the semiconductor light receiving element can receive the light. It does not reach areas other than the part and lower the light receiving efficiency. Therefore, 80% or more of the component (reflected light 109) reflected by the reflecting substrate 105 in the optical signal with a wavelength of 1.55 wm propagating through the optical fiber 102 is captured by the semiconductor light receiving element 106, thereby facilitating high efficiency. can get.
  • a substrate 201 made of a plastic material transparent to light of 1.55 //m wavelength As shown in FIG. 15, on the upper surface of a substrate 201 made of a plastic material transparent to light of 1.55 //m wavelength, a 200 m depth and a rectangular cross section are formed on the upper surface of the substrate 201, as in the previous embodiment. , a first groove 203 is formed. A single-mode optical fiber (diameter of 900 tm) 202 having a coating film made of nylon resin is embedded in the first groove 203 . '
  • the second groove 204 is formed in the substrate 201 so as to be inclined with respect to the main surface of the substrate 201 .
  • the substrate 205 is tilted at an angle of about 0 degrees with respect to the optical axis of the optical fiber.
  • a light reflecting substrate 205 having semi-transmitting and semi-reflecting characteristics which is formed by forming a gold (Au) thin film with a thickness of 500 angstroms on a 30 mm thick quartz substrate, is embedded together with an epoxy resin. ing.
  • an InGaAs semiconductor light receiving element 206 with a light receiving diameter of 300 m is mounted by surface mounting technology.
  • An InGaAs semiconductor light receiving element 207 with a light receiving diameter of 300 m is arranged on the bottom surface of the transparent substrate 201 in a state sealed in a power package.
  • Part of the optical signal 100 is reflected by the substrate 205 and enters the semiconductor light receiving element 206 as reflected light 208 .
  • Part of the optical signal 10'0' is reflected by the substrate 205 and enters the semiconductor light receiving element 207 as reflected light 209 .
  • This device is inserted into an optical fiber transmission line, and optical signals 100 and 100' are bi-directionally transmitted through the optical fiber 202.
  • the resin embedded in the second groove 204 is selected so that its refractive index does not cause refraction or reflection of the optical signal extracted from the optical fiber 202 .
  • the surface of the semiconductor light-receiving element 206 is preliminarily coated with a low-reflectance coating so that the optical signal is not reflected on the surface of the semiconductor layer. A part of it is captured by the semiconductor light receiving element 206 . Since the semiconductor photodetector 207 used here uses an InP semiconductor crystal substrate that is transparent to optical signals with a wavelength of 1.55 ⁇ m, the incident direction of the optical signal can be either the crystal growth layer side or the crystal substrate side. good. This embodiment also provides the same effects as those obtained in the ninth embodiment described above.
  • a first groove 303 having a depth of 200 ⁇ m and a rectangular cross section is formed on a glass substrate 301 substantially transparent to light of 1.55 ⁇ m wavelength.
  • a single-mode optical fiber 302 with a diameter of 125 m is embedded in the first groove 303 .
  • a second groove 304 is formed on the upper surface of the glass substrate 301 obliquely with respect to the upper surface.
  • the second groove 304 has a substantially rectangular cross section and a groove width of 20/zm.
  • a 1.55-m thick film consisting of alternating layers of silicon oxide and titanium oxide films on a polyimide film.
  • a light reflecting substrate 305 having a thickness of 10/im and having a filter property of reflecting 10% of the light is inserted in the second groove 304 .
  • InGaAs semiconductor light receiving elements 306 and 307 with a light receiving diameter of 300 jam are fixed on the glass substrate 301 by surface mounting technology.
  • a reflector 308 made of a gold (Au) thin film is formed on the bottom surface of the glass substrate 301 .
  • a portion of the optical signal 100 is reflected by the substrate 305 , then further reflected by the reflector 308 , and enters the semiconductor light receiving element 306 as reflected light 309 .
  • Part of the optical signal 100' is reflected by the substrate 305 and enters the semiconductor light receiving element 307 as reflected light 310.
  • FIG. According to this light-receiving optical device, the distance between the point where the reflected light 310 is formed on the substrate 305 and the light-receiving portion of the semiconductor light-receiving element 307 can be set constant and as short as about 100 to 300 m.
  • the arrayed semiconductor light receiving elements 306 and 307 may be semiconductor light receiving elements formed on the same semiconductor substrate.
  • Figures 18A and 18B show a normal optical fiber 401 and a partially expanded core diameter optical fiber 404, respectively.
  • a normal optical fiber 401 has a structure in which a core 402 with a constant diameter is covered with a cladding 403.
  • the core 402 of the optical fiber 404 forms a second groove across the portion 405 with a larger diameter than the other portions, the signal due to the gap of the second groove Transmission loss can be reduced.
  • this optical device for receiving light there is no need to adjust the position of each component while detecting the optical signal from the optical fiber during the assembly process of each component. For this reason, since such a light receiving device can be manufactured using a mounting device used in the field of mounting technology for silicon integrated circuits, it is suitable for mass production in a short time and low cost is expected. can. It is not necessary to explain that optical signals with different wavelengths can also be manufactured by using the same method.
  • the device of this embodiment has a similar configuration to that of the device of FIG. The same number is attached and the explanation is omitted.
  • a characteristic point of the device of FIG. The point is that a second reflective base 602 that selectively reflects the light of the second is inserted.
  • a bidirectional signal 600 containing light with wavelengths of 1.3/m, 1.48//m and 1.55 m propagates through the optical fiber 102 from the left in the figure.
  • the light with a wavelength of 1.48 nm is selectively reflected by the second reflecting substrate 602 and propagated leftward in the drawing as reflected light 603 .
  • Bi-directional signal 600' includes signal light with wavelengths of 1.3 im and 1.55/m.
  • Such a device is preferably used in connection with an Erubimn Doped Fiber Amplifier (EDFA) doped with the rare earth element erbium.
  • EDFA Erubimn Doped Fiber Amplifier
  • Pumping light with a wavelength of 1.48 ⁇ is used for pumping (bombing) the optical fiber amplifier.
  • the second substrate 602 prevents this excitation light from entering the light receiving element 106, thereby reducing the noise component contained in the output of the light receiving element 106.
  • the light receiving elements 106 and 107 can detect only the optical signal component of 1.55 ⁇ wavelength.
  • the light receiving element 106 is used for monitoring the output of the optical fiber amplifier
  • the light receiving element 107 is used for monitoring the reflected light that is reflected back to the optical fiber amplifier from the outside.
  • resin having a refractive index substantially equal to that of the optical fiber is filled between the second substrate 602 and the side wall of the third groove. Therefore, the refraction and scattering reflection of signal light are suppressed, and the transmission loss hardly increases. Since the optical member for filtering the excitation light is integrated with the glass substrate 101, a device with high reliability against mechanical vibration is provided.
  • the optical device of the embodiment of FIG. 16 (embodiment 11) is integrated on a substrate together with an electric amplifier.
  • An electric wiring pattern 703 is formed in advance on the glass substrate 301, and has light receiving elements 306 and 307 and a preamplifier circuit so as to be connected to the electric wiring pattern 703.
  • An electric integrated circuit element 702 is formed on the glass substrate 301.
  • the glass substrate 301 is fixed to the bottom of the package 705 with conductive resin. After that, one end of each electrical connection end 704 passing through the package 705 and the electrode wiring pattern 703 on the glass substrate 301 are connected by an electrical connection wire 703 made of aluminum. do.
  • the optical fiber 701 extends from inside the package 705 to the outside through the optical fiber outlet. Next, the lid is attached to the package 705 after the airtight treatment is performed by filling resin in the optical fiber extraction part.
  • this device When manufacturing this device, it is not necessary to position each part with high precision in the direction perpendicular to the paper surface of FIG. Therefore, it can be easily fabricated using a normal mounting apparatus used in the field of mounting semiconductor integrated circuits. In addition, since all the components are fixed to the package 705, it has high reliability against mechanical vibration.
  • FIG. 1 a first groove 1103 having a rectangular cross section with a width of 150/zm and a depth of 150; am is formed on the upper surface of the glass substrate 1101 .
  • One end of the optical fiber 1102 is embedded in the first groove 1103 and fixed with a transparent epoxy resin material.
  • the glass substrate 1101 is cut with a dicing saw to form an inclined end surface 1104 .
  • the normal direction of the end face 1104 forms an angle of 30 degrees with the optical axis of the optical fiber 1103 . For reasons that will be explained later, 'this angle is set in the range of 5 degrees to 40 degrees.
  • a reflector 1105 is affixed on the inclined end face 1104 with resin and fixed.
  • the reflector 1105 is formed by laminating titanium (Ti) and gold (Au) on a quartz substrate.
  • An InGaAs semiconductor light receiving element 1106 is provided on the upper surface of the glass substrate 1101 .
  • the 1.3 micron optical signal 1107 is reflected by the reflector 1105 and enters the semiconductor photodetector as reflected light 1108.
  • the refractive index of the resin is set to be approximately the same as the refractive index of the optical fiber 1102 .
  • the physical roughness (fine unevenness) due to the cutting of the end face 1104 is equivalent to an optically non-existent state, and no optical signal scattering occurs.
  • the optical signal is efficiently converted into an electric signal by the semiconductor light receiving element 1106 arranged in the reflection direction of the optical signal.
  • the distance between the light signal output point of the optical fiber 1102 and the light-receiving part of the semiconductor light-receiving element 1106 is fixed and shortened to about 60 to 300 microns. Can be set. For this reason, the optical signal does not spread spatially and reach other than the light receiving part of the semiconductor light receiving element to lower the light receiving efficiency. More than 90% is captured by the semiconductor photodetector 1106. As a result, high light receiving efficiency can be easily obtained.
  • FIG. 22 shows the dependence of the return loss on the end surface inclination angle.
  • Figure 2 Graph of 2 The horizontal axis of , indicates the angle between the normal to the reflector 1105 and the optical axis of the optical fiber 1102, and the vertical axis indicates the return angle seen from the incident side of the optical fiber 1102. Indicates loss (optical reflectance).
  • reflected return light from the surface of reflector 1105 is fed back to optical fiber 1102. Also, when the angle is 40 degrees or more (45 degrees or more is not taken into account in terms of construction), reflected return light from the surface of the semiconductor light receiving element 1106 is fed back to the optical fiber 1102 . ⁇
  • the reflected return light When the reflected return light is large, it causes multiple reflection with the reflective end face of the external optical connector, degrading the quality of the received light signal.
  • the angle is set in the range of 5 degrees to 40 degrees, as is clear from FIG.
  • the embodiment of the present invention does not use optical parts such as lenses, it is compact, and at the same time, since all the constituent elements are fixed to the glass substrate 1101, external vibrations and It has excellent long-term reliability as there is no problem of characteristic change due to misalignment due to external temperature change.
  • a first groove 1103 having a rectangular cross section is formed on the upper surface of the glass substrate 1101 by mechanical cutting.
  • An electrode material is previously vacuum-deposited on the upper surface of the glass substrate 1101, and a desired electrode pattern is formed by subsequent photolithography and etching processes. In these processes, at the same time, an "alignment mark (not shown)" indicating the position where the end surface 1104 is formed and the position where the light receiving element is arranged is formed on the upper surface of the glass substrate 1101. do.
  • the optical fiber 1102 is embedded in the first groove 1103 together with a resin material. After this, the resin is 'cured'.
  • the portion of the glass substrate 1101 indicated by the "alignment mark", that is, the portion indicated by the dashed line in FIG. 23B, is cut using a cutting device called a wire saw or a dicing saw.
  • a cutting device called a wire saw or a dicing saw.
  • the substrate end surface 1104 is formed at a predetermined angle with respect to the optical axis of the optical fin 1102.
  • the light reflecting substrate 1105 is adhered to the end face 1104 of the substrate via resin and fixed. Also, using resin, the semiconductor light receiving element 1106 is arranged at a predetermined position indicated by the alignment mark. If a resin material that hardens when irradiated with ultraviolet light from the outside is used, the semiconductor light receiving element can be fixed at a predetermined position without requiring a long hardening time.
  • This light-receiving device does not need to adjust the position while detecting the optical signal from the optical fiber, and can be manufactured using all two-dimensional mounting means of the type used for the existing silicon integrated circuit mounting means. Therefore, it is suitable for mass production in a short period of time and low cost can be expected.
  • FIG. 1404 is a substrate end surface
  • 1405 is a reflector
  • 1406 is a semiconductor light receiving element
  • 1407 is a 1.3 im optical signal
  • 1408 is a reflected light
  • FIG. is similar to the embodiment of
  • the optical signal 1407 propagates through the optical fiber 1402 and is then reflected upward by the reflector 1405 affixed and fixed on the substrate end surface 1404 to form the optical fiber 140. 2, passes through the transparent glass substrate 1401, reaches the light receiving portion' of the semiconductor light receiving element 1406 arranged on the main surface of the substrate, and is converted into an electric signal.
  • This light-receiving device also has excellent characteristics as described in the 14th embodiment.
  • 1501 is a silicon substrate
  • 1502 is an optical fiber
  • 1503 is a first groove with a width of 140 m
  • 1504 is a substrate edge
  • 1505 is a reflector
  • 1506 is a third groove with a width of 20 mm. It forms a predetermined angle with respect to the optical axis of the optical fiber within the main surface of the substrate 1501 .
  • 1507 is a filter made of a dielectric multilayer film on a polyimide film that transmits light of wavelength 1.3 ⁇ and reflects light of wavelength 1.55 tm.
  • 1510 is the optical signal of wavelength 1.3 zm and 1.55 // m
  • 1511 is the reflected light of 1.3 /zm.
  • this optical device it is possible to selectively receive a signal of one wavelength out of signal lights of two wavelengths. It goes without saying that the number of wavelengths and the type of wavelengths selected can be selected by choosing the filter 1507 appropriately.
  • 1601 is a substrate
  • 1602 is a semiconductor light receiving element
  • 1603 is a light receiving portion of the semiconductor light receiving element 1602
  • 1604 is an electrode of the semiconductor light receiving element 1602
  • 1605 is gold deposited in advance on the main surface of the substrate 1601 (
  • Substrate electrodes with projections made of material, 1606 is epoxy resin.
  • FIG. 26A shows the positional relationship between semiconductor light receiving element 1602 and substrate electrode 1605 before being fixed with resin.
  • FIG. 26B between the semiconductor photodetector 1602 and the substrate 1601 It shows that the electrodes 1604 and the substrate electrodes 1605 are adhered and fixed with the epoxy resin 1606, and a good electrical connection is obtained.
  • 1701 is a filter that transmits light with a wavelength of 1.55 iiii and reflects light with a wavelength of 1.3 i m, which is made by stacking a dielectric multilayer film on a quartz substrate with a thickness of 40 m. be.
  • the same numbers are given to the same parts as those already explained, and the explanation is omitted.
  • the filter 1701 is glued and fixed on the substrate 1501 using the same resin before fixing the semiconductor light receiving element 1508 to the substrate 1501 with the resin 1509. ,
  • the reflected light 1511 is installed so as to pass through this filter 1701 before reaching the light receiving portion of the semiconductor light receiving element 1508 .
  • a light-receiving characteristic with wavelength selectivity similar to that described in the embodiment of the invention can be obtained.
  • a similar effect can be obtained when a filter is formed directly on the light receiving portion of the semiconductor light receiving element.
  • 1801 is the substrate
  • 1802 is the ferrule which is a component of the fiber connector
  • 1803 is the optical fiber in the ferrule
  • 1804 is the second 1805 is the reflector
  • 1806 is the first groove
  • 1807 is the semiconductor light receiving element
  • 1808 is the optical signal
  • 1809 is the reflected light.
  • the ferrule 1802 is fixed on the substrate 1801 and is connected to an external optical transmission line via a fiber connector that will be formed later. There is an advantage that the fiber connector can be easily formed by connecting the ferrule 1802 in advance.
  • FIGS. 29A to 29E the manufacturing method of this embodiment will be described with reference to FIGS. 29A to 29E.
  • a plurality of first grooves 1806 are formed in parallel on the top surface of the substrate 1801 .
  • a plurality of optical fibers 1803 with ferrules 1802 are inserted into the corresponding first grooves 1806 using a resin material. embedded and fixed.
  • a second groove 1804 is formed diagonally (at a predetermined angle) with respect to the upper surface of the substrate 1801 so as to cross the optical fiber 1801. Form.
  • each semiconductor light receiving element 180 7 is placed on the substrate 1801. After this, each optical device is divided into respective units as shown in FIG. 29E.
  • the manufacturing method is suitable for mass production because the step of forming the first grooves 1806 and the second grooves 1804 is processed at once for a plurality of optical devices.
  • a nineteenth embodiment of the present invention will be described with reference to FIGS. 31A and 31B.
  • a first substrate 1901 integrated with a light-receiving element and the like is mounted on a second substrate 1902 having a stepped upper surface to form one optical fiber module. are doing.
  • a first groove 1903 is formed in the first substrate 1901, and an optical fiber 1904 is fixed therein with resin.
  • the second groove 1905 and the light reflecting substrate 1906 inserted therein cross the optical fiber 1904 obliquely.
  • the light reflecting substrate 1906 is wrapped in resin in the second groove 1905, and the light reflecting substrate 19 is located on the upper surface of the first substrate 1901.
  • a light-receiving element 1907 is fixed with resin at a position where it can receive the reflected light.
  • the refractive index of these resins is approximately equal to the refractive index of the core of the optical fiber.
  • the first substrate 1901 and the second substrate 1902 are adhered together by an adhesive 1910 such as silver paste, as shown in FIG. 31B.
  • the second substrate 1902 is composed of a thick part and a thin part, and on the upper part of the thick part is a V-groove 1908 for supporting and fixing the tip of the optical fiber 1904. is formed.
  • the second substrate 1902 can be formed, for example, by partially etching selected regions of the top surface of a silicon substrate.
  • a screening test is performed to determine whether the semiconductor laser element 1909 is a non-defective product exhibiting predetermined characteristics.
  • the reliability yield of the semiconductor laser device 1909 is not 100%, so the screening test eliminates defective semiconductor laser devices 1909.
  • a screening test can be performed before mounting the first substrate 1901 to which the light receiving element 1907 and the optical fiber 1904 are fixed on the second substrate 1902 .
  • the height of the step provided on the second substrate 1902 is adjusted according to the thickness of the first substrate 1901 .
  • the thickness of the first substrate 1901 is, for example, 350 m, and the depth of the first groove 1903 formed in the first substrate 1901 (the core diameter of the optical fiber 1904 ) is 70/zm, the step height of the second substrate 1902 is set to about 270 to 290 ⁇ .
  • the position of the optical axis of the optical fiber and the light emission position of the semiconductor laser element can be aligned.
  • Electrode wiring patterns (not shown) are formed on the substrates 1901 and 1902 as described in the previous embodiment.
  • the signal light from the semiconductor laser element 1909 is efficiently incident on the optical fiber 1904, and furthermore, the signal light propagated through the optical fiber 1904 is Efficient reception with 1907 photodetectors arranged in-line can take. According to this embodiment, it is possible to reduce the size and cost of subscriber terminals for general households. Possibility of industrial use
  • the present invention provides an optical device capable of low loss, small size, low cost, and high reliability, and a method of manufacturing the same. It will greatly contribute to the construction of various optical fiber communication systems such as transmission systems, and is of great industrial significance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

明 細 書
光デバイスおよびその製造方法 ' 技術分野
本発明は、 光ファイバ伝送路に接続して、 光信号を受信あるいは送受信するこ とのできる光デバイスおよびその製造方法に関するものである。 背景技術
波長分害!]多重 (WDM : Wavelength Division Multiplexing)によれば、 光伝送システムの伝送容量を増加することができる。 また、 それだけではなく、 双方向伝送や、 異種信号の同時伝送を可能にすることもできる。 このように波長 分割多重は、 光伝送システムにおけるサービス要求に対して柔軟に応えることが できるものであり、 中継伝送系、 加入者系、 および構内伝送系等のさまざまの光 伝送システムへの適用が可能である。
近年、 特に、 センター局から多チャンネルの映像情報やデータを一般家庭まで 光ファイバを用いて伝送する光加入者系システムが提案され、 検討されている。 これらのシステムでは、 一般家庭の加入者端末において、 波長多重される異種の 光信号を同時に受信するための複数の受光装置と、 家庭からセンターに向けたリ クェストゃデ一夕をおくるための発光装置とが必要となる。 例えば、 この種の目 的に用いられる装置が、、 参考文献 (I . Ikushima et al . . " High-perf orma rice compact optical WDM transceiver module for passive double star subscriber systems , " Journal of Lightwave Technology, v ol . 13 , No . 3 , March 1995 . ) に開示されている。 図 3 0は、 双方向信号伝送に適用可能な受光用光デバイスの従来例を示してい る。 この装置は、 特開平 6— 3 3 1 8 3 7号公報に開示されている。 この装置では、 図 3 0に示されるように、 第 1光ファイバ 2 0 1 2と第 2光フ アイバ 2 0 1 4とが間隙 (数; m程度) を介して直列的に結合されている。 第 1 光ファイバ 2 0 1 2の一端は、 光軸に対して斜めにカットされ、 その部分には光 信号の一部を反射させ残りを透過させる半透過 ·半反射面 2 0 1 1が形成されて いる。 同様に、 第 2光ファイバ 2 0 1 4の一端も、 光軸に対して斜めにカットさ れ、 その部分には、 光信号の一部を反射させ残りを透過させる半透過 ·半反射面
2 0 1 3が形成さ ている。 第 2光ファイバの半透過 ·半反射面 2 0 1 3が第 1光ファイバ 2 0 1 2の半透 過 ·半反射面 2 0 1 1と対向するように、 かつ各々の光軸が一直線状になるよう に、 第 1及び第 2光ファイバ 2 0 1 2及び 2 0 1 4が配置される。
図中右から伝搬してきた光信号は、 第 1光ファイバ 2 0 1 2の半透過 ·半反射 面 2 0 1 1によって反射され、 光ファイバ 2 0 1 2から外部に出射される。 その 光信号の経路上に第 1フォ卜ダイオード 2 0 1 5が配置され、 この光信号を受光 して電気信号を生成する。
図中左から伝搬してきた光信号は、 第 2光ファイバ 2 0 1 4の半透過,半反射 面 2 0 1 3によって反射されて、 第 2光ファイバ 2 0 1 4から外部に出射される。 その光信号の経路上には第 2フォトダイオード 2 0 1 6が配置され、 この光信号 を受光して電気信号を生成する。
この従来の光デバイスでは、 斜めにカットされた光ファイバの端面に直接に半 透過 ·半反射面を形成している。 このために、 (1 ) 光ファイバの端面が平滑に なるように特殊なカツ卜をする力 斜めにカツトを行った後に研磨加工を施す必 要がある。 また、 (2 ) 光ファイバの端面に半透過 ·半反射面を形成するために、 光ファイバの端面上に薄膜を堆積する必要がある。 真空蒸着装置等の薄膜堆積装 置内に光ファイバを挿入し、 その端面に薄膜を堆積する工程は製造のスループッ トを低下させる。 また、 2本の異なる光ファイバを別々に斜め力ッ卜した後光軸を揃えるように 配置するため、 (3 ) 光軸を高精度に調整 る必要があるとともに、 (4 ) 光軸 ずれによって、 2本の光ファイバ間の光の伝搬損失が増大しやすく、 また、 装置 間で伝送損失の大きさにばらつきがある。 また、 (5 ) 2本の光ファイバの光軸 が揃った状態では、 光ファイバ間隙が数 im程度であっても、 光ファイバと空気 との間に屈折率差があるため、 信号光が間隙で屈折し、 伝送損失が極めて大きく なるおそれがある。'
本発明は上記した問題点に鑑み、 小型化、 集積化, 軽量化をはかると共に、 生 産性を向上させて低コス卜な光デバイスを提供することを目的としている。
本発明の他の目的は、 光ファイバ伝送路に接続して、 光信号を受信あるいは送 信する双方向の光デパイス及びその製造方法を提供することである。 発明の開示
本発明の光デバイスは、 基板と、 該基板に形成された少なくとも一つの第 1溝 と、 該第 1溝内に配置された光ファイバと、 該光ファイバを斜めに横切る少なく とも一つの第 2溝とを備えた光デバイスであづて、 更に、 該第 2溝内に挿入され、 該光ファイバを伝搬する光の少なくとも一部を反射または回折する面を有する光 学部材を備えている。
好ましい実施形態では、 前記第 2溝内において、 少なくとも前記光学部材と前 記光ファイバとの間には、 該光ファイバのコア部の屈折率 n fにほぼ等しい屈折 率 n rを持つ材料が埋められている。
好ましい実施形態では、 前記屈折率 n rと前記屈折率 n f との間には、 0 . 9 ≤ ( r^/n f ) ≤ 1 - 1の関係がある。
好ましい実施形態では、 前記屈折率 n rを持つ材料は樹脂から形成されている。 好ましい実施形態では、 前記屈折率!^を持つ材料は紫外線硬化樹脂から形成 されている。 ある実施形態では、 前記第 2溝の内壁には微細な凹凸が存在する。
ある実施形態では、 前記光学部材は、 選 された範囲の波長を有する光を選択 的に反射する。
ある実施形態では、 前記光学部材は、 選択された範囲の波長を有する光を選択 的に透過する。
好ましい実施形態では、 前記光学部材は、 屈折率 n bを持つ材料から形成され たベースと、 該ベー'ス上に形成された誘電体多層膜とを備えており、 該屈折率 n bと前記屈折率 n fとの間には、 0. 9≤ ( n b/n f ) ≤1 . 1の関係がある。 ある実施形態では、 前記光学部材の前記面は回折格子を有する。
ある実施形態では、 前記基板は前記光ファイバを伝搬する信号光に対して透明 な材料から形成されている。
ある実施形態では、 前記基板はガラスから形成されている。
ある実施形態では、 前記基板はセラミックから形成されている。
ある実施形態では、 前記基板は半導体から形成されている。
好ましい実施形態では、 前記光学部材の前記面の法線は、 前記光ファイバの光 軸と平行ではない。 '
好ましい実施形態では、 前記第 2溝は、 前記基板の上面に対して傾斜している。 ある実施形態では、 前記光学部材によって反射または回折された光を受け取る 少なくとも 1つの光学素子を、 前記基板上に備えている。
ある実施形態では、 前記光学部材を透過した光を受け取る少なくとも 1つの第
2光学素子を、 前記基板上に更に備えている。
ある実施形態では、 前記基板は、 上面と底面とを有しており、 該基板の該底面 に配置され、 前記光学部材により反射または回折された光を受け取る第 1受光素 子と、 該基板の該上面に配置され、 該光学部材により反射または回折された光を 受け取る第 2受光素子とを更に備えている。
ある実施形態では、 前記基板は、 上面と、 反射器の取り付けられた底面とを有 しており、 該基板の該上面に配置され、 前記光学部材により反射または回折され た光を受け取る第 1受光素子と、 該基板の該上面に配置され、 該光学部材により 反射または回折された光を、 該反射器を介して受け取る第 2受光素子とを更に備 えている。
前記基板は、 上面と底面と複数の側面とを有しており、 該基板の該複数の側面 の一つに配置され、 前記光学部材により反射または回折された光を受け取る第 1 受光素子と、 該基板の該複数の側面の他の一つに配置され、 該光学部材により反 射または回折された光を受け取る第 2受光素子とを更に備えている。
ある実施形態では、 前記光学素子は、 受け取った光に応じた電気信号を生成す る受光素子である。
好ましい実施形態では、 前記受光素子は、 前記基板上に固定されている。 好ましい実施形態では、 前記受光素子の受光面と前記基板との間には、 前記光 ファイバのコア部の屈折率 n fにほぼ等しい屈折率 n pを持つ材料が埋められて いる。
ある実施形態では、 前記受光素子の受光面には低反射率膜が形成されている。 ある実施形態では、 前記第 2溝の数は複数であり、 該複数の第 2溝のそれぞれ に、 異なるフィル夕特性を持つ光学部材が挿入されている。
ある実施形態では、 前記第 1溝の数は複数であり、 前記第 2溝の数は単数であ り、 該単一の第 2溝が該複数の第 1溝を横切っている。
ある実施形態では、 前記第 1溝の数は複数であり、 該複数の第 1溝は、 ほぼ平 行となるように前記基板上に配列されている。
ある実施形態では、 前記基板上には、 前記第 1溝に交差する方向に沿って第 3 溝が形成されており、 該第 3溝内には他の光ファイバが設けられており、 前記光 学部材から反射又は回折された光が該他の光ファイバに結合される。
ある実施形態では、 前記光ファイバの端部に半導体レーザから出射されたレー ザ光が結合される。 ある実施形態では、 前記基板は該上面に凹部を有しており、 該基板の該凹部に 配置された半導体レーザを備えており、 前 光ファイバの端部はレンズ状に加工 されており、 該半導体レーザの出射光が該光ファイバに光学的に結合する。
ある実施形態では、 前記光ファイバの端部は、 前記レンズ状部分の位置を前記 半導体レーザ素子に対して相対的に移動させることのできる可動部を有しており、 前記半導体レーザの出射光が該光ファイバに光学的に結合される状態で該可動部 が固定されている。'
ある実施形態では、 前記基板は該上面に凹部を有しており、 該基板の該凹部に 配置された半導体レーザと、 該半導体レーザの出射光を該光ファイバに光学的に 結合するレンズとを備えている。
ある実施形態では、 前記半導体レーザと前記レンズとを支持する支持部材が前 記基板の凹部に配置されている。
ある実施形態では、 前記支持部材上に配置された前記半導体レーザは、 検査に より選別された後に、 前記基板の凹部に配置される。
ある実施形態では、 前記半導体レーザからのレーザ光の一部を受け取る受光素 子を前記基板上に備えている。 '
ある実施形態では、 前記光ファイバは、 該光ファイバを伝搬する信号光の波長 帯域においてシングルモードファイバとして機能する第 1部分と、 該信号光の波 長帯域においてマルチモードファイバとして機能する第 2部分と、 該第 1部分及 び該第 2部分を接続する接続部分とを有しており、 該第 1部から該第 2部分に向 かつて該接続部のコア径がゆるやかに連続して変化している。
ある実施形態では、 前記光ファイバのうち、 前記マルチモードファイバとして 機能する第 2部分のコァ径は、 シングルモードフアイパの一部を加熱処理するこ とによって増加されたものである。
ある実施形態では、 前記第 3溝内の前記他の光ファイバは、 マルチモードファ ィバから形成されており、 前記光学部材から反射又は回折された光を該他の光フ アイバを介して受け取る受光素子を更に備えている。
ある実施形態では、 前記基板には電気配 パターンが形成されており、 前記受 光素子は、 該電気配線パターンに接続されている。
ある実施形態では、 前記受光素子の信号処理を行うための半導体電気素子が、 前記電気配線パターンに接続されている。
ある実施形態では、 前記光ファイバの一端には、 他の光ファイバに接続するた めの光コネクタが取り付けられている。
ある実施形態では、 前記基板の上面を覆うように形成された保護膜を更に備え ている。
ある実施形態では、 前記基板は、 前記光ファイバの取り出し口と、 外部と電気 的に接続するための複数の端子とを有する箇体内に収容されている。
ある実施形態では、 前記半導体レーザは前記支持部材上に第 1の半田材料によ つて接続され、 該支持部材は該第 1の半田材料の融点よりも高い融点を持つ第 2 の半田材料によって前記基板上に接続されている。
ある実施形態では、 前記基板は、 前記光ファイバの取り出し口と、 外部と電気 的に接続するための複数の端子とを有する箇体内に収容されており、 該基板は前 記第 2の半田材料の融点よりも低い融点を持つ第 3の半田材料によって該箇体の 底部に接続されている。
本発明の他の光デバイスは、 基板と、 該基板に形成された少なくとも一つの第 1溝と、 該第 1溝内に配置され、 双方向に信号光を伝搬する光ファイバと、 該光 ファイバを斜めに横切る少なくとも一つの第 2溝とを備えた光デバイスであって、 更に、 該第 2溝内に挿入され、 該光ファイバを伝搬する双方向信号光の少なくと も一部を反射または回折する面を有する光学部材と、 該双方向信号光のうち、 該 光学部材によって反射または回折された光をそれぞれ受け取る 2つの受光素子と、 を備えている。
ある実施形態では、 前記光ファイバを横切る第 3溝と、 該第 3溝内に挿入され、 該光ファイバを伝搬する不要な波長成分の光を反射除去する面を有する第 2の光 学部材と、 を更に備えている。
ある実施形態では、 前記第 2溝は前記光ファイバの光軸に対して垂直である。 ある実施形態では、 前記第 3溝中に挿入された前記第 2の光学部材による反射 光が前記 2つの受光素子に混入しないように、 前記第 2溝及び該第 3溝は前記光 ファイバの光軸に対して異なる角度に形成されている。
好ましい実施形態では、 前記第 2溝内において、 少なくとも前記光学部材と前 記光ファイバとの間には、 該光ファイバのコア部の屈折率 n fにほぼ等しい屈折 率 nrを持つ材料が埋められている。
好ましい実施形態では、 前記屈折率 n__と前記屈折率 nf との間には、 0. 9
≤ (nr/nf) ≤1. 1の関係がある。
ある実施形態では、 前記屈折率 n rを持つ材料は樹脂から形成されている。 ある実施形態では、 前記屈折率 n rを持つ材料は紫外線硬化樹脂から形成され ている。
ある実施形態では、 前記第 2溝の内壁には微細な凹凸が存在する。
ある実施形態では、 前記光学部材は、 選択された範囲の波長を有する光を選択 的に反射する。
ある実施形態では、 前記光学部材は、 選択された範囲の波長を有する光を選択 的に透過する。
ある実施形態では、 前記光学部材は、 屈折率 nbを持つ材料から形成されたべ
—スと、 該ベース上に形成された誘電体多層膜とを備えており、 該屈折率 nbと 前記屈折率 nf との間には、 0. 9≤ (nb/nf) ≤1. 1の関係がある。
ある実施形態では、 前記光学部材の前記面は回折格子を有する。
ある実施形態では、 前記某板は前記光ファイバを伝搬する信号光に対して透明 な材料から形成されている。
ある実施形態では、 前記基板はガラス材料から形成されている。 ある実施形態では、 前記基板はプラスティック材料から形成されている。 ある実施形態では、 前記双方向信号光は、 相互に異なる波長を有しており、 前 記光学部材は、 透明でかつ光ファイバの屈折率とほぼ同じ屈折率を有するベース と、 該ベースの 2つの主面上に形成された 2つの反射コートとを有しており、 該 2つの反射コ一卜は、 それぞれ、 異なる反射特性を示す。
ある実施形態では、 前記反射コートは、 金属薄膜から形成されている。
ある実施形態では、 前記 2つの反射コートが、 それぞれ、 多層薄膜構造を有し ている。
ある実施形態では、 前記 2つの受光素子のそれぞれは、 カン状箇体にシーリン グして実装されており、 該カン状箇体と陥合するように前記基板には 2つの凹部 が形成されている。
ある実施形態では、 前記 2つの受光素子は、 前記基板に形成された電気配線パ ターンに接続されている。
ある実施形態では、 前記電気配線パターンは、 前記 2つの受光素子の少なくと も 1つから出力される電気信号を検出して信号処理する電気集積回路素子に接続 されている。 '
ある実施形態では、 前記光ファイバは、 該光ファイバを伝搬する信号光の波長 帯域においてシングルモードファイバとして機能する第 1部分と、 該信号光の波 長帯域においてマルチモードファイバとして機能する第 2部分と、 該第 1部分及 び該第 2部分を接続する接続部分とを有しており、 該第 1部から該第 2部分に向 かつて該接続部のコァ径がゆるやかに連続して変化している。
ある実施形態では、 前記基板は、 前記光ファイバの取り出し口と、 外部と電気 的に接続するための複数の端子とを有する箇体内に収容されている。
ある実施形態では、 前記光ファイバ内を双:^向に伝搬する光の波長は、 1 . 3 i m帯及び 又は 1 . 5 M m帯に属し、 前記第 2の光学部材によって除去される 不要な光の波長は 0 , 9 8 m帯又は 1 . 4 8 帯に属する。 本発明の光デバイスの製造方法は、 基板の上面に第 1溝を形成する工程と、 光 フアイバの一部を該第 1溝内に埋込み固定'する工程と、 該光ファイバを斜めに橫 切る第 2溝を形成する工程と、 該第 2溝内に該光ファイバを伝搬する光の少なく とも一部を反射または回折する面を有する光学部材を挿入し固定する工程と、 を 包含する。
好ましい実施形態では、 前記第 2溝内に前記光学部材を挿入し固定する工程は、 該第 2溝内においそ、 少なくとも前記光学部材と前記光ファイバとの間に、 該光 ファイバのコア部の屈折率 η fにほぼ等しい屈折率 n rを持つ W料を埋め込む丄 程を包含する。
好ましい実施形態では、 前記屈折率 n rと前記屈折率 n f との間には、 0 . 9
≤ ( n r / n f ) ≤ 1 - 1の関係がある。
ある実施形態では、 前記基板上に少なくとも一つの受光素子を配置する工程を 更に包含する。
ある実施形態では、 前記基板上に少なくとも一つの受光素子を配置する工程を 更に包含する。
ある実施形態では、 前 ^基板上に少なくとも一つの究光素亍を配匱するェ裎を 更に包含する。
本発明の他の光デバイスの製造方法は、 基板のヒ面に複数の第 1瀵を形成すろ 工程と、 光ファイバの一部を該複数の第 1溝内の各々に埋込み固定する工程と、 該複数の光ファイバを斜めに横切る第 2溝を形成する工程と、 該第 2溝内に該光 ファイバを伝搬する光の少なくとも一部を反射または回折する面を有する光学部 材を挿入し固定する工程と、 を包含する。
好ましい実施形態では、 前記光学部材の前記面の法線方向と前記光ファイバの 光軸方向との為す角度、 5度以上 4 0度以下である。
本発明の光デバイスは、 基板と、 該基板に形成された少なくとも一つの第 1溝 と、 該第 1溝内に配置された光ファイバと、 該光ファイバを斜めに横切る該基板 の端面と、 を備えた光デバイスであって、 更に、 該光ファイバのコア部の屈折率 とほぼ同じ屈折率を有する材料によって、 '該基板の該端面上に貼り付けられた、 該光ファイバを伝搬する光の少なくとも一部を反射または回折する面を有する光 学部材と、 該基板上に配置された受光素子であって、 該光ファイバ内を伝搬する 光の一部のうち該光学部材によって反射された光を受け取る受光素子と、 を備え ている。
ある実施形態でほ、 前記受光素子は、 前記基板の前記第 1溝が形成されている 面上に配置されている。
ある実施形態では、 前記受光素子は、 前記基板の前記第 1溝が形成されている 面の反対側の面上に配置されている。
ある実施形態では、 前記光ファイバを横切る第 3溝と、 該第 3溝内に挿入され、 特定の波長領域の光を反射する第 2の光学部材とを備え、 該第 2の光学部材は、 該光ファイバ内を伝搬する該特定の波長領域の光が前記受光素子に入射しないよ うにする。
ある実施形態では、 前記光ファイバのコア部の屈折率とほぼ同じ屈折率を有す る樹脂材料によつて前記基板の上面に貼り付けられた、 特定の波長領域の光を反 射する光学部材を備えており、 前記受光素子は、 該光学部材の上に配置されてい る。
ある実施形態では、 前記受光素子の受光面には、 誘電体多層膜構造を有するフ ィル夕が形成されている。
ある実施形態では、 前記光ファイバは、 光ファイバ光伝送路に接続される。 ある実施形態では、 前記光ファイバには、 光ファイバ伝送路に接続するための フエルール部が形成されている。
本発明の他の光デバイスの製造方法は、 基板上に第 1溝を形成する工程と、 光 ファイバを該第 1の溝内に固定する工程と、 該光ファイバを斜めに切断し、 該光 ファイバの光軸に対して傾斜した端面を該基板上に形成する工程と、 該光フアイ バを伝搬する光の少なくとも一部を反射または回折する面を有する光学部材を、 該光ファイバのコア部の屈折率とほぼ同じ '屈折率を有する材料によって該傾斜端 面に貼り付ける工程と、 該光学部材によって反射又は回折された光を受け取る受 光素子を該基板上に配置する工程と、 を包含する。
このように、 本発明の光デパイスでは、 光ファイバを基板の溝に埋め込み、 そ の光フアイバを伝搬する光を反射もしくは回折させる光学部材を埋め込むことに より、 任意の方向 信号光を取り出すことを可能にしている。
また、 任意の方向に取り出される前記光を、 基板の上方に配置した半導体受光 素子に屈折率整合する樹脂を用いることにより不要な反射点を生じずに特にこの 光ファイバがマルチモード光ファイバである時にはその接続は一層容易となる。 光学部材は誘電体と金属の多層膜構造を有する層を光ファイバの屈折率とほぼ 同程度の樹脂材料で基体の両面を埋め込むことにより、 あるいは、 ある種の光学 部材の主面とは異なる面のみ光ファイバの屈折率とほぼ同程度の樹脂材料で埋め 込むことによりフィルタ特性を改良する。
回折により取り出される光は、 半導体受光素子配列に結合され、 あるいは他の 光ファイバを用いて外部に取り出され、 複数の異なる波長の光信号の中から所望 の波長のみを分波して取り出すことが容易にできる。
光フアイバがシングルモードファイノ に接続されるマルチモ一ド光ファイバで その接続部のコア径がゆるやかに連続して変化するあるいは、 光ファイバがシン グルモードファイバと光ファイバを熱処理してマルチモードファイバとする時に は、 モード径の拡大したマルチモードファイバに光を結合することにより高効率 でシングルモードファイバに光を結合できる。
半導体レーザを基板の凹に配置し、 光ファイバにレンズ機能を有するものを用 いれば容易に光ファイバに光を結合できる。 埋めこまれた光ファイバの一部に可 動部を有するときには半導体レーザを基板に接続した後光ファイバの可動部を調 整してさらに光の光ファイバへの結合の度合いを高めることができる。 半導体レーザとレンズを異なる基板上に配置し光ファイバを埋め込む基板に配 置するときには、 あらかじめ半導体レ一 の特性を検査により選別した後用いる ことができるために光デバイスの歩留まりを向上できる。 半導体レーザとレンズ の結像スポットを前記のマルチモードファイバと同程度にしておくことにより、 数 m程度の緩い精度で半導体レーザの光を光ファイバに結合することができる。 基板からマルチモードファイバにより光を取り出すときには、 全ての光を半導 体受光装置に取り込むことで品質劣化を生じることなくアナ口グ信号の受光を可 肯 にする。
基板の表面には、 半導体受発光素子と接続するための電気配線パターンを形成 でき、 特に高周波信号の場合は外部と接続する電気回路に対してインピーダンス 整合することができる。 また半導体受発光素子の他に電気信号処理をおこなうた めの電気素子を一体に形成すれば電気的な整合が良好となると共に小型化が可能 になる。
基板に埋めこまれる光ファイバから異なる反射基体により異なる波長の信号を 別々に取り出すように配列配置すれば、 波長多重伝送される光信号を一枚の基板 上で選別して取り出すことができる。 '
基板上に複数の光ファイバを配列して配置すれば、 一枚の基板上で複数の光フ ァィ ) で独立に光信号を並列伝送する系に用いることができる。
基板上への素子形成が終了した後基板表面を樹脂材料で覆うことにより基板表 面上に配置される半導体素子を、 外部からの水分や雰囲気から保護することがで きる。 この基板は直接光フアイバ取り出し口と電気接続端子を有する箇体に収容 できる。
また半導体レーザと基板間の第 1半田材料、 基板と基板間の第 2半田材料、 基 板と前記箇体間を接続する第三半田材料を、 第 1半田材料の融点が第 2半田材料 より高く、 第 2半田材料の融点が第三の半田材料より高くすることにより、 それ ぞれの半田接続時に素子が動かないようにし, 信頼性を確保できる。 図面の簡単な説明
図 1 Aは、 本発明の光デバイスの第 1実施例の斜視図
図 1 Bは、 本発明の光デバイスの第 1実施例の光ファイバに沿った断面図 図 2は、 反射基体及びその周辺を詳細を示す断面図
図 3は、 他の反射基体及びその周辺を詳細を示す断面図
図 4 Aは、 光フ 7ィバ及び受光素子の横断面図
図 4 Bは、 光ファイバ及び受光素子の縦断面図
図 4 Cは、 信号光の屈折を示す縦断面図
図 5は、 本発明の光デバイスの第 2実施例の光ファイバに沿った断面図 図 6は、 ファイバ間の結合損失の間隔依存性を示す説明図
図 7 Aは、 本発明の光デバイスの第 3実施例の回路図
図 7 Bは、 本発明の第 3実施例の斜視図
図 7 Cは、 本発明の第 3実施例の平面図
図 8は、 パッケージされた本発明の第 3実施例の構成図
図 9 Aは、 本発明の光デバイスの第 4実施例の平面図
図 9 Bは、 本発明の第 4実施例の光ファィバに沿った断面図
図 1 0 Aは、 本発明の光デバイスの第 5実施例の平面図
図 1 0 Bは、 本発明の第 5実施例の光ファイバに沿った断面図
図 1 1 Aは、 本発明の光デバイスの第 6実施例の斜視図
図 1 1 Bは、 本発明の第 6実施例の断面図
図 1 2 Aは、 本発明の光デバイスの第 7実施例の斜視図
図 1 2 Bは、 本発明の第 7実施例の断面図
図 1 3は、 本発明の光デバイスの第 8実施例の斜視図
図 1 4は、 本発明の光デバイスの第 9実施例の平面図。
図 1 5は、 本発明の光デバイスの第 1 0実施例の断面図。 図 1 6は、 本発明の光デバイスの第 1 1実施例の断面図。
図 1 7は、 異なるコア径を持つ光ファイバにおける光結合損失特性を示すグラ フ。
図 1 8 Aは、 通常の光ファイバ、 図 1 8 Bは、 部分的にコア怪を拡大した光フ アイバの断面模式図。
図 1 9は、 本発明の光デバイスの第 1 2実施例の平面図。
図 2 0は、 本発明'の光デバイスの第 1 3実施例の構成図。
図 2 1は、 本発明の光デバイスの第 1 4実施例の断面図。
図 2 2は、 本発明の第 1 4実施例におけるリターンロスの角度依存性を示すグ ラフ。
図 2 3 Aから図 2 3 Dは、 第 1 4実施例の製造方法を示す斜視図。
図 2 4は、 本発明の光デバイスの第 1 5実施例の断面図。
図 2 5は、 本発明の光デバイスの第 1 6実施例の断面図。
図 2 6 A及び図 2 6 Bは、 第 1 6実施例の構成図。
図 2 7は、 本発明の光デバイスの第 1 7実施例の断面図。
図 2 8は、 本発明の光デパイスの第 1 8実施例の断面図。
図 2 9 Aから図 2 9 Eは、 第 1 8実施例の製造方法を示す斜視図。
図 3 0は、 従来の光デバイスを示す模式図。
図 3 1 Aは、 本発明の光デバイスの第 1 9実施例の斜視図、 図 3 1 Bは、 その 断面図。 発明を実施するための最良の形態
本発明による光デバイスは、 基板の第 1溝内に配置された光ファイバと、 この 光ファイバを斜めに横切る少なくとも一つの第 2溝とを備えた光デバイスであつ て、 第 2溝内に挿入され、 光ファイバを伝搬する光の少なくとも一部を反射また は回折する光学部材を備えている。 この光学部材の働きによって、 光ファイバを 伝搬する光をインライン配置された受光素子等で受け取ることが可能となる。 そ の結果、 第 2溝及びその中の光学部材を透 ¾した光を利用したり、 光ファイバの 端部から他の光信号を光ファイバ内に導入することができる。 この結果、 光ファ ィバと受光素子や発光素子とを多様な配置関係で一体化したコンパク卜な光伝送 端末を提供するすることが可能となる。
特に、 第 2溝内において光学部材と光ファイバとの間を、 光ファイバのコア部 の屈折率にほぼ等 い屈折率を持つ材料で埋めた場合、 第 2溝の内壁に微細な凹 凸があったとしても、 光ファイバを伝搬する光は、 第 2溝の内壁によって、 不必 要な散乱 '屈折の影響を受けないで済む。 このことは、 第 2溝の形成を極めて容 易にするものであり、 例えば、 第 2溝の内壁を研磨によって平滑化する必要が無 くなる。
また、 本発明によれば、 基板の第 1溝内に光ファイバを配置した後に第 2溝を 形成するため、 特別な光軸ァライメント工程が不要となり、 製造工程が極めて簡 単化される。 以下、 図面を参照ながら、 本発明の実施例を詳細に説明する。
(実施例 1 )
まず、 図 1 A及び図 1 Bを参照しながら、 本発明による光デバイスの第 1の実 施例を説明する。 図 1 Aは、 本実施例の光デバイス (受光モジュール) の第 1の 実施例の最上部のみを示す斜視図であり、 図 1 Bは、 光デバイスの光ファイバに 沿つて切り取つた断面図である。
この光デバイスは、 深さが 1 3 0 /z m程度の V溝 (第 1溝) 3が平坦な上面に 形成されたガラス基板 (厚さ 2 mm、 縦 X横 = 5 mmx 3 mm) 1を用いて構成 されている。 V溝 3内には、 外径 1 2 5 mの光ファイバ 2が配置されており、 この光ファイバ 3を (その光軸に対して) 斜めに横切るように、 平行溝 (第 2 溝) 4がガラス基板 1の上面に形成されている。 この平行溝 4によって、 光ファ ィパ 2には斜めにスリッ卜が形成され、 それによつて空間的に離れた 2つの部分 に分離されている。 本実施例では、 平行溝' 4の内壁に立てた法線が光軸に対して 3 0度の角度を形成するように平行溝 4を形成している。
V溝 3のサイズは、 光ファイバ 2を安定に保持できるように設計される。 V溝 3の深さは、 光ファイバ 2を完全に内部に含み得るものであることが好ましいが、 光フアイバ 2の最上部が基板 1の上面よりも僅かに上に位置しても大きな問題は ない。 また、 V溝 3に代えて、 光軸に垂直な面における断面が矩形形状や U字型 形状を有する溝を採用しても良い。
平行溝 4は、 その溝幅 (溝内壁の間隔あるいは分離された 2つの光ファイバの 間隔) が約 1 0 0 m程度またはそれ以下の溝であることが好ましい。 本発明で は、 この平行溝 4の中に光学部材が挿入されている。 本実施例の場合、 1 . 5 5 i m帯の光を選択的に反射するフィルタ特性を有する光反射基体 (厚さ 8 0 m) 5が平行溝 4内に挿入されている。 この光反射基体 5は、 ベースとなる石英 基板と、 その少なくとも一方の主面上にシリコン酸化膜とチタン酸化膜とを交互 に積層した誘電体多層膜 (フィル夕膜) とを備えており、 それによつて特定波長 範囲内の光に対して高い反射率を示すフィルタ特性が提供される。 光反射基体 5 は、 平行溝 4内に完全に収納される必要はなく、 基板 1の上面より上に光反射基 体 5の一部が突出してもいてもよく、 光ファイバ 2を伝搬してくる信号光を受光 できるように配置されていればよい。
平行溝 4内において光反射基体 5を安定に固着するため、 紫外線硬化樹脂 7が 使用されている。 この樹脂は、 少なくとも硬化後において、 信号光の波長 (本実 施例では、 1 . 5 5 i m帯) の光に対して実質的に透明となるように選択される。 図 2は、 平行溝 4及び基体 5の近傍をより詳細に示す断面図である。 平行溝 4 の内壁、 より正確には、 平行溝 4を介して相互に対向する光ファイバ 2の端面は、 光ファイバ 2の光軸を斜めに横切っている。 このため、 平行溝 4の内部に光ファ ィバのコア部の屈折率 n f と異なる屈折率の材料が存在すると、 光ファイバ 2を 伝搬する光は、 平行溝 4において屈折する。 それによつて、 平行溝 4における伝 搬ロスが生じるおそれがある。 また、 ダイ'シング加工などの平行溝を形成するェ 程によって、 平行溝 4の内壁は、 損傷 (機械的 Z化学的損傷) を受けやすく、 平 行溝 4の内壁には微細な凹凸が形成されることが多い。
これらの場合であっても、 光ファイバ 2のコア部の屈折率 n f とほぼ等しい屈 折率 n rを持つ材料で、 平行溝 4の内壁と光反射基体 5との間が埋められている と、 光ファイバ 2 伝搬する光は、 微細な凹凸を感じることなく、 しかも、 光軸 を変化させずにまっすぐ、 平行溝 4を越えて光ファイバ間を伝わって行く。 実験 によれば、 屈折率 n rと屈折率 n f との間には、 0 . 9≤ ( n r Z n f ) ≤l . 1 の関係があることが好ましいことがわかっている。 以下、 特に断らない限り、 本 願明細書にて言及する樹脂は、 何れも、 上記不等式を満足するような屈折率を有 するものである。
図 1 A及び図 1 Bを再び参照する。 基板 1の上面には、 光反射基体 5によって 反射された 1 . 5 5 /i m帯の信号光を検出するための I n G a A s半導体受光素 子 6が配置されている。 半導体受光素子 6と外部回路との間で相互接続を行うた めの電極 8が、 基板 1の上面に形成されている。
図中の矢印 9は、 光ファイバ 2の他端から伝送される波長 1 . 5 5 m帯の光 信号の進路を示している。 この光信号の波長から大きくシフトした波長を持つ光 は、 光反射基体 5によってほとんど反射されないため、 光反射基体 5を透過し、 半導体受光素子 6の受光部に届かない。
図 3は、 フィルタ膜の形成された光反射基体 5の代わりに、 回折格子の形成さ れた基体を光学部材として平行溝 4内に挿入した例を示している。 この回折格子 によって、 光ファイバ 2を伝搬する光は回折され、 複数の回折光が形成される。 このうち、 最も強度の高い次数の回折光を受け取ることができる位置に受光素子 の受光部を配置する。 異なる波長を持つ複数の信号光が光ファイバを伝搬してく る場合、 それらの波長に応じて回折角度が異なる。 このため、 各信号光に対応し て、 異なる位置に受光部 (例えば、 フォトダイオード P D 1、 P D 2 , P D 3 ) を配置すれば、 各信号光を別個に検出する とができる。 受光素子の小型化のた めには、 これら複数の受光部を一つの半導体基板に設けることが好ましい。 次に、 図 4 Aから図 4 Cを参照しながら、 基体 5によって反射された信号光の 進行経路について説明する。
図 4 Aに示されるように、 本実施例では光ファイバと受光素子との間には樹脂が設 けられる。 屈折率 n'rが光フアイバのコァ部の屈折率 n f とほぼ等しくなる樹脂が選択 される。 この樹脂は、 少なくとも信号光の経路を埋めるように設けられている。 もし、 樹脂が信号光の経路を埋めていない場合、 信号光の屈折や散乱が生じるため、 受光素子 は効率よく信号光を受け取ることができない。 また、 そのような場合、 光ファイバは円 柱状構造を有しているため、 レンズ効果によつて信号光の経路が複雑になる。
本実施例のように、 屈折率 n rが光ファイバのコア部の屈折率 n fにほぼ等しくなる 樹脂が挿入されることによって、 図 4 Bに示されるように、 信号光は真っ直ぐに受光素 子の受光部に入射することができる。 図 4 Cは、 樹脂の有無によって、 信号光の進路が どのように変化するかを模式的に示している。 屈折や散乱が生じると、 受光部上での信 号光のスポットサイズが大きくなり、 受光素子による検出感度や応答速度が低下するこ となる。 実験によれば、 屈折率 n f と屈折率 n f との間には、 0 . 9≤ ( n r / n f ) ≤ 1 . 1の関係があることが好ましいことがわかっている。 なお、 同様の屈 折率を持つ限り、 樹脂以外の材料を用いても良い。
このように本実施例の配置によれば、 光反射基体 5によって選択的に反射され た信号光は、 基板 1中を透過しない。 このため、 基板 1は必ずしも信号光に対し て透明である必要はない。 ガラス基板 1以外に、 セラミック基板や半導体基板を 用いても良い。 半導体基板を用いた場合、 受光素子に接続される回路を同一半導 体基板上に前もって形成しておくことも可能である。 以下に、 図 1 A及び図 1 Bに示す光デバイスの動作を説明する。 光ファイバ 2を通して伝送されてきた光信号 (例えば、 1. 55 im帯のレー ザ光) は、 光ファイバ 2の光軸に対して斜めに形成された平行溝 4中の光反射基 体 5によって斜めに反射される。 より詳細には、 平行溝 4の内壁に立てた法線 (正確には、 「光反射基体 5の主面に立てた法線」 ) と光ファイバ 2の光軸との 作る角度が約 30度の場合、 反射光と光ファイバ 2の光軸との作る角度が約 60 度となるように信号光は反射される。 他方、 1. 55 im帯に属さない光、 例え ば、 1. 55/ m ら 0. 2 /m程度以上ずれた波長を持つ光が光ファイバ 2を 伝送されてきた場合、 その光のほとんどは、 光反射基体 5によって反射されるこ となく、 それを透過することになる。
本実施例の場合、 図 1 Aからわかるように、 上記法線と光ファイバの光軸の両 方を含む平面が、 基板 1の上面に対して垂直となるように平行溝 4の向きが設定 されている。
このような配置によって、 所望の波長範囲内の光信号がガラス基板 1の上面か ら基板外側に選択的に取り出される。 取り出された光信号を受け取れる位置に光 信号検出用の半導体受光素子 6が配置される。
この半導体受光素子 6によって、 1. 55 Am帯の光信号は電気信号に変換さ れ、 電極 8から外部に取り出される。 樹脂 7は半導体受光素子 6の電極を電極 8 に圧着固定すると同時に、 屈折率が光ファイバ 2から取り出される光信号に対し て屈折や散乱を生じないように選ばれたものである。
半導体受光素子 6の表面には半導体層表面 (受光面) で光信号の反射を生じな いように、 あらかじめ低反射率コートが施されている。 このため、 光ファイバ 2 を伝搬する波長 1. 55 /zrnの光信号のほとんどが半導体受光素子 6の受光部に 取り込まれる。
ここで用いる半導体受光素子 6は波長 1. 55 の光信号に対して透明な I nP半導体結晶基板が使われるので、 光信号の入射方向は結晶成長側もしくは結 晶基板側のいずれでも良い。 この受光用光デバイスによれば、 光ファイバ 2の光信号出射点と半導体受光素 子の受光部との距離を短く (約 6 0〜3 0'0 m程度) 、 しかも、 再現性良く一 定の値に設定できる。 このため、 光信号出射点から光が空間的に拡がって半導体 受光素子の受光部以外の領域に到達することが抑制される。 その結果、 光フアイ バ 2を伝搬する波長 1 . 5 5 /zmの光信号の 9 0 %以上が半導体受光素子 6に取 り込まれ、 高い受光効率が容易に達成される。 しかも、 従来の受光用半導体装置 の様に光ファィバめ光出射端面やレンズ端面や半導体受光素子端面等の複数の端 面間での光信号の多重反射効果による信号劣化等の問題が無い。 このため、 高い 信号品質を必要とするアナログ光信号伝送系の受光用としても用いることができ る。 また、 全ての構成要素が、 ガラス基板 1に対して固定されているので、 外部 からの振動や外部の温度変化に伴う位置ずれで特性が変化するといった問題が無 く、 長時間の信頼性にも優れている。 次に、 上記受光用光デバイスの製造方法を説明する。
まず、 機械的な切削によってガラス基板 1の上面に V溝 3を形成する。 次に、 例えば真空蒸着法によって、 ガラス基板 1の表面上に導電性薄膜を堆積した後、 フォトリソグラフイエ程及びエッチング工程によって、 その導電性薄膜を所望の 電極パターンに加工し、 それによつてパ夕一ニングされた導電性薄膜から電極 8 を形成する。 この時、 上記工程によって、 電極 8を形成すると同時に、 平行溝 4 を形成するべき位置と受光素子を配置するべき位置とを表示する 「位置合わせ用 マーク」 をガラス基板 1上に形成することが好ましい。
次に、 光ファイバ 2を樹脂材料を用いて V溝 3中に埋め込む。
樹脂を硬化した後に、 ガラス基板 1上において前述の位置合わせ用マークが示 す位置に平行溝 4を形成する。 平行溝 4の形成は、 ワイヤソゥゃダイシングソゥ と呼ばれる切断装置によって容易に行うことができる。
次に、 光反射基体 5を平行溝 4内に樹脂と共に挿入し、 その樹脂を硬化する。 この時、 樹脂の屈折率を光ファイバ 2のコア部の屈折率と同程度に設定すること が好ましい。 樹脂の屈折率を光ファイバ 2のコア部の屈折率と同程度に設定する ことによって、 平行溝 4の内壁 (切断面) の荒れによる過剰な光損失 (光信号の 散乱) を抑制できる。 樹脂としては、 紫外線硬化樹脂が好ましい。 硬化のための 加熱工程を行う必要がないからである。
次に、 樹脂 7を用いて、 半導体受光素子 6をガラス基板 1上の位置合わせ用マ ークで示す位置に固'定する。 位置合わせは、 ガラス基板 1上の位置合わせ用マ一 クと半導体受光素子 6とをガラス基板 1の上方から観察しながら、 両者の位置を 整合させることによりよって実現する。 この位置合わせには、 あらかじめ、 半導 体受光素子 6の側にも受光部の位置を示すマークが形成しておく方法を用いれば さらに精度良く、 互いの位置合わせを行うことができる。
前述した半導体受光素子 6の結晶基板側から光信号を入射する場合には、 実装 時の表面側となる I n G a A s結晶成長層側に受光部の位置を示すマークを形成 することになる。 このため、 例えば半導体受光素子 6の電極形成時に、 同時に、 位置合わせ用マークを形成できるため、 半導体受光素子 6の製造の一部が容易と なる。 樹脂材料として紫外線光を外部から照射することにより硬化するものを用 いれば、 長時間の硬化時間を必要とせずに所定の位置に半導体受光素子を固定す ることができる。
この受光用装置を製造する際、 光ファイバからの光信号を検出しながら各部品 の位置を 3次元的に調整する必要がない。 このため、 シリコン集積回路装置製造 分野における実装技術に用いられるような、 2次元的な調整を行う実装装置を用 いて製造することができる。 このため、 短時間での大量の製造に適しており、 低 価格が期待できる。 (実施例 2 )
次に、 図 5を参照しながら、 本発明による受光用装置の第 2の実施例を説明す る。 図 5は、 波長 λ 1 = 1 · 55 mの信号光と波長 λ 2 = 1. 31 //mの光信 号を受光する受光用光テバイスの断面図で'ある。 なお、 以下において、 前述の実 施例に関して説明した部分と同一の部分には同一の参照番号を附し、 その部分の 詳細な説明は省略する場合がある。
図 5に示されるように、 2つの平行溝 (溝幅:約 100 / m) が、 光ファイバ
2の光軸に対して所定の角度をなして、 ガラス基板 1中に形成されている。 本実 施例では、 光軸に *fして各平行溝のなす角度は等しいが、 相互に異なっていも良 い。
光ファイバ 2は、 実施例 1について説明したように、 ガラス基板 1の上面に形 成された溝内に樹脂で固定されている。
上記 2つの平行溝内には、 それぞれ、 異なる種類の光反射基体 1 1、 12が挿 入されている。 光反射基体 (厚さ: 80 πι) 1 1は、 波長 λ 1 = 1. 55 πι の信号光を 99%以上反射するフィル夕特性を有し、 光反射基体 (厚さ: 80 /ζ m) 12は、 波長 λ 2 = 1. 31 mの信号光を 99%以上反射するフィル夕特 性を有する。 なお、 光反射基体 1 1は、 波長 λ 2 = 1. 3 の信号光を約 9
5 %以上透過する。 '
ガラス基板 1上には、 光反射基体 1 1によって反射された波長 λ 1 = 1. 55 imの信号光を受け取るように I n G a A s半導体受光素子 13が配置されてい る。 また、 光反射基体 12によって反射された波長 λ 2 = 1. 31 mの信号光 を受け取るように、 ガラス基板 1上に I nGa As半導体受光素子 14が配置さ れている。 なお、 矢印 15、 16、 17は、 光ファイバ 2の一端から伝送される 信号光の進路を示している。 本実施例の光デバイスの動作は、 以下の通りである。
光ファイバ 2を通して伝送される光は、 まず、 光信号の進路 1 5の位置では、 少なくとも波長 λ 1 = 1. 55 /xmの信号光と波長 λ 2= 1. 31 /imの信号光 とを含んでいる。 光反射基体 11は、 波長 1. 55 mの光信号のみを選択的に 反射して、 その反射光を半導体受光素子 1 ;3に与える (進路 16) 。 半導体受光 素子 13は、 受け取った光信号に応答して、 電気信号を生成する。
—方、 波長 1. 3 の光信号は、 光反射基体 11を透過し、 光反射基体 1 2によって選択的に反射される。 反射光は半導体受光素子 14に与えられ、 半導 体受光素子 14は受け取った光信号に応答して電気信号を生成する。
樹脂 7は受光素手 13、 14の電極を電極 8に圧着固定すると同時に、 屈折率 が光ファイバ 2から取り出される光信号に対して反射を生じないように選ばれた ものである。
半導体受光素子 13, 14の表面には半導体層表面で光信号の反射を生じない ようにあらかじめ低反射率コートが施されており、 光ファイバ 2を伝搬する波長 1. 55 の光信号が半導体受光素子 13で取り込まれ、 波長し 31 /mの 光信号が半導体受光素子 14に取り込まれる。 この受光用装置によれば、 光ファイバ 2の光信号出射点と半導体受光素子の受 光部との距離を短く (約 60〜30 Owm程度) 、 しかも、 再現性良く一定の値 に設定できる。 このため、 光信号出射点から光が空間的に拡がって半導体受光素 子の受光部以外の領域に到達することが抑制される。 その結果、 光ファイバ 2を 伝搬する波長 1. 55 tmの光信号の 90 %以上が半導体受光素子 13に取り込 まれ、 波長 1. 31 zmの光信号の 80%以上が半導体受光素子 14に取り込ま れ、 高い受光効率が容易に達成される。 しかも、 従来の受光用半導体装置の様に 光フアイバの光出射端面やレンズ端面や半導体受光素子端面等の複数の端面間で の光信号の多重反射効果による信号劣化等の問題が無い。 このため、 高い信号品 質を必要とするアナログ光信号伝送系の受光用としても用いることができる。 ま た、 全ての構成要素が、 ガラス基板 1に対して固定されているので、 外部からの 振動や外部の温度変化に伴う位置ずれで特性が変化するといつた問題が無く、 長 時間の信頼性にも優れている。 半導体受光素子 13、 14は、 同一の半導体基板 上に形成された 2つの半導体受光素子であ てもよい。 次に、 図 6を参照しながら、 平行溝を通過する光信号の損失を説明する。 図 6 は、 シングルモードファイバに設けた間隙によって生じる光損失の計算結果と実 験結果とを示している。 間隙内に、 屈折率 nの物質が存在するとする。 図 6中の 実線は、 波長 έ 1 mの光信号の損失を示し、 破線は波長 1. 55 mの光 信号の損失を示す。 間隙の屈折率 n= l . 0の場合と、 n=l. 5の場合に対応 して 2群の曲線が示されている。
本実施例で用いられる樹脂の屈折率は 1. 5程度である。 図 6から、 屈折率 n
= 1. 5の場合、 幅 1 00 imの間隙に対して 1 d B程度のわずかな結合損失し か生じないことがわかる。 この結合損失は、 ファイバ間の間隙を小さくすること によって低減され、 また、 光ファイバのコア経を大きくすることによつても低減 され得る。
この受光用装置を製造する際、 光ファイバからの光信号を検出しながら各部品 の位置を 3次元的に調整する必要がない。 このため、 シリコン集積回路装置製造 分野における実装技術に用いられるような、 2次元的な調整を行う実装装置を用 いて製造することができる。 このため、 短時間での大量の製造に適しており、 低 価格が期待できる。
なお、 本実施例の受光用装置を波長の異なる 3種類以上の光信号を検出するこ とができるように改良しても良い。
(実施例 3)
次に、 図 7 Aから図 7B及び図 8を参照しながら、 本発明による装置の第 3の 実施例を説明する。
本実施例の装置は、 図 5に示されるような 2波長の光信号を受光する受光用装 置と電気増幅器とをハイプリッドに一つの基板上に集積化したものである。 図 7 Aは、 その装置の回路の一部を示す等価回 、 図 7 Bは、 装置の模式的斜視図、 図 7 Cはその平面図である。
図 7 Bに示されるように、 基板 1には、 図 5の受光素子 1 3及び 1 4が形成さ れており、 これらの受光素子 1 3及び 1 4は、 実施例 2で説明したように、 溝 (不図示) 内に埋め込まれた光ファイバ 2を伝搬する光のうち選択された波長帯 域の信号光をそれ れ検出する。
受光素子は、 図 7 Aにおいて、 フォトダイオードの記号で表現されている。 受 光素子が信号光を受け取ると、 フォトダイォ一ドと抵抗との間の部分の電位が変 化する。 電気増幅器は、 その電位変化を増幅して出力する。
図 7 Bを参照する。 第 1の電気増幅器 2 1は、 第 1の受光素子 1 3に電気的に 接続され、 第 2の電気増幅器 2 2は、 第 2の受光素子 1 4に電気的に接続されて いる。
第 1の受光素子 1 3は第 1の抵抗器 2 3を介して電気配線パターン 2 5に接続 され、 第 2の受光素子 1 4は第 2の抵抗器 2 4を介して電気配線パターン 2 5に 接続されている。 '
光ファイバ 2によって伝送される光信号のうち波長 1 . 5 5 の光信号は、 第 1の受光素子 1 3で電気信号に変換されてから第 1電気増幅器 2 1に入力され 増幅された後、 図 7 Bにおいて不図示の電極パターンによって取り出される。 ま た、 波長 1 . 3 1 mの光信号は第 1の受光素子 1 3で検出されずに第 2の受光 素子 1 4で電気信号に変換されてから、 第 2の電気増幅器 2 2に入力され、 増幅 される。 その増幅された信号は、 図 7 Bにおいて不図示の電極パターンによって 取り出される。
図 7 Bの装置は、 以下に示すようにして製造される。
まず、 電極配線パターン 2 5がガラス基板 1上に形成される。 電極配線パター ン 2 5は、 電極材料からなる導電性薄膜をガラス基板 1上に蒸着する工程の後、 フォトリソグラフイエ程及びエッチング工程を行うことによって形成される。 こ れらの工程によって、 電極配線パターン 2 ¾を形成するとともに、 導電性薄膜か ら種々の 「位置合わせ用マーク」 を形成することができる。 図 7 Cの斜線部は、 電極配線パターンの一例を示している。
次に、 V溝が形成されるべき位置を示す 「位置合わせ用マーク」 に基づいて、 ガラス基板 1の所定の位置に V溝を形成した後、 V溝内に光ファイバ 2を埋めこ み、 樹脂によって光ファイバ 2を固定する。 その後、 不図示の平行溝が形成され るべき位置を示す 「位置合わせ用マーク」 に基づいて、 ガラス基板 1に 2つの平 行溝を形成した後、 光反射基体 1 1及び 1 2を平行溝中に樹脂で固定する。 その 後、 受光素子 1 3及び 1 4の端子電極が電極パターン 2 5の一部に接続されるよ うに配置し、 樹脂によってガラス基板 1上に固定する。 図 8は、 図 7 Bに示す装置をパッケージ内に実装した状態の構成を示す図であ る。 図 8では、 図 7 Bの受光用装置を参照符号 3 7で表している。 受光用装置 3 7は、 パッケージ 3 1の底部に導電性樹脂によって固定される。 その後、 パッケ —ジ 3 1を突き抜ける各電気接続端子 3 3の一端と、 受光用装置 3 7上の電極配 線パターンとを、 アルミからなる電気接続ワイヤ 3 5によって接続する。 光ファ ィバ取り出し口 3 2を介して、 パッケージ 3 1内の受光用装置 3 7から外部へ延 びる光ファイバの他端は、 光コネクタ 3 6に接続される。 受光用装置 3 7の表面 を保護用樹脂によって覆い、 パッケージ 3 1の内部に外部から浸入する水分ゃガ ス等から受光素子を保護する。 次に、 光ファイバ取り出し部に樹脂を充填するこ とによって、 気密処理を施した後、 パッケージ 3 1にその蓋部を取付ける。 この装置の製造に際しては、 図 8の紙面に垂直な方向に各部品を高精度に位置 決めする必要が無く、 紙面に平行な面内での位置決めをすればよい。 従って、 半 導体集積回路の実装分野で使用される通常の実装装置を用いて容易に作製するこ とができる。 なお、 全ての構成部品はパッケージ 3 1に固着されているので、 機 械的な振動に対して、 高い信頼性を有する。
(実施例 4 )
次に、 図 9 A及び図 9 Bを参照しながら本発明による光デバイスの第 4の実施 例を説明する。 図 9 Aは本実施例の平面図、 図 9 Bはその断面図である。 本実施 例では、 凹部の形成されたセラミック基板 4 1上に複数の受光素子に加えて、 複 数の半導体レーザ素子が配置されている。 従って、 コンパクトな構成でありなが ら、 信号光の送受信が可能である。
以下、 この光デバイスの構成を詳細に説明する。
セラミック基板 4 1の上面は、 半導体レーザ素子が配置される第 1の領域と、
^光素子が形成され.る第 2の頜域に分け れる. 第 1 の頜域は. ラ . 、 ク甚板 4 1に形成された凹部 4 3の底面に対応する。 図 9 Bに示されるように、 第 1の 領域と第 2の領域の間にはステップがあり、 第 1の領域の高さは、 第 2の領域の 高さよりも、 例えば、 約 6 0〜 7 0 im程度、 低く形成されている。 このように 凹部を基板の上面に形成している理由は、 この凹部に半導体レーザ素子等の発光 素子を搭載するためである。 発光素子の発光部の位置を光ファイバの光軸に整合 させるため、 凹部底面の相対的な高さが調整される。
セラミック基板 4 1の上面の第 2の領域には、 3本の溝が形成され、 各溝には 光ファイバ 4 8が埋め込まれている。 3本の光ファイバ 4 8を斜めに横切るよう に、 一つの平行溝が形成されている。 この平行溝内には、 波長 1 . 5 5 /zmの光 を反射し、 波長 1 . 3 1 /xm光を透過する一枚の光反射基体 4 1が挿入されてい る。 これらの構成は、 基本的には前述の実施例と同様の構成を有しており、 詳細 な説明は省略する。
波長 1 . 3 1 mのレーザ光を出射する半導体レーザアレー 4 4がセラミック 基板 4 1の上面の第 1の領域上に配置されている。 本実施例では、 同一の半導体 基板に形成された半導体レーザアレー 4 4を用いているが、 その代わりに、 異な る種類の半導体レーザ素子を 3つ、 別個にセラミック基板 4 1上に配列しても良 い。
セラミック基板 4 1の上面の第 2の領域上には、 3つの半導体受光素子 4 5が 並列的に配列されている。 半導体受光素子 4 5は、 それぞれ、 対応する光フアイ バ 4 8の真上に配置され、 樹脂によって固定されている。 半導体受光素子 4 5は、 反射基体 4 1によって反射された波長 1 . 5 5 mの光信号を受け取る。
なお、 セラミツグ基板 4 1の上面の第 1の領域上には、 レーザ素子用電極 4 7 が形成されており、 第 2の領域上には受光素子用電極 4 6が形成されている。 光ファイバ 4 8の各々の先端部には、 光ファイバ 4 8の先端部を一定の曲率を 持つように研磨加工することによってレンズ 4 9が形成されている。 このレンズ 4 9によって、 半導体レーザアレー 4 4から出射された信号光が対応する光ファ ィバ 4 8に効率良く入射される。 以下に、 上記光デバイスの製造方法を説明する。
まず、 セラミック基板 4 1の一部に凹部を形成した後に、 前述した電極配線パ ターンの形成方法と同様の方法で、 受光素子用電極 4 6とレーザ素子用電極 4 7 とを基板 4 1上に形成する。 レーザ素子用電極 4 7は、 基板 4 1の凹部に底面に 形成する。
その後、 前 'v卞の方法で 3本の V溝をセラミック甚板 4 1に形成した後、 各 V溝 内に光ファイバを埋め込み樹脂で固定する。 このあと、 3本の光ファイバを横切 るように一つの平行溝を形成する。 その平行溝内に一枚の光反射基体 4 2を挿入 し樹脂で固定する。
この後、 半導体受光素子 4 5及び半導体レーザアレー 4 4を、 樹脂もしくは半 田材料を用いて、 irラミック基板 4 1上の所定の位置に搭載 る。 このとき、 半 導体受光素子 4 5及び半導体レーザアレー 4 4の位置は、 それぞれ、 すでに形成 された電極 4 6および 4 7に対して調整される。 光ファイバ 4 8の先端に形成したレンズ 4 9が、 半導体レーザ素子アレー 4 4 の対応するレーザ光出射部に相対するよう'に、 半導体レーザ素子アレー 4 4は配 置される。 このため、 アレー状のレーザ光を一度に各光ファイバアレーに結合す ることができる。 また、 レンズ 4 9の凹部への突出距離を長くすれば、 光フアイ バの凹部へ露出する部分が長くなるため、 光ファイバ 4 8の持つ弾性によって、 レンズ 4 9の位置を半導体レーザ素子アレー 4 4の発光領域に対して調整するこ とが容易になる。 のため、 光ファイバ 4 9の可動部を動かすことによって、 半 導体レーザからの出射光がレンズ 4 9によって光フアイバ 4 8に光学的に結合す る度合を調整することができる。 このような調整の後に、 可動部を固定すれば、 光の結合効率を最適化することができ、 より大きな光出力を得ることができる。 このような光デバイスによれば、 複数の光ファイバからなる光ファイバアレイ によって並列伝送される波長 1 . 5 5 m光信号をそれぞれ別々に半導体受光素 子アレーで受光できると同時に、 波長 1 . 3 1 j mの光信号を送出することがで きる。 これにより、 一つの装置で複数の双方向光信号伝送が可能となる。 また同 一基板上に、 発光および受光素子配列の各々の信号処理を行う前述したような電 気回路を設けておけば、 より容易に小型化、 経済化された光デバイスが得られる。
(実施例 5 )
次に、 図 1 O A及び図 1 0 Bを参照しながら本発明の第 5の実施例を説明する。 図 1 O Aは本実施例の平面図、 図 1 0 Bはその断面図である。 本実施例では、 凹 部の形成されたガラス基板 5 1上に受光素子及び半導体レーザ素子が配置されて いる。
以下、 構成の詳細を説明する。
ガラス基板 5 1の上面は、 半導体レーザ素子が配置される第 1の領域と、 受光 素子が形成される第 2の領域に分けられる。 第 1の領域は、 ガラス基板 5 1に形 成された凹部 5 4の底面に対応する。 図 1 0 Bに示されるように、 第 1の領域と 第 2の領域の間にはステップがあり、 第 1の領域の高さは、 第 2の領域の高さよ りも、 約 6 0 ~ 7 0 m程度、 低く形成さ'れている。
ガラス基板 5 1の上面の第 2の領域には、 1本の溝が形成され、 その溝には、 先端部にマルチモードファイバ 5 3に変化している光ファイバ 5 2が埋め込まれ ている。 シングルモードファイバ 5 2のコア径は 1 0 μ πιであり、 マルチモード ファイバ 5 3のコア径は 5 0 mのである。 両ファイバの接続部では、 コア径が 1 0 i mから 5 0 / mにゆるやかに連続して変化している。 このような構造は、 光ファイバの両端に引っ張りながら接続部を熱処理することによって得られる。 光ファイバ 5 2を斜めに横切るように、 一つの平行溝 (不図示) が形成されて いる。 この平行溝内には、 波長 1 . 5 5 i mの光を反射し、 波長 1 . 3 1 111光 を透過する一枚の反射基体 (不図示) が挿入されている。
波長 1 . 3 1 μ ιηのレーザ光を出射する半導体レーザ素子 5 6が基板 5 1の上 面の第 1の領域上に配置されている。 ガラス基板 5 1の上面の第 2の領域上には、 半導体受光素子 (不図示) が配列され、 反射基体によって反射された波長 1 . 5 5 mの光信号を受け取る。
なお、 ガラス基板 5 1の上面の第 1の領域上には、 レーザ素子用電極 5 8が形 成されている。
半導体レーザ素子 5 6は融点 2 3 0度の半田材料を用いてあらかじめセラミツ ク基板 5 5上にレンズ 5 7と共に配置され、 電極 5 8から電流を通電することに よって、 その特性を検査し、 特性が良いものだけが選ばれる。 特性不良の半導体 レーザ素子 5 6は、 この段階で除去されるので、 不必要に光ファイバと接続する 必要がなく、 経済性が図れる。
半導体レーザ素子 5 6が配置されたセラミック基板 5 5は、 ガラス基板 5 1上 の凹部 5 4に融点 1 8 0度の半田材料を用いて接続される。 半導体レーザ素子 5 6から出射されたレーザ光はレンズ 5 7によって約 5 0 mのスポットサイズに 拡大される。 このため、 マルチモード光ファイバ 5 3との結合に際して、 数 m の位置精度で高い結合効率を得ることができる。 マルチモードファイバ 5 3に結 合したレーザ光はコァ系が緩やかに連続し'て変化してシングルモードファイバ 5 2に接続されるので散乱等の光損失を生じることなくほぼ完全に光パワーが伝送 される。 光ファイバ結合系の緩い実装精度も本光デバイスの経済化に大きな貢献 度合いをもつ。
(実施例 6 ) ·
次に、 図 1 1 A及び図 1 1 Bを参照しながら、 本発明の第 6の実施例を説明す る。 図 1 1 A及び図 1 1 Bにおいて、 6 1はガラス基板、 6 2はシングルモード ファイバ、 6 3はマルチモードファイバ、 6 4は波長 1 . 3 1 mの光信号に対 して 5 0 %の反射率を有する反射基体、 6 5は半導体受光装置、 6 6は波長 1 . 3 1 mの信号光を透過し波長 1 . 5 5 umの信号光を反射する反射基体である。 シングルモードの光ファイバ 6 2から伝送される波長 1 . 5 5 imの信号光は 反射基体 6 6で反射されてマルチモードファイバ 6 3に取り込まれる。 マルチモ ードファイバ 6 3の他端に半導体受光素子を接続し、 すべてのマルチ化したモー ドの光パワーを受光することによりマルチモ丄ドの使用においても高品質のアナ 口グ信号を受光することができる。 マルチ化したマルチモードファイバ中のモー ドの光パワーを全て受光しない場合には、 モーダル雑音が発生するために良好に アナログ信号を受信することができない。 またシングルモードの光ファイバ 6 2 から伝送される波長 1 . 3 1 /x mの信号光は反射基体 6 4により反射されて半導 体受光素子 6 5により受光される。
(実施例 7 )
次に、 図 1 2 A及び図 1 2 Bを参照しながら本発明の第 7の実施例を説明する。 図 1 2 Aは受光発光用装置の斜視図、 図 1 2 Bはその断面図である。
図 1 2 A及び図 1 2 Bにおいて、 7 1はガラス基板、 7 2はシングルモードフ アイバ、 73は波長 1. 31 /imの信号光を透過し波長 1. 55 mの信号光を 反射する反射基体波長、 74は波長 1. 3'1 の光信号に対して 50%の反射 率を有する反射基体、 75は波長 1. 55 zmの信号光を受光する半導体受光装 置、 76は波長 1. 31 mの信号光を受光する半導体受光装置、 77は基板の 外部で光ファイバ 72に接続される波長 1. 31 imの半導体レーザ、 78はフ アイバ端部を所定の曲率を持つよう加工したレンズである。
波長 1. 55 imの信号光は反射基体 73で反射されて半導体受光装置 75に 取り込まれる。 波長 31 / mの信号光は反射基体 74により反射されて半導 体受光素子 76により受光される。 また半導体レーザ 77から出射するレ一ザ光 はレンズ状ファイバ 78に結合されて光反射基体 74で 50%の光が透過し双方 向に光信号を伝送することができる。 半導体レーザ素子 77は、 ガラス基板 71 とは別個の同様の基板上に形成されればよくまた別個の箇体に収容されるもので もよい。 (実施例 8)
次に、 図 13を参照しながら、 本発明の第 8の実施例を説明する。
図 13において、 81はシリコン半導体基板、 82はシングルモード光フアイ バ、 83は波長 1. 55 mの信号光を受光する半導体受光素子、 84は波長 1. 31 mの信号光を受光する半導体発光素子、 85は波長 1. 31 mの半導体 レーザである。 図 13では、 不図示の光反射基体が光ファイバ 82を斜めに横切 るように配置されている。 それらの光反射基体を介して、 光ファイバ 82と受光 素子 83、 84及び発光素子 85が結合される。 ここで、 は発光素子 85は、 面 発光型レーザであり、 受光素子 83及び 84とともにシリコン基板 81の上面に 配置されている。
この光デバイスは、 通常の半導体集積回路を組み立てるのと同様の実装方法で 作製することが可能で、 組立が容易であるために経済化が図れると共に、 小型化 が図れるしかも信頼性に優れたものである。
以上の実施例では、 波長 1. 55 /zmお'よび波長 1. 31 /mの光デバイスを 中心に説明したが、 他の波長の組み合わせを用いたものでも良い。 また実施例で 示した構成材料等に制限を加えるものではないことは言うまでもない。
(実施例 9)
以下、 図 14を參照しながら本発明の第 9の実施例を説明する。 図 14は、 本 実施例の平面図である。
上面及び底面が平坦で、 側面が上面に垂直なガラス基板 101の上面に, 断面 が第 1溝 (深さ 300 m) 103が形成されている。 ガラス基板 101は、 1. 55 m波長の光に対して実質的に透明な材料から形成されている。 この溝 10 3内には、 UV樹脂から形成された透明な皮膜で覆われたシングルモード光ファ ィバ (直径 200 /zm) 102が樹脂によって固定されている。
第 2溝 (溝幅約 100 m) 104が、 光ファイバ 102の光軸に対して所定 の角度 (60度) をなし、 かつ、 基板 101の上面に垂直になるように、 ガラス 基板 101中に形成されている。 第 2溝 104内には、 フィルタ特性を有する光 反射基体 (厚さ約 8 Ο ΓΤΙ) 1 0 5が挿入され、 樹脂 1 08によって固定されて いる。 樹脂 108は、 1. 55 光に対して透明のエポキシ系材料から形成さ れており、 その屈折率は光ファイバの屈折率にほぼ等しい。 光反射基体 105は、 波長 1. 55 //mの信号光のみを選択的に 10%の割合で反射するように設計さ れている。 このような光反射基体 105は、 例えば、 シリコン酸化膜とチタン酸 化膜とを石英基板上に交互に積層することによって得られる。 図中、 波長が 1. 55 mの双方向に光ファイバ中を伝搬する光信号は、 それぞれ、 参照番号 1 0 0、 100' で示されている。
光フアイバ 102の光軸に平行な基板 101の側面のうち、 一方の側面に第 1 の I n G a A s半導体受光素子 106が取り付けられ、 他方の側面に第 2の I n G a As半導体受光素子 107が取り付けられている。
図中左から伝搬してきた光信号 100の'一部は、 反射基体 105によって反射 され、 第 1の反射光 109として第 1の半導体受光素子 106に入射する。 光信 号 100の残りは、 反射基体 105を透過して、 光ファイバ 102を右方向に伝 搬して行く。 他方、 図中右側から伝搬してきた光信号 100' の一部は反射基体 105により反射され、 第 2の反射光 110として第 2の半導体受光素子 107 に入射する。 光信号 100' の残りは、 反射基体 105を透過して, 光ファイバ 102を左方向に伝搬して行く。
本装置は、 光ファイバの伝送路中に挿入されており、 光信号 100、 100' が、 光ファイバ 102を通して双方向に伝送される。
半導体受光素子 106及び 107の表面には半導体層表面で光信号の反射を生 じないようにあらかじめ低反射率コートが施されており、 光ファイバ 102を伝 搬する波長 1. 55 mの光信号の一部が半導体受光素子 106及び 107に取 り込まれる。 ここで用いる半導体受光素子 106及び 107は、 波長 1. 55 /1 mの光信号に対して透明な I nP半導体結晶基板が使われるので、 光信号の入射 方向は結晶成長層側もしくは結晶基板側のいずれでも良い。
この受光用装置によれば、 光ファイバ部の伝送損失が 2. OdB程度と小さく することができる。 また、 光ファイバ 102からの光信号出射点と半導体受光素 子の受光部との距離を一定に、 しかも数ミリ以内程度に近く設定できるので、 光 信号が空間的に拡がって半導体受光素子の受光部以外に到達して受光効率を下げ ることがない。 このため、 光ファイバ 102を伝搬する波長 1 , 55wmの光信 号のうち反射基体 105で反射される成分 (反射光 109) の 80%以上が半導 体受光素子 106に取り込まれ高い効率が容易に得られる。 同様に、 光ファイバ 102を伝搬する波長 1. 55 mの光信号のうち第 1基体 105で反射する成 分 (反射光 110) の 80%以上が半導体受光素子 107に取り込まれ高い効率 が得られる。 しかも、 従来の受光用光デバィスのように光フアイバの光出射端面やレンズ端 面や半導体受光素子端面等の複数の端面間4での光信号の多重反射効果による信号 劣化等の問題が無く、 高い信号品質を必要とするアナログ光信号伝送系の受光用 としても用いることができる。 また全ての構成要素が、 ガラス基板 101に対し て固定されているので、 外部からの振動や外部の温度変化に伴う位置ずれで特性 が変化するといった問題が無く長時間の信頼性にも優れている。
(実施例 10 )
次に、 図 1 5を参照しながら、 本発明の第 10の実施例を説明する。
なお、 以下の説明において、 既説明と同一の箇所には同一の番号を附し、 説明 を省略する。
図 15に示されるように、 1. 55 //m波長の光に対して透明なプラスチック 材料からなる基板 201の上面に、 前記実施例と同様に、 深さが 200 mで断 面が矩形形状の第 1溝 203が形成されている。 この第 1溝 203の中に、 ナイ ロン樹脂からなるコーティング皮膜を有するシングルモード光ファイバ (直径 9 00 tm径) 202が埋め込まれている。 '
第 2溝 204は、 基板 201の基板の主面に対して傾斜するようにして、 基板 201中に形成されている。 本実施例では、 基体 205を光ファイバの光軸に対 し丁 fi 0度傾斜させている. 笫 2淸 204の断面は概略矩形で溝幅が 5 0 Aimで ある。 第 2溝 204内には、 厚さ 30 xmの石英基板上に金 (Au) 薄膜を 50 0オングストロームの厚みで形成した半透過 ·半反射特性を有する光反射基体 2 05がエポキシ樹脂とともに埋め込まれている。
透明基板 201の上面には、 受光径 30 O mの I nGa As半導体受光素子 206が表面実装技術によって搭載されている。'透明基板 201の底面には、 受 光径 300 mの I nGaAs半導体受光素子 207が、 力ンパッケージに封入 された状態で、 配置されている。 光信号 100の一部は、 基体 205により反射し、 反射光 208として、 半導 体受光素子 206に入射する。 光信号 1 0'0' の一部は、 基体 205により反射 して、 反射光 209として半導体受光素子 207に入射する。
本装置は、 光ファイバの伝送路中に挿入され、 光信号 100、 100' が、 光 ファイバ 202を通して双方向に伝送される。
第 2溝 204に埋め込んだ樹脂は、 その屈折率が光ファイバ 202から取り出 される光信号に対し'て屈折や反射を生じないように選ばれたものである。 半導体 受光素子 206の表面には半導体層表面で光信号の反射を生じないようにあらか じめ低反射率コートが施されており、 光ファイバ 202を伝搬する波長 1. 55 mの光信号の一部が半導体受光素子 206に取り込まれる。 ここで用いる半導 体受光素子 207は波長 1. 55 / mの光信号に対して透明な InP半導体結晶基 板が使われるので光信号の入射方向は結晶成長層側もしくは結晶基板側のいずれ でも良い。 本実施例でも、 前述の実施例 9により得られる効果と同様の効果が得 られる。
(実施例 11)
次に、 図 16を参照しながら、 本発明の第 1 1実施例を用いて説明する。 なお、 以下の説明において、 既説明と同一の箇所には同一の番号を附し、 説明を省略す る。
図 16に示されるように、 1. 55 m波長の光に対して実質的に透明なガラ ス基板 301上に、 深さが 200 imで断面が矩形形状の第 1溝 303が形成さ れている。 第 1溝 303内には、 125 m径のシングルモード光ファイバ 30 2が埋め込まれている。
ガラス基板 301の上面に, その上面に対して斜めに第 2溝 304が形成され ている。 第 2溝 304は、 断面が概略矩形形状で溝幅が 20 /zmである。 ポリイ ミドフィルム上にシリコン酸化膜とチタン酸化膜を交互に積層した 1. 5 5 m 光を 10%の割合で反射するフィル夕特性を有する厚さ 10/imの光反射基体 3 05が第 2溝 304内に挿入されている。 '
ガラス基板 301上には、 受光径 300 jamの I n G a A s半導体受光素子 3 06及び 307が表面実装技術によって固定されている。
ガラス基板 301の底面には、 金 (Au) 薄膜からなる反射器 308が形成さ れている。 光信号 100の一部は、 基体 305によって反射した後、 反射器 30 8により更に反射され、 反射光 309として半導体受光素子 306に入射する。 光信号 100' の一部は、 基体 305により反射され、 反射光 3 10として半導 体受光素子 307に入射する。 この受光用光デバイスによれば、 基体 305上の反射光 310が形成される点 と半導体受光素子 307の受光部との距離を一定でしかも 100〜 300 m程 度に短く設定できるので、 光信号が空間的に拡がって半導体受光素子 307の受 光部以外に到達して受光効率を下げることがない。 また、 基体 305からの反射 光 309の 90%以上が半導体受光素子 307に取り込まれ、 高い光一電流変換 効率が容易に得られる。 しかも、 従来の光デバイスで問題であった光ファイバの 光出射端面やレンズ端面や半導体受光素子端面等の複数の光学素子端面間での光 信号の多重反射効果による信号劣化等の問題が無く、 高い信号品質を必要とする アナ口グ光信号伝送系の受光用としても用いることができる。 また全ての構成要 素が、 ガラス基板 301に対して固定されているので、 外部からの振動や外部の 温度変化に伴う位置ずれで特性が変化するといつた問題が無く長時間の信頼性に も優れている。 配列した半導体受光素子 306, 307は同一の半導体基板上に 形成された半導体受光素子でも良い。 次に、 図 1 7を参照しながら、 光ファイバ 302を横切って形成される第 1溝 303を通過する波長 1. 55 tmの光信号の損失について説明する。 図 1 7は、 光通信に通常用いられる種類のシングルモードファイバ (コア半径 ω = 5 / m) の間隙による光損失の計算結果と実験結果'とを示している。
本実施例で用いられる光ファイバの屈折率 (n = l . 5 ) とほぼ同程度の屈折 率を持つ樹脂で間隙が充填されている場合には、 2 0 mの間隙に対して 0 . 2 d B程度のわずかな結合損失しか生じない。 この結合損失は、 一つめにはフアイ バ間の間隙を小さくすることで、 二つめには光ファイバのコア経を大きくするこ とで減らすことが きる。 図 1 7には、 コア半径 ω - 1 0、 == 1 5 mの場合 の計算結果も示されている。 間隙が同じ大きさの場合であっても、 コア半径 ωが 大きくなると、 光損失が大幅に低減されることが分かる。
図 1 8 Α及び図 1 8 Bは、 それぞれ、 通常の光ファイバ 4 0 1及び部分的にコ ァ径が拡大された光ファイバ 4 0 4を示している。
図 1 8 Aに示されるように、 通常の光ファイバ 4 0 1は、 一定の径を持つコア 4 0 2がクラッド 4 0 3で覆われた構成を有している。 これに対して、 光フアイ バ 4 0 4のコア 4 0 2は、 他の部分より径の大きくなつた部分 4 0 5を横切るよ うに第 2溝を形成すれば、 第 2溝の間隙による信号伝送損失を低減することがで きる。 '
この受光用光デバイスを製造する場合において、 各構成部分の組立工程時に、 光ファイバからの光信号を検出しながら各部品の位置を調整する必要がない。 こ のため、 このような受光用装置は、 シリコン集積回路の実装技術分野で用いられ る実装装置を用いて製造することができるので、 短時間での大量の製造に適して おり低価格が期待できる。 なお、 さらに異なる波長の光信号に対しても同様の方 法を用いて製造することができるのは説明を要しない。
(実施例 1 2 )
次に、 図 1 9を参照しながら、 本発明の第 1 2の実施例を説明する。
本実施例の装置は 図 1 4の装置と類似の構成を有しており、 同一の箇所には 同一の番号を付し、 説明を省略する。
図 1 9の装置において特徴的な点は、 ガ'ラス基板 101の主面に幅 20 βΐηで 断面が概略矩形形状の第 3溝 60 1が形成されており、 その中に、 1. 48 m の光を選択的に反射する第 2反射基体 602が挿入されている点にある。
このような構成を採用したことによって、 波長が 1. 3 / m、 1. 48 //m及 び 1. 55 mの光を含む双方向信号 600が、 図中左から光ファイバ 1 02を 伝搬してきた場合、'第 2反射基体 602により波長 1. 48 imの光が選択的に 反射され、 反射光 603として、 図中左方向へ伝搬される。 双方向信号 600 ' は、 波長が 1. 3 im及び 1. 55 / mの信号光を含む。
このような装置は、 好ましくは、 希土類元素であるエルビウムが添加 (ドー プ) された光ファイバ増幅器 (EDFA: Erubimn Doped Fiber Amplifier) に 接続して用いられる。 光ファイバ増幅器の励起 (ボンビング) には、 波長 1. 4 8 μπιの励起光が用いられる。 第 2基体 602は、 この励起光が受光素子 106 に入射するのを防止するため、 受光素子 1 06の出力に含まれる雑音成分を低減 する。 これにより、 受光素子 106、 107は、 1. 55 ΓΤΙ波長の光信号成分 のみが検出することができる。
この装置では、 受光素子 106は光ファイバ増幅器の出力モニタのため用いら れ、 受光素子 1 07は、 外部から光ファイバ増幅器に反射して戻ってくる反射光 モニタのために用いられる。
本実施例でも、 第 2の基体 602と第 3溝の側壁との間には、 光ファイバの屈 折率とほぼ等しい屈折率を持ち樹脂が充填されている。 このため、 信号光の屈折 や散乱反射が抑制されため、 伝送損失はほとんとほ増加しない。 励起光をフィル 夕リングするための光学部材が、 ガラス基板 10 1に一体化されているため、 機 械的な振動に対して高い信頼性を有する装置が提供される。
(実施例 13) 次に、 図 2 0を参照しながら、 本発明の第 1 3の実施例を説明する。
本実施例では、 図 1 6の実施例 (実施例 1 1 ) の光デバイスを、 電気増幅器と 共に基板上に集積化している。
前述のように、 ガラス基板 3 0 1の溝内に光ファイバ 7 0 1および 7 0 1 ' の 一部が埋め込まれている。 電気配線パターン 7 0 3がガラス基板 3 0 1上にあら かじめ形成され、 その電気配線パターン 7 0 3に接続されるように、 受光素子 3 0 6及び 3 0 7と、'プリアンプ回路を有する電気集積回路素子 7 0 2とがガラス 基板 3 0 1上に形成されている。
ガラス基板 3 0 1は、 パッケージ 7 0 5の底部に導電性樹脂によって固定され る。 その後、 パッケージ 7 0 5を突き抜ける各電気按統端了 7 0 4の一端と、 ガ ラス基板 3 0 1上の電極配線パターン 7 0 3とを、 アルミからなる電気接続ワイ ャ 7 0 3によって接続する。 光ファイバ 7 0 1は、 光ファイバ取り出し口を介し てパッケージ 7 0 5内から外部へ延びる。 次に、 光ファイバ取り出し部に樹脂を 充填することによって、 気密処理を施した後、 パッケージ 7 0 5にその蓋部を取 付ける。
この装置の製造に際しては、 図 2 0の紙面に垂直な方向に各部品を高精度に位 置決めする必要が無く、 紙面に平行な面内での位置決めをすればよい。 従って、 半導体集積回路の実装分野で使用される通常の実装装置を用いて容易に作製する ことができる。 なお、 全ての構成部品はパッケージ 7 0 5に固着されているので、 機械的な振動に対して、 高い信頼性を有する。
このように本発明によれば、 光ファイバを用いて双方向光伝送システムに用い る光デバイスの小型化、 集積化、 軽量化をはかると共に、 生産性を向上させて低 コスト化を達成することができる顕著な効果があり、 産業上大きな意義を有する。 (実施例 1 4 )
以下、 図 2 1及び図 2 2を参照しながら、 本発明の第 1 4の実施例を説明する。 本実施例では、 幅 1 5 0 /zm, 深さ 1 5 0; a mの断面矩形形状を有する第 1溝 1 1 0 3がガラス基板 1 1 0 1の上面に形'成されている。 光ファイバ 1 1 0 2の 一方の端部が第 1溝 1 1 0 3内に埋め込まれ、 透明のエポキシ系樹脂材料によつ て固定されている。 ガラス基板 1 1 0 1には、 ダイシングソ一による切断によつ て傾斜した端面 1 1 0 4が形成されている。 本実施例では、 端面 1 1 0 4の法線 方向は、 光ファイバ 1 1 0 3の光軸と 3 0度の角度を為すように形成されている。 後述する理由から、'この角度は 5度から 4 0度の範囲内に設定される。
傾斜端面 1 1 0 4上には反射器 1 1 0 5が樹脂によって貼り付けられ、 固定さ れている。 反射器 1 1 0 5は、 石英基板上にチタン (T i ) と金 (A u ) を積層 することによって形成されている。 ガラス基板 1 1 0 1の上面には、 I n G a A s半導体受光素子 1 1 0 6が設けられている。 1 . 3ミクロンの光信号 1 1 0 7 は、 反射器 1 1 0 5によって反射され、 反射光 1 1 0 8として半導体受光素子に 入射する。
本実施例でも、 樹脂の屈折率は光ファイバ 1 1 0 2の屈折率と同程度に設定さ れている。 このため、 端面 1 1 0 4の切断による物理的な荒れ (微細な凹凸) は、 光学的には存在しない状態に等しくなるので、'光信号の散乱は生じない。 光信号 の反射方向に配置された半導体受光素子 1 1 0 6により光信号は効率的に電気信 号に変換される。
この受光用光デバイスによれば、 光ファイバ 1 1 0 2の光信号出射点と半導体 受光素子 1 1 0 6の受光部との距離を一定に、 しかも 6 0から 3 0 0ミクロン程 度に短く設定できる。 このため、 光信号が空間的に拡がって半導体受光素子の受 光部以外に到達して受光効率を下げることがなく、 光ファイバ 1 1 0 2を伝搬す る波長 1 . 3ミクロンの光信号の 9 0 %以上が半導体受光素子 1 1 0 6に取り込 まれる。 その結果、 高い受光効率が容易に得られる。 次に、 図 2 2は、 リターンロスの端面傾斜角度依存性を示す。 図 2 2のグラフ の横軸は、 反射器 1 1 0 5の法線と光ファイバ 1 1 0 2の光軸とがなす角度を示 し、 縦軸は、 光ファイバ 1 1 0 2の入射側'から見たリターンロス (光学的な反射 率) を示している。
角度が 5度以下の場合、 反射器 1 1 0 5の表面からの反射戻り光が光ファイバ 1 1 0 2に帰還される。 また角度が 4 0度以上 (4 5度以上の時は構成上考慮し ない) の場合、 半導体受光素子 1 1 0 6表面からの反射戻り光が光ファイバ 1 1 0 2に帰還される。 ·
反射戻り光が大きい場合には、 外部の光コネクタの反射端面との間で多重反射 が引き起こされ、 受光信号の品質を劣化させる。 しかしながら、 本発明では角度 を 5度から 4 0度の範囲に設定するので、 図 2 2から明らかなように、 光フアイ パの光出射端面や従来の受光素子で用いられているレンズの端面や半導体受光素 子端面等の複数の光学的な端面間での多重反射による信号劣化等の問題が無く、 高い信号品質を必要とするアナログ光信号伝送系の受光用としても用いることが できる。
また、 本発明の形態においては、 レンズ等の光学部品を用いていないので小型 であると同時に、 全ての構成要素がガラス基板 1 1 0 1に対して固定されている ので、 外部からの振動や外部の温度変化に伴う位置ずれで特性が変化するといつ た問題が無く長時間の信頼性にも優れている。
次に、 図 2 3 Aから図 2 3 Dを参照しながら、 受光用装置の製造方法を説明す る。
まず、 図 2 3 Aに示すように、 断面矩形形状を有する第 1の溝 1 1 0 3を機械 的な切削によってガラス基板 1 1 0 1の上面に形成する。 ガラス基板 1 1 0 1の 上面には、 あらかじめ電極材料を真空蒸着し、 続くフォトリソグラフイエ程及び エッチング工程によって所望の電極パターンを形成しておく。 これらの工程で、 同時に、 端面 1 1 0 4が形成される位置及び受光素子が配置される位置を表示す る 「位置合わせ用マーク (不図示) 」 をガラス基板 1 1 0 1の上面に形成する。 次に、 図 2 3 Bに示すように、 光ファイバ 1 1 0 2を樹脂材料とともに第 1の 溝 1 1 0 3中に埋め込む。 この後、 樹脂を'硬化する。
次に、 ガラス基板 1 1 0 1の上記 「位置合わせマーク」 によって示される部分、 すなわち図 2 3 Bにおいて破線で示される部分を、 ワイヤソゥゃダイシングソゥ と呼ばれる切断装置を用いて切断する。 こうして, 図 2 3 Cに示すように、 光フ ァイノ 1 1 0 2の光軸に対して所定の角度で基板端面 1 1 0 4を形成する。
次に、 図 2 3 D 示すように、 基板端面 1 1 0 4に樹脂を介して光反射基体 1 1 0 5を貼り付け、 固定する。 また、 樹脂を用いて、 半導体受光素子 1 1 0 6を、 位置合わせマークが示す所定の位置に配置する。 樹脂材料として紫外線光を外部 から照射することにより硬化するものを用いれば、 長時間の硬化時間を必要とせ ずに所定の位置に半導体受光素子を固定することができる。
この受光用装置は、 光ファイバからの光信号を検出しながら位置を調整する必 要がなく、 既存のシリコン集積回路の実装手段に用いられる類の全て 2次元的な 実装手段を用いて製造することができるので、 短時間での大量の製造に適してお り低価格が期待できる。
(実施例 1 5 )
次に、 図 2 4を参照しながら、 本発明の第 1 5の実施例を説明する。
光信号波長に対して透明のガラス基板 1 4 0 1、 光ファイバ 1 4 0 2、 ガラス 基板 1 4 0 1中に形成された幅 1 5 0 m、 深さ 1 5 0 mの断面矩形形状を有 する第 1の溝 1 4 0 3で透明のエポキシ系樹脂材料により光ファイバ 1 4 0 2の —部が埋め込まれて固定されている。
1 4 0 4は基板端面、 1 4 0 5は反射器、 1 4 0 6は半導体受光素子、 1 4 0 7は 1 . 3 i m光信号、 1 4 0 8は反射光であり、 図 2 1の実施例と同様のもの である。 光信号 1 4 0 7は光ファイノ、' 1 4 0 2中を伝搬した後基板端面 1 4 0 4 上に貼り付け固定された反射器 1 4 0 5により上方に反射して光ファイバ 1 4 0 2の外部に取り出され、 透明ガラス基板 1401の中を通って基板の主面上に配 置された半導体受光素子 1406の受光部'に到達して電気信号に変換される。 こ の受光用装置においても、 実施例 14について説明したような優れた特性が得ら れる。
(実施例 16)
次に、 図 25、 囟 26 A及び図 26 Bを参照しながら、 本発明の第 16の実施 例を説明する。 図 25において、 1501はシリコン基板、 1502は光フアイ バ、 1503は幅 140 mの第一の溝、 1504は基板端面、 1505は反射 器、 1506は第三の溝である幅 20 imのスリットで基板 1501の主面内に 於いて光ファイバの光軸に対して所定の角度を為す。 1507はポリイミドフィ ルム上の誘電体多層膜からなる波長 1. 3 ΙΤΙ光を透過し波長 1. 55 tm光を 反射するフィル夕、 1508は InGaAs半導体受光素子、 1509は光ファイバと 概略同程度の屈折率のエポキシ系樹脂、 1510は波長 1. 3 zmと 1. 55 // mの光信号、 151 1は 1. 3 /zmの反射光である。
本光デバイスの構成では、 2波長の信号光の内から選択的に一方の波長の信号 を受光することができる。 波長数や選択される波長の種類は、 フィルタ 1507 を適当に選ぶことにより選択することができることは言うまでもない。
次に、 本光デバイスの受光部の詳細について、 図 26 A及び 26 Bを参照しな がら説明する。
図 26において、 1601は基板、 1602は半導体受光素子、 1603は半 導体受光素子 1602の受光部、 1604は半導体受光素子 1602の電極、 1 605はあらかじめ基板 1601の主面上にもうけられた金 (An) 材料からな る突起部を有する基板電極、 1606はエポキシ樹脂である。
図 26 Aは、 樹脂固定前の半導体受光素子 1602と基板電極 1605の位置 関係を示している。 図 26Bは、 半導体受光素子 1602と基板 1601の間に エポキシ樹脂 1 6 0 6で接着固定されている様子を示しており、 電極 1 6 0 4と 基板電極 1 6 0 5とが電気的に良好な接続'が得られる。
(実施例 1 7 )
次に、 図 2 7を参照しながら、 第 1 7の実施例を説明する。
図 2 7に於いて 1 7 0 1は厚さ 4 0 mの石英基板上に誘電体多層膜を積層し た波長 1 . 5 5 iiii光を透過し波長 1 . 3 i m光を反射するフィルタである。 な ぉ既説明と同一の箇所には同一の番号を付し説明を省略する。 フィル夕 1 7 0 1 は半導体受光素子 1 5 0 8を基板 1 5 0 1に樹脂 1 5 0 9に固定する前に、 その 間に同じ樹脂を用いて基板 1 5 0 1上に接着固定され、 反射光 1 5 1 1は半導体 受光素子 1 5 0 8の受光部に到達する前にこのフィル夕 1 7 0 1を通過するよう に設置されている。 これにより発明の実施の形態で説明したと同様な波長選択性 のある受光特性が得られる。 半導体受光素子の受光部に直接フィル夕が形成され ている場合にも同様の効果が得られる。
(実施例 1 8 )
次に、 図 2 8を参照しながら、 本発明の第 1 8の実施例を説明する。 図 2 8に 於いて、 1 8 0 1は基板、 1 8 0 2はファイバコネクタの構成部品であるフェル —ル、 1 8 0 3はフェル一ル中の光ファイバ、 1 8 0 4は第二の溝であるスリツ ト、 1 8 0 5は反射器、 1 8 0 6は第一の溝、 1 8 0 7は半導体受光素子、 1 8 0 8は光信号、 1 8 0 9は反射光である。 フエルール 1 8 0 2は基板 1 8 0 1上 に固定されており、 後に形成されるファイバコネクタを介して外部の光伝送路に 接続される。 あらかじめフエルール 1 8 0 2を接続しておくことにより容易にフ アイバコネクタが形成できる利点がある。 また光デノ スの製造工程に於いて、 長尺の光ファイバをひきずることが無く、 その扱いが容易となる利点がある。 光 ファイバの他方の端について説明を省略したが、 同様のフエルールを設けておけ ば両側に光コネクタが容易に形成され、 外部の光フアイバ伝送路との接続が容易 となる。 次に図 2 9 Aから図 2 9 Eを参照しながら本実施例の製造方法を説明する。 図 2 9 Aに示されるように、 基板 1 8 0 1の上面に複数の第 1溝 1 8 0 6を平 行に形成する。 この後、 図 2 9 Bに示されるように、 フエルール 1 8 0 2のつい た複数の光ファイバ 1 8 0 3を、 それぞれ、 対応する第 1溝 1 8 0 6中に樹脂材 料を用いて埋め込み固定する。 次に、 図 2 9 Cに示されるように、 光ファイバ 1 8 0 1を横切るように、 基板 1 8 0 1の上面に対して斜めに (所定の角度で) 第 2溝 1 8 0 4を形成する。
次に、 図 2 9 Dに示されるように、 一枚の反射基体 1 8 0 5を樹脂材料ととも に第 1溝 1 8 0 4内に挿入し固定した後、 各半導体受光素子 1 8 0 7を基板 1 8 0 1上に配置する。 この後、 図 2 9 Eに示されるように、 各光デパイスをそれぞ れのュニッ卜に分割する。
このように製造方法は、 第 1溝 1 8 0 6および第 2溝 1 8 0 4を形成する工程 が、 複数の光デバイスに関して一度に処理されるため、 量産化に適している。
(実施例 1 9 )
図 3 1 A及び図 3 1 Bを参照しながら、 本発明の第 1 9実施例を説明する。 本実施例では、 受光素子等と一体化された第 1基板 1 9 0 1が、 上面に段差の 形成された第 2基板 1 9 0 2の上に搭載され、 一個の光ファイバモジュールを構 成している。 第 1基板 1 9 0 1には第 1溝 1 9 0 3が形成され、 その中に光ファ ィバ 1 9 0 4が樹脂で固定されている。 また、 第 2溝 1 9 0 5およびその中に挿 入された光反射基体 1 9 0 6が光ファイバ 1 9 0 4を斜めに横切っている。 前述 の実施例と同様に、 第 2溝 1 9 0 5の中では光反射基体 1 9 0 6を樹脂が包み込 んでおり、 第 1基板 1 9 0 1の上面にあって光反射基体 1 9 0 6によって反射さ れた光を受け取れる位置には、 受光素子 1 9 0 7が樹脂によって固定されている。 これらの樹脂の屈折率は、 光ファイバのコ'ァ部の屈折率とほぼ等しい。
第 1基板 1 9 0 1と第 2基板 1 9 0 2とは、 例えばシルバーペース卜のような 接着剤 1 9 1 0によって図 3 1 Bに示すように固着される。 第 2基板 1 9 0 2は、 厚い部分と薄い部分とから構成されており、 厚い部分の上部には、 光ファイバ 1 9 0 4の先端部を支持 ·固定するための V溝 1 9 0 8が形成されている。 第 2基 板 1 9 0 2は、 例えばシリコン基板の上面の選択された領域を部分的にエツチン グすることによって形成され得る。
第 2基板 1 9 0 2上に半導体レーザ素子 1 9 0 9が実装された後、 半導体レ一 ザ素子 1 9 0 9が所定の特性を示す良品か否かを判断するためのスクリーニング 試験が行われる。 一般に、 半導体レーザ素子 1 9 0 9の信頼性歩留りは 1 0 0 % でないため、 上記スクリーニング試験によって、 半導体レーザ素子 1 9 0 9の不 良品が排除される。 スクリーニング試験は、 受光素子 1 9 0 7や光ファイバ 1 9 0 4が固定された第 1基板 1 9 0 1を第 2基板 1 9 0 2上に搭載する前に行われ 得る。
第 2基板 1 9 0 2に設けた段差の高さは、 第 1基板 1 9 0 1の厚さに応じて調 整される。 第 1基板 1 9 0 1の厚さが、 例えば 3 5 0 mで、 第 1基板 1 9 0 1 に形成された第 1溝 1 9 0 3の深さ (光ファイバ 1 9 0 4のコア径に対応する) が 7 0 /z mの場合、 第 2基板 1 9 0 2の段差高さは、 2 7 0〜2 9 0 ΙΏ程度に 設定される。 そうして、 図 3 1 Bに示すように、 光ファイバの光軸の位置と半導 体レーザ素子の発光位置とを整合させることができる。 基板 1 9 0 1、 1 9 0 2 には、 前述の実施例について述べたように、 電極配線パターン (不図示) が形成 されていている。
このような光ファイバモジュールによれば、 半導体レーザ素子 1 9 0 9からの 信号光を光ファイバ 1 9 0 4に効率的に入射させ、 しかも、 光ファイバ 1 9 0 4 を伝搬してきた信号光をインライン配置された受光素子 1 9 0 7で効率的に受け 取ることができる。 本実施例によれば、 一般家庭の加入者端末を小型化 ·低価格 化することができる。 産業上の利用の可能性
以上説明したように、 本発明は低損失化、 小型化、 低価格化、 高信頼性化が可 能な光デバイスとその製造方法を提供するものであり、 中継伝送系、 加入者系、 構内伝送系等のさ ざまな光ファイバ通信システムの構築に向けて大きく貢献す るものであり産業上大きな意義を有するものである。

Claims

請求の範囲
1. 基板と、
該基板に形成された少なくとも一つの第 1溝と、
該第 1溝内に配置された光フアイパと、
該光ファイバを斜めに横切る少なくとも一つの第 2溝とを備えた光デバイスで あって、 更に、 '
該第 2溝内に挿入され、 該光ファイバを伝搬する光の少なくとも一部を反射ま たは回折する面を有する光学部材を備えている光デバイス。
2. 前記第 2溝内において、 少なくとも前記光学部材と前記光ファイバとの 間には、 該光ファイバのコア部の屈折率 n f にほぼ等しい屈折率 n rを持つ材料 が埋められている、 請求項 1に記載の光デバイス。
3. 前記屈折率 n rと前記屈折率 n fとの間には、
0. 9≤ (nr/n f) ≤ 1. 1の関係がある、 請求項 2に記載の光デバイス。
4. 前記屈折率 nrを持つ材料は樹脂から形成されている、 請求項 2に記載 の光デバイス。
5. 前記屈折率 nrを持つ材料は紫外線硬化樹脂から形成されている、 請求 項 4に記載の光デバイス。
6. 前記第 2溝の内壁には微細な凹凸が存在する、 請求項 2に記載の光デバ イス。
7. 前記光学部材は、 選択された範囲の波長を有する光を選択的に反射する、 請求項 1に記載の光デバイス。
8. 前記光学部材は、 選択された範囲の波長を有する光を選択的に透過する、 請求項 1に記載の光デパイス。
9. 前記光学都材は、 屈折率 nbを持つ材料から形成されたベースと、 該べ ース上に形成された誘電体多層膜とを備えており、 該屈折率 nbと前記屈折率 n f との間には、 0. 9≤ (nb/nf) ≤1. 1の関係がある、 請求項 2に記載の 光デバイス。
10. 前記光学部材の前記面は回折格子を有する、 請求項 1に記載の光デバ イス。
11. 前記基板は前記光ファイバを伝搬する信号光に対して透明な材料から 形成されている、 請求項 1に記載の光デバイス。
12. 前記基板はガラスから形成されている、 請求項 1に記載の光デバイス。
13. 前記基板はセラミックから形成されている、 請求項 1に記載の光デバ イス。
14. 前記基板は半導体から形成されている、 請求項 1に記載の光デバイス。
5. 前記光学部材の前記面の法線は、 前記光ファイバの光軸と平行ではな い、 請求項 1に記載の光デバイス。
1 6. 前記第 2溝は、 前記基板の上面に対して傾斜している、 請求項 1 5に 記載の光デバイス。
1 7. 前記光学部材によって反射または回折された光を受け取る少なくとも 1つの光学素子を'、 前記基板上に備えている請求項 1に記載の光デバイス。
1 8. 前記光学部材を透過した光を受け取る少なくとも 1つの第 2光学素子 を、 前記基板上に更に備えている請求項 1 7に記載の光デバイス。
1 9. 前記基板は、 上面と底面とを有しており、
該基板の該底面に配置され、 前記光学部材により反射または回折された光を受 け取る第 1受光素子と、
該基板の該上面に配置され、 該光学部材により反射または回折された光を受け 取る第 2受光素子と、
を更に備えた請求項 1に記載の光デバイス。
2 0. 前記基板は、 上面と、 反射器の取り付けられた底面とを有しており、 該基板の該上面に配置され、 前記光学部材により反射または回折された光を受 け取る第 1受光素子と、
該基板の該上面に配置され、 該光学部材により反射または回折された光を、 該 反射器を介して受け取る第 2受光素子と、
を更に備えた請求項 1に記載の光デバイス。
2 1 . 前記基板は、 上面と底面と複数の側面とを有しており、 該基板の該複数の側面の一つに配置され、 前記光学部材により反射または回折 された光を受け取る第 1受光素子と、
該基板の該複数の側面の他の一つに配置され、 該光学部材により反射または回 折された光を受け取る第 2受光素子と、
を更に備えた請求項 1に記載の光デバイス。
2 2. 前記光孛素子は、 受け取った光に応じた電気信号を生成する受光素子 である請求項 1 7に記載の光デバイス。
2 3 . 前記受光素子は、 前記基板上に固定されている請求項 2 2に記載の光 デバイス。
2 4. 前記受光素子の受光面と前記基板との間には、 前記光ファイバのコア 部の屈折率 n fにほぼ等しい屈折率 n pを持つ材料が埋められている、 請求項 2 3に記載の光デパイス。
2 5. 前記受光素子の受光面には低反射率膜が形成されている、 請求項 2 4 に記載の光デバイス。
2 6. 前記第 2溝の数は複数であり、 該複数の第 2溝のそれぞれに、 異なる フィルタ特性を持つ光学部材が挿入されている、 請求項 1に記載の光デバイス。
2 7. 前記第 1溝の数は複数であり、 前記第 2溝の数は単数であり、 該単一 の第 2溝が該複数の第 1溝を横切っている、 請求項 1に記載の光デバイス。
2 8. 前記第 1溝の数は複数であり、 該複数の第 1溝は、 ほぼ平行となるよ うに前記基板上に配列されている、 請求項 1に記載の光デバイス。
2 9. 前記基板上には、 前記第 1溝に交差する方向に沿って第 3溝が形成さ れており、 該第 3溝内には他の光ファイバが設けられており、 前記光学部材か ら反射又は回折された光が該他の光ファイバに結合される、 請求項 1に記載の光 デバイス。
3 0. 前記光ファイバの端部に半導体レーザから出射されたレーザ光が結合 される請求項 1に記載の光デバイス。
3 1 . 前記基板は該上面に凹部を有しており、
該基板の該凹部に配置された半導体レーザを備えており、
前記光フアイバの端部はレンズ状に加工されており、 該半導体レーザの出射光 が該光ファイバに光学的に結合する請求項 3 0に記載の光デバイス。
3 2. 前記光ファイバの端部は、 前記レンズ状部分の位置を前記半導体レー ザ素子に対して相対的に移動させることのできる可動部を有しており、
前記半導体レーザの出射光が該光ファイバに光学的に結合される状態で該可動 部が固定されている、 請求項 3 1に記載の光デバイス。
3 3. 前記基板は該上面に凹部を有しており、
該基板の該凹部に配置された半導体レーザと、 該半導体レーザの出射光を該光 ファイバに光学的に結合するレンズとを備えている、 請求項 3 0に記載の光デバ イス。
3 4. 前記半導体レーザと前記レンズとを支持する支持部材が前記基板の凹 部に配置されている、 請求項 3 3に記載の光デバイス。
3 5 . 前記支持部材上に配置された前記半導体レーザは、 検査により選別さ れた後に、 前記基板の凹部に配置される請求項 3 3に記載の光デバイス。
3 6 . 前記半導体レーザからのレーザ光の一部を受け取る受光素子を前記基 板上に備えている請求項 3 0に記載の光デバイス。
3 7 . 前記光ファイバは、 該光ファイバを伝搬する信号光の波長帯域におい てシングルモードファイバとして機能する第 1部分と、 該信号光の波長帯域にお いてマルチモードファイバとして機能する第 2部分と、 該第 1部分及び該第 2部 分を接続する接続部分とを有しており、 該第 1部から該第 2部分に向かって該接 続部のコア径がゆるやかに連続して変化している請求項 1に記載の光デバイス。
3 8 . 前記光ファイバのうち、 前記マルチモードファイバとして機能する第
2部分のコア径は、 シンダルモードフアイバの一部を加熱処理することによって 増加されたものである、 請求項 3 7に記載の光デバイス。
3 9 . 前記第 3溝内の前記他の光ファイバは、 マルチモードファイバから形 成されており、
前記光学部材から反射又は回折された光を該他の光ファイバを介して受け取る 受光素子を更に備えている、 請求項 2 9に記載の光デバイス。
4 0 . 前記基板には電気配線パターンが形成されており、
前記受光素子は、 該電気配線パターンに接続されている、 請求項 1 7に記載の 光デバイス。
00
4 1 . 前記受光素子の信号処理を行うための半導体電気素子が、 前記電気配 線パターンに接続されている、 請求項 4 0に記載の光デバイス。
4 2. 前記光ファイバの一端には、 他の光ファイバに接続するための光コネ クタが取り付けられている請求項 1に記載の光デバイス。
4 3. 前記基板の上面を覆うように形成された保護膜を更に備えている請求 項 1に記載の光デバイス。
4 4. 前記基板は、 前記光ファイバの取り出し口と、 外部と電気的に接続す るための複数の端子とを有する箇体内に収容されている請求項 1に記載の光デバ イス。
4 5. 前記半導体レーザは前記支持部材上に第 1の半田材料によって接続さ れ、 該支持部材は該第 1の半田材料の融点よりも高い融点を持つ第 2の半田材料 によって前記基板上に接続されている、 請求項 3 4に記載の光デバイス。
4 6. 前記基板は、 前記光ファイバの取り出し口と、 外部と電気的に接続す るための複数の端子とを有する箇体内に収容されており、
該基板は前記第 2の半田材料の融点よりも低い融点を持つ第 3の半田材料によ つて該箇体の底部に接続されている、 請求項 4 5に記載の光デバイス。
4 7. 基板と、
該基板に形成された少なくとも一つの第 1溝と、
該第 1溝内に配置され、 双方向に信号光を伝搬する光ファイバと、 該光ファイバを斜めに横切る少なくとも一つの第 2溝とを備えた光デバイスで あって、 更に、
該第 2溝内に挿入され、 該光ファイバを伝搬する双方向信号光の少なくとも一 部を反射または回折する面を有する光学部材と、
該双方向信号光のうち、 該光学部材によって反射または回折された光をそれぞ れ受け取る 2つの受光素子と、
を備えている光デバイス。
48. 前記光フアイバを横切る第 3溝と、
該第 3溝内に挿入され、 該光ファイバを伝搬する不要な波長成分の光を反射除 去する面を有する第 2の光学部材と、
を更に備えている請求項 47に記載の光デバイス。
49. 前記第 2溝は前記光ファイバの光軸に対して垂直である、 請求項 48 に記載の光デバイス。
50. 前記第 3溝中に挿入された前記第 2の光学部材による反射光が前記 2 つの受光素子に混入しないように、 前記第 2溝及び該第 3溝は前記光ファイバの 光軸に対して異なる角度に形成されている請求項 48に記載の光デバイス。
51. 前記第 2溝内において、 少なくとも前記光学部材と前記光ファイバと の間には、 該光ファイバのコア部の屈折率 n fにほぼ等しい屈折率 n rを持つ材 料が埋められている、 請求項 47に記載の光デバイス。
52. 前記屈折率 nrと前記屈折率 nf との間には、
0. 9≤ (n r/n f) ≤ l. 1の関係がある、 請求項 5 1に記載の光デバイ ス'
53. 前記屈折率 を持つ材料は樹脂から形成されている、 請求項 51に 記載の光デバイス。
54. 前記屈折率 nrを持つ材料は紫外線硬化樹脂から形成されている、 請 求項 53に記載の光デバイス。
55. 前記第 2溝の内壁には微細な凹凸が存在する、 請求項 51に記載の光 デバイス。
56. 前記光学部材は、 選択された範囲の波長を有する光を選択的に反射す る、 請求項 47に記載の光デバイス。
57. 前記光学部材は、 選択された範囲の波長を有する光を選択的に透過す る、 請求項 47に記載の光デバイス。
58. 前記光学部材は、 屈折率 nbを持つ材料から形成されたベースと、 該 ベース上に形成された誘電体多層膜とを備えており、 該屈折率 n bと前記屈折率 nf との間には、 0. 9≤ (nb/nf) ≤ 1. 1の関係がある、 請求項 51に記 載の光デバイス。
59. 前記光学部材の前記面は回折格子を有する、 請求項 47に記載の光デ パイス。
60. 前記基板は前記光ファイバを伝搬する信号光に対して透明な材料から 形成されている、 請求項 4 7に記載の光デバイス。
6 1 . 前記基板はガラス材料から形成されている請求項 6 0に記載の光デバ イス。
6 2. 前記基板はブラスティック材料から形成されている請求項 6 0に記載 の光デバイス。 '
6 3 . 前記双方向信号光は、 相互に異なる波長を有しており、
前記光学部材は、 透明でかつ光ファイバの屈折率とほぼ同じ屈折率を有するベ ースと、 該ベースの 2つの主面上に形成された 2つの反射コートとを有しており、 該 2つの反射コートは、 それぞれ、 異なる反射特性を示す請求項 4 7に記載の光 デバイス。
6 4. 前記反射コートは、 金属薄膜から形成されている請求項 6 3に記載の 光デバイス。
6 5. 前記 2つの反射コートが、 それぞれ、 多層薄膜構造を有している請求 項 6 4に記載の光デバイス。
6 6. 前記 2つの受光素子のそれぞれは、 カン状箇体にシーリングして実装 されており、 該カン状箇体と陥合するように前記基板には 2つの凹部が形成され ている請求項 4 7に記載の光デバイス。
6 7. 前記 2つの受光素子は、 前記基板に形成された電気配線パターンに接 続されている請求項 6 6に記載の光デバイス。
6 8. 前記電気配線パターンは、 前言 0 2つの受光素子の少なくとも 1つから 出力される電気信号を検出して信号処理する電気集積回路素子に接続されている、 請求項 6 7に記載の光デバイス。
6 9. 前記光ファイバは、 該光ファイバを伝搬する信号光の波長帯域におい てシングルモード'フアイバとして機能する第 1部分と、 該信号光の波長帯域にお いてマルチモードファイバとして機能する第 2部分と、 該第 1部分及び該第 2部 分を接続する接続部分とを有しており、 該第 1部から該第 2部分に向かって該接 続部のコア径がゆるやかに連続して変化している請求項 4 7に記載の光デバイス。
7 0. 前記基板は、 前記光ファイバの取り出し口と、 外部と電気的に接続す るための複数の端子とを有する箇体内に収容されている請求項 4 7に記載の光デ バイス。
7 1 . 前記光ファイバ内を双方向に伝搬する光の波長は、 1 . 3 ΓΠ帯及び 又は 1 . 5 m帯に属し、 前記第 2の光学部材によって除去される不要な光の 波長は 0. 9 8 m帯又は 1 . 4 8 /i m帯に属する請求項 4 8に記載の光デバイス。
7 2. 基板の上面に第 1溝を形成する工程と、
光フアイパの一部を該第 1溝内に埋込み固定する工程と、
該光ファイバを斜めに横切る第 2溝を形成する工程と、
該第 2溝内に該光ファイバを伝搬する光の少なくとも一部を反射または回折す る面を有する光学部材を挿入し固定する工程と.、
を包含する光デバイスの製造方法。
7 3 . 前記第 2溝内に前記光学部材を挿入し固定する工程は、
該第 2溝内において、 少なくとも前記^学部材と前記光ファイバとの間に、 該 光ファイバのコア部の屈折率 n fにほぼ等しい屈折率 n rを持つ材料を埋め込む 工程を包含する、 請求項 7 2に記載の光デバイスの製造方法。
7 4. 前記屈折率 n rと前記屈折率 n f との間には、
0 . 9≤ ( n t /' n f ) ≤ 1 . 1の関係がある、 請求項 7 3に記載の光デバイ スの製造方法。
7 5 . 前記基板上に少なくとも一つの受光素子を配置する工程を更に包含す る、 請求項 7 2に記載の光デバイスの製造方法。
7 6 . 前記基板上に少なくとも一つの受光素子を配置する工程を更に包含す る、 請求項 7 2に記載の光デバイスの製造方法。
7 7 . 前記基板上に少なくとも一つの発光素子を配置する工程を更に包含す る、 請求項 7 6に記載の光デバイスの製造方法。
7 8 . 基板の上面に複数の第 1溝を形成する工程と、
光ファイバの一部を該複数の第 1溝内の各々に埋込み固定する工程と、 該複数の光ファイバを斜めに横切る第 2溝を形成する工程と、
該第 2溝内に該光ファイバを伝搬する光の少なくとも一部を反射または回折す る面を有する光学部材を挿入し固定する工程と、
を包含する光デバイスの製造方法。
7 9 . 前記光学部材の前記面の法線方向と前記光ファイバの光軸方向との為 す角度、 5度以上 4 0度以下である請求項 1に記載の光デバイス。
8 0 . 基板と、
該基板に形成された少なくとも一つの第 1溝と、
該第 1溝内に配置された光ファイバと、
該光ファイバを斜めに横切る該基板の端面と、
を備えた光デバィズであって、 更に、
該光ファイバのコア部の屈折率とほぼ同じ屈折率を有する材料によって、 該基 板の該端面上に貼り付けられた、 該光ファイバを伝搬する光の少なくとも一部を 反射または回折する面を有する光学部材と、
該基板上に配置された受光素子であって、 該光ファイバ内を伝搬する光の一部 のうち該光学部材によって反射された光を受け取る受光素子と、
を備えた光デバイス。
8 1 . 前記受光素子は、 前記基板の前記第 1溝が形成されている面上に配置 されている請求項 8 0に記載の光デバイス。
8 2 . 前記受光素子は、 前記基板の前記第 1溝が形成されている面の反対側 の面上に配置されている請求項 8 1に記載の光デバイス。
8 3 . 前記光ファイバを横切る第 3溝と、
該第 3溝内に挿入され、 特定の波長領域の光を反射する第 2の光学部材と、 を備え、
該第 2の光学部材は、 該光フアイパ内を伝搬する該特定の波長領域の光が前記 受光素子に入射しないようにする請求項 8 1に記載の光デバイス。
8 4. 前記光ファイバのコア部の屈折率とほぼ同じ屈折率を有する樹脂材料 によつて前記基板の上面に貼り付けられた'、 特定の波長領域の光を反射する光学 部材を備えており、
前記受光素子は、 該光学部材の上に配置されている、 請求項 8 1に記載の光デ パイス。
8 5. 前記受 素子の受光面には、 誘電体多層膜構造を有するフィル夕が形 成されている請求項 8 1に記載の光デバイス。
8 6. 前記光ファイバは、 光ファイノ 光伝送路に接続される請求項 1に記載 の光デバイス。
8 7. 前記光ファイバには、 光ファイバ伝送路に接続するためのフエルール 部が形成されている請求項 1に記載の光デバイス。
8 8 . 基板上に第 1溝を形成する工程と、'
光ファイバを該第 1の溝内に固定する工程と、
該光ファイバを斜めに切断し、 該光ファイバの光軸に対して傾斜した端面を該 基板上に形成する工程と、
該光ファイバを伝搬する光の少なくとも一部を反射または回折する面を有する 光学部材を、 該光ファイバのコア部の屈折率とほぼ同じ屈折率を有する材料によ つて該傾斜端面に貼り付ける工程と、
該光学部材によって反射又は回折された光を受け取る受光素子を該基板上に配 置する工程と、
を包含する光デバイスの製造方法。
PCT/JP1996/002164 1995-08-03 1996-08-01 Dispositif optique et procede pour le fabriquer WO1997006458A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/809,976 US6406196B1 (en) 1995-08-03 1996-08-01 Optical device and method for producing the same
EP96925964A EP0844503A4 (en) 1995-08-03 1996-08-01 OPTICAL DEVICE AND MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19853895 1995-08-03
JP7/198538 1995-08-03

Publications (1)

Publication Number Publication Date
WO1997006458A1 true WO1997006458A1 (fr) 1997-02-20

Family

ID=16392828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002164 WO1997006458A1 (fr) 1995-08-03 1996-08-01 Dispositif optique et procede pour le fabriquer

Country Status (4)

Country Link
US (1) US6406196B1 (ja)
EP (1) EP0844503A4 (ja)
CN (2) CN1125358C (ja)
WO (1) WO1997006458A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887674A3 (en) * 1997-06-25 1999-03-24 Matsushita Electric Industrial Co., Ltd. Optical transmitter/receiver apparatus, method for fabricating the same and optical semiconductor module
US6264377B1 (en) 1998-03-06 2001-07-24 Matsushita Electric Industrial Co., Ltd. Bidirectional optical semiconductor apparatus
US6327407B1 (en) 1997-11-07 2001-12-04 Matsushita Electric Industrial Co., Ltd. Semiconductor light-receiving device, method of manufacturing the same, bidirectional optical semiconductor device, and optical transmission system
JP2002182051A (ja) * 2000-10-04 2002-06-26 Sumitomo Electric Ind Ltd 光導波路モジュール
JP2002261300A (ja) * 2000-12-25 2002-09-13 Sumitomo Electric Ind Ltd 光受信器
WO2003098293A1 (fr) * 2002-05-15 2003-11-27 Sumitomo Electric Industries, Ltd. Module de guide d'ondes optique
JP2004020973A (ja) * 2002-06-18 2004-01-22 Sumitomo Electric Ind Ltd 光通信装置
WO2004011982A1 (ja) * 2002-07-25 2004-02-05 Ngk Insulators, Ltd. 光デバイス及びその製造方法
JP2004053623A (ja) * 2002-07-16 2004-02-19 Ngk Spark Plug Co Ltd 光路変換部を備える光導波基板およびその製造方法
US6819840B2 (en) * 2001-06-25 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical transmitting/receiving module and method for manufacturing the same
WO2005006047A1 (ja) * 2003-07-10 2005-01-20 Ngk Insulators, Ltd. 光デバイス及びその製造方法
US6850674B2 (en) 2002-05-09 2005-02-01 Sumitomo Electric Industries, Ltd. Optical device
JP2006019614A (ja) * 2004-07-05 2006-01-19 Ngk Insulators Ltd 光出力監視装置
US7123798B2 (en) 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
US7149375B2 (en) 2002-01-15 2006-12-12 Sumitomo Electric Industries, Ltd. Optical waveguide module
US7174062B2 (en) 2002-03-29 2007-02-06 Ngk Insulators, Ltd. Optical device and method of manufacturing same
US7195402B2 (en) 2002-12-20 2007-03-27 Ngk Insulators, Ltd. Optical device
US7287915B2 (en) 2003-01-27 2007-10-30 Ngk Insulators, Ltd. Optical device
US7308174B2 (en) 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
US7313293B2 (en) 2004-03-16 2007-12-25 Sumitomo Electric Industries, Ltd. Optical power monitoring apparatus, optical power monitoring method, and light receiving device
US7321703B2 (en) 2002-12-20 2008-01-22 Ngk Insulators, Ltd. Optical device
US7324729B2 (en) 2003-06-02 2008-01-29 Ngk Insulators, Ltd. Optical device
US7443478B2 (en) 1997-03-27 2008-10-28 Semiconductor Energy Laboratory Co., Ltd. Contact structure
JP2014517936A (ja) * 2011-05-19 2014-07-24 インジェネリック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 光導波路用結合装置
JP2020160364A (ja) * 2019-03-27 2020-10-01 株式会社フジクラ 導波路基板、光学入出力デバイス、及び導波路基板の製造方法
WO2022270202A1 (ja) * 2021-06-23 2022-12-29 株式会社堀場製作所 分析装置、及び、分析方法

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332719B1 (en) 1997-06-25 2001-12-25 Matsushita Electric Industrial Co., Ltd. Optical transmitter/receiver apparatus, method for fabricating the same and optical semiconductor module
JP2000171671A (ja) * 1998-12-09 2000-06-23 Matsushita Electric Ind Co Ltd 光通信用モジュールおよびその実装方法
US6385374B2 (en) * 1999-01-06 2002-05-07 Infineon Technologies Ag Multichannel electro-optical assembly
DE19900695A1 (de) * 1999-01-06 2000-07-27 Siemens Ag Mehrkanalige elektrooptische Baugruppe
US6932519B2 (en) * 2000-11-16 2005-08-23 Shipley Company, L.L.C. Optical device package
DE10196035D2 (de) * 2001-02-15 2003-05-08 Infineon Technologies Ag Anordnung zum Multiplexen und/oder Demultiplexen der Signale einer Mehrzahl optischer Datenkanäle und Verfahren zur Herstellung der Anordnung
US6574390B2 (en) 2001-02-15 2003-06-03 Infineon Technologies Ag Configuration to multiplex and/or demultiplex the signals of a plurality of optical data channels and method for the production of the configuration
CN1507574A (zh) 2001-05-23 2004-06-23 �����ɷ� 用于自至少二光学资料频道传送及或接收光学讯号之电光学模块
WO2002095469A1 (de) * 2001-05-23 2002-11-28 Infineon Technologies Ag Modul für eine optische signalübertragung
US20030044119A1 (en) * 2001-08-28 2003-03-06 Takashi Sasaki Optical waveguide module
EP1425619B1 (de) 2001-09-14 2006-11-29 Infineon Technologies AG Sende- und empfangsanordnung für eine bidirektionale optische datenübertragung
US7073954B1 (en) 2001-09-17 2006-07-11 Stratos International, Inc. Transceiver assembly for use in fiber optics communications
US6739760B2 (en) * 2001-09-17 2004-05-25 Stratos International, Inc. Parallel fiber optics communications module
US7056032B2 (en) * 2001-09-17 2006-06-06 Stratos International, Inc. Transceiver assembly for use in fiber optics communications
US7073955B1 (en) 2001-09-17 2006-07-11 Stratos International, Inc. Transceiver assembly for use in fiber optics communications
EP1298475A1 (en) * 2001-09-27 2003-04-02 Agilent Technologies, Inc. (a Delaware corporation) A method of assembling opto-electrical arrangements and an assembly obtained thereby
JP2003207694A (ja) * 2002-01-15 2003-07-25 Nec Corp 光モジュール
DE10204223B4 (de) * 2002-01-31 2004-05-06 Infineon Technologies Ag Gehäuse für eine Koppelanordnung zum Ein- und/oder Auskoppeln optischer Signale
JP3941531B2 (ja) * 2002-02-07 2007-07-04 住友電気工業株式会社 光受信モジュール
GB2387481B (en) * 2002-04-10 2005-08-31 Intense Photonics Ltd Integrated active photonic device and photodetector
JP2005523466A (ja) * 2002-04-16 2005-08-04 エクスルーム フォトニクス リミテッド 集積コネクタを有する電気光学回路およびその製造方法
US20040021214A1 (en) * 2002-04-16 2004-02-05 Avner Badehi Electro-optic integrated circuits with connectors and methods for the production thereof
US20040208451A1 (en) * 2002-05-08 2004-10-21 Anders Grunnet-Jepsen Method and apparatus for monitoring optical signals in a planar lightwave circuit via out-of-plane filtering
US6885795B1 (en) * 2002-05-31 2005-04-26 Kotusa, Inc. Waveguide tap monitor
US6947622B2 (en) * 2002-06-27 2005-09-20 Kotura, Inc. Wafer level testing of optical components
JP3892461B2 (ja) * 2002-07-08 2007-03-14 独立行政法人科学技術振興機構 光ファイバーコネクタおよびその製造方法、並びに光接続装置
US7308166B1 (en) 2002-10-08 2007-12-11 Kotura, Inc. Coupling a light sensor array with an optical component
AU2003301466A1 (en) * 2002-10-17 2004-05-04 The Furukawa Electric Co., Ltd. Optical component and optical module
US20060239621A1 (en) * 2002-11-08 2006-10-26 Lo Adrian W F Optical module and method for manufacturing same
JP2004200399A (ja) * 2002-12-18 2004-07-15 Tdk Corp 光モジュール及びその製造方法
JPWO2004057397A1 (ja) * 2002-12-20 2006-04-27 日本碍子株式会社 光デバイス
WO2004057396A1 (ja) * 2002-12-20 2004-07-08 Ngk Insulators, Ltd. 光デバイス
US20040245538A1 (en) * 2003-06-06 2004-12-09 Xiaolin Wang Double sided optoelectronic integrated circuit
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWM241892U (en) * 2003-10-03 2004-08-21 Foci Fiber Optic Communication A silicon optical bench based bi-directional transceiver module
US7538358B2 (en) 2003-10-15 2009-05-26 Xloom Communications, Ltd. Electro-optical circuitry having integrated connector and methods for the production thereof
WO2005045940A1 (ja) * 2003-11-11 2005-05-19 Ngk Insulators, Ltd. 光素子及び光モジュール
US7199437B2 (en) * 2004-01-20 2007-04-03 Harris Corporation Fabrication process for embedding optical band gap structures in a low temperature co-fired ceramic substrate
JP2005234052A (ja) 2004-02-17 2005-09-02 Hamamatsu Photonics Kk 光送受信モジュール
US8733966B2 (en) 2004-08-20 2014-05-27 Mag Instrument, Inc. LED flashlight
US7194166B1 (en) * 2004-08-26 2007-03-20 Luxtera, Inc. Use of waveguide grating couplers in an optical mux/demux system
JP2006098702A (ja) * 2004-09-29 2006-04-13 Ngk Insulators Ltd 光デバイス
TWI259297B (en) * 2004-11-25 2006-08-01 Ind Tech Res Inst Fiber waveguide optical subassembly module
US7986112B2 (en) * 2005-09-15 2011-07-26 Mag Instrument, Inc. Thermally self-stabilizing LED module
JP4306678B2 (ja) * 2005-12-28 2009-08-05 ミツミ電機株式会社 光導波路装置の製造方法
JP4796951B2 (ja) * 2006-02-03 2011-10-19 日本碍子株式会社 光デバイス
JP4796950B2 (ja) * 2006-02-03 2011-10-19 日本碍子株式会社 光デバイス
CN101501543B (zh) * 2006-06-30 2013-04-17 应用材料公司 晶片等级的光学组件对准
US7810045B2 (en) * 2006-09-07 2010-10-05 Siemens Medical Solutions Usa, Inc. Configurable user interface system for processing patient medical data
CN101411098A (zh) * 2006-11-17 2009-04-15 Afl电信公司 用于光纤的信号识别设备
US8731341B2 (en) * 2006-11-17 2014-05-20 Afl Telecommunications Llc Signal identifying apparatus for an optical fiber
US20080260379A1 (en) * 2007-04-19 2008-10-23 Department Of The Navy Transceiver optical subassembly
WO2009009714A2 (en) * 2007-07-12 2009-01-15 Aidi Corporation Fiber array unit with integrated optical power monitor
US7853144B2 (en) * 2007-09-05 2010-12-14 The United States Of America As Represented By The Secretary Of The Navy Optical bench fiber optic transmitter
US20090093137A1 (en) * 2007-10-08 2009-04-09 Xloom Communications, (Israel) Ltd. Optical communications module
TWI342962B (en) * 2007-10-12 2011-06-01 Amtran Technology Co Ltd Optical subassembly of optical semiconductor device module and assembly method thereof
US8529454B2 (en) * 2007-12-10 2013-09-10 Stc.Unm Photoacoustic imaging devices and methods of imaging
JP2009164827A (ja) * 2007-12-28 2009-07-23 Sony Corp 受光装置、電子機器および画像表示装置
US9022612B2 (en) * 2008-08-07 2015-05-05 Mag Instrument, Inc. LED module
US9247598B2 (en) * 2009-01-16 2016-01-26 Mag Instrument, Inc. Portable lighting devices
US8611716B2 (en) * 2009-09-30 2013-12-17 Corning Incorporated Channeled substrates for integrated optical devices employing optical fibers
CN101968557B (zh) * 2010-09-10 2013-08-28 华为技术有限公司 一种反射器结构
TWI479215B (zh) * 2010-12-16 2015-04-01 Hon Hai Prec Ind Co Ltd 光纖連接器
JP2012208306A (ja) * 2011-03-29 2012-10-25 Nitto Denko Corp 光電気混載基板およびその製法
CN102200612A (zh) * 2011-04-27 2011-09-28 中国科学院微电子研究所 嵌入光纤的玻璃板及其制造方法
US8818145B2 (en) * 2011-08-03 2014-08-26 Tyco Electronics Corporation Optical interposer with transparent substrate
US11009788B2 (en) * 2011-09-09 2021-05-18 Centera Photonics Inc. Method for manufacturing optical electrical module and substrate of an optical electrical module
JP5910057B2 (ja) 2011-12-13 2016-04-27 住友電気工業株式会社 光受信モジュール
JP5299551B2 (ja) * 2011-12-28 2013-09-25 日立電線株式会社 光基板、光基板の製造方法、及び光モジュール構造
JP6461506B2 (ja) * 2014-07-31 2019-01-30 株式会社エンプラス 光レセプタクルおよび光モジュール
JP6461509B2 (ja) * 2014-08-04 2019-01-30 株式会社エンプラス 光レセプタクルおよび光モジュール
US10018781B1 (en) * 2017-01-06 2018-07-10 International Business Machines Corporation Fluid control structure
CN107566045B (zh) * 2017-10-10 2023-10-20 成都优博创通信技术股份有限公司 光接收模块和光通信装置
WO2019095133A1 (en) * 2017-11-15 2019-05-23 Source Photonics (Chengdu) Company Limited Waveguide array module and receiver optical sub-assembly
US10416401B2 (en) * 2017-11-30 2019-09-17 Dicon Fiberoptics, Inc. In-line uni-directional optical tap detector
US11282984B2 (en) * 2018-10-05 2022-03-22 Seoul Viosys Co., Ltd. Light emitting device
KR102594414B1 (ko) * 2018-10-24 2023-10-30 삼성전자주식회사 프로브 장치 및 이를 포함하는 테스트 장치
CN109814201A (zh) * 2019-03-14 2019-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
WO2020181938A1 (zh) * 2019-03-14 2020-09-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN109991705B (zh) * 2019-03-26 2024-05-03 武汉联特科技股份有限公司 一种高速并行双向传输光模块
FR3105666B1 (fr) * 2019-12-23 2022-01-14 Latelec Module émetteur-récepteur optique
CA3107271A1 (en) * 2020-01-31 2021-07-31 Thorlabs, Inc. Low artifact, high speed, balanced optical detector array
US11143827B1 (en) * 2020-08-03 2021-10-12 Kyoto Semiconductor Co., Ltd. Light receiving element unit
CN114373806A (zh) * 2020-10-14 2022-04-19 华为技术有限公司 光电器件及其制备方法
US20230168433A1 (en) * 2021-11-29 2023-06-01 Industrial Technology Research Institute Optical element

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588011A (en) * 1978-12-26 1980-07-03 Fujitsu Ltd End face structure of optical transmission wire
JPS59185306A (ja) * 1983-04-07 1984-10-20 Agency Of Ind Science & Technol 光集積回路の実装法
JPS6132804A (ja) * 1984-07-25 1986-02-15 Matsushita Electric Ind Co Ltd 光導波路一体化受光素子およびその製造方法
JPS61176903A (ja) * 1985-01-31 1986-08-08 Mitsubishi Electric Corp 発光素子モジユ−ル
JPS61208283A (ja) * 1985-03-13 1986-09-16 Hitachi Ltd 光フアイバを発光素子に結合させる方法
JPS6295504A (ja) * 1985-10-23 1987-05-02 Sumitomo Electric Ind Ltd 光導波回路
JPS62121407A (ja) * 1985-11-21 1987-06-02 Hitachi Ltd 光フイルタおよびそれを用いた波長多重伝送デバイス
JPS62234390A (ja) * 1986-04-04 1987-10-14 Nec Corp 半導体レ−ザ機器
JPS6333707A (ja) * 1986-07-28 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> 導波形光合分波器
JPS6382957U (ja) * 1986-11-18 1988-05-31
JPS63140589A (ja) * 1986-12-02 1988-06-13 Nippon Telegr & Teleph Corp <Ntt> 発光素子モジユ−ル及びその製法
JPS63161413A (ja) * 1986-12-15 1988-07-05 アメリカン テレフォン アンド テレグラフ カムパニー 回路基板および回路基板の製造方法
JPS63205611A (ja) * 1987-02-20 1988-08-25 Fujitsu Ltd デユアルバランス型受光器
JPS63226978A (ja) * 1987-03-17 1988-09-21 Nec Corp 端面発光型光半導体装置
JPS63228113A (ja) * 1987-02-25 1988-09-22 シーメンス、アクチエンゲゼルシヤフト 光結合素子及びその製造方法
JPS63188608U (ja) * 1987-05-25 1988-12-02
JPH03130705A (ja) * 1989-10-17 1991-06-04 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ接続方法
JPH03189607A (ja) * 1989-12-19 1991-08-19 Nippon Telegr & Teleph Corp <Ntt> ファイバ形光学結合器の製造法
JPH043002A (ja) * 1990-04-20 1992-01-08 Japan Aviation Electron Ind Ltd 光集積回路
JPH04101106A (ja) * 1990-08-20 1992-04-02 Nec Corp 光ファイバ加工形デバイス
JPH04264409A (ja) * 1991-02-19 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> 光学結合回路
JPH0512706A (ja) * 1991-07-04 1993-01-22 Sharp Corp 光集積回路、信号再生用光集積回路、光集積型ピツクアツプ装置および光デイスク装置
JPH0534650A (ja) * 1991-05-10 1993-02-12 Fujitsu Ltd モニタ付分岐干渉型光変調器
JPH063539A (ja) * 1992-06-24 1994-01-14 Hitachi Cable Ltd スリット付き光導波路の製造方法
JPH0722630A (ja) * 1993-07-01 1995-01-24 Sharp Corp 多層膜フィルタ付き受光素子及びその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165496A (en) * 1977-12-16 1979-08-21 Bell Telephone Laboratories, Incorporated Optical fiber light tap
DE2851654A1 (de) * 1978-11-29 1980-06-26 Siemens Ag Koppelelement zum auskoppeln eines lichtanteils aus einem optischen wellenleiter und wiedereinkoppeln desselben in einen abzweigenden optischen wellenleiter sowie verfahren zur herstellung des elements
JPS58214127A (ja) * 1982-06-05 1983-12-13 Nippon Telegr & Teleph Corp <Ntt> 光分岐結合器
US4693544A (en) * 1982-12-14 1987-09-15 Nippon Sheet Glass Co., Ltd. Optical branching device with internal waveguide
US4549782A (en) 1983-06-06 1985-10-29 At&T Bell Laboratories Active optical fiber tap
US4756590A (en) * 1985-09-03 1988-07-12 American Telephone And Telegraph Company, At&T Bell Laboratories Optical component package
EP0234280A1 (de) 1986-01-31 1987-09-02 Siemens Aktiengesellschaft Lichtweiche eines Kommunikationssystemes, mit drei Lichtanschlüssen
JPS6366514A (ja) 1986-09-09 1988-03-25 Mitsubishi Electric Corp 光合分波器
GB8622252D0 (en) 1986-09-16 1986-10-22 Nat Plastics Ltd Container closure
JP2511816B2 (ja) 1987-01-29 1996-07-03 鐘紡株式会社 美白化粧料
JPS63304208A (ja) * 1987-06-05 1988-12-12 Furukawa Electric Co Ltd:The 光合波分波器
JPS63307407A (ja) * 1987-06-10 1988-12-15 Furukawa Electric Co Ltd:The 光合波分波器
JPH0215203A (ja) * 1988-07-04 1990-01-18 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ型光分波器
JPH03158805A (ja) 1989-11-17 1991-07-08 Fujitsu Ltd 受光モジュール
JPH0451002A (ja) 1990-06-18 1992-02-19 Matsushita Electric Ind Co Ltd 受光モジュールとそれを用いた波長多重送受信モジュール
US5119448A (en) * 1990-09-21 1992-06-02 Tacan Corporation Modular micro-optical systems and method of making such systems
US5071213A (en) * 1990-10-31 1991-12-10 The Boeing Company Optical coupler and method of making optical coupler
JP2744739B2 (ja) 1992-09-22 1998-04-28 ローム株式会社 光分波結合器
JPH06331837A (ja) 1993-05-19 1994-12-02 Nippon Hoso Kyokai <Nhk> 光デバイス
JPH07104146A (ja) 1993-10-01 1995-04-21 Ngk Insulators Ltd 光部品の製造方法
JPH07104148A (ja) * 1993-10-01 1995-04-21 Nippon Hoso Kyokai <Nhk> 光部品
DE69418583T2 (de) 1993-12-27 2000-02-17 Nec Corp., Tokio/Tokyo Überwachung von Zweiwegleitungen
DE4416563C1 (de) * 1994-05-11 1995-07-20 Ant Nachrichtentech Anordnung zur Ankopplung von optoelektronischen Komponenten und Lichtwellenleitern aneinander
JPH08122588A (ja) * 1994-10-27 1996-05-17 Nec Corp 半導体受光モジュール装置及びその受光モジュール内 部素子の製造方法

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588011A (en) * 1978-12-26 1980-07-03 Fujitsu Ltd End face structure of optical transmission wire
JPS59185306A (ja) * 1983-04-07 1984-10-20 Agency Of Ind Science & Technol 光集積回路の実装法
JPS6132804A (ja) * 1984-07-25 1986-02-15 Matsushita Electric Ind Co Ltd 光導波路一体化受光素子およびその製造方法
JPS61176903A (ja) * 1985-01-31 1986-08-08 Mitsubishi Electric Corp 発光素子モジユ−ル
JPS61208283A (ja) * 1985-03-13 1986-09-16 Hitachi Ltd 光フアイバを発光素子に結合させる方法
JPS6295504A (ja) * 1985-10-23 1987-05-02 Sumitomo Electric Ind Ltd 光導波回路
JPS62121407A (ja) * 1985-11-21 1987-06-02 Hitachi Ltd 光フイルタおよびそれを用いた波長多重伝送デバイス
JPS62234390A (ja) * 1986-04-04 1987-10-14 Nec Corp 半導体レ−ザ機器
JPS6333707A (ja) * 1986-07-28 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> 導波形光合分波器
JPS6382957U (ja) * 1986-11-18 1988-05-31
JPS63140589A (ja) * 1986-12-02 1988-06-13 Nippon Telegr & Teleph Corp <Ntt> 発光素子モジユ−ル及びその製法
JPS63161413A (ja) * 1986-12-15 1988-07-05 アメリカン テレフォン アンド テレグラフ カムパニー 回路基板および回路基板の製造方法
JPS63205611A (ja) * 1987-02-20 1988-08-25 Fujitsu Ltd デユアルバランス型受光器
JPS63228113A (ja) * 1987-02-25 1988-09-22 シーメンス、アクチエンゲゼルシヤフト 光結合素子及びその製造方法
JPS63226978A (ja) * 1987-03-17 1988-09-21 Nec Corp 端面発光型光半導体装置
JPS63188608U (ja) * 1987-05-25 1988-12-02
JPH03130705A (ja) * 1989-10-17 1991-06-04 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ接続方法
JPH03189607A (ja) * 1989-12-19 1991-08-19 Nippon Telegr & Teleph Corp <Ntt> ファイバ形光学結合器の製造法
JPH043002A (ja) * 1990-04-20 1992-01-08 Japan Aviation Electron Ind Ltd 光集積回路
JPH04101106A (ja) * 1990-08-20 1992-04-02 Nec Corp 光ファイバ加工形デバイス
JPH04264409A (ja) * 1991-02-19 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> 光学結合回路
JPH0534650A (ja) * 1991-05-10 1993-02-12 Fujitsu Ltd モニタ付分岐干渉型光変調器
JPH0512706A (ja) * 1991-07-04 1993-01-22 Sharp Corp 光集積回路、信号再生用光集積回路、光集積型ピツクアツプ装置および光デイスク装置
JPH063539A (ja) * 1992-06-24 1994-01-14 Hitachi Cable Ltd スリット付き光導波路の製造方法
JPH0722630A (ja) * 1993-07-01 1995-01-24 Sharp Corp 多層膜フィルタ付き受光素子及びその製造方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616273B2 (en) 1997-03-27 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US7697102B2 (en) 1997-03-27 2010-04-13 Semiconductor Energy Laboratory Co., Ltd Contact structure
US7443478B2 (en) 1997-03-27 2008-10-28 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US7561242B2 (en) 1997-03-27 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US8908138B2 (en) 1997-03-27 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US9217901B2 (en) 1997-03-27 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US7760316B2 (en) 1997-03-27 2010-07-20 Semiconductor Energy Laboratory Co., Ltd. Contact structure
EP0887674A3 (en) * 1997-06-25 1999-03-24 Matsushita Electric Industrial Co., Ltd. Optical transmitter/receiver apparatus, method for fabricating the same and optical semiconductor module
US6327407B1 (en) 1997-11-07 2001-12-04 Matsushita Electric Industrial Co., Ltd. Semiconductor light-receiving device, method of manufacturing the same, bidirectional optical semiconductor device, and optical transmission system
US6515307B2 (en) 1998-03-06 2003-02-04 Matsushita Electric Industrial Co., Ltd. Bidirectional optical semiconductor apparatus
US6264377B1 (en) 1998-03-06 2001-07-24 Matsushita Electric Industrial Co., Ltd. Bidirectional optical semiconductor apparatus
US6350064B2 (en) 1998-03-06 2002-02-26 Matsushita Electric Industrial Co., Ltd. Bidirectional optical semiconductor apparatus
JP2002182051A (ja) * 2000-10-04 2002-06-26 Sumitomo Electric Ind Ltd 光導波路モジュール
JP2002261300A (ja) * 2000-12-25 2002-09-13 Sumitomo Electric Ind Ltd 光受信器
US6819840B2 (en) * 2001-06-25 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical transmitting/receiving module and method for manufacturing the same
US7149375B2 (en) 2002-01-15 2006-12-12 Sumitomo Electric Industries, Ltd. Optical waveguide module
US7174062B2 (en) 2002-03-29 2007-02-06 Ngk Insulators, Ltd. Optical device and method of manufacturing same
US7123798B2 (en) 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
US6850674B2 (en) 2002-05-09 2005-02-01 Sumitomo Electric Industries, Ltd. Optical device
US7024079B2 (en) 2002-05-15 2006-04-04 Sumitomo Electric Industries, Ltd. Optical waveguide module
WO2003098293A1 (fr) * 2002-05-15 2003-11-27 Sumitomo Electric Industries, Ltd. Module de guide d'ondes optique
JP2004020973A (ja) * 2002-06-18 2004-01-22 Sumitomo Electric Ind Ltd 光通信装置
JP2004053623A (ja) * 2002-07-16 2004-02-19 Ngk Spark Plug Co Ltd 光路変換部を備える光導波基板およびその製造方法
WO2004011982A1 (ja) * 2002-07-25 2004-02-05 Ngk Insulators, Ltd. 光デバイス及びその製造方法
US7321703B2 (en) 2002-12-20 2008-01-22 Ngk Insulators, Ltd. Optical device
US7308174B2 (en) 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
US7195402B2 (en) 2002-12-20 2007-03-27 Ngk Insulators, Ltd. Optical device
US7287915B2 (en) 2003-01-27 2007-10-30 Ngk Insulators, Ltd. Optical device
US7324729B2 (en) 2003-06-02 2008-01-29 Ngk Insulators, Ltd. Optical device
US7352922B2 (en) 2003-07-10 2008-04-01 Ngk Insulators, Ltd. Optical device and method for producing same
WO2005006047A1 (ja) * 2003-07-10 2005-01-20 Ngk Insulators, Ltd. 光デバイス及びその製造方法
US7313293B2 (en) 2004-03-16 2007-12-25 Sumitomo Electric Industries, Ltd. Optical power monitoring apparatus, optical power monitoring method, and light receiving device
JP2006019614A (ja) * 2004-07-05 2006-01-19 Ngk Insulators Ltd 光出力監視装置
JP2014517936A (ja) * 2011-05-19 2014-07-24 インジェネリック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 光導波路用結合装置
US9366577B2 (en) 2011-05-19 2016-06-14 Ingeneric Gmbh Coupling device for connecting an optical waveguide to an associated optical waveguide connection
US9759616B2 (en) 2011-05-19 2017-09-12 Ingeneric Gmbh Coupling device for connecting an optical waveguide to an associated optical waveguide connection
JP2020160364A (ja) * 2019-03-27 2020-10-01 株式会社フジクラ 導波路基板、光学入出力デバイス、及び導波路基板の製造方法
WO2022270202A1 (ja) * 2021-06-23 2022-12-29 株式会社堀場製作所 分析装置、及び、分析方法
GB2621773A (en) * 2021-06-23 2024-02-21 Horiba Ltd Analysis device and analysis method

Also Published As

Publication number Publication date
CN1191023A (zh) 1998-08-19
CN1125358C (zh) 2003-10-22
EP0844503A1 (en) 1998-05-27
EP0844503A4 (en) 1999-01-13
CN1414408A (zh) 2003-04-30
US6406196B1 (en) 2002-06-18

Similar Documents

Publication Publication Date Title
WO1997006458A1 (fr) Dispositif optique et procede pour le fabriquer
US10545300B2 (en) Three-dimensional WDM with 1×M output ports on SOI based straight waveguides combined with wavelength filters on 45 degree reflectors
JP4983391B2 (ja) 光モジュール及びその製造方法
US5499309A (en) Method of fabricating optical component including first and second optical waveguide chips having opposed inclined surfaces
US7106980B2 (en) Optical receiver
US7218806B2 (en) Multi-wavelength optical transceiver module, and multiplexer/demultiplexer using thin film filter
US5497438A (en) Optical transmission and reception module having coupled optical waveguide chips
JP2001264594A (ja) 光デバイスおよびその製造方法
US7684667B2 (en) Hybrid integrated structure of one or more optical active devices and PLC device using optical fiber array
JPH07191241A (ja) 双方向伝送用光モジュール
US6775439B2 (en) Optical circuit device and optical transceiver
JP2000171671A (ja) 光通信用モジュールおよびその実装方法
EP1312960A1 (en) Optical transmitting/receiving module and optical transmitting/receiving device comprising the same
US5972232A (en) Micromirror for a hybrid optoelectronic integrated circuit, a method for manufacturing the same, a micromirror-photodetector assembly and an assembly of hybrid optoelectronic integrated circuit for receiving light
WO2003060584A1 (fr) Module de guide d&#39;ondes optique
US6907178B2 (en) Optoelectronic assembly with embedded optical and electrical components
US20040033032A1 (en) Light emitting device, optical module, and grating chip
KR101063963B1 (ko) 평판형 광도파로 소자용 광 파워 측정 모듈 및 그 제조방법
JP2001066473A (ja) 光デバイスおよびその製造方法
US7266270B2 (en) Waveguide to waveguide monitor
WO2004109354A1 (ja) 光デバイス
KR101824668B1 (ko) 광도파로칩을 이용한 광수신 모듈 및 이의 제조방법
KR101501140B1 (ko) 광 파워 모니터 구조를 개량시킨 평판형 광도파로 소자 모듈
JP2001188147A (ja) 光デバイスおよびその製造方法
KR20100074704A (ko) 다파장 분리용 광모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195603.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08809976

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996925964

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996925964

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996925964

Country of ref document: EP