WO2020181938A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2020181938A1
WO2020181938A1 PCT/CN2020/074289 CN2020074289W WO2020181938A1 WO 2020181938 A1 WO2020181938 A1 WO 2020181938A1 CN 2020074289 W CN2020074289 W CN 2020074289W WO 2020181938 A1 WO2020181938 A1 WO 2020181938A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
waveguide
emitting device
optical module
Prior art date
Application number
PCT/CN2020/074289
Other languages
English (en)
French (fr)
Inventor
唐毅
陈金磊
崔峰
谢一帆
傅钦豪
于琳
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910193165.8A external-priority patent/CN109814201A/zh
Priority claimed from CN201910440362.5A external-priority patent/CN110133809B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2020181938A1 publication Critical patent/WO2020181938A1/zh
Priority to US17/219,200 priority Critical patent/US20210218217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • This application relates to the field of optical fiber communication technology, and in particular to an optical module.
  • optical modules optical transmitting modules and optical receiving modules
  • optical transmitting modules and optical receiving modules are generally used in this field to implement the transmission and reception of light of different wavelengths.
  • the optical module multiplexes 4 optical signals with different wavelengths into a single-mode fiber for transmission, and the optical transmitter module multiplexes 4 optical signals with different wavelengths and transmits it to the optical receiving module through the single-mode fiber.
  • the optical receiving module demultiplexes these wavelengths.
  • optical modules usually include lasers, power detectors and other devices, and are packaged with free space coupling technology, the process is relatively complicated, which makes it very difficult to integrate on a larger scale.
  • a feasible method is to use thin-film filtering and spatial micro-optics technology to realize the multiplexing/demultiplexing function of multiple wavelength optical signals.
  • this technology is difficult to process and optical path coupling is difficult.
  • a hybrid integrated planar waveguide detector chip for coarse-wave decomposition and multiplexing can also be used, and a cascaded MZ interference structure is used to constructively or destructively in the MZ interference structure through different wavelengths of light through different optical paths. Realize multiple wavelength optical signal multiplexing/demultiplexing function.
  • the laser in the optical module is coupled with the end face of the optical waveguide and supported by a unified bottom plate, which is poor in stability. It can be seen that under the condition of ensuring the efficient transmission of optical signals, the optical module has the problems of poor stability and high coupling difficulty.
  • the present application provides an optical module to alleviate the problems of poor stability and high coupling difficulty of the optical module.
  • This application provides an optical module, including: an optical waveguide substrate, a laser component, and a power detector;
  • the laser assembly and the power detector are respectively located on the surface of the optical waveguide substrate;
  • the optical waveguide substrate includes a first reflective inclined surface, a main waveguide, a secondary waveguide, and a second reflective inclined surface, and the secondary waveguide is connected to the main waveguide;
  • the light emitted by the laser assembly is directed to the first reflective slope through the surface of the optical waveguide substrate, the main waveguide receives the reflected light from the first reflective slope, and the secondary waveguide connects the main waveguide
  • the light is conducted to the second reflective inclined surface, and the second reflective inclined surface reflects the light to the power detector.
  • one end side surface of the optical waveguide substrate is a slope to form the first reflective slope.
  • a groove is provided on the surface of the optical waveguide substrate, and the bottom surface of the groove forms the second reflective inclined surface.
  • the laser assembly includes a laser chip and a heat sink, the heat sink is arranged on the surface of the optical waveguide substrate, the side wall of the heat sink is provided with a grounded metal layer, and the cathode of the laser chip is provided On the ground metal layer.
  • the light emitting direction of the laser chip faces the surface of the optical waveguide substrate.
  • optical matching glue is filled between the laser chip and the optical waveguide substrate.
  • the photosensitive surface of the power detector faces the surface of the optical waveguide substrate.
  • an optical multiplexing component is further provided on the optical waveguide substrate, the main waveguide is connected to the optical multiplexing component, and the optical multiplexing component is used to combine multiple lights into one light.
  • the optical module includes: an optical waveguide substrate, a laser component, and a power detector.
  • the laser component and power detector are integrated on the optical waveguide substrate by using precision mounting and coupling technology.
  • the optical waveguide substrate includes a first reflective inclined plane, a main waveguide, a secondary waveguide and a second reflective inclined plane, and the secondary waveguide is connected with the main waveguide.
  • the laser assembly emits light waves perpendicular to the optical waveguide substrate, and reflects the light waves into the main waveguide after being irradiated on the first reflective inclined surface, without the insertion loss of the light waves.
  • a part of the light wave in the main waveguide is split and transmitted through the secondary waveguide, irradiated on the second reflective slope, and reflected upward into the power detector.
  • the present application provides an optical module, including: a top cover, and a base that is buckled into a cavity with the top cover; a light receiving device and a light emitting device are encapsulated in the cavity;
  • the base is provided with isolation ribs and a fixing frame, the isolation ribs are perpendicular to the fixing frame; the light receiving device is placed between the isolation rib and one side wall of the base, and the light emitting device is placed between the isolation rib and the other side wall of the base, and the light receiving One end of the device and one end of the light emitting device are respectively mounted on the fixing frame, the other end of the light receiving device and the other end of the light emitting device are connected by a circuit board; the inner wall of the top cover is provided with a downward protrusion, and the downward protrusion is connected to the circuit The board contacts to isolate the light receiving device from the light emitting device.
  • the top cover includes a groove assembly nested and matched with the isolation rib, and the groove assembly, the isolation rib and the base form a first shielding cavity and a second shielding cavity, so The light receiving device is located in the first shielded inner cavity, and the light emitting device is located in the second shielded inner cavity.
  • the protrusion on the inner wall of the top cover includes a first protrusion and a second protrusion respectively connected to the circuit board; the first protrusion is connected to the second protrusion through a connecting arc to A groove that is nested and matched with the isolation rib is formed between the first boss and the second boss.
  • the top cover further includes a first top plate and a second top plate, the first top plate is connected to the first boss, the second top plate is connected to the second boss, the first A gap is provided between the top plate) and the second top plate, and the gap is communicated with the groove.
  • conductive foam is provided in the groove, and the conductive foam is located between the groove and the isolation rib.
  • the isolation rib includes an isolation board and a support board located on the upper part of the isolation board, the width of the support board is greater than the width of the isolation board; the isolation board is perpendicular to the fixing frame, the isolation The board is located between the light receiving device and the light emitting device.
  • the top of the supporting plate is higher than the top of the fixing frame, and the isolation plate is clamped with the fixing frame through the supporting plate.
  • an optical module provided by an embodiment of the present application includes a top cover and a base.
  • the base is provided with an isolation rib and a fixing frame, the isolation rib is perpendicular to the fixing frame, and the fixing frame is used to respectively align the light receiving device
  • the front end of the light emitting device and the front end of the light emitting device are shielded;
  • the top cover is used to shield the upper end of the light receiving device and the upper end of the light emitting device;
  • the bottom of the base is used to shield the lower end of the light receiving device and the lower end of the light emitting device; the inner wall of the top cover
  • the provided downward protrusion is used for shielding the rear end of the light receiving device and the rear end of the light emitting device after being connected with the circuit board.
  • the isolation rib is located between the light receiving device and the light emitting device.
  • the isolation rib is used to shield the right end of the light receiving device and the left end of the light emitting device.
  • the two side walls are used to shield the left end of the light receiving device and the right end of the light emitting device.
  • FIG. 1 is a schematic structural diagram of an optical module provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a partial structure of an optical module provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a light emitting device provided by an embodiment of the application.
  • Fig. 5 is a light path diagram of a light emitting device provided by an embodiment of the application.
  • Fig. 6 is a partial enlarged view of a laser assembly provided by an embodiment of the application.
  • Fig. 7 is a partial enlarged view of a power detector provided by an embodiment of the application.
  • FIG. 8 is a diagram of the reflected light path of a second reflective inclined surface provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the overall structure of an optical module provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a partial exploded structure of an optical module provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the communication structure of the light receiving device and the light emitting device provided by the embodiments of the application;
  • FIG. 12 is a schematic structural diagram of an optical module base provided by an embodiment of the application.
  • Figure 13 is a top view of a base provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of an isolation rib provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a top cover provided by an embodiment of the application.
  • FIG. 17 is a partial enlarged view of an optical module top cover provided by an embodiment of the application.
  • FIG. 18 is a cross-sectional view of the optical module provided by an embodiment of the application in a shielded and isolated state
  • FIG. 19 is a schematic diagram of an exploded structure of an optical module provided by another embodiment of the application.
  • FIG. 20 is a schematic structural diagram of a top cover provided by another embodiment of the application.
  • FIG. 1 is a schematic structural diagram of an optical module provided by an embodiment of this application
  • FIG. 2 is a schematic structural diagram of an optical module provided by an embodiment of this application.
  • an optical module provided by an embodiment of the present application includes a top cover 10, a base 20, a circuit board 30, a light receiving device 40, and a light emitting device 50; the top cover 10 is fastened on the base 20 to form The housing of the optical module.
  • the casing is a hollow structure, and the circuit board 30, the light receiving device 40 and the light emitting device 50 are all arranged in the hollow casing. Both the light receiving device 40 and the light emitting device 50 are electrically connected to the circuit board 30.
  • the light receiving device 40 and the light emitting device 50 are both arranged on one end edge in the length direction of the circuit board 30, and the other end edge in the length direction of the circuit board 30 is provided with Gold finger 80 for electrical communication outside the optical module.
  • this embodiment adopts a light receiving device 40 and a light emitting device 50 to transmit and receive light of different wavelengths.
  • One end of the light receiving device 40 cooperates with the first optical fiber adapter 70.
  • the first optical fiber adapter 70 is used to fix the optical fiber so that the light introduced in the optical fiber can enter the light receiving device 40.
  • the other end of the light receiving device 40 is electrically connected to the circuit board 30.
  • the light wave When connected, the light wave enters the light receiving device 40 from the first optical fiber adapter 70, and after the light signal is converted into an electrical signal by the light receiving device 40, the electrical signal is transmitted into the circuit board 30 to realize the conversion of the optical signal to the electrical signal.
  • One end of the light emitting device 50 is matched with the second optical fiber adapter 60.
  • the second optical fiber adapter 60 is used to fix the optical fiber so that the light emitted by the light emitting device 50 enters the optical fiber.
  • the other end of the light emitting device 50 is electrically connected to the circuit board 30.
  • the circuit board 30 transmits electrical signals to the light emitting device 50, and converts the electrical signals into optical signals through the light emitting device 50, and the obtained optical signals are emitted by the second optical fiber adapter 60 to realize the conversion of electrical signals to optical signals.
  • the light emitting device 50 in the optical module forms wavelength division multiplexing based on a planar optical waveguide structure. It can be seen that the light emitting device 50 combines planar optical waveguide technology and precision mounting and coupling technology to achieve a higher degree of integration and improve overall stability.
  • the light emitting device 50 includes: an optical waveguide substrate 51, a laser component 52, a power detector 53 and an optical multiplexing component 54.
  • the optical waveguide substrate 51, the laser component 52, the power detector 53, and the optical multiplexing component 54 are all packaged in the housing of the optical module, wherein the housing is composed of the top cover 10 and the base 20 disclosed in the foregoing embodiment.
  • the laser component 52 and the power detector 53 are respectively located on the surface 511 of the optical waveguide substrate 51, and the optical multiplexing component 54 is arranged in the optical waveguide substrate 51.
  • the laser component 52 includes a plurality of laser chips 521, and each laser chip 521 is used to emit light waves; the power detector 53 receives the light emitted by the laser chip 521 and detects the power of the light emitted by the laser chip 521; the optical multiplexing component 54 is used to receive The light waves emitted by the multiple laser chips 521 are combined into one light beam through multiplexing processing, and then emitted from the second optical fiber adapter 60 into the optical fiber.
  • the optical multiplexing component 54 can be an arrayed waveguide grating AWG (Arrayed Waveguide Grating) or a Mach-Zehnder MZI (Mach-Zehnder inter-ferometer) structure element, which can combine multiple lights of different wavelengths into the same transmission waveguide, and finally Output.
  • AWG Arrayed Waveguide Grating
  • MZI Mach-Zehnder inter-ferometer
  • the laser assembly 52 includes a laser chip 521 and a heat sink 522.
  • the laser chip 521 is a common light emitting chip for optical modules.
  • the laser chip 521 is used to emit laser light waves.
  • the laser has better single wavelength characteristics and better wavelength tuning characteristics as the preferred light source for optical modules and even optical fiber transmission.
  • the heat sink 522 is electrically connected to the laser chip 521, and the heat sink 522 can function as electrode extension and heat dissipation for the laser chip 521.
  • the heat sink 522 is disposed on the surface 511 of the optical waveguide substrate 51, the side wall of the heat sink 522 is provided with a grounded metal layer, and the cathode of the laser chip 521 is provided on the grounded metal layer. on.
  • the bottom surface of the heat sink 522 is attached to the surface 511 of the optical waveguide substrate 51, and the side wall of the heat sink 522 is provided with a grounded metal layer.
  • the bottom surface of the laser chip 521 is the cathode of the laser chip 521, the cathode of the laser chip 521 is attached to the side wall of the heat sink 522 through a grounded metal layer, and the side of the laser chip 521 is attached to the optical waveguide substrate 51.
  • the laser chip 521 emits light waves through the side, so that the light emitting direction of the laser chip 521 faces downward, that is, toward the surface 511 of the optical waveguide substrate 51.
  • the optical matching glue is filled between the laser chip 521 and the optical waveguide substrate 51 so that the side of the laser chip 521 is attached to the surface 511 of the waveguide substrate 51 by the optical matching glue. Light will be refracted when passing through media with different refractive indexes. The large difference in refractive index results in a large refractive index loss.
  • the optical matching glue By filling optical matching glue between the laser chip and the optical waveguide substrate, the light is injected from the chip into the glue, and then the glue is shot.
  • the optical matching glue reduces the refractive index gap between the laser chip and the optical waveguide substrate, and reduces the loss in the light transmission process compared with filling with air.
  • the anode of the laser chip 521 is connected to the circuit board 30, the circuit board 30 is provided with a driving chip, and the driving chip is electrically connected to the upper surface of the heat sink 522.
  • the upper surface of the heat sink 522 is provided with a circuit, so that the driving chip can transmit electrical signals to the heat sink 522 through the circuit.
  • this embodiment adopts the method of integrating both the laser component 52 and the power detector 53 on the planar optical waveguide structure, and directly aligns the optical coupling to form a wavelength division based on the planar optical waveguide structure.
  • the multiplexed light emitting device makes the light emitting device 50 more stable and easy to assemble. To this end, it is necessary to provide a substrate for supporting the laser assembly 52 and the power detector 53 and realizing the waveguide transmission of light waves, that is, the optical waveguide substrate 51.
  • the optical waveguide substrate 51 is located on one side of the circuit board 30, and the other end of the optical waveguide substrate 51 is connected to the second optical fiber adapter 60 to realize optical signal transmission.
  • the optical waveguide substrate 51 is provided with a waveguide structure for realizing the transmission of light waves.
  • the principle of the waveguide structure is the same as that of the optical fiber structure.
  • the waveguide structure includes a waveguide and a wrapping medium. The waveguide and the wrapping medium have different refractive indices, which can make light transmit in the waveguide. Both the primary waveguide and the secondary waveguide in the optical waveguide substrate use a waveguide structure.
  • the laser component 52 and the power detector 53 are integrated on the surface 511 of the optical waveguide substrate 51, and the optical multiplexing component 54 is integrated inside. The upper surface of the optical multiplexing component 54 does not protrude from the surface 511 of the optical waveguide substrate 51.
  • the laser assembly 52 is arranged at one end edge of the optical waveguide substrate 51.
  • the light exit direction of the laser chip 521 is set toward the optical waveguide substrate 51. form.
  • the optical multiplexing component 54 is located near the other end of the optical waveguide substrate 51.
  • one end side of the optical waveguide substrate 51 is formed with a first reflective slope 512, and the optical waveguide substrate grinds one side of the original square body into a slope to form The first reflection slope.
  • the first reflective slope 512 is located at the end of the optical waveguide substrate 51 where the laser component 52 is provided, so that the light emitted by the laser component 52 is directed to the first reflective slope 512 through the surface 511 of the optical waveguide substrate 51, and then passes through the first reflective slope 512. By reflection, the light is reflected into the main waveguide 55 for transmission.
  • the propagation path of light can be seen in the transmission process of ⁇ 1 shown in FIG. 6.
  • the inclination angle ⁇ of the first reflective inclined surface 512 is set to about 45 degrees, and specifically can be set between 40 degrees and 50 degrees.
  • the first reflective inclined surface 512 is inclined toward the direction of the multiplexed waves, that is, inclined toward the direction where the second optical fiber adapter 60 is provided.
  • the laser chip 521 emits light waves perpendicular to the surface 511 of the optical waveguide substrate 51, and changes the propagation direction after irradiating the first reflective slope 512. Since the inclination angle ⁇ of the first reflective slope 512 is 45 degrees, the vertically downward light waves can be reflected It can propagate in the horizontal direction. Therefore, the light waves reflected by the first reflective inclined surface 512 are transmitted in the horizontal direction toward the optical multiplexing component 54 in the main waveguide 55, so that the optical multiplexing component 54 can multiplex the received light waves.
  • a plurality of laser components 52 may be provided in the optical module. Referring to FIGS. 4 and 5, the plurality of laser components 52 are arranged side by side on the surface 511 of the optical waveguide substrate 51 corresponding to the first reflective inclined surface 512. The light emitting direction of each laser component 52 faces the surface 511 of the optical waveguide substrate 51.
  • each main waveguide 55 corresponds to a laser component 52 for respectively realizing the transmission of light waves emitted by the corresponding laser component 52.
  • the light entrance end of each main waveguide 55 is arranged below the corresponding laser component 52, and the light exit end of each main waveguide 55 is connected to the optical multiplexing component 54 so that the light waves emitted by each laser component 52 can enter the corresponding In the main waveguide 55, and under the reflection of the first reflective slope 512, each light wave is reflected into the main waveguide 55 and transmitted in the horizontal direction in the main waveguide 55.
  • the light waves transmitted in each main waveguide 55 are converged in the optical multiplexing component 54 to use the optical multiplexing component 54 to multiplex the light waves emitted by each laser component 52. Therefore, the light exit end of each main waveguide 55 is combined with the optical multiplexing component 54.
  • the optical multiplexing component 54 is connected with the optical waveguide substrate 51, so that the main waveguide 55 located in the optical waveguide substrate 51 can transmit light waves into the optical multiplexing component 54 while maintaining the horizontal position to facilitate optical multiplexing.
  • the component 54 multiplexes multiple light waves and outputs them.
  • the optical waveguide substrate 51 is also provided with a transmitting waveguide 57, one end of the transmitting waveguide 57 is connected with the light exit end of the optical multiplexing component 54, and the other end of the transmitting waveguide 57 is connected with the second optical fiber adapter 60.
  • the transmitting waveguide 57 also needs to be set horizontally.
  • the optical multiplexing component 54 receives the light waves transmitted by each main waveguide 55 and combines multiple lights into one light beam.
  • the transmitting waveguide 57 is used to output the light wave signal into the second optical fiber adapter 60 and then enter the optical fiber.
  • the first laser chip 521 emits a light wave ⁇ 1 perpendicular to and toward the optical waveguide substrate 51, and is reflected by the first reflective slope 512 It enters the main waveguide 55 and transmits in the horizontal direction in the main waveguide 55, and finally enters the optical multiplexing component 54.
  • the light waves ⁇ 2, ⁇ 3, and ⁇ 4 emitted by the remaining laser chips 521 enter the optical multiplexing component 54 in this transmission process.
  • the optical multiplexing component 54 performs multiplexing processing on the light waves ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, and outputs the obtained light waves ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4) through the emission waveguide 57, and enters the optical fiber through the second optical fiber adapter 60.
  • a power detector 53 is provided between the laser component 52 and the optical multiplexing component 54.
  • the power detector 53 is arranged on the surface 511 of the optical waveguide substrate 51, and the number of the power detectors 53 is the same as the number of the laser components 52, so that a single power detector 53 is used to power the light waves emitted by the corresponding laser component 52. Detection.
  • a power detector 53 is respectively provided between the optical multiplexing component 54 and each laser component 52; each power detector 53 passes through the secondary waveguide 56 and the corresponding primary waveguide 55 respectively.
  • the connection makes a laser assembly 52, a main waveguide 55, a secondary waveguide 56 and a power detector 53 form a coupled optical path.
  • the power detector 53 If the power detector 53 is to be able to detect the light waves emitted by the laser chip 521, it is necessary to establish a communication relationship between the power detector 53 on the optical waveguide substrate 51 and the main waveguide 55 in the optical waveguide substrate 51. For this reason, the optical waveguide substrate 51
  • the secondary waveguide 56 is also included therein. One end of the secondary waveguide 56 is connected to the main waveguide 55, and the other end of the secondary waveguide 56 is connected to the power detector 53.
  • the light wave transmitted in the main waveguide 55 branches at the position where the main waveguide 55 and the secondary waveguide 56 communicate, so that a part of the light wave continues It is transmitted in the main waveguide 55 and finally enters the optical multiplexing component 54; another part of the light wave is transmitted in the secondary waveguide 56 and finally enters the power detector 53 to facilitate the power detector 53 to perform power detection.
  • the light power entering the power detector 53 is generally much smaller than the total power of the light waves emitted by the laser chip 521.
  • the power entering the power detector 53 for power detection is set to 1/10 of the total power, that is, the light waves entering the secondary waveguide 56 This is 1/10 of the light wave transmitted in the main waveguide 55.
  • the direction of the photosensitive surface of the power detector 53 is set toward the surface 511 of the optical waveguide substrate 51, and the photosensitive surface and the secondary waveguide 56 emit light. Oral opposite.
  • a groove is provided on the surface 511 of the optical waveguide substrate 51, and the bottom surface of the groove is set as a slope to form a second reflective slope 58.
  • the inclination direction of the second reflective inclined surface 58 faces the position where the laser assembly 52 is located, and the inclination angle ⁇ of the second reflective inclined surface 58 is set to about 45 degrees, which can be set in the range of 40 degrees to 50 degrees.
  • the second reflective inclined surface 58 is arranged under the power detector 53, and the photosensitive surface of the power detector 53 is opposite to the second reflective inclined surface 58.
  • the second reflective inclined surface 58 is set to be inclined in the direction of the secondary waveguide 56 so that the light waves output horizontally at the light outlet of the secondary waveguide 56 irradiate the second reflective inclined surface 58 After that, the transmission direction is changed by reflection, that is, upward transmission, and finally enters the power detector 53 through the photosensitive surface.
  • the reflection path of the light wave on the second reflection slope 58 can be referred to the light path shown in FIG. 8.
  • the groove provided in the optical waveguide substrate 51 may be a wedge-shaped groove.
  • the longitudinal cross-sectional shape of the wedge-shaped groove is an isosceles right triangle; the wedge-shaped groove communicates with the light exit of the secondary waveguide 56 and is located in the power detector 53.
  • the two right-angle sides of the wedge-shaped groove are both open structures, the first right-angle side 583 faces the surface 511 of the optical waveguide substrate 51 and is opposite to the photosensitive surface; the second right-angle side 582 faces the secondary waveguide 56 and is opposite to the secondary waveguide 56
  • the oblique side 581 of the wedge-shaped groove is the second reflective oblique surface 58, so that the oblique side 581 is inclined toward the secondary waveguide 56.
  • the light wave is transmitted through the secondary waveguide 56 and is emitted from the light exit port and irradiated on the hypotenuse 581, that is, the second reflective inclined surface 58.
  • the light wave is reflected on the second reflective inclined surface 58 and changes its transmission direction upward.
  • the photosensitive surface receives the reflection Light, the optical signal enters the power detector 53 for power detection.
  • the secondary waveguide 56 When performing power detection, the secondary waveguide 56 is used to achieve the transmission of the required light waves. In order to avoid the insertion loss of the light waves in the transmission process, the secondary waveguide 56 and the main waveguide 55 are required to have a vertical relationship, so that the light waves emitted by the laser chip 521 are in the main When propagating in the waveguide 55, a part of the light waves enter the secondary waveguide 56. Since the sub-waveguide 56 is placed horizontally, it is possible to avoid multi-interface reflections between the light wave and the inside of the sub-waveguide 56, thereby avoiding loss. A part of the light waves can be completely transmitted to the second reflective inclined surface 58 in the sub-waveguide 56 to be reflected and enter the power detector 53 vertically upwards without insertion loss, and the light wave transmission efficiency is high.
  • the secondary waveguide 56 can adopt the same linear structure as the main waveguide 55, but the length of the secondary waveguide 56 is shorter than the length of the main waveguide 55.
  • the secondary waveguide 56 maintains a vertical state with the primary waveguide 55.
  • the light waves transmitted in the primary waveguide 55 split a part of the light waves into the secondary waveguide 56 at the intersection of the primary waveguide 55 and the secondary waveguide 56. It transmits in the direction without reflection, and transmits directly to the second reflective inclined surface 58, and finally reflects the light wave into the power detector 53 through the reflection of the second reflective inclined surface 58.
  • the secondary waveguide 56 may adopt an L-shaped structure. As shown in FIG. 7, in the area B in FIG. 5, the secondary waveguide 56 includes a first section of waveguide 561 and a second section of waveguide 562 that are perpendicular to each other; the first section of waveguide 561 is perpendicular to the main waveguide 55, and the second section of waveguide 562 It is parallel to the main waveguide 55, and the light exit of the second section of the waveguide 562 is located below the power detector 53, and the light exit of the second section of the waveguide 562 faces the second reflective inclined surface 58.
  • the light wave needs to be reflected once in the secondary waveguide 56.
  • the reflection positions are the first section of the waveguide 561 and the second section of the waveguide 562. Therefore, the first section of waveguide 561 and the second section of waveguide 562 need to be perpendicular to each other to avoid insertion loss of light waves and improve the stability of optical transmission.
  • the laser chip 521 in the laser assembly 52 emits a light wave perpendicular to the optical waveguide substrate 51, and is reflected into the main waveguide 55 through the first reflective slope 512, and a part of the light wave is emitted through the main waveguide 55.
  • the optical multiplexing component 54 another part of the light wave is reflected into the power detector 53 through the secondary waveguide 56 and the second reflective inclined surface 58 for power detection; the optical multiplexing component 54 multiplexes the light waves emitted by each laser component 52, It is transmitted to the second fiber optic adapter 60 through the launch waveguide 57 to enter the fiber.
  • an optical module provided by an embodiment of the present application includes a top cover 10 and a base 20 that is buckled into a cavity with the top cover 10, and a light receiving device 40 and a light emitting device 50 are encapsulated in the cavity.
  • the transmitting device 50 includes: an optical waveguide substrate 51, a laser component 52 and a power detector 53, using precision mounting and coupling technology to integrate the laser component 52 and the power detector 53 on the surface 511 of the optical waveguide substrate 51; and the laser The light emitting direction of the component 52 and the photosensitive surface of the power detector 53 both face the optical waveguide substrate 51.
  • the optical waveguide substrate 51 includes a first reflective inclined surface 512, a main waveguide 55, a secondary waveguide 56 and a second reflective inclined surface 58.
  • the secondary waveguide 56 is connected to the main waveguide 55.
  • the laser component 52 emits light waves perpendicular to the optical waveguide substrate 51, and after irradiating the first reflective inclined surface 512, the light waves are reflected into the main waveguide 55 without insertion loss of the light waves.
  • a part of the light wave in the main waveguide 55 is transmitted through the secondary waveguide 56, irradiated on the second reflective slope 58 and then reflected upward into the power detector 53.
  • the light wave can be transmitted through the optical waveguide substrate 51, which reduces the insertion loss of the light wave, and improves the transmission efficiency of the optical module and the overall stability.
  • both the light receiving device and the light emitting device radiate electromagnetic waves.
  • the light receiving device and the light emitting device are packaged in the same cavity at the same time, so the crosstalk between the light receiving device and the light emitting device is easy to occur, which affects the performance of the light receiving device and the light emitting device and the normal operation of the optical module.
  • the overall optical module can adapt to high-speed signal transmission, further improving the transmission efficiency of the optical module, and improving overall stability.
  • FIG. 9 is a schematic diagram of the overall structure of an optical module provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of a partially exploded structure of an optical module provided by an embodiment of this application.
  • an optical module provided in an embodiment of the present application includes: a top cover 1 and a base 2 that is buckled with the top cover 1 into a cavity.
  • the top cover 1 is buckled on the base 2 to form the housing of the optical module.
  • the shell is a hollow structure with a cavity inside.
  • the light receiving device 3 and the light emitting device 4 are encapsulated in the cavity, and the circuit board 5 is also encapsulated in the cavity. Both the light receiving device 3 and the light emitting device 4 are electrically connected to the circuit board 5.
  • the light receiving device 3 and the light emitting device 4 are both arranged on the edge of one end in the length direction of the circuit board 5.
  • the optical receiving device 3 includes a detector, a detector-related electrical device, and a receiving optical waveguide
  • the optical transmitting device 4 includes a laser 401, a laser-related electrical device 402, and a transmitting optical waveguide. 403.
  • the optical module provided in this embodiment does not carry out independent shielding and packaging for the detector and detector-related electrical components, nor does it carry out independent shielding and packaging for the laser 401 and the laser-related electrical components 402; detector and detector-related
  • the electrical device is located on the outer surface of the receiving optical waveguide, and the laser-related electrical device 402 is located on the outer surface of the transmitting optical waveguide 403.
  • the top cover 1 and the base 2 of the optical module After separating the top cover 1 and the base 2 of the optical module, the lasers, detectors and other devices are exposed to the air or in the same space. Because the lasers, detectors and related electrical devices emit electromagnetic waves when they are working, they will cause mutual interference. Therefore, the light receiving device 3 and the light emitting device 4 need to be electromagnetically shielded and isolated.
  • the top cover 1 and the base 2 only realize the electromagnetic shielding isolation between the inside and the outside of the optical module.
  • This embodiment is designed for the isolation structure of the top cover 1 and the base 2 of the optical module, which not only realizes the inside and outside of the optical module
  • the electromagnetic wave shielding isolation between the optical module also realizes the electromagnetic shielding isolation between the light receiving device 3 and the light emitting device 4 inside the optical module.
  • an isolation rib 6 is arranged between the light receiving device 3 and the light emitting device 4 to prevent the electromagnetic waves radiated from the two optical devices from generating crosstalk and affecting each other, thereby ensuring the light receiving device 3 and the light emitting device. The performance of device 4 and the normal operation of the optical module.
  • the base 2 is provided with an isolation rib 6 and a fixing frame 21, and the fixing frame 21 is used to install the light receiving device 3 and the light emitting device 4.
  • the fixing frame 21 is provided with two through holes, namely the first through hole 211 and the second through hole 212.
  • the optical fiber adapter 32 of the light receiving device 3 passes through the first through hole 211, so that the light receiving device 3 is fixed in the fixed position.
  • the light receiving device 3 is closely attached to the fixing frame 21.
  • the optical fiber adapter 404 of the light emitting device 4 penetrates through the second through hole 212 to fix the light emitting device 4 on the fixing frame 21 and make the light emitting device 4 and the fixing frame 21 closely fit.
  • the light receiving device 3 and the light emitting device 4 are installed side by side in the cavity through a fixing frame 21, the fixing frame 21 is perpendicular to the length of the base 2, and the front end of the light receiving device 3 and the light emitting device 4 are shielded by the fixing frame 21.
  • a downward protrusion is provided on the inner wall of the top cover 1.
  • the downward protrusion is located on the upper part of the circuit board 5, and the optical fiber adapter is located on the corresponding optical device.
  • the downward protrusion is located at the rear end of the corresponding light receiving device 3 and the light emitting device 4, so that the top cover 1, the downward protrusion and the base 2 form a blocking member,
  • the top cover 1 shields the upper end of the light receiving device 3 and the upper end of the light emitting device 4;
  • the bottom 22 of the base 2 shields the lower end of the light receiving device 3 and the lower end of the light emitting device 4;
  • the downward protrusion and the circuit board 5 Are connected to form a shield for the rear end of the light receiving device 3 and the rear end of the light emitting device 4.
  • isolation rib 6 One end of the isolation rib 6 is connected to the fixing frame 21, and the isolation rib 6 is perpendicular to the fixing frame 21. To ensure the stability and shielding of the isolation rib 6, the isolation rib 6 is fixed on the bottom 22 of the base 2, or the isolation rib 6 and the base 2Integral molding. In order to achieve isolation, the isolation rib 6 is arranged between the light receiving device 3 and the light emitting device 4.
  • the isolation rib 6 shields the right end of the light receiving device 3 and the left end of the light emitting device 4, and the base 2 is close to the first One side wall 231 of a through hole 211 shields the left end of the light receiving device 3, and another side wall 232 on the base 2 close to the second through hole 212 shields the right end of the light emitting device 4 to realize light receiving Isolation of device 3 and light emitting device 4.
  • the thickness of the isolation rib 6 can be determined according to the distance between the light receiving device 3 and the light emitting device 4, the length of the isolation rib 6 can be adjusted according to the length of the light receiving device 3 and the light emitting device 4, and the height of the isolation rib 6 can be adjusted according to the base Set the size of 2.
  • the isolation rib 6, the top cover 1, the base 2 and the fixing frame 21 can all be made of metal materials.
  • the isolation rib 6 can be made of iron material, which has a good feature of isolating electromagnetic waves.
  • the isolation rib 6 is located in the cavity.
  • the height of the isolation rib 6 needs to match the distance between the top cover 1 and the base 2 when they are buckled. When the top cover 1 and the base 2 are fastened together, if the height of the isolation rib 6 is greater than this distance, the top cover 1 and the base 2 cannot be fastened together, or the tightness during fastening is poor.
  • the isolation rib 6 If the height of the isolation rib 6 is less than this distance, that is, the isolation rib 6 is lower than the top of the base 2, it is easy to cause a gap between the isolation rib 6 and the top cover 1, and the electromagnetic waves radiated from the light receiving device 3 and the light emitting device 4 will pass This gap produces crosstalk with the electromagnetic waves of the other party, resulting in poor isolation. Therefore, when the top cover 1 and the base 2 are buckled together, if the top of the isolation rib 6 is attached to the inner side wall of the top cover 1, no gap will be generated and a good isolation effect can be produced.
  • the isolation rib 6 may adopt a plate-shaped structure, and according to the space in the cavity and the shape and structure of the light receiving device 3 and the light emitting device 4, the isolation rib 6 may also adopt a wave shape.
  • the structure or the zigzag structure is not specifically limited in this embodiment.
  • the isolation rib 6 with a plate structure is vertically fixed to the bottom 22 of the base 2, one end of the isolation rib 6 is vertically fixed to the fixing frame 21, and the connection point is located between two through holes on the fixing frame 21.
  • the plate-shaped isolation rib 6, the fixing frame 21, the two side walls (231, 232) of the base 2 and the downward protrusion on the top cover 1 form two shields
  • the inner cavity is used to shield the electromagnetic waves generated by the light receiving device 3 and the light emitting device 4 respectively, so as to realize the isolation of the light receiving device 3 and the light emitting device 4.
  • the isolation rib 6 includes an isolation plate 62 and a support plate 61 located on the upper part of the isolation plate 62, the width of the support plate 61 is greater than the width of the isolation plate 62; the isolation plate 62 is perpendicular to the fixing frame 21, and fixed on the bottom of the base 2 , The isolation plate 62 is located between the light receiving device 3 and the light emitting device 4.
  • the isolation plate 62 is used to realize the isolation between the light receiving device 3 and the light emitting device 4.
  • a support plate 61 whose width is greater than its own is provided on the upper part of the isolation plate 62 to increase the contact area with the inner side wall of the top cover 1 so that the top cover 1 is buckled
  • the top cover 1 can be in close contact with the support plate 61, and the stability of the isolation plate 62 can be improved by the support plate 61, and the isolation plate 62 is prevented from shaking and generating gaps, which affects the isolation effect.
  • the fixing frame 21 is located in the cavity.
  • the height of the fixing frame 21 needs to match the distance between the top cover 1 and the base 2 when they are fastened.
  • the height of the isolation plate 62 is set to be the same as the height of the fixing frame 21, and the top of the supporting plate 61 is higher than the top of the fixing frame 21, and is between the top cover 1 and the base 2. Distance matching.
  • the width of the support plate 61 is greater than the width of the isolation plate 62, the length of the support plate 61 is greater than the length of the isolation plate 62, so that a boss is generated at the contact edge of the support plate 61 and the isolation plate 62.
  • the support plate 61 can be clamped on the top of the fixing frame 21 by a boss, so that the isolation plate 62 can be clamped with the fixing frame 21 through the support plate 61.
  • the support plate 61 is clamped with the fixing frame 21, which can further limit the stability and shielding properties of the isolation board 62, and prevent the isolation board 62 from shaking due to external forces, which affects the isolation effect.
  • the isolation rib 6 is provided on the base 2, so that when the light receiving device 3 and the light emitting device 4 are packaged on the base 2, the isolation rib 6 is located between the light receiving device 3 and the light emitting device 4, The light receiving device 3 and the light emitting device 4 are separated to prevent the electromagnetic waves generated by the light receiving device 3 and the light emitting device 4 from causing interference to each other, solve the problem of mutual crosstalk, and ensure the normal operation of the optical module.
  • the optical module provided in another embodiment of the present application has a top cover on the basis of the structure of the optical module provided in the above embodiment.
  • the downward protrusion provided on the inner wall of 1 includes a groove assembly 7, and the groove assembly 7 is used in conjunction with the isolation rib 6. Under the premise of improving the stability of the isolation rib 6, the isolation effect can be further improved.
  • the inner wall of the top cover 1 is provided with a groove assembly 7, which is nested and matched with the isolation rib 6, and the groove assembly 7, the isolation rib 6 and the base 2 form a first shielding cavity 11 and a second shielded cavity 12, the first shielded cavity 11 is used to accommodate the light receiving device 3, and the second shielded cavity 12 is used to accommodate the light emitting device 4.
  • 16 is a cross-sectional view of the C section in FIG. 9 after the top cover 1 and the base 2 in the optical module are fastened together. The cross-sectional view can reflect the structure of the two shielding cavities present in the optical module.
  • Figure 17 is a partial enlarged view of part D in Figure 15 to show the groove assembly more clearly 7 structure.
  • the groove assembly 7 provided in this embodiment includes a first boss 71 and a second boss 73.
  • the first boss 71 and the second boss 73 are located above the circuit board 5.
  • the top cover 1 is buckled on the base 2, the first boss 71 and the second boss 73 contact the circuit board 5, respectively. Shield the rear end of the optical devices (light receiving device 3 and light emitting device 4).
  • the first boss 71 is located above the connecting portion of the circuit board 5 with the light emitting device 4, the second boss 73 is located above the connecting portion of the circuit board 5 with the light receiving device 3, and the first boss 71 is connected to the circuit board 5. After that, the rear end of the light emitting device 4 is shielded, and the second boss 73 is connected to the circuit board 5 to shield the rear end of the light receiving device 3.
  • the first boss 71 and the second boss 73 are respectively located on two sides of the position corresponding to the isolation rib 6, that is, the isolation rib 6 is located between the first boss 71 and the second boss 73.
  • the first boss 71 and the second boss 73 are connected by a connecting arc 76 to avoid disconnection between the first boss 71 and the second boss 73 and affecting the shielding effect of electromagnetic waves.
  • a groove 75 for the isolation rib 6 to be embedded is formed between the first boss 71, the second boss 73 and the connecting arc 76 .
  • the groove 75 is used to fix the isolation rib 6 to avoid direct contact between the isolation rib 6 and the top cover 1.
  • a gap is generated, and then two shielded cavities can be generated, so that the first shielded cavities 11 and the second shielded cavities 12 are relatively closed and independent, which can solve the problem of crosstalk between the electromagnetic waves generated by the light receiving device 3 and the light emitting device 4, and Improve the isolation effect.
  • the groove assembly 7 further includes a first top plate 72 and a second top plate 74.
  • the first top plate 72 is connected to the first boss 71, and the second top plate 74 is connected to the second boss 73.
  • a gap is provided between the first top plate 72 and the second top plate 74, and the gap is communicated with the groove 75 to increase the depth and length of the groove 75, so that the isolation ribs 6 can be fully embedded in the groove 75, and the isolation ribs 6 and The shielding effect of the groove assembly 7.
  • the first top plate 72 and the second top plate 74 are both fixed on the inner wall of the top cover 1, and are located on both sides of the position corresponding to the isolation rib 6, that is, the first top plate 72 is The top plate of the second shielding cavity 12, and the second top plate 74 is the top plate of the first shielding cavity 11.
  • the groove assembly 7 utilizeds the cooperation of the first boss 71 and the second boss 73 with the circuit board 5 to realize the shielding of the rear end of the light receiving device 3 and the rear end of the light emitting device 4. Therefore, the groove assembly 7, the isolation rib 6 and the base 2 form two shielded inner cavities.
  • the first shielding cavity 11 is formed by the bottom 22 of the base 2, a side wall 231 of the base 2, the fixing frame 21, the isolation rib 6, the second top plate 74 of the top cover 1, and the second boss 73.
  • the cavity 11 realizes the shielding of the electromagnetic wave generated by the light receiving device 3; it consists of the bottom 22 of the base 2, the other side wall 232 of the base 2, the fixing frame 21, the isolation rib 6, the first top plate 72 of the top cover 1, and the first boss 71 forms the second shielding cavity 12, which realizes the shielding of the electromagnetic waves generated by the light emitting device 4, so that the electromagnetic waves generated by the two devices themselves will not affect each other, thereby solving the crosstalk problem and improving the isolation effect And the working stability of the optical module.
  • the shape and size of the groove 75 must match the structure of the isolation rib 6. If the isolation rib 6 adopts a plate-like structure, the width of the groove 75 is slightly greater than or equal to the width of the isolation rib 6, and the groove 75 also has a linear structure, so that the isolation rib 6 is embedded in the groove 75. If the isolation rib 6 adopts a wavy structure or a zigzag structure, the structure of the groove 75 needs to be the same as the structure of the isolation rib 6 so that the isolation rib 6 will not generate a gap after being embedded in the groove 75.
  • the width of the groove 75 needs to be slightly greater than or equal to the width of the support plate 61
  • the length of the groove 75 is slightly greater than or equal to the length of the support plate 61
  • the shape of the groove 75 Similar to the support plate 61, the support plate 61 is embedded in the groove 75 to fix the isolating plate 62 to avoid gaps between the isolating rib 6 and the groove 75, affecting the isolation effect, and improving the stability of the isolating rib 6.
  • the optical module provided in this embodiment can also be provided with a metal area on the surface of the circuit board 5, for example, a copper area or a metal soft sheet, as shown in FIG.
  • a first soft sheet 31 is provided on the surface of one end connected to the device 3, and a second soft sheet 41 is provided on the surface of one end of the circuit board 5 connected to the light emitting device 4.
  • both the first flexible sheet 31 and the second flexible sheet 41 can use tin foil.
  • the position of the first film 31 is opposite to the position of the second boss 73, and the position of the second film 41 is opposite to the position of the first boss 71, so that when the top cover 1 is buckled on the base 2, the second boss 73 can squeeze the first flexible sheet 31, and the first boss 71 can squeeze the second flexible sheet 41 to ensure the tight fit between the second boss 73 and the first flexible sheet 31, and the first convex
  • the close adhesion between the stage 71 and the second soft sheet 41 further realizes the shielding of the rear end of the optical device.
  • the groove 75 and the isolation rib 6 are both rigid structures, when the two rigid structures are in contact, it is easy to be unable to achieve a complete fit due to uneven surfaces, that is, there may also be gaps. Therefore, when two rigid structures are in contact, a soft structure is added between the groove 75 and the isolation rib 6, and a soft structure is used for connection to eliminate possible gaps, which is beneficial to forming a closed space.
  • a conductive foam 8 is provided in the groove 75, and the conductive foam 8 is used to realize the close nesting of the groove 75 and the isolation rib 6.
  • a soft conductive foam 8 is installed inside the groove 75 to ensure that the gap between the isolation rib 6 and the groove 75 is completely filled, so that the top cover 1 and the base 2 are in full contact and conduction, so that the first boss 71, The second boss 73, the isolation rib 6 and the base 2 form the first shielding cavity 11 and the second shielding cavity 12, which respectively accommodate each optical device, isolate the mutual radiation and crosstalk between the two devices, and improve the isolation effect. Ensure the normal operation of the optical module.
  • the conductive foam 8 may specifically be in direct contact with the isolation plate 62. In this case, the isolation rib does not include the support plate 61; the conductive foam 8 may also be in direct contact with the support plate 61.
  • an isolation rib 6 is provided on the base 2 and a groove assembly 7 is provided on the top cover 1, and the light receiving device 3 is positioned at the base through the nesting cooperation of the isolation rib 6 and the groove assembly 7
  • the first shielded cavity 11 and the light emitting device 4 are located in the second shielded cavity 12 to isolate the two devices, so that the electromagnetic waves generated by the two devices themselves will not affect each other, thereby solving the crosstalk problem and improving the isolation effect And the working stability of the optical module.
  • an optical module provided by an embodiment of the present application includes: a top cover 1 and a base 2.
  • the base 2 is provided with an isolation rib 6 and a fixing frame 21, and the isolation rib 6 is fixed on the bottom 22 of the base 2 and It is perpendicular to the fixing frame 21, and the fixing frame 21 is used to shield the front end of the light receiving device and the front end of the light emitting device respectively.
  • the top cover 1 is used for shielding the upper end of the light receiving device 3 and the upper end of the light emitting device 4.
  • the bottom 22 of the base 2 is used to shield the lower end of the light receiving device 3 and the lower end of the light emitting device 4.
  • the downward protrusion provided on the inner wall of the top cover 1 is connected to the circuit board 5 and used to shield the rear end of the light receiving device 3 and the rear end of the light emitting device 4.
  • the isolation rib 6 is located between the light receiving device 3 and the light emitting device 4, and the isolation rib 6 is used for the right end of the light receiving device 3 and the light emitting device.
  • the left end of the device 4 is shielded, and the two side walls (231, 232) of the base 2 are used to shield the left end of the light receiving device 3 and the right end of the light emitting device 4.
  • the optical module provided in this embodiment can isolate the light receiving device 3 and the light emitting device 4, avoiding the crosstalk phenomenon of electromagnetic waves radiated from the two optical devices and affecting each other, thereby ensuring that the light receiving device 3 and the light emitting device 4 performance and normal operation of the optical module.
  • the optical module has a simple structure and low cost, and can achieve a good isolation effect to solve the problem of mutual crosstalk between two optical devices.

Abstract

一种光模块,包括:光波导基底(51)、激光器组件(52)和功率探测器(53),将激光器组件(52)和功率探测器(53)集成在光波导基底(51)的表面上;且使激光器组件(52)的出光方向和功率探测器(53)的感光面均朝向光波导基底(51)。结合平面光波导技术,光波导基底(51)包括第一反射斜面(512)、主波导(55)、次波导(56)及第二反射斜面(58),次波导(56)与主波导(55)相连。激光器组件(52)发出垂直光波导基底(51)的光波,照射在第一反射斜面(512)后将光波反射进主波导(55)内,不会出现光波的插损。主波导(55)内的光波分出一部分经次波导(56)传输,照射在第二反射斜面(58)后向上反射进功率探测器(53)内。该光模块结合平面光波导技术和精密贴装耦合技术,可实现较高的集成度,易于组装,并可提高光模块的传输效率,使整体稳定性提高。

Description

一种光模块
本申请要求在2019年03月14日提交中国专利局、申请号为201910193165.8、发明名称为“一种光模块”,以及,在2019年05月24日提交中国专利局、申请号为201910440362.5、发明名称为“一种光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
由于光纤通信领域中对通信带宽的要求越来越高,使得全球光通信正处在一个飞速发展时期。而在高速数据通信领域中,为了保障数据能够长距离高速传输,本领域通常采用光模块(光发射模块和光接收模块)实现不同波长光的发射和接收。在光信号传输过程中,光模块将4路不同波长的光信号复用于单模光纤中进行传输,光发射模块将4路不同波长的光信号复用通过单模光纤传输到光接收模块,光接收模块再解复用出这些个波长。但由于光模块中通常包括激光器、功率探测器等器件,且采用自由空间耦合技术进行封装,工艺比较复杂,导致更大规模的集成非常困难。
为此,一种可行的方法是采用薄膜滤波和空间微光学技术,实现多个波长光信号的复用/解复用功能,但是采用这种技术工艺难度高,光路耦合难度大。另外,还可利用用于粗波分解复用的混合集成平面波导探测器芯片,采用级联M-Z干涉结构,通过不同波长光通过不同的光程在M-Z干涉结构中相长或相消的方法,实现多个波长光信号复用/解复用功能。但采用这种方法使得光模块中的激光器与光波导端面耦合,通过统一底板进行支撑,稳定性较差。可见,在保证光信号的高效传输的情况下,光模块存在稳定性差、耦合难度大的问题。
发明内容
本申请提供一种光模块,以缓解光模块存在稳定性差、耦合难度大的问题。
本申请提供一种光模块,包括:光波导基底、激光器组件和功率探测器;
所述激光器组件和所述功率探测器分别位于所述光波导基底的表面上;
所述光波导基底包括第一反射斜面、主波导、次波导及第二反射斜面,所述次波导与所述主波导相连;
所述激光器组件发出的光经所述光波导基底的表面射向所述第一反射斜面,所述主波导接收来自所述第一反射斜面的反射光,所述次波导将所述主波导的光传导至所述第二反射斜面,所述第二反射斜面将光反射至所述功率探测器。
可选的,所述光波导基底的一端侧面为斜面,以形成所述第一反射斜面。
可选的,所述光波导基底的表面上设有凹槽,所述凹槽的底面形成所述第二反射斜面。
可选的,所述激光器组件包括激光芯片和热沉,所述热沉设置在所述光波导基底的表面上,所述热沉的侧壁设有接地金属层,所述激光芯片的阴极设置在所述接地金属层上。
可选的,所述激光芯片的出光方向朝向所述光波导基底的表面。
可选的,所述激光芯片与所述光波导基底之间填充光学匹配胶水。
可选的,所述功率探测器的感光面朝向所述光波导基底的表面。
可选的,所述光波导基底上还设有光复用组件,所述主波导与所述光复用组件连接,所述光复用组件用于将多束光合并为一束光。
由以上技术方案可知,本申请实施例提供的一种光模块,包括:光波导基底、激光器组件和功率探测器,利用精密贴装耦合技术,将激光器组件和功率探测器集成在光波导基底的表面上;且使激光器组件的出光方向和功率探测器的感光面均朝向光波导基底。结合平面光波导技术,使光波导基底包括第一反射斜面、主波导、次波导及第二反射斜面,次波导与主波导相连。激光器组件发出垂直光波导基底的光波,照射在第一反射斜面后将光波反射进主波导内,不会出现光波的插损。主波导内的光波分出一部分经次波导传输,照射在第二反射斜面后向上反射进功率探测器内。可见,本申请提供的光模块,结合平面光波导技术和精密贴装耦合技术,可实现较高的集成度,易于组装,并且可提高光模块的传输效率,使整体稳定性提高。
本申请提供一种光模块,包括:顶盖,以及与顶盖扣合成腔体的底座;腔体内封装有光接收器件和光发射器件;
底座内设有隔离筋和固定架,隔离筋垂直于固定架;隔离筋与底座的一个侧壁之间放置光接收器件,隔离筋与底座的另一个侧壁之间放置光发射器件,光接收器件的一端和光发射器件的一端分别安装在固定架上,光接收器件的另一端和光发射器件的另一端通过电路板连接;顶盖内壁设有向下的凸起,向下的凸起与电路板接触,以将光接收器件和光发射器件进行隔离。
可选的,所述顶盖包括与所述隔离筋嵌套配合的凹槽组件,所述凹槽组件、所述隔离筋和所述底座形成第一屏蔽内腔和第二屏蔽内腔,所述光接收器件位于所述第一屏蔽内腔,所述光发射器件位于所述第二屏蔽内腔。
可选的,所述顶盖内壁的凸起包括分别与所述电路板连接的第一凸台和第二凸台;所述第一凸台通过连接弧与所述第二凸台连接,以在所述第一凸台和所述第二凸台之间形成与所述隔离筋嵌套配合的凹槽。
可选的,所述顶盖还包括第一顶板和第二顶板,所述第一顶板与所述第一凸台连接,所述第二顶板与所述第二凸台连接,所述第一顶板)和所述第二顶板之间设有缝隙,所述缝隙与所述凹槽连通。
可选的,所述凹槽内设有导电泡棉,所述导电泡棉位于所述凹槽与所述隔离筋之间。
可选的,所述隔离筋包括隔离板和位于所述隔离板上部的支撑板,所述支撑板的宽度大于所述隔离板的宽度;所述隔离板垂直于所述固定架,所述隔离板位于所述光接收器件和所述光发射器件之间。
可选的,所述支撑板的顶部高于所述固定架的顶部,所述隔离板通过所述支撑板 与所述固定架卡接。
由以上技术方案可知,本申请实施例提供的一种光模块,包括:顶盖和底座,底座内设有隔离筋和固定架,隔离筋与固定架垂直,固定架用于分别对光接收器件的前端和光发射器件的前端进行屏蔽;顶盖用于对光接收器件的上端和光发射器件的上端进行屏蔽;底座的底部用于对光接收器件的下端和光发射器件的下端进行屏蔽;顶盖内壁设置的向下的凸起与电路板连接后用于对光接收器件的后端和光发射器件的后端进行屏蔽。在将光接收器件和光发射器件通过固定架安装在底座上时,隔离筋位于光接收器件和光发射器件之间,隔离筋用于对光接收器件的右端和光发射器件的左端进行屏蔽,底座的两个侧壁用于对光接收器件的左端和光发射器件的右端进行屏蔽。可见,本实施例提供的光模块,可将光接收器件和光发射器件进行隔离,避免两种光器件向外辐射的电磁波产生串扰现象而影响对方,进而可以保证光接收器件和光发射器件的性能以及光模块的正常工作。
附图说明
下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光模块的结构示意图;
图2为本申请实施例提供的光模块的分解结构示意图;
图3为本申请实施例提供的光模块的局部结构示意图;
图4为本申请实施例提供的光发射器件的结构示意图;
图5为本申请实施例提供的光发射器件的光路图;
图6为本申请实施例提供的激光器组件的局部放大图;
图7为本申请实施例提供的功率探测器的局部放大图;
图8为本申请实施例提供的第二反射斜面的反射光路图;
图9为本申请实施例提供的光模块的整体的结构示意图;
图10为本申请实施例提供的光模块的局部分解结构示意图;
图11为本申请实施例提供的光接收器件和光发射器件的通信结构示意图;
图12为本申请实施例提供的光模块底座的结构示意图;
图13为本申请实施例提供的底座的俯视图;
图14为本申请实施例提供的隔离筋的结构示意图;
图15为本申请实施例提供的顶盖的结构示意图;
图16为本申请实施例提供的光模块的C截面剖视图;
图17为本申请实施例提供的光模块顶盖局部放大图;
图18为本申请实施例提供的光模块在屏蔽隔离状态的剖视图;
图19为本申请另一实施例提供的光模块的分解结构示意图;
图20为本申请另一实施例提供的顶盖的结构示意图。
具体实施方式
图1为本申请实施例提供的光模块的结构示意图;图2为本申请实施例提供的光模块的分解结构示意图。
参见图1和图2,本申请实施例提供的一种光模块,包括顶盖10、底座20、电路板30、光接收器件40和光发射器件50;顶盖10扣合在底座20上,形成光模块的壳体。壳体为中空结构,电路板30、光接收器件40和光发射器件50均设置在中空的壳体内。光接收器件40和光发射器件50均与电路板30电连接,光接收器件40和光发射器件50均设置在电路板30长度方向的一端边缘,在电路板30长度方向的另一端边缘设置有用于与光模块外部进行电通信的金手指80。
参见图3,在光纤通信过程中,为保证数据能够进行长距离的高速运输,本实施例采用光接收器件40和光发射器件50实现不同波长光的发射和接收。光接收器件40的一端与第一光纤适配器70配合第一光纤适配器70用于固定光纤,以使得光纤中导入的光可以射入光接收器件40,光接收器件40的另一端与电路板30电连接,光波由第一光纤适配器70进入光接收器件40,经光接收器件40将光信号转换为电信号后,将电信号传输进电路板30,实现光信号到电信号的转换。光发射器件50的一端与第二光纤适配器60配合,第二光纤适配器60用于固定光纤,使得光发射器件50发出的光射入光纤,光发射器件50的另一端与电路板30电连接,电路板30向光发射器件50传输电信号,经光发射器件50将电信号转换为光信号,得到的光信号由第二光纤适配器60射出,实现电信号到光信号的转换。
为了提高光信号的转换效率和光模块的稳定性,本实施例提供的光模块中的光发射器件50,基于平面光波导结构形成波分复用。可见,该光发射器件50结合平面光波导技术和精密贴装耦合技术,实现较高的集成度,使整体稳定性提高。
本申请某些实施例中,光发射器件50包括:光波导基底51、激光器组件52、功率探测器53和光复用组件54。光波导基底51、激光器组件52、功率探测器53和光复用组件54均封装在光模块的壳体中,其中,壳体由前述实施例中公开的顶盖10和底座20构成。
激光器组件52和功率探测器53分别位于光波导基底51的表面511上,光复用组件54设置在光波导基底51内。激光器组件52包括多个激光芯片521,每个激光芯片521均用于发射光波;功率探测器53接收激光芯片521发出的光,并检测激光芯片521发射光的功率;光复用组件54用于接收多个激光芯片521发射的光波,并通过合波处理将多束光合并为一束光,再由第二光纤适配器60射出,进入光纤中。光复用组件54可以是阵列波导光栅AWG(Arrayed Waveguide Grating)或者是马赫曾德MZI(Mach-Zehnder inter-ferometer)结构的元件,可以将多个不同波长的光合并到同一个传输波导里面,最终输出。
如图4和图5所示,激光器组件52包括激光芯片521和热沉522。激光芯片521是光模块常见的光发射芯片,激光芯片521用于发射激光光波,激光以较好的单波长特性及较佳的波长调谐特性成为光模块乃至光纤传输的首选光源。热沉522与激光芯片521电连接,热沉522可以起到给激光芯片521进行电极延伸和散热的作用。
如图6所示,在图5的A区域中,热沉522设置在光波导基底51的表面511上,热沉522的侧壁设有接地金属层,激光芯片521的阴极设置在接地金属层上。热沉522的底面贴合在光波导基底51的表面511上,且热沉522的侧壁设有接地金属层。激光芯片521的底面为激光芯片521的阴极,激光芯片521的阴极通过接地金属层贴在热沉522的侧壁上,激光芯片521的侧边贴在光波导基底51上。激光芯片521通过侧边发射光波,使得 激光芯片521的出光方向朝下,即朝向光波导基底51的表面511。
激光芯片521与光波导基底51之间填充光学匹配胶水,使得激光芯片521的侧边通过光学匹配胶水贴在波导基底51的表面511上。光通过不同折射率介质时会发生折射,折射率相差较大导致较大折射率损耗,通过在激光芯片与光波导基底之间填充光学匹配胶水,使得光从芯片射入胶水,然后由胶水射入光波导基底中,光学匹配胶水减小激光芯片与光波导基底之间的折射率差距,与由空气填充相比,降低光传输过程中的损耗。
激光芯片521的阳极与电路板30连接,电路板30内设有驱动芯片,驱动芯片与热沉522的上表面电连接。热沉522的上表面设有电路,使得驱动芯片可通过电路向热沉522传递电信号。
为了解决光路耦合难度大的问题,本实施例采用将激光器组件52和功率探测器53均集成到平面光波导结构上的方式,通过直接对准光耦合,形成一个基于平面光波导结构进行波分复用的光发射器件,使得光发射器件50的稳定性更好,易于组装。为此,需要提供一个用于支撑激光器组件52和功率探测器53,且可实现波导传输光波的基体,即光波导基底51。
光波导基底51位于电路板30的一侧,光波导基底51的另一端与第二光纤适配器60连接,实现光信号的传输。光波导基底51内设有波导结构,用于实现光波的传输。波导结构原理与光纤结构原理相同,波导结构包括波导及包裹介质,波导与包裹介质具有不同的折射率,可使得光在波导内传输。光波导基底中的主波导及次波导都使用波导结构。光波导基底51的表面511上集成有激光器组件52和功率探测器53,内部集成有光复用组件54,光复用组件54的上表面未突出在光波导基底51的表面511外即可。
为了便于光波导基底51上集成多个元器件,以及激光器组件52发出的光波的高效传输,本实施例中,将激光器组件52设置在光波导基底51的一端边缘处。为了减少光波在传输时的插损,使得激光芯片521发射的光波能够高效率地由光复用组件54进行合波,本实施例中,将激光芯片521的出光方向设置成朝向光波导基底51的形式。
由于激光芯片521的出光方向朝向光波导基底51,使得光波向垂直向下的方向传输,而光复用组件54位于靠近光波导基底51另一端的位置。为使垂直向下的光波能够传输进光复用组件54,本实施例中,光波导基底51的一端侧面形成第一反射斜面512,光波导基底将原方形体的一侧面研磨成斜面,以形成第一反射斜面。第一反射斜面512位于光波导基底51的设有激光器组件52的一端,使得激光器组件52发出的光经光波导基底51的表面511射向第一反射斜面512,再经过第一反射斜面512的反射,将光反射进主波导55内传输。光的传播路径可参见图6所示的λ1的传输过程。
为避免光波在传输时的损耗,以提高传输效率,本实施例中,第一反射斜面512的倾斜角度α设置成45度左右,具体可设置在40度至50度之间。第一反射斜面512向合波射出的方向倾斜,即向设有第二光纤适配器60所在位置的方向倾斜。激光器芯片521发射垂直光波导基底51的表面511的光波,照射在第一反射斜面512后改变传播方向,由于第一反射斜面512的倾斜角度α为45度,可使得垂直向下的光波经反射可沿水平方向传播,因此,经第一反射斜面512反射后的光波在主波导55内沿水平方向朝向光复用组件54传输,以便于光复用组件54对接收到的光波进行合波处理。
为了实现不同波长光的发射,光模块中可设置多个激光器组件52,参见图4和图5, 将多个激光器组件52并排设置在与第一反射斜面512对应的光波导基底51的表面511上,且每一激光器组件52的出光方向均朝向光波导基底51的表面511。
同样的,光波导基底51内设有多个主波导55,每一主波导55对应一个激光器组件52,用于分别实现相应的激光器组件52发射光波的传输。每一主波导55的入光口端设置在对应的激光器组件52的下方,每一主波导55的出光口端均与光复用组件54连通,使得每个激光器组件52发射的光波能够垂直进入对应的主波导55中,并在第一反射斜面512的反射作用下,每一光波均反射进主波导55并在主波导55内沿水平方向传输。
每一主波导55内传输的光波汇聚在光复用组件54内,以利用光复用组件54对每一激光器组件52发射的光波进行合波,因此,将每一主波导55的出光口端与光复用组件54连通,光复用组件54位于光波导基底51的内部,使得位于光波导基底51内的主波导55可在保持水平放置的状态下,将光波传输进光复用组件54,以便于光复用组件54将多个光波合波后输出。
光波导基底51内还设有发射波导57,发射波导57的一端与光复用组件54的出光口端连通,发射波导57的另一端与第二光纤适配器60连通。而为避免出现过多的界面反射和光波的插损,发射波导57也需水平设置。光复用组件54接收每个主波导55传输的光波,将多束光合并成一束光,发射波导57用于将该光波信号输出进第二光纤适配器60内,进而进入光纤中。
如图5和图6所示,以光模块中设置四个激光器组件52为例,第一个激光芯片521发射出垂直于且朝向光波导基底51的光波λ1,经第一反射斜面512反射后进入主波导55内,并在主波导55内沿水平方向传输,最终进入光复用组件54。同理,其余激光芯片521发出的光波λ2、λ3、λ4均以此传输过程进入光复用组件54。光复用组件54对光波λ1、λ2、λ3、λ4进行合波处理,将得到的光波(λ1、λ2、λ3、λ4)经发射波导57输出,通过第二光纤适配器60进入光纤。
在进行光信号传输的过程中,需要对激光芯片521发射的光波进行功率检测,本实施例中,在激光器组件52和光复用组件54之间设置功率探测器53。功率探测器53设置在光波导基底51的表面511上,功率探测器53的设置数量与激光器组件52的数量相同,以利用单独的一个功率探测器53对对应的激光器组件52发射的光波进行功率检测。
在利用多组激光器组件52进行光纤传输时,光复用组件54和每一激光器组件52之间分别对应设有一功率探测器53;每一功率探测器53分别通过次波导56与对应的主波导55连通,使得一个激光器组件52、一个主波导55、一个次波导56和一个功率探测器53形成一条耦合光路。
若想功率探测器53能够对激光芯片521发射的光波进行检测,需要光波导基底51上的功率探测器53和光波导基底51内的主波导55之间建立连通关系,为此,光波导基底51内还包括次波导56。次波导56的一端与主波导55连通,次波导56的另一端与功率探测器53连接,主波导55内传输的光波在主波导55和次波导56连通的位置处产生分支,使得一部分光波继续在主波导55内传输,最终进入光复用组件54内;另一部分光波进入次波导56内传输,最终进入功率探测器53,便于功率探测器53进行功率检测。进入功率探测器53的光功率一般远小于激光芯片521发射的光波总功率,通常设定进入功率探测器53内进行功率检测的功率为总功率的1/10,即进入次波导56内的光波为在主波导55 内传输光波的1/10。
为便于光波导基底51内的次波导56传输的光波反射进功率探测器53内,设置功率探测器53的感光面的方向朝向光波导基底51的表面511,且感光面与次波导56的出光口端相对。同时,在光波导基底51的表面511上设置凹槽,将凹槽的底面设置成斜面,以形成第二反射斜面58。第二反射斜面58的倾斜方向朝向激光器组件52所在的位置,且第二反射斜面58的倾斜角度β设置成45度左右,可设置在40度至50度之间范围内。
第二反射斜面58设置在功率探测器53的下方,且功率探测器53的感光面与第二反射斜面58相对。为了将次波导56内传输的光波引入到功率探测器53内,设置第二反射斜面58向次波导56的方向倾斜,使得在次波导56出光口水平输出的光波照射在第二反射斜面58上后,经过反射改变传输方向,即向上传输,最终经过感光面进入功率探测器53。光波在第二反射斜面58发生的反射路径可参见图8中所示的光路。
光波导基底51内设置的凹槽可为楔形槽,如图8所示,楔形槽的纵截面形状呈等腰直角三角形;该楔形槽与次波导56的出光口连通,且位于功率探测器53的下方;楔形槽的两个直角边均为开口结构,第一直角边583朝向光波导基底51的表面511,且与感光面相对;第二直角边582朝向次波导56,且与次波导56的出光口连通;楔形槽的斜边581即为第二反射斜面58,使得斜边581向次波导56倾斜。
光波经次波导56传输,由出光口射出并照射在斜边581上,即第二反射斜面58上,光波在第二反射斜面58上发生反射,并向上改变传输方向,感光面接收到该反射光,使光信号进入功率探测器53内,以进行功率检测。
在进行功率检测时,利用次波导56实现所需光波的传输,而为避免光波在传输过程中的插损,需要次波导56与主波导55为垂直关系,使得激光芯片521发射的光波在主波导55内传输时,其中一部分光波进入次波导56内。而由于次波导56为水平放置状态,可避免光波与次波导56内部发生多界面反射,进而可避免产生损耗。其中一部分光波在次波导56内可全部传输至第二反射斜面58,发生反射,垂直向上进入功率探测器53内,不会出现插损,光波传输效率高。
在其中一种可行的具体实施方式中,次波导56可采用与主波导55相同的直线型结构,但次波导56的长度要短于主波导55的长度。次波导56与主波导55保持垂直状态,主波导55内传输的光波,在主波导55和次波导56的交叉口处,分出一部分光波进入次波导56内,并在次波导56内沿水平方向传输,不发生反射,径直传输至第二反射斜面58上,最后通过第二反射斜面58的反射作用将光波反射进功率探测器53。
在另一种可行的具体实施方式中,次波导56可采用L形结构。如图7所示,在图5中的B区域中,次波导56包括相互垂直的第一段波导561和第二段波导562;第一段波导561与主波导55垂直,第二段波导562与主波导55平行,且第二段波导562的出光口位于功率探测器53的下方,且第二段波导562的出光口朝向第二反射斜面58。采用这种形式的次波导56,主波导55内的一部分光波进入次波导56内后,光波需要在次波导56内发生一次反射,反射的位置即为第一段波导561和第二段波导562的连通处,因此需要第一段波导561和第二段波导562相互垂直,以避免光波出现插损,提高光传输的稳定性。
可见,采用本实施例提供的光学次模块,激光器组件52中的激光芯片521发射垂直朝向光波导基底51的光波,经第一反射斜面512反射进主波导55,光波的一部分经主波 导55射进光复用组件54,光波的另一部分经次波导56和第二反射斜面58反射进功率探测器53内,进行功率检测;光复用组件54将每个激光器组件52发射的光波进行合波后,经发射波导57传输至第二光纤适配器60,以进入光纤中。
由以上技术方案可知,本申请实施例提供的一种光模块,包括顶盖10以及与顶盖10扣合成腔体的底座20,腔体内封装有光接收器件40和光发射器件50,其中,所述发射器件50包括:光波导基底51、激光器组件52和功率探测器53,利用精密贴装耦合技术,将激光器组件52和功率探测器53集成在光波导基底51的表面511上;且使激光器组件52的出光方向和功率探测器53的感光面均朝向光波导基底51。结合平面光波导技术,使光波导基底51包括第一反射斜面512、主波导55、次波导56及第二反射斜面58,次波导56与主波导55相连。激光器组件52发出垂直光波导基底51的光波,照射在第一反射斜面512后将光波反射进主波导55内,不会出现光波的插损。主波导55内的光波分出一部分经次波导56传输,照射在第二反射斜面58后向上反射进功率探测器53内。可见,本申请提供的光模块,结合平面光波导技术和精密贴装耦合技术,可实现较高的集成度,易于组装,并且可提高光模块的传输效率,使整体稳定性提高。
上述实施例中,可通过光波导基底51传输光波,减少光波出现的插损,提高光模块传输的效率,以及整体的稳定性。但由于在光模块工作时,光接收器件和光发射器件均会向外辐射电磁波。而光接收器件和光发射器件同时封装在一个腔体内部,因此光接收器件和光发射器件间易出现串扰,影响光接收器件和光发射器件的性能以及光模块的正常工作,进而在本申请中,还可以通过减少出现串扰的方式,使光模块整体能够适应高速的信号传递,进一步提高光模块的传输效率,提高整体稳定性。
即在本申请的另一个实施例中,还提供一种光模块。图9为本申请实施例提供的光模块的整体的结构示意图;图10为本申请实施例提供的光模块的局部分解结构示意图。
参见图9和图10,本申请实施例提供的一种光模块,包括:顶盖1,以及,与顶盖1扣合成腔体的底座2。顶盖1扣合在底座2上,形成光模块的壳体。壳体为中空结构,内部设有腔体,腔体内封装有光接收器件3和光发射器件4,腔体内还封装有电路板5,光接收器件3和光发射器件4均与电路板5电连接,光接收器件3和光发射器件4均设置在电路板5长度方向的一端边缘。
本实施例提供的光模块,如图11所示,光接收器件3包括探测器、探测器相关电器件及接收光波导,光发射器件4包括激光器401、激光器相关的电器件402及发射光波导403。本实施例提供的光模块中并未针对探测器及探测器相关电器件进行独立的屏蔽封装,也并未针对激光器401及激光器相关电器件402的进行独立的屏蔽封装;探测器及探测器相关电器件位于接收光波导的外表面,401及激光器相关电器件402位于发射光波导403的外表面。将光模块的顶盖1与底座2分离后,激光器、探测器等器件即暴露在空气中或同一空间中,由于激光器、探测器及相关电器件在工作状态下会对外发射电磁波,进而造成相互干扰,所以需要将光接收器件3及光发射器件4这两者进行电磁屏蔽隔离。典型光模块中,顶盖1与底座2仅实现光模块内与外之间的电磁屏蔽隔离,本实施例针对光模块的顶盖1与底座2进行隔离结构设计,不仅实现光模块内与外之间的电磁波屏蔽隔离,还实现光模块内部光接收器件3及光发射器件4之间的电磁屏蔽隔离。
本实施例提供的光模块,在光接收器件3和光发射器件4之间设置隔离筋6,避免两 种光器件向外辐射的电磁波产生串扰现象而影响对方,进而可以保证光接收器件3和光发射器件4的性能以及光模块的正常工作。
如图12和图13所示,底座2内设有隔离筋6和固定架21,固定架21用于安装光接收器件3和光发射器件4。固定架21上设有两个通孔,分别为第一通孔211和第二通孔212,光接收器件3的光纤适配器32由第一通孔211穿出,使光接收器件3固定在固定架21上,并使光接收器件3与固定架21紧密贴合。光发射器件4的光纤适配器404由第二通孔212穿出,使光发射器件4固定在固定架21上,并使光发射器件4与固定架21紧密贴合。光接收器件3和光发射器件4通过固定架21并排安装在腔体内,固定架21与底座2的长度方向垂直,由固定架21实现对光接收器件3和光发射器件4的前端进行屏蔽。
为利用顶盖1和底座2对两个光器件进行屏蔽隔离,在顶盖1的内壁设有向下的凸起,该向下的凸起位于电路板5的上部,光纤适配器位于对应的光接收器件3和光发射器件4的前端,向下的凸起则位于对应的光接收器件3和光发射器件4的后端,使得顶盖1、向下的凸起和底座2形成封堵件,由顶盖1对光接收器件3的上端和光发射器件4的上端进行屏蔽;由底座2的底部22对光接收器件3的下端和光发射器件4的下端进行屏蔽;向下的凸起与电路板5连接,以形成对光接收器件3的后端和光发射器件4的后端进行屏蔽。
隔离筋6的一端与固定架21连接,且隔离筋6垂直于固定架21,为保证隔离筋6的稳定性和屏蔽性,隔离筋6固定在底座2的底部22,或隔离筋6与底座2一体成型。而为实现隔离作用,将隔离筋6设置在光接收器件3和光发射器件4之间,由隔离筋6对光接收器件3的右端和光发射器件4的左端进行屏蔽,由底座2上的靠近第一通孔211的一个侧壁231对光接收器件3的左端进行屏蔽,由底座2上的靠近第二通孔212的另一个侧壁232对光发射器件4的右端进行屏蔽,以实现光接收器件3和光发射器件4的隔离。
隔离筋6的厚度可根据光接收器件3和光发射器件4之间的距离而定,隔离筋6的长度可根据光接收器件3和光发射器件4的长度来调整,隔离筋6的高度可根据底座2的尺寸进行设定。为进行更好的屏蔽,隔离筋6、顶盖1、底座2和固定架21均可采用金属材质制成。隔离筋6的可采用铁质材料,铁质材料具有很好的隔离电磁波的特点。
隔离筋6位于腔体内,为保证隔离筋6的隔离效果,隔离筋6的高度需匹配顶盖1与底座2扣合时二者之间的距离。在顶盖1和底座2扣合时,如果隔离筋6的高度大于该距离,顶盖1和底座2将无法扣合在一起,或者扣合时紧密性较差。如果隔离筋6的高度小于该距离,即隔离筋6低于底座2的顶部,易使隔离筋6与顶盖1之间产生缝隙,光接收器件3和光发射器件4向外辐射的电磁波会通过该缝隙与对方的电磁波产生串扰,导致隔离效果不好。因此,在顶盖1和底座2扣合时,如果使隔离筋6的顶部与顶盖1的内侧壁贴合,则不会产生缝隙,能够产生很好的隔离效果。
在其中一种实施例中,如图4所示,隔离筋6可采用板状结构,而根据腔体内的空间以及光接收器件3和光发射器件4的外形结构,隔离筋6还可采用波浪状结构或锯齿状结构,本实施例不做具体限定。
采用板状结构的隔离筋6与底座2的底部22垂直固定,该隔离筋6的一端与固定架21垂直固定,连接点位于固定架21上两个通孔之间。在将顶盖1与底座2扣合时,板状的隔离筋6、固定架21、底座2的两个侧壁(231、232)和顶盖1上的向下的凸起形成两个屏蔽内腔,分别用于屏蔽光接收器件3和光发射器件4产生的电磁波,以实现光接收器 件3和光发射器件4的隔离。
在另一种实施例中,为提高隔离筋6的稳定性和隔离效果,还可采用如图14所示的结构。参见图14,隔离筋6包括隔离板62和位于隔离板62上部的支撑板61,支撑板61的宽度大于隔离板62的宽度;隔离板62垂直于固定架21,并固定在底座2的底部,隔离板62位于光接收器件3和光发射器件4之间。
隔离板62用于实现光接收器件3和光发射器件4的隔离,在隔离板62的上部设置宽度大于自身的支撑板61,以增加与顶盖1内侧壁的接触面积,使得顶盖1扣合在底座2上时,顶盖1可与支撑板61紧密接触,通过支撑板61可提高隔离板62的稳定性,避免隔离板62出现晃动而产生缝隙,影响隔离效果。
固定架21位于腔体内,为便于顶盖1和底座2的扣合,固定架21的高度需匹配顶盖1与底座2扣合时二者之间的距离。为形成屏蔽内腔,设定隔离板62的高度与固定架21的高度相同,支撑板61的顶部高于固定架21的顶部,且与顶盖1和底座2扣合时二者之间的距离匹配。
由于支撑板61的宽度大于隔离板62的宽度,支撑板61的长度大于隔离板62的长度,使得支撑板61和隔离板62的接触边缘处产生凸台。在将隔离筋6与固定架21连接时,可使支撑板61利用凸台卡在固定架21的顶端,实现隔离板62通过支撑板61与固定架21卡接。支撑板61与固定架21卡接,可进一步限定隔离板62的稳定性和屏蔽性,避免隔离板62因外力出现晃动,影响隔离效果。
上述实施例提供的光模块,在底座2上设置隔离筋6,使得在底座2上封装光接收器件3和光发射器件4时,隔离筋6位于光接收器件3和光发射器件4之间,以将光接收器件3和光发射器件4隔离开,避免光接收器件3和光发射器件4产生的电磁波给对方造成干扰,解决相互串扰的问题,保证光模块的正常工作。
为进一步提高光模块的隔离效果,以及解决光接收器件3和光发射器件4相互串扰的问题,本申请另一实施例提供的光模块,在上述实施例提供的光模块的结构基础上,顶盖1的内壁设置的向下的凸起包括凹槽组件7,凹槽组件7与隔离筋6配合使用,在提高隔离筋6稳定性的前提下,可进一步提高隔离效果。
如图15和图16所示,顶盖1的内壁设有凹槽组件7,凹槽组件7与隔离筋6嵌套配合,凹槽组件7、隔离筋6和底座2形成第一屏蔽内腔11和第二屏蔽内腔12,第一屏蔽内腔11用于容纳光接收器件3,第二屏蔽内腔12用于容纳光发射器件4。图16是光模块中顶盖1和底座2扣合在一起后,由图9中C截面的剖视图,该剖视图可体现光模块中呈现的两个屏蔽内腔的结构。
为使凹槽组件7与电路板5的配合实现光接收器件3的后端和光发射器件4的后端的屏蔽.图17是图15中D部分的局部放大图,以更清楚地表明凹槽组件7的结构。如图17所示,本实施例提供的凹槽组件7包括第一凸台71和第二凸台73。第一凸台71和第二凸台73位于电路板5的上方,将顶盖1扣合在底座2上时,第一凸台71和第二凸台73分别与电路板5接触,分别实现对光器件(光接收器件3和光发射器件4)的后端的屏蔽。
第一凸台71位于电路板5的与光发射器件4连接部分的上方,第二凸台73位于电路板5的与光接收器件3连接部分的上方,第一凸台71与电路板5连接后对光发射器件4的后端进行屏蔽,第二凸台73与电路板5连接后对光接收器件3的后端进行屏蔽。第一 凸台71和第二凸台73分别位于与隔离筋6对应的位置的两侧,即隔离筋6位于第一凸台71和第二凸台73之间。为达到屏蔽效果,第一凸台71和第二凸台73之间通过连接弧76连接,避免第一凸台71和第二凸台73之间断开而影响电磁波的屏蔽效果。
第一凸台71、第二凸台73和连接弧76之间形成用于隔离筋6嵌入的凹槽75,凹槽75用于固定隔离筋6,避免隔离筋6与顶盖1直接接触而产生缝隙,进而可以产生两个屏蔽内腔,使得第一屏蔽内腔11和第二屏蔽内腔12相对封闭且独立,可解决光接收器件3和光发射器件4产生的电磁波相互串扰的问题,以提高隔离效果。
为进一步提高隔离效果,凹槽组件7还包括第一顶板72和第二顶板74,第一顶板72与第一凸台71连接,第二顶板74与第二凸台73连接。第一顶板72和第二顶板74之间设有缝隙,该缝隙与凹槽75连通,以提高凹槽75的深度和长度,使得隔离筋6可以全部嵌入凹槽75内,提高隔离筋6与凹槽组件7的屏蔽效果。
此时,如图18所示,第一顶板72和第二顶板74均固定在顶盖1的内壁上,且位于与隔离筋6对应的位置的两侧,也就是说,第一顶板72是第二屏蔽内腔12的顶板,第二顶板74是第一屏蔽内腔11的顶板。
可见,本实施例提供的凹槽组件7,利用第一凸台71和第二凸台73与电路板5的配合,实现光接收器件3的后端的屏蔽和光发射器件4的后端的屏蔽。因此,凹槽组件7、隔离筋6和底座2形成两个屏蔽内腔。由底座2的底部22、底座2的一个侧壁231、固定架21、隔离筋6、顶盖1的第二顶板74和第二凸台73形成第一屏蔽内腔11,由第一屏蔽内腔11实现光接收器件3产生的电磁波的屏蔽;由底座2的底部22、底座2的另一个侧壁232、固定架21、隔离筋6、顶盖1的第一顶板72和第一凸台71形成第二屏蔽内腔12,由第二屏蔽内腔12实现光发射器件4产生的电磁波的屏蔽,使得两个器件自身产生的电磁波都不会影响对方,进而可解决串扰问题,提高隔离效果和光模块的工作稳定性。
为使凹槽75和隔离筋6能够达到最佳的嵌套效果,避免产生缝隙,凹槽75的形状和尺寸需与隔离筋6的结构相匹配。如果隔离筋6采用板状结构,则凹槽75的宽度略大于或等于隔离筋6的宽度,凹槽75也为直线型结构,使得隔离筋6嵌入凹槽75内。如果隔离筋6采用波浪状结构或锯齿状结构,凹槽75的结构需与隔离筋6的结构相同,以便隔离筋6在嵌入凹槽75后不会产生缝隙。
如果隔离筋6采用如图14所示的结构,那么凹槽75的宽度需略大于或等于支撑板61的宽度,凹槽75的长度略大于或等于支撑板61的长度,凹槽75的形状与支撑板61的相似,使得支撑板61嵌入凹槽75内,以固定隔离板62,避免隔离筋6与凹槽75产生缝隙,影响隔离效果,可提高隔离筋6的稳定性。
在对光接收器件3和光发射器件4的后端进行屏蔽隔离时,顶盖1上的第一凸台71和第二凸台73分别与电路板5接触,由于两个硬性结构相接触无法实现完全贴合,易出现缝隙,影响屏蔽效果。因此,为保证屏蔽效果,本实施例提供的光模块,还可在电路板5的表面设置金属区域,例如,铜区或金属软片,如图16所示,即在电路板5的与光接收器件3连接的一端表面设置第一软片31,在电路板5的与光发射器件4连接的一端表面设置第二软片41。本实施例中,第一软片31和第二软片41均可采用锡纸片。
第一软片31的位置与第二凸台73的位置相对,第二软片41的位置与第一凸台71的位置相对,使得在将顶盖1扣合在底座2上时,第二凸台73能够对第一软片31产生挤压, 第一凸台71能够对第二软片41产生挤压,以保证第二凸台73和第一软片31之间的紧密贴合,以及,第一凸台71和第二软片41之间的紧密贴合,进而实现对光器件后端的屏蔽。
另外,由于凹槽75和隔离筋6均为硬性结构,两个硬性结构接触时,易因表面不平整而无法达到完全贴合,也就是说,也有产生缝隙的可能。因此,在两个硬性结构接触时,在凹槽75和隔离筋6之间增加一个软性结构,通过一个软性结构进行连接来消除可能出现的缝隙,有利于形成封闭空间。
如图19和图20所示,本申请实施例提供的光模块,在凹槽75内设有导电泡棉8,导电泡棉8用于实现凹槽75与隔离筋6的紧密嵌套。
凹槽75内部装有软性的导电泡棉8,以保证隔离筋6与凹槽75之间的间隙完全填充,使得顶盖1和底座2充分接触导通,以由第一凸台71、第二凸台73、隔离筋6和底座2形成第一屏蔽内腔11和第二屏蔽内腔12,将每个光器件分别容纳,隔绝两器件间的相互辐射和串扰影响,提高隔离效果,保证光模块的正常工作。导电泡棉8具体可以是与隔离板62直接接触,此种情况隔离筋不包括支撑板61;导电泡棉8也可以与支撑板61直接接触。
可见,本实施例提供的光模块,在底座2上设置隔离筋6,在顶盖1上设置凹槽组件7,通过隔离筋6和凹槽组件7的嵌套配合,使光接收器件3位于第一屏蔽内腔11,光发射器件4位于第二屏蔽内腔12,以将两个器件进行隔离,使得两个器件自身产生的电磁波都不会影响对方,进而可解决串扰问题,提高隔离效果和光模块的工作稳定性。
由以上技术方案可知,本申请实施例提供的一种光模块,包括:顶盖1和底座2,底座2内设有隔离筋6和固定架21,隔离筋6固定在底座2的底部22且与固定架21垂直,固定架21用于分别对光接收器件的前端和光发射器件的前端进行屏蔽。顶盖1用于对光接收器件3的上端和光发射器件4的上端进行屏蔽。底座2的底部22用于对光接收器件3的下端和光发射器件4的下端进行屏蔽。顶盖1内壁设置的向下的凸起与电路板5连接后用于对光接收器件3的后端和光发射器件4的后端进行屏蔽。
在将光接收器件3和光发射器件4通过固定架21安装在底座2上时,隔离筋6位于光接收器件3和光发射器件4之间,隔离筋6用于对光接收器件3的右端和光发射器件4的左端进行屏蔽,底座2的两个侧壁(231、232)用于对光接收器件3的左端和光发射器件4的右端进行屏蔽。可见,本实施例提供的光模块,可将光接收器件3和光发射器件4进行隔离,避免两种光器件向外辐射的电磁波产生串扰现象而影响对方,进而可以保证光接收器件3和光发射器件4的性能以及光模块的正常工作。该光模块结构简单,成本低,能达到很好的隔离效果,以解决两个光器件相互串扰的问题。

Claims (17)

  1. 一种光模块,包括:顶盖,以及与所述顶盖扣合成腔体的底座;所述腔体内封装有光接收器件和光发射器件;
    其中,所述底座内设有隔离筋和固定架,所述隔离筋垂直于所述固定架;所述隔离筋与所述底座的一个侧壁之间放置所述光接收器件,所述隔离筋与所述底座的另一个侧壁之间放置所述光发射器件,所述光接收器件的一端和所述光发射器件的一端分别安装在所述固定架上,所述光接收器件的另一端和所述光发射器件的另一端分别与电路板连接;所述顶盖内壁设有向下的凸起,所述向下的凸起与所述电路板接触,以将所述光接收器件和所述光发射器件进行隔离。
  2. 根据权利要求1所述的光模块,其中,所述顶盖包括与所述隔离筋嵌套配合的凹槽组件,所述凹槽组件、所述隔离筋和所述底座形成第一屏蔽内腔和第二屏蔽内腔,所述光接收器件位于所述第一屏蔽内腔,所述光发射器件位于所述第二屏蔽内腔。
  3. 根据权利要求1所述的光模块,其中,所述顶盖内壁的凸起包括分别与所述电路板连接的第一凸台和第二凸台;所述第一凸台通过连接弧与所述第二凸台连接,以在所述第一凸台和所述第二凸台之间形成与所述隔离筋嵌套配合的凹槽。
  4. 根据权利要求3所述的光模块,其中,所述顶盖还包括第一顶板和第二顶板,所述第一顶板与所述第一凸台连接,所述第二顶板与所述第二凸台连接,所述第一顶板)和所述第二顶板之间设有缝隙,所述缝隙与所述凹槽连通。
  5. 根据权利要求3所述的光模块,其中,所述凹槽内设有导电泡棉,所述导电泡棉位于所述凹槽与所述隔离筋之间。
  6. 根据权利要求1所述的光模块,其中,所述隔离筋包括隔离板和位于所述隔离板上部的支撑板,所述支撑板的宽度大于所述隔离板的宽度;所述隔离板垂直于所述固定架,所述隔离板位于所述光接收器件和所述光发射器件之间。
  7. 根据权利要求6所述的光模块,其中,所述支撑板的顶部高于所述固定架的顶部,所述隔离板通过所述支撑板与所述固定架卡接。
  8. 根据权利要求1所述的光模块,其中,所述发射器件包括:光波导基底、激光器组件和功率探测器;
    所述激光器组件和所述功率探测器分别位于所述光波导基底的表面上;所述光波导基底包括第一反射斜面、主波导、次波导及第二反射斜面,所述次波导与所述主波导相连;所述激光器组件发出的光经所述光波导基底的表面射向所述第一反射斜面,所述主波导接收来自所述第一反射斜面的反射光,所述次波导将所述主波导的光传导至所述第二反射斜面,所述第二反射斜面将光反射至所述功率探测器。
  9. 一种光模块,包括顶盖以及与顶盖扣合成腔体的底座,腔体内封装有光接收器件和光发射器件,其中,所述发射器件包括:光波导基底、激光器组件和功率探测器;
    所述激光器组件和所述功率探测器分别位于所述光波导基底的表面上;
    所述光波导基底包括第一反射斜面、主波导、次波导及第二反射斜面,所述次波导与所述主波导相连;
    所述激光器组件发出的光经所述光波导基底的表面射向所述第一反射斜面,所述主波导接收来自所述第一反射斜面的反射光,所述次波导将所述主波导的光传导至所述第二反射斜面,所述第二反射斜面将光反射至所述功率探测器。
  10. 根据权利要求9所述的光模块,其中,所述光波导基底的一端侧面为斜面,以形成所述第一反射斜面。
  11. 根据权利要求9所述的光模块,其中,所述光波导基底的表面上设有凹槽,所述凹槽的底面形成所述第二反射斜面。
  12. 根据权利要求9所述的光模块,其中,所述激光器组件包括激光芯片和热沉,所述热沉设置在所述光波导基底的表面上,所述热沉的侧壁设有接地金属层,所述激光芯片的阴极设置在所述接地金属层上。
  13. 根据权利要求12所述的光模块,其中,所述激光芯片的出光方向朝向所述光波导基底的表面。
  14. 根据权利要求12所述的光模块,其中,所述激光芯片与所述光波导基底之间填充光学匹配胶水。
  15. 根据权利要求9所述的光模块,其中,所述功率探测器的感光面朝向所述光波导基底的表面。
  16. 根据权利要求9所述的光模块,其中,所述光波导基底上还设有光复用组件,所述主波导与所述光复用组件连接,所述光复用组件用于将多束光合并为一束光。
  17. 根据权利要求9所述的光模块,其中,所述底座内设有隔离筋和固定架,所述隔离筋垂直于所述固定架;所述隔离筋与所述底座的一个侧壁之间放置所述光接收器件,所述隔离筋与所述底座的另一个侧壁之间放置所述光发射器件;
    所述光接收器件的一端和所述光发射器件的一端分别安装在所述固定架上,所述光接收器件的另一端和所述光发射器件的另一端分别与电路板连接;
    所述顶盖内壁设有向下的凸起,所述向下的凸起与所述电路板接触,以将所述光接收器件和所述光发射器件进行隔离。
PCT/CN2020/074289 2019-03-14 2020-02-04 一种光模块 WO2020181938A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/219,200 US20210218217A1 (en) 2019-03-14 2021-03-31 Optical transmission module, optical transmission-reception module and optical module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910193165.8 2019-03-14
CN201910193165.8A CN109814201A (zh) 2019-03-14 2019-03-14 一种光模块
CN201910440362.5 2019-05-24
CN201910440362.5A CN110133809B (zh) 2019-05-24 2019-05-24 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/219,200 Continuation-In-Part US20210218217A1 (en) 2019-03-14 2021-03-31 Optical transmission module, optical transmission-reception module and optical module

Publications (1)

Publication Number Publication Date
WO2020181938A1 true WO2020181938A1 (zh) 2020-09-17

Family

ID=72426520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074289 WO2020181938A1 (zh) 2019-03-14 2020-02-04 一种光模块

Country Status (2)

Country Link
US (1) US20210218217A1 (zh)
WO (1) WO2020181938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023030155A1 (zh) * 2021-08-31 2023-03-09 华为技术有限公司 一种数据收发装置和组件、数据传输系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033548A4 (en) * 2019-09-20 2023-10-25 Lipac Co., Ltd. SUBMINIATURE OPTICAL TRANSMISSION MODULE AND METHOD FOR PRODUCING THEREOF USING A SEMICONDUCTOR ENCAPSULATION SCHEME
CN114325968B (zh) * 2022-01-04 2023-04-14 武汉光迅科技股份有限公司 一种应用于光模块中的气密结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235375A1 (en) * 2002-06-25 2003-12-25 Kamath Kishore K. Transceivers with improved cross talk
CN104601246A (zh) * 2015-01-13 2015-05-06 珠海保税区光联通讯技术有限公司 多通道合波光发射器
CN106291810A (zh) * 2016-08-26 2017-01-04 武汉电信器件有限公司 一种基于平面光波导电路的光混合集成结构
US20170269311A1 (en) * 2016-03-17 2017-09-21 Applied Optoelectronics, Inc. Alignment correction for optical isolator in a coaxial transmitter optical subassembly (tosa)
CN108873195A (zh) * 2018-08-01 2018-11-23 青岛海信宽带多媒体技术有限公司 光模块及其光发射器件
CN109814201A (zh) * 2019-03-14 2019-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN110133809A (zh) * 2019-05-24 2019-08-16 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393371A (en) * 1989-12-18 1995-02-28 Litton Systems, Inc. Integrated optics chips and laser ablation methods for attachment of optical fibers thereto for LiNbO3 substrates
US5357122A (en) * 1991-09-05 1994-10-18 Sony Corporation Three-dimensional optical-electronic integrated circuit device with raised sections
US6406196B1 (en) * 1995-08-03 2002-06-18 Matsushita Electric Industrial Co., Ltd. Optical device and method for producing the same
DE69704544T2 (de) * 1996-12-26 2001-11-29 Nec Corp Optischer Halbleiterverstärker
JPH11248954A (ja) * 1998-03-06 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> 光ハイブリッドモジュール
US6480639B2 (en) * 1997-09-26 2002-11-12 Nippon Telegraph And Telephone Corp. Optical module
GB2322205B (en) * 1997-11-29 1998-12-30 Bookham Technology Ltd Stray light absorption in integrated optical circuit
JP2000075155A (ja) * 1998-09-02 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> 光モジュール
US6438280B1 (en) * 1999-12-23 2002-08-20 Litton Systems, Inc. Integrated optics chip having reduced surface wave propagation
US6418246B1 (en) * 1999-12-23 2002-07-09 Litton Systems, Inc. Lateral trenching for cross coupling suppression in integrated optics chips
US6456766B1 (en) * 2000-02-01 2002-09-24 Cornell Research Foundation Inc. Optoelectronic packaging
CA2374168C (en) * 2000-03-15 2009-06-16 Sumitomo Osaka Cement Co., Ltd. Optical waveguide modulator with output light monitor
GB2369453B (en) * 2000-11-24 2002-07-31 Bookham Technology Plc Fabrication of integrated circuit
US6856735B2 (en) * 2001-11-06 2005-02-15 Chromux Technologies, Inc. Tap couplers for fiber optic arrays
GB2383645A (en) * 2001-12-27 2003-07-02 Bookham Technology Plc Integrated optical arrangement with trench in substrate to absorb light
US6885795B1 (en) * 2002-05-31 2005-04-26 Kotusa, Inc. Waveguide tap monitor
KR100460840B1 (ko) * 2002-08-09 2004-12-09 한국전자통신연구원 광 및 전기 크로스톡을 동시에 억제할 수 있는 광모듈
JP3827629B2 (ja) * 2002-08-30 2006-09-27 住友大阪セメント株式会社 光変調器
EP1396741A1 (en) * 2002-09-04 2004-03-10 Avanex Corporation Stray light suppression structures using a waverguide and angled, deep etched trendches filled with an absorbing material
WO2004034530A1 (en) * 2002-10-08 2004-04-22 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUIT (TxPIC) CHIPS
JP3905819B2 (ja) * 2002-11-01 2007-04-18 日本電信電話株式会社 光モジュール
KR100977235B1 (ko) * 2002-11-12 2010-08-20 호야 코포레이션 유에스에이 도파관 사이의 자유공간 광 전파를 위한 광 컴포넌트
US6789959B1 (en) * 2003-02-27 2004-09-14 Xilinx, Inc. Fiber optic integrated circuit package using micromirrors
US6915047B1 (en) * 2003-03-24 2005-07-05 Inplane Photonics, Inc. Broadband, polarization independent integrated optical tap
US7095913B2 (en) * 2003-04-02 2006-08-22 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Non-active waveguides on planar lightwave circuits
JP4022498B2 (ja) * 2003-04-18 2007-12-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 光リンク・モジュール、光接続方法、該光リンク・モジュールを含む情報処理装置、信号転送方法、プリズム、およびその製造方法
US7184643B2 (en) * 2003-04-29 2007-02-27 Xponent Photonics Inc Multiple-core planar optical waveguides and methods of fabrication and use thereof
KR100480280B1 (ko) * 2003-06-09 2005-04-07 삼성전자주식회사 광 하이브리드 모듈 및 그 제작방법
US7057716B2 (en) * 2003-10-28 2006-06-06 Hrl Laboratories, Llc White cell antenna beamformers
JP2007101719A (ja) * 2005-09-30 2007-04-19 Mitsumi Electric Co Ltd 光導波路装置
US9423397B2 (en) * 2006-03-10 2016-08-23 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
US8288157B2 (en) * 2007-09-12 2012-10-16 Plc Diagnostics, Inc. Waveguide-based optical scanning systems
US9528939B2 (en) * 2006-03-10 2016-12-27 Indx Lifecare, Inc. Waveguide-based optical scanning systems
JP5070853B2 (ja) * 2006-07-19 2012-11-14 富士通オプティカルコンポーネンツ株式会社 光デバイス
JP2008053539A (ja) * 2006-08-25 2008-03-06 Sumitomo Electric Ind Ltd 半導体光素子
US8050525B2 (en) * 2006-10-11 2011-11-01 Futurewei Technologies, Inc. Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
US8000568B2 (en) * 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches
US7769255B2 (en) * 2006-11-07 2010-08-03 Olympus Corporation High port count instantiated wavelength selective switch
US8131123B2 (en) * 2006-11-07 2012-03-06 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
WO2008088016A1 (ja) * 2007-01-18 2008-07-24 Omron Corporation 光伝送モジュール、及び電子機器
US8811778B2 (en) * 2007-08-01 2014-08-19 Hewlett-Packard Development Company, L.P. Systems and method for routing optical signals
KR100897887B1 (ko) * 2007-09-07 2009-05-18 (주)포토닉솔루션 광섬유어레이를 이용한 평판형 광도파로 소자와 능동소자의하이브리드 집적구조
JP4567069B2 (ja) * 2008-01-21 2010-10-20 日本航空電子工業株式会社 光スイッチ、及び光デバイス
JP5497996B2 (ja) * 2008-05-26 2014-05-21 日本電信電話株式会社 導波路型デバイスにおける導波路終端方法
GB2461026B (en) * 2008-06-16 2011-03-09 Plc Diagnostics Inc System and method for nucleic acids sequencing by phased synthesis
JP5399693B2 (ja) * 2008-07-14 2014-01-29 日本電信電話株式会社 光波長合分波回路
US8483525B2 (en) * 2009-01-09 2013-07-09 Nippon Telegraph And Telephone Corporation Optical wavelength multiplexing/demultiplexing circuit, optical module using optical wavelength multiplexing/demultiplexing circuit, and communication system
CA2759396A1 (en) * 2009-04-29 2010-11-04 Plc Diagnostics Inc. Waveguide-based detection system with scanning light source
WO2010137661A1 (ja) * 2009-05-28 2010-12-02 シチズンホールディングス株式会社 光源装置
JP5074477B2 (ja) * 2009-11-26 2012-11-14 Nttエレクトロニクス株式会社 光導波路デバイス
EP2564527B1 (en) * 2010-04-28 2017-11-15 Huawei Technologies Co., Ltd. Cross-talk reduction in a bidirectional optoelectronic device
JP5909827B2 (ja) * 2010-09-06 2016-04-27 華為技術有限公司Huawei Technologies Co.,Ltd. 双方向光電子装置
US9081214B2 (en) * 2010-10-25 2015-07-14 Sumitomo Osaka Cement Co., Ltd. Optical control element
JPWO2013069497A1 (ja) * 2011-11-07 2015-04-02 シチズンホールディングス株式会社 レーザ光源
JP5747004B2 (ja) * 2012-08-22 2015-07-08 株式会社フジクラ 光導波路素子
JPWO2015008451A1 (ja) * 2013-07-18 2017-03-02 日本電気株式会社 光送受信モジュール
US10408999B2 (en) * 2014-05-09 2019-09-10 National University Corporation University Of Fukui Multiplexer
CN106461862B (zh) * 2014-05-09 2021-08-06 国立大学法人福井大学 合波器、使用该合波器的图像投影装置和图像投影系统
WO2016149397A1 (en) * 2015-03-16 2016-09-22 Pacific Biosciences Of California, Inc. Integrated devices and systems for free-space optical coupling
US9588395B2 (en) * 2015-06-05 2017-03-07 Lumentum Operations Llc Optical waveguide modulator with an output MMI tap
JP6876383B2 (ja) * 2016-06-07 2021-05-26 富士通オプティカルコンポーネンツ株式会社 波長可変光源
JP6871137B2 (ja) * 2017-11-17 2021-05-12 日本電信電話株式会社 ハイブリッド光回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235375A1 (en) * 2002-06-25 2003-12-25 Kamath Kishore K. Transceivers with improved cross talk
CN104601246A (zh) * 2015-01-13 2015-05-06 珠海保税区光联通讯技术有限公司 多通道合波光发射器
US20170269311A1 (en) * 2016-03-17 2017-09-21 Applied Optoelectronics, Inc. Alignment correction for optical isolator in a coaxial transmitter optical subassembly (tosa)
CN106291810A (zh) * 2016-08-26 2017-01-04 武汉电信器件有限公司 一种基于平面光波导电路的光混合集成结构
CN108873195A (zh) * 2018-08-01 2018-11-23 青岛海信宽带多媒体技术有限公司 光模块及其光发射器件
CN109814201A (zh) * 2019-03-14 2019-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN110133809A (zh) * 2019-05-24 2019-08-16 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023030155A1 (zh) * 2021-08-31 2023-03-09 华为技术有限公司 一种数据收发装置和组件、数据传输系统

Also Published As

Publication number Publication date
US20210218217A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2020181938A1 (zh) 一种光模块
CN112444923A (zh) 一种光模块
CN214174689U (zh) 一种光模块
WO2006025523A1 (ja) 光電気複合モジュール
CN215895036U (zh) 一种光模块
WO2019242667A1 (zh) 光模块
CN113885143B (zh) 一种光模块
CN215813458U (zh) 一种光模块
CN113721331B (zh) 一种光模块
CN109814201A (zh) 一种光模块
CN111665599A (zh) 光模块
CN215678864U (zh) 一种光模块
CN216013740U (zh) 一种光模块
CN215895035U (zh) 一种光模块
CN113740980B (zh) 一种光模块
CN114675383A (zh) 一种光模块
WO2023185220A1 (zh) 一种光模块
CN109116469B (zh) 光模块
CN115016074B (zh) 一种光模块
CN215895037U (zh) 一种光模块
CN214228255U (zh) 一种光模块
CN214228256U (zh) 一种光模块
CN210465769U (zh) 一种具有至少两路激光器的光模块
CN113759479A (zh) 一种光模块
WO2024066092A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770274

Country of ref document: EP

Kind code of ref document: A1