WO2024066092A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2024066092A1
WO2024066092A1 PCT/CN2022/141868 CN2022141868W WO2024066092A1 WO 2024066092 A1 WO2024066092 A1 WO 2024066092A1 CN 2022141868 W CN2022141868 W CN 2022141868W WO 2024066092 A1 WO2024066092 A1 WO 2024066092A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
assembly
cover plate
light
circuit board
Prior art date
Application number
PCT/CN2022/141868
Other languages
English (en)
French (fr)
Inventor
张洪浩
刘飞
崔伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US18/399,670 priority Critical patent/US20240146417A1/en
Publication of WO2024066092A1 publication Critical patent/WO2024066092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • optical communication technology optical modules are tools for realizing the mutual conversion of optical and electrical signals, and are one of the key components in optical communication equipment.
  • the transmission rate of optical modules is constantly increasing.
  • the present disclosure provides an optical module, comprising: a circuit board, a first data processor, a second data processor and a mounting hole are arranged on the front side; a first optical transceiver assembly is plugged into the circuit board and electrically connected to the first data processor; a second optical transceiver assembly is electrically connected to the second data processor; an optical fiber adapter is hard-connected to the first optical transceiver assembly and connected to the second optical transceiver assembly through an optical fiber pigtail; wherein the second optical transceiver assembly comprises: a second tube shell, a top surface is connected to the back side of the circuit board, and a receiving cavity is arranged on the bottom surface; a first transmitting cover plate is arranged on the front side of the circuit board, and has a first preset angle with the light transmitting direction; an optical transmitting device comprises a laser assembly, a translation prism assembly and an optical processing assembly, and the laser assembly and the translation prism assembly are arranged on the top surface of the second tube shell through the mounting hole; the optical
  • FIG1 is a connection diagram of an optical communication system according to some embodiments.
  • FIG2 is a block diagram of an optical network terminal according to some embodiments.
  • FIG3 is a structural diagram of an optical module according to some embodiments.
  • FIG4 is an exploded view of an optical module according to some embodiments.
  • FIG5 is a first schematic diagram of an assembly of a circuit board, a first optical transceiver assembly, and a second optical transceiver assembly in an optical module according to some embodiments;
  • FIG. 6 is a second schematic diagram of assembling a circuit board, a first optical transceiver assembly, and a second optical transceiver assembly in an optical module according to some embodiments;
  • FIG7 is a partial exploded schematic diagram of a circuit board and a first optical transceiver assembly in an optical module according to some embodiments;
  • FIG8 is a schematic diagram of the structure of a circuit board in an optical module according to some embodiments.
  • FIG9 is a first structural schematic diagram of a first tube shell in an optical module according to some embodiments.
  • FIG10 is a second structural schematic diagram of a first tube shell in an optical module according to some embodiments.
  • FIG11 is a first structural schematic diagram of a first optical transceiver assembly in an optical module according to some embodiments.
  • FIG12 is a schematic diagram of the structure of a first prism assembly in an optical module according to some embodiments.
  • FIG13 is a schematic diagram of an emission light path of a first prism assembly in an optical module according to some embodiments.
  • FIG14 is a schematic diagram of a transmission optical path of a first optical transceiver assembly in an optical module according to some embodiments
  • FIG15 is a second structural schematic diagram of a first optical transceiver assembly in an optical module according to some embodiments.
  • FIG16 is a schematic diagram of a receiving optical path of a first optical transceiver assembly in an optical module according to some embodiments
  • FIG17 is a schematic diagram of the structure of a second prism assembly in an optical module according to some embodiments.
  • FIG18 is a schematic diagram of a receiving optical path of a second prism assembly in an optical module according to some embodiments.
  • FIG19 is a partial assembly cross-sectional view of a circuit board and a first optical transceiver assembly in an optical module according to some embodiments;
  • FIG20 is a schematic diagram of assembling a circuit board and a second optical transceiver assembly in an optical module according to some embodiments
  • FIG21 is a partial exploded schematic diagram of a circuit board and a second optical transceiver assembly in an optical module according to some embodiments;
  • FIG22 is a schematic diagram of the structure of a second tube shell in an optical module according to some embodiments.
  • FIG23 is a schematic diagram of a partial structure of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG24 is a schematic diagram of partial assembly of a circuit board and a second optical transceiver assembly in an optical module according to some embodiments;
  • FIG25 is a first structural schematic diagram of a first emitting cover plate in an optical module according to some embodiments.
  • FIG26 is a second structural schematic diagram of a first emitting cover plate in an optical module according to some embodiments.
  • FIG27 is a second schematic diagram of a partial structure of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG28 is a third partial structural diagram of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG29 is a schematic diagram of a flip structure of a second emitting cover plate in an optical module according to some embodiments.
  • FIG30 is a schematic diagram of a transmission optical path of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG31 is a partial cross-sectional view 1 of a second optical transceiver assembly in an optical module according to some embodiments
  • FIG32 is a second partial cross-sectional view of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG33 is a schematic diagram of a flip structure of a second tube shell in an optical module according to some embodiments.
  • FIG34 is a fourth schematic diagram of a partial structure of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG35 is a schematic diagram of a receiving optical path of a second optical transceiver assembly in an optical module according to some embodiments
  • FIG36 is a third partial cross-sectional view of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG37 is a first cross-sectional view of a second optical transceiver assembly in an optical module according to some embodiments.
  • FIG. 38 is a second cross-sectional view of a second optical transceiver assembly in an optical module according to some embodiments.
  • the optical module realizes the above-mentioned mutual conversion function between optical signals and electrical signals in the field of optical fiber communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection is mainly configured to realize power supply, I2C signal transmission, data signal transmission and grounding, etc.
  • the optical network terminal transmits the electrical signal to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • FIG1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if a repeater is used, infinite distance transmission can be achieved in theory. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100.
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port is configured to be connected to the optical network terminal 100, so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100.
  • the optical module 200 realizes the mutual conversion between optical signals and electrical signals, so that an information connection is established between the optical fiber 101 and the optical network terminal 100. For example, the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and then input into the optical fiber 101. Since the optical module 200 is a tool for realizing the mutual conversion between optical signals and electrical signals and does not have the function of processing data, the information does not change during the above-mentioned photoelectric conversion process.
  • the optical network terminal 100 includes a housing that is roughly rectangular, and an optical module interface 102 and a network cable interface 104 that are arranged on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 establishes a bidirectional electrical signal connection with the optical module 200;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 establishes a bidirectional electrical signal connection with the network cable 103.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100.
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100, as the host computer of the optical module 200, can monitor the operation of the optical module 200.
  • the host computer of the optical module 200 can also include an optical line terminal (OLT) and the like.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, a heat sink 107 disposed on the cage 106, and an electrical connector disposed inside the cage 106.
  • the electrical connector is configured to access the electrical port of the optical module 200; the heat sink 107 has a fin or other protrusions that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the cage 106 fixes the optical module 200.
  • the heat generated by the optical module 200 is transferred to the cage 106 and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is an exploded diagram of an optical module according to some embodiments.
  • the optical module 200 includes a shell, a circuit board 300 disposed in the shell, a first optical transceiver assembly 400, and a second optical transceiver assembly 500a.
  • the shell comprises an upper shell 201 and a lower shell 202 .
  • the upper shell 201 covers the lower shell 202 to form the above shell with two openings.
  • the outer contour of the shell is generally a square body.
  • the lower shell 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and arranged perpendicular to the bottom plate; the upper shell 201 includes a cover plate, which is covered on the two lower side plates of the lower shell 202 to form the above-mentioned shell.
  • the lower shell 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and arranged perpendicularly to the bottom plate;
  • the upper shell 201 includes a cover plate and two upper side plates located on both sides of the cover plate and arranged perpendicularly to the cover plate, and the two upper side plates are combined with the two lower side plates to achieve the upper shell 201 covering the lower shell 202.
  • the direction of the connection line of the two openings 204 and 205 may be consistent with the length direction of the optical module 200, or may be inconsistent with the length direction of the optical module 200.
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200, and the opening 205 is located at the side of the optical module 200.
  • the opening 204 is an electrical port, and the gold finger of the circuit board 300 extends from the electrical port and is inserted into the upper computer (for example, the optical network terminal 100); the opening 205 is an optical port, which is configured to access the external optical fiber 101 so that the external optical fiber 101 is connected to the optical transceiver assembly inside the optical module 200.
  • the assembly method of combining the upper housing 201 and the lower housing 202 facilitates the installation of components such as the circuit board 300, the first optical transceiver assembly 400, and the second optical transceiver assembly 500a into the housing, and the upper housing 201 and the lower housing 202 form a package protection for these components.
  • components such as the circuit board 300, the first optical transceiver assembly 400, and the second optical transceiver assembly 500a
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located outside its housing, and the unlocking component 203 is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer.
  • the unlocking component 203 is located on the outer walls of the two lower side plates of the lower housing 202, and has a snap-fit component that matches the cage of the host computer (for example, the cage 106 of the optical network terminal 100).
  • the snap-fit component of the unlocking component 203 fixes the optical module 200 in the cage of the host computer;
  • the snap-fit component of the unlocking component 203 moves accordingly, thereby changing the connection relationship between the snap-fit component and the host computer, so as to release the snap-fit relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out of the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission and grounding.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can stably carry the above-mentioned electronic components and chips; when the optical transceiver component is located on the circuit board, the rigid circuit board can also provide stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • the circuit board 300 also includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106, and the gold finger is connected to the electrical connector in the cage 106.
  • the gold finger can be set only on the surface of one side of the circuit board 300 (for example, the front side shown in FIG. 4), or can be set on the upper and lower surfaces of the circuit board 300 to adapt to occasions where a large number of pins are required.
  • the gold finger is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards to supplement rigid circuit boards.
  • a flexible circuit board can be used to connect a rigid circuit board to an optical transceiver component.
  • FIG5 is a schematic diagram of the assembly of a circuit board, a first optical transceiver assembly, and a second optical transceiver assembly in an optical module according to some embodiments
  • FIG6 is a schematic diagram of the assembly of a circuit board, a first optical transceiver assembly, and a second optical transceiver assembly in an optical module according to some embodiments.
  • the optical module according to some embodiments includes a first optical transceiver assembly 400 and a second optical transceiver assembly 500a.
  • the first optical transceiver assembly 400 is arranged at the end of the circuit board 300 and is connected to the optical fiber adapter 700 in a hard connection manner to achieve the transmission of 8-channel transmission light and the reception of 8-channel reception light;
  • the second optical transceiver assembly 500a is arranged on the circuit board 300 and is connected to the optical fiber adapter 700 in a pigtail connection manner.
  • the light transmitting part of the second optical transceiver assembly 500a is located on the front of the circuit board 300 to achieve the transmission of 8-channel transmission light
  • the light receiving part of the second optical transceiver assembly 500a is located on the back of the circuit board 300 to achieve the reception of 8-channel reception light.
  • 16-channel 100G data transmission is achieved through the 8-channel transmitted light in the first optical transceiver component 400 and the 8-channel transmitted light in the second optical transceiver component 500a
  • 16-channel 100G data transmission is achieved through the 8-channel received light in the first optical transceiver component 400 and the 8-channel received light in the second optical transceiver component 500a.
  • FIG7 is a partial exploded schematic diagram of a circuit board and a first optical transceiver assembly in an optical module according to some embodiments
  • FIG8 is a structural schematic diagram of a circuit board in an optical module according to some embodiments.
  • a first DSP chip 310 and a second DSP chip 320 are arranged on the front of the circuit board 300, and the first DSP chip 310 and the second DSP chip 320 are connected to the gold finger through signal lines respectively.
  • the first DSP chip 310 and the second DSP chip 320 can be arranged on the surface of the circuit board 300 in the left-right direction, and the first DSP chip 310 is close to the optical fiber adapter 700, and the second DSP chip 320 is located on the right side of the first DSP chip 310.
  • the first DSP chip 310 and the second DSP chip 320 may be located on the same side of the circuit board 300, such as the first DSP chip 310 and the second DSP chip 320 are located on the front or back of the circuit board 300; the first DSP chip 310 and the second DSP chip 320 may also be located on different sides of the circuit board 300, such as the first DSP chip 310 is located on the front or back of the circuit board 300, and the second DSP chip 320 is located on the back or front of the circuit board 300.
  • the first DSP chip 310 and the second DSP chip 320 are located on the same side and are set on the front side of the circuit board 300.
  • a protruding plate 303 is provided on the end of the circuit board 300 opposite to the gold finger.
  • the protruding plate 303 extends from the left end surface of the circuit board 300 toward the optical fiber adapter 700. There is a preset distance between the protruding plate 303 and the two opposite side surfaces of the circuit board 300, so that the left part of the circuit board 300 is T-shaped.
  • the protruding plate 303 of the circuit board 300 is inserted into the first optical transceiver assembly 400, so that the optical emitting device in the first optical transceiver assembly 400 is arranged opposite to the left end surface of the circuit board 300, and the optical receiving device in the first optical transceiver assembly 400 is located on the back of the circuit board 300, so that the front side of the circuit board 300 can be flush with the optical emitting device, and the back side of the circuit board 300 is flush with the optical receiving device, so as to facilitate the electrical connection between the first DSP chip 310 and the first optical transceiver assembly 400.
  • a through mounting hole 302 is provided on the circuit board 300, and the second optical transceiver assembly 500a is arranged on the front and back sides of the circuit board 300 through the mounting hole 302, and the second DSP chip 320 is electrically connected to the second optical transceiver assembly 500a through a signal line to drive the optical emitting device in the second optical transceiver assembly 500a to emit signal light, and transmit the electrical signal output by the optical receiving device in the second optical transceiver assembly 500a to the second DSP chip 320.
  • Fig. 9 is a schematic diagram of the structure of the first tube shell in the optical module according to some embodiments
  • Fig. 10 is a schematic diagram of the structure of the first tube shell in the optical module according to some embodiments.
  • the first optical transceiver assembly 400 includes a first tube shell 401, and the first tube shell 401 includes a first cavity 402, a second cavity 403, a third cavity 404 and a fourth cavity 405.
  • the first cavity 402 and the second cavity 403 are located above the front of the circuit board 300, and the third cavity 404 and the fourth cavity 405 are located below the back of the circuit board 300.
  • the first cavity 402 and the third cavity 404 are arranged opposite to each other, and the second cavity 403 and the fourth cavity 405 are arranged opposite to each other, and the first cavity 402 and the third cavity 404, and the second cavity 403 and the fourth cavity 405 are separated by a partition.
  • the first cavity 402 and the third cavity 404 are stacked up and down, a notch 4018 is set at one end of the first cavity 402, and the circuit board 300 is inserted into the first tube shell 401 through the notch 4018; the second cavity 403 and the fourth cavity 405 are stacked up and down, and the second cavity 403 and the fourth cavity 405 are opposite to the protruding plate 303, and the protruding plate 303 is inserted into the second cavity 403.
  • the first optical transceiver assembly 400 also includes a first cover plate 4101, which covers the first cavity 402 and the second cavity 403; the first cavity 402 is provided with optical emitting devices such as lasers and lenses, and the first cavity 402 and the first cover plate 4101 form a sealed cavity, and the lasers, lenses and other optical emitting devices are located in the sealed cavity.
  • a first cover plate 4101 which covers the first cavity 402 and the second cavity 403; the first cavity 402 is provided with optical emitting devices such as lasers and lenses, and the first cavity 402 and the first cover plate 4101 form a sealed cavity, and the lasers, lenses and other optical emitting devices are located in the sealed cavity.
  • the first optical transceiver assembly 400 also includes a second cover plate 4201, which covers the third cavity 404 and the fourth cavity 405; the third cavity 404 is provided with optical receiving devices such as a lens and a reflecting prism, and the third cavity 404 and the second cover plate 4201 form a sealed cavity, and the optical receiving devices such as a lens and a reflecting prism are located in the sealed cavity.
  • the protocol sets the transmitting light port on the top layer and the receiving light port on the bottom layer
  • the light emitting device and the light receiving device are set back to back through the first cavity 402 and the third cavity 404, and the light emitting device is located on the front side of the circuit board 300, and the light receiving device is located on the back side of the circuit board 300.
  • the first tube shell 401 includes a first side plate 4013, a second side plate 4011, a third side plate 4012 and a first partition plate 4016.
  • the second side plate 4011 and the third side plate 4012 are arranged opposite to each other.
  • the first partition plate 4016 is located between the second side plate 4011 and the third side plate 4012.
  • the second side plate 4011, the third side plate 4012 and the first partition plate 4016 are respectively connected to the first side plate 4013, and the first side plate 4013, the second side plate 4011 and the first partition plate 4016 surround the first cavity 402, and the first side plate 4013, the third side plate 4012 and the first partition plate 4016 surround the second cavity 403.
  • the first side plate 4013 is located on the left side of the first tube shell 401
  • the second side plate 4011 is located on the rear side of the first tube shell 401
  • the third side plate 4012 is located on the front side of the first tube shell 401.
  • the right sides of the first cavity 402 and the second cavity 403 are open, so that the first cavity 402 and the second cavity 403 are both U-shaped cavities with openings on the right side.
  • the width dimension of the first cavity 402 in the front-to-back direction gradually increases, and the width dimension of the second cavity 403 in the front-to-back direction (the distance between the third side plate 4012 and the first partition plate 4016) gradually decreases, that is, the width dimension on the right side of the first cavity 402 is greater than the width dimension on the left side, and the width dimension on the right side of the second cavity 403 is less than the width dimension on the left side.
  • the first cavity 402 includes a first mounting surface 4021, a second mounting surface 4022, a third mounting surface 4023 and a fourth mounting surface 4024.
  • the first mounting surface 4021 faces the circuit board 300
  • the second mounting surface 4022 is connected to the first mounting surface 4021
  • the fourth mounting surface 4024 is connected to the first side plate 4013
  • the third mounting surface 4023 is respectively connected to the second mounting surface 4022 and the fourth mounting surface 4024.
  • the bottom surface of the notch 4018 on the first tube shell 401 is the first mounting surface 4021.
  • the second mounting surface 4022 is recessed in the first mounting surface 4021
  • the fourth mounting surface 4024 protrudes from the third mounting surface 4023
  • one end of the circuit board 300 is inserted into the first tube shell 401 through the notch 4018
  • the back side of the circuit board 300 is in contact and connected with the first mounting surface 4021 .
  • Fig. 11 is a structural schematic diagram 1 of the first optical transceiver assembly in the optical module according to some embodiments.
  • a first semiconductor refrigerator is arranged on the second mounting surface 4022, and a first laser group 4103 and a second laser group 4104 are arranged on the cooling surface of the first semiconductor refrigerator, and the first laser group 4103 and the second laser group 4104 are arranged side by side on the first semiconductor refrigerator along the front-to-back direction.
  • the first laser group 4103 may include four lasers, which are arranged side by side in the front-to-back direction; the second laser group 4104 may include four lasers, which are arranged side by side in the front-to-back direction. In this way, eight lasers are arranged side by side in the front-to-back direction on the cooling surface of the first semiconductor refrigerator.
  • the first DSP chip 310 on the front side of the circuit board 300 is an 8-channel 800G DSP, so that each channel of the first DSP chip 310 can transmit a 100Gb/s electrical signal, and the 100Gb/s electrical signal can drive a 100Gb/s laser, so that each laser in the first cavity 402 is a 100Gb/s laser.
  • the lasers of the first laser group 4103 and the second laser group 4104 are connected to the first DSP chip 310 through signal lines.
  • the signals of the first DSP chip 310 are transmitted to the lasers through differential signal lines.
  • the spacing between adjacent lasers is 1.1 mm.
  • the wire bonding heights of the first laser group 4103 and the second laser group 4104 are on the same plane as the front surface of the circuit board 300. In this way, the wire bonding distances between the first laser group 4103, the second laser group 4104 and the front surface of the circuit board 300 are the shortest, thereby reducing losses.
  • a first laser driver chip is also provided on the front side of the circuit board 300, and the first laser driver chip is located between the first DSP chip 310 and the first optical transceiver assembly 400.
  • the first DSP chip 310 transmits the electrical signal to the first laser driver chip via the signal line, and the first laser driver chip converts the electrical signal into a driving electrical signal, which is transmitted to the first laser group 4103 and the second laser group 4104 to drive the first laser group 4103 and the second laser group 4104 to generate 4 emission lights respectively.
  • a first collimating lens group 4105 and a second collimating lens group 4106 are also arranged on the cooling surface of the first semiconductor refrigerator.
  • the first collimating lens group 4105 is located in the light emitting direction of the first laser group 4103
  • the second collimating lens group 4106 is located in the light emitting direction of the second laser group 4104.
  • the collimating lenses and lasers are arranged one by one, so that the emitted light emitted by each laser is converted into collimated light through the collimating lens.
  • a first wavelength division multiplexer 4107 and a second wavelength division multiplexer 4108 are arranged on the third mounting surface 4023.
  • the first wavelength division multiplexer 4107 includes four input terminals and one output terminal, and the four input terminals are arranged in one-to-one correspondence with the first collimating lens group 4105, so that the four collimated lights output by the first collimating lens group 4105 are all incident on the first wavelength division multiplexer 4107, and the four collimated lights are multiplexed into one composite light by the first wavelength division multiplexer 4107, and the composite light is emitted through the output terminal;
  • the second wavelength division multiplexer 4108 includes four input terminals and one output terminal, and the four input terminals are arranged in one-to-one correspondence with the second collimating lens group 4106, so that the four collimated lights output by the second collimating lens group 4106 are all incident on the second wavelength division multiplexer 4108, and the four collimated lights are multiplexed into one composite light by the second wavelength division
  • a first converging lens 4109 and a second converging lens 4110 are arranged on the fourth mounting surface 4024.
  • the first converging lens 4109 is arranged corresponding to the output end of the first wavelength division multiplexer 4107 to convert one path of composite light output by the first wavelength division multiplexer 4107 into convergent light;
  • the second converging lens 4110 is arranged corresponding to the second wavelength division multiplexer 4108 to convert one path of composite light output by the second wavelength division multiplexer 4108 into convergent light.
  • the distance between the first composite light output by the first wavelength division multiplexer 4107 and the second composite light output by the second wavelength division multiplexer 4108 is smaller than the distance between the first converging lens 4109 and the second converging lens 4110, that is, the light outlet of the first wavelength division multiplexer 4107 and the first converging lens 4109 are not located on the same straight line, and the second wavelength division multiplexer 4108 and the second converging lens 4110 are not located on the same straight line.
  • a first prism assembly 4113 is further provided on the third mounting surface 4023.
  • the first prism assembly 4113 is located between the first wavelength division multiplexer 4107 and the first converging lens 4109.
  • the first prism assembly 4113 is used to change the transmission direction of light.
  • the first composite light output by the first wavelength division multiplexer 4107 is reflected by the first prism assembly 4113 and then emitted to the first converging lens 4109.
  • the second composite light output by the second wavelength division multiplexer 4108 is reflected by the first prism assembly 4113 and then emitted to the second converging lens 4110.
  • FIG12 is a schematic diagram of the structure of the first prism assembly in the optical module according to some embodiments
  • FIG13 is a schematic diagram of the emission light path of the first prism assembly in the optical module according to some embodiments.
  • the first prism assembly 4113 includes a first support member 41130, a first prism 41135 and a second prism 41136, and the first support member 41130 is provided with a first fixing surface 41131, a second fixing surface 41132, a third fixing surface 41133 and a fourth fixing surface 41134 on opposite sides thereof, and the first fixing surface 41131 is connected to the second fixing surface 41132 at a preset angle, and the third fixing surface 41133 is connected to the fourth fixing surface 41134 at a preset angle, so that the top and bottom of the first support member 41130 are wider, and the middle part of the first support member 41130 is narrower.
  • the first prism 41135 includes a first light incident surface 41137 and a first light emitting surface 41138 opposite to each other, and the first light incident surface 41137 and the first light emitting surface 41138 are offset in the front-to-back direction.
  • the side surface of the first prism 41135 is attached to the first fixing surface 41131, so that the first light incident surface 41137 faces the second wavelength division multiplexer 4108, and the first light emitting surface 41138 faces the optical fiber adapter 700.
  • the second wavelength division multiplexer 4108 outputs the second composite light, which enters the first prism 41135 through the first light incident surface 41137, and is emitted from the first light emitting surface 41138 after multiple reflections in the first prism 41135.
  • the structure of the second prism 41136 is the same as that of the first prism 41135.
  • the side surface of the second prism 41136 is attached to the third fixing surface 41133, so that the light incident surface of the second prism 41136 faces the first wavelength division multiplexer 4107, and the light emitting surface faces the optical fiber adapter 700.
  • the first composite light output by the first wavelength division multiplexer 4107 enters the second prism 41136 through the light incident surface, and is reflected multiple times in the second prism 41136 and then emitted from the light emitting surface.
  • the composite light when the multiplexed light is incident on the first prism assembly 4113, the composite light will be reflected at the light incident surface of the first prism assembly 4113 due to changes in the transmission medium.
  • the reflected composite light may return to the laser along the original path, affecting the light-emitting performance of the laser.
  • FIG14 is a schematic diagram of the transmission optical path of the first optical transceiver assembly in the optical module according to some embodiments.
  • a first isolator 4111 and a second isolator 4112 are further provided on the third mounting surface 4023.
  • the first isolator 4111 is provided between the first wavelength division multiplexer 4107 and the first prism assembly 4113
  • the second isolator 4112 is provided between the second wavelength division multiplexer 4108 and the first prism assembly 4113.
  • the light reflected by the first composite light on the first prism assembly 4113 is isolated by the first isolator 4111, and the light reflected by the second composite light on the first prism assembly 4113 is isolated by the second isolator 4112.
  • the first side panel 4013 is provided with a first light outlet 4025 and a second light outlet 4026, and the first light outlet 4025 and the second light outlet 4026 are both connected to the first cavity 402, so that the first cavity 402 is hard-connected to the optical fiber adapter 700 through the first light outlet 4025 and the second light outlet 4026, so that the converged light emitted by the first converging lens 4109 is emitted into the optical fiber adapter 700 through the second light outlet 4026, and the converged light emitted by the second converging lens 4110 is emitted into the optical fiber adapter 700 through the first light outlet 4025, thereby realizing the emission of 2-way composite light (8-way emission light).
  • the first light outlet 4025 and the second light outlet 4026 are hard-connected to the optical fiber adapter 700 using an MDC optical port, thereby realizing hard-connected assembly of the first cavity 402 and the optical fiber adapter 700 .
  • the second cavity 403 includes a fifth mounting surface 4031, which extends from the first side plate 4013 toward the circuit board 300, and the fifth mounting surface 4031 is arranged side by side with the mounting surface in the first cavity 402.
  • the protruding plate 303 of the circuit board 300 is inserted into the second cavity 403, and the back surface of the protruding plate 303 is in contact with and connected to the fifth mounting surface 4031.
  • the first side plate 4013 is further provided with a third light outlet 4032 and a fourth light outlet 4033 , which are both connected to the second cavity 403 , so that the second cavity 403 is connected to the optical fiber adapter 700 through the third light outlet 4032 and the fourth light outlet 4033 .
  • a fixing groove 4019 is provided on the inner side of the third side plate 4012, an opening is provided on the right side of the fixing groove 4019, and an opening is provided on the side of the fixing groove 4019 facing the first cavity 402.
  • the optical fiber connected to the optical emitting part of the second optical transceiver assembly 500a passes through the second cavity 403, the third light outlet 4032, and the fourth light outlet 4033 to be connected to the optical fiber adapter 700.
  • the optical fiber is fixed by the fixing groove 4019 to prevent the optical fiber from being messy and affecting the packaging of the optical module.
  • the first tube shell 401 also includes a fourth side plate 4014, a fifth side plate 4015 and a second partition plate 4017, the fourth side plate 4014 and the fifth side plate 4015 are arranged opposite to each other, the second partition plate 4017 is located between the fourth side plate 4014 and the fifth side plate 4015, the fourth side plate 4014, the fifth side plate 4015, and the second partition plate 4017 are respectively connected to the first side plate 4013, and the first side plate 4013, the fourth side plate 4014 and the second partition plate 4017 surround the third cavity 404, and the first side plate 4013, the fifth side plate 4015 and the second partition plate 4017 surround the fourth cavity 405.
  • the first side plate 4013 is located on the left side of the third cavity 404, and the third cavity 404 and the fourth cavity 405 are open on the right side, so that the third cavity 404 and the fourth cavity 405 are U-shaped cavities with right side openings.
  • the second side plate 4011 can be flush with the fourth side plate 4014, and the third side plate 4012 can be flush with the fifth side plate 4015.
  • the third cavity 404 includes a sixth mounting surface 4041, a seventh mounting surface 4045 and an eighth mounting surface 4046.
  • the sixth mounting surface 4041 is connected to the first side plate 4013, the eighth mounting surface 4046 faces the circuit board 300, the seventh mounting surface 4045 is located between the sixth mounting surface 4041 and the eighth mounting surface 4046, and the eighth mounting surface 4046 is recessed in the seventh mounting surface 4045.
  • a stopper 4042 is provided at one end of the seventh mounting surface 4045 facing the sixth mounting surface 4041 , and the stopper 4042 divides the seventh mounting surface 4045 into a first channel 4043 and a second channel 4044 .
  • the sixth mounting surface 4041 is connected to the seventh mounting surface 4045 through the first channel 4043 and the second channel 4044 .
  • the first side panel 4013 is provided with a first light inlet 4047 and a second light inlet 4048 , both of which are connected to the third cavity 404 , that is, the two paths of composite receiving light transmitted by the optical fiber adapter 700 are respectively emitted into the third cavity 404 through the first light inlet 4047 and the second light inlet 4048 .
  • the first light inlet 4047 and the second light inlet 4048 are connected to the optical fiber adapter 700 using an MDC optical port, thereby realizing a hard connection assembly between the third cavity 404 and the optical fiber adapter 700 .
  • FIG15 is a second structural schematic diagram of the first optical transceiver assembly in the optical module according to some embodiments
  • FIG16 is a schematic diagram of the receiving optical path of the first optical transceiver assembly in the optical module according to some embodiments.
  • a first collimating lens 4202 and a second collimating lens 4203 are arranged on the sixth mounting surface 4041, and the first collimating lens 4202 and the second collimating lens 4203 are arranged side by side on the sixth mounting surface 4041.
  • the first collimating lens 4202 is arranged corresponding to the first light inlet 4047, so that one path of composite light injected through the first light inlet 4047 is converted into collimated light through the first collimating lens 4202; the second collimating lens 4203 is arranged corresponding to the second light inlet 4048, so that another path of composite light injected through the second light inlet 4048 is converted into collimated light through the second collimating lens 4203.
  • the first wavelet demultiplexer 4204 and the second wavelet demultiplexer 4205 are arranged on the seventh mounting surface 4045.
  • the first wavelet demultiplexer 4204 has an input end and four output ends.
  • the input end of the first wavelet demultiplexer 4204 is arranged corresponding to the first collimating lens 4202, so that the collimated light emitted by the first collimating lens 4202 is emitted into the first wavelet demultiplexer 4204, and the first wavelet demultiplexer 4204 demultiplexes one path of composite light into four paths of received light, and the four paths of received light are emitted through the four output ends respectively.
  • the second wave splitter multiplexer 4205 has an input end and four output ends.
  • the input end of the second wave splitter multiplexer 4205 is arranged corresponding to the second collimating lens 4203, so that the collimated light emitted by the second collimating lens 4203 enters the second wave splitter multiplexer 4205, and the second wave splitter multiplexer 4205 demultiplexes one path of composite light into four paths of received light, and the four paths of received light are emitted through the four output ends respectively.
  • the collimated light emitted by the first collimating lens 4202 is transmitted to the first wavelength division multiplexer 4204 via the first channel 4043
  • the collimated light emitted by the second collimating lens 4203 is transmitted to the second wavelength division multiplexer 4205 via the second channel 4044.
  • the distance between the first channel 4043 and the second channel 4044 may be smaller than the distance between the first collimating lens 4202 and the second collimating lens 4203, that is, the first collimating lens 4202 and the first channel 4043 are not located on the same straight line, and the second collimating lens 4203 and the second channel 4044 are not located on the same straight line.
  • a second prism assembly 4210 is further arranged on the sixth mounting surface 4041.
  • the second prism assembly 4210 is located between the first collimating lens 4202 and the first channel 4043.
  • the second prism assembly 4210 is used to change the transmission direction of light.
  • the collimated light emitted by the first collimating lens 4202 is transmitted to the first channel 4043 after being reflected by the second prism assembly 4210, and the collimated light emitted by the second collimating lens 4203 is transmitted to the second channel 4044 after being reflected by the second prism assembly 4210.
  • FIG17 is a schematic diagram of the structure of the second prism assembly in the optical module according to some embodiments
  • FIG18 is a schematic diagram of the receiving optical path of the second prism assembly in the optical module according to some embodiments.
  • the second prism assembly 4210 includes a second support member 42100, a third prism 42103 and a fourth prism 42104.
  • the second support member 42100 is provided with a fifth fixing surface 42101 and a sixth fixing surface 42102 on opposite sides thereof.
  • the side surface of the third prism 42103 is attached to the fifth fixing surface 42101, and the side surface of the fourth prism 42104 is attached to the sixth fixing surface 42102.
  • the third prism 42103 includes a second light incident surface 42106 and a second light emitting surface 42105 opposite to each other, and the second light incident surface 42106 and the second light emitting surface 42105 are offset in the front-to-back direction, and the second light incident surface 42106 faces the optical fiber adapter 700, and the second light emitting surface 42105 faces the first channel 4043.
  • the collimated light emitted from the first collimating lens 4202 enters the third prism 42103 through the second light incident surface 42106, and is emitted from the second light emitting surface 42105 after multiple reflections in the third prism 42103, and the emitted light is transmitted to the first channel 4043.
  • the third prism 42103 has the same structure as the fourth prism 42104.
  • the collimated light emitted from the second collimating lens 4203 enters the fourth prism 42104 through the light incident surface of the fourth prism 42104, is reflected multiple times in the fourth prism 42104, and is emitted from the light emitting surface. The emitted light is transmitted to the second channel 4044.
  • a first converging lens group 4206 and a second converging lens group 4207 are also provided on the seventh mounting surface 4045.
  • the first converging lens group 4206 includes four converging lenses, and each converging lens is provided corresponding to each output end of the first wavelength division multiplexer 4204. In this way, the four-path receiving light output by the first wavelength division multiplexer 4204 is converted into converging light by the first converging lens group 4206.
  • the second converging lens group 4207 includes four converging lenses, each of which is disposed corresponding to each output end of the second wavelength division multiplexer 4205 , so that the four-path receiving light output by the second wavelength division multiplexer 4205 is converted into converging light by the second converging lens group 4207 .
  • the first detector group 305 and the second detector group 306 are disposed on the back of the circuit board 300, there is a height difference between the first detector group 305, the second detector group 306 and the eighth mounting surface 4046; and the receiving directions of the first detector group 305 and the second detector group 306 are perpendicular to the back of the circuit board 300, while the transmission direction of the received light emitted by the first converging lens group 4206 and the second converging lens group 4207 is parallel to the back of the circuit board 300.
  • a reflector needs to be disposed between the first converging lens group 4206, the second converging lens group 4207 and the first detector group 305, the second detector group 306 to change the transmission direction of the received light emitted by the first converging lens group 4206 and the second converging lens group 4207 so that the received light enters the first detector group 305 and the second detector group 306.
  • the eighth mounting surface 4046 is provided with a first reflecting prism 4208 and a second reflecting prism 4209.
  • One end of the first reflecting prism 4208 is provided corresponding to the first converging lens group 4206.
  • the other end of the first reflecting prism 4208 is provided with a reflecting surface, which is located above the first detector group 305. In this way, the reflecting surface of the first reflecting prism 4208 reflects the four paths of receiving light emitted from the first converging lens group 4206, and the four paths of receiving light after reflection are respectively emitted into the corresponding detectors of the first detector group 305.
  • One end of the second reflecting prism 4209 is arranged corresponding to the second converging lens group 4207, and the other end of the second reflecting prism 4209 is provided with a reflecting surface, and the reflecting surface is located above the second detector group 306.
  • the reflecting surface of the second reflecting prism 4209 reflects the four paths of receiving light emitted from the second converging lens group 4207, and the four paths of receiving light after reflection are respectively emitted into the corresponding detectors of the second detector group 306.
  • the fourth cavity 405 includes a ninth mounting surface 4051, which is disposed vertically opposite to the fifth mounting surface 4031, and the ninth mounting surface 4051 extends from the first side plate 4013 toward the circuit board 300, and the ninth mounting surface 4051 is disposed side by side with the mounting surface in the third cavity 404.
  • the protruding plate 303 of the circuit board 300 is inserted into the second cavity 403, and the ninth mounting surface 4051 is located below the back of the circuit board 300.
  • the first side plate 4013 is further provided with a third light inlet 4052 and a fourth light inlet 4053 , which are both connected to the fourth cavity 405 , so that the fourth cavity 405 is connected to the optical fiber adapter 700 through the third light inlet 4052 and the fourth light inlet 4053 .
  • FIG. 19 is a partial assembly cross-sectional view of a circuit board and a first optical transceiver assembly in an optical module according to some embodiments.
  • the first cavity 402 and the third cavity 404 are stacked up and down, and after the first laser group 4103, the second laser group 4104, the first collimating lens group 4105, the second collimating lens group 4106, the first wavelength division multiplexer 4107, the second wavelength division multiplexer 4108, the first isolator 4111, the second isolator 4112, the first prism assembly 4113, the first converging lens 4109, and the second converging lens 4110 are respectively installed in the first cavity 402, the Tx pad of the first DSP chip 310 is connected to the first laser driving chip through a high-speed signal line, and the first laser driving chip is respectively connected to the first laser group 4103 and the second laser group 4104 through signal lines, so that the electrical signal output by the first DSP chip 310 is transmitted to the first laser driving chip, and the first laser
  • the four emission lights emitted by the first laser group 4103 are converted into four collimated lights by the first collimating lens group 4105, and the four collimated lights are multiplexed into one composite light by the first wavelength division multiplexer 4107.
  • the composite light is converted into convergent light by the first converging lens 4109, and the convergent light is coupled to the optical fiber adapter 700 through the first light outlet 4025.
  • the four emission lights emitted by the second laser group 4104 are converted into four collimated lights by the second collimating lens group 4106 , and the four collimated lights are multiplexed into one composite light by the second wavelength division multiplexer 4108 , and the composite light is converted into convergent light by the second converging lens 4110 , and the convergent light is coupled to the optical fiber adapter 700 through the second light outlet 4026 .
  • the two paths of composite light transmitted by the optical fiber adapter 700 are respectively injected into the third cavity 404 through the first light inlet 4047 and the second light inlet 4048.
  • One path of composite light injected into the third cavity 404 is converted into collimated light by the first collimating lens 4202 , the collimated light is demultiplexed into four paths of received light by the first wavelength division multiplexer 4204 , the four paths of received light are converted into four paths of converged light by the first converging lens group 4206 , and the four paths of converged light are reflected by the first reflecting prism 4208 and then injected into the first detector group 305 .
  • One path of composite light injected into the third cavity 404 is converted into collimated light by the second collimating lens 4203, the collimated light is demultiplexed into four paths of received light by the second wavelength division multiplexer 4205, the four paths of received light are converted into four paths of converged light by the second converging lens group 4207, the four paths of converged light are reflected by the second reflecting prism 4209 and then injected into the second detector group 306.
  • the first detector group 305 and the second detector group 306 are electrically connected to the Rx pad of the first DSP chip 310 through a high-speed signal line. In this way, after the first detector group 305 and the second detector group 306 convert the optical signal into an electrical signal, the electrical signal is transmitted to the first DSP chip 310 via the high-speed signal line, and the first DSP chip 310 transmits the processed electrical signal to the host computer via the gold finger.
  • a via can be arranged on the circuit board 300, and the Rx pad of the first DSP chip 310 is connected to one end of the via.
  • a high-speed signal line is arranged on the back side of the circuit board 300, one end of the high-speed signal line is connected to the other end of the via, and the other end of the high-speed signal line is connected to the detector, thereby realizing the electrical connection between the detector and the first DSP chip 310.
  • the present invention integrates two groups of optical emitting devices and two groups of optical receiving devices into an integrated structure.
  • the optical emitting devices and the optical receiving devices share a tube shell and are arranged back to back.
  • the optical emitting devices are located at the upper layer of the tube shell, and the optical receiving devices are located at the lower layer of the tube shell, thereby realizing 8-channel 800G transmitting data transmission and 8-channel 800G receiving data transmission.
  • FIG20 is a schematic diagram of assembling a circuit board and a second optical transceiver assembly in an optical module according to some embodiments
  • FIG21 is a schematic diagram of partial decomposition of a circuit board and a second optical transceiver assembly in an optical module according to some embodiments.
  • the second optical transceiver assembly 500a includes a second tube shell 501a, a first transmitting cover plate 502a, a second transmitting cover plate 503a and a third transmitting cover plate 504a, the second tube shell 501a is arranged on the back of the circuit board 300, the laser assembly in the second optical transceiver assembly 500a is embedded in the mounting hole 302 of the circuit board 300, and the laser assembly is arranged on the second tube shell 501a, so that the top surface of the second tube shell 501a is fixed on the back of the circuit board 300, and the second tube shell 501a supports and fixes the laser assembly so that the laser assembly is embedded in the mounting hole 302.
  • the laser assembly is embedded in the mounting hole 302 of the circuit board 300 through the second tube shell 501a, and the second emitting cover plate 503a covers the laser assembly, so that the laser assembly is located in a sealed cavity formed by the second emitting cover plate 503a, the circuit board 300 and the second tube shell 501a.
  • Fig. 22 is a schematic diagram of the structure of the second tube shell in the optical module according to some embodiments
  • Fig. 23 is a schematic diagram of the partial structure of the second optical transceiver assembly in the optical module according to some embodiments.
  • the top surface of the second tube shell 501a is provided with an assembly groove 5010a
  • the assembly groove 5010a is arranged opposite to the mounting hole 302
  • the assembly surface of the assembly groove 5010a is recessed in the top surface of the second tube shell 501a
  • the laser assembly of the second optical transceiver assembly 500a is arranged in the assembly groove 5010a, so that the laser assembly is arranged on the second tube shell 501a.
  • the laser assembly of the second optical transceiver assembly 500a includes a first laser array 505a and a second laser array 511a, which are arranged side by side in the assembly groove 5010a along the front-to-back direction.
  • a second semiconductor refrigerator is also arranged in the assembly groove 5010a.
  • the first laser array 505a and the second laser array 511a are arranged side by side on the cooling surface of the second semiconductor refrigerator.
  • the second semiconductor refrigerator works to cool to reduce the temperature of the first laser array 505a and the second laser array 511a.
  • the heat generated by the first laser array 505a and the second laser array 511a is conducted to the second semiconductor refrigerator, and then to the second tube shell 501a for heat dissipation.
  • the first laser array 505a may include four lasers, which are arranged side by side in the front-to-back direction; the second laser array 511a may include four lasers, which are arranged side by side in the front-to-back direction. Thus, eight lasers are arranged side by side in the front-to-back direction on the cooling surface of the second semiconductor refrigerator.
  • the second DSP chip 320 on the front of the circuit board 300 is an 8-channel 800G DSP.
  • each channel of the second DSP chip 320 can transmit a 100Gb/s electrical signal, and the 100Gb/s electrical signal can drive a 100Gb/s laser.
  • each laser in the first laser array 505a and the second laser array 511a is a 100Gb/s laser.
  • the bonding height of the first laser array 505a and the second laser array 511a is on the same plane as the front surface of the circuit board 300. In this way, the bonding distance between the first laser array 505a, the second laser array 511a and the front surface of the circuit board 300 is the shortest, which can reduce losses.
  • a second laser driver chip is also provided on the front side of the circuit board 300, and the second laser driver chip is located between the second DSP chip 320 and the second optical transceiver assembly 500a.
  • the second DSP chip 320 transmits the electrical signal to the second laser driver chip via the signal line, and the second laser driver chip converts the electrical signal into a driving electrical signal, which is transmitted to the first laser array 505a and the second laser array 511a to drive the first laser array 505a and the second laser array 511a to generate four emission lights respectively.
  • a first collimating lens array 506a and a second collimating lens array 512a are also arranged on the cooling surface of the second semiconductor refrigerator.
  • the first collimating lens 506a is located in the light emitting direction of the first laser array 505a
  • the second collimating lens array 512a is located in the light emitting direction of the second laser array 511a.
  • the collimating lenses and lasers are arranged in a one-to-one correspondence, so that the emitted light emitted by each laser is converted into collimated light through the collimating lens.
  • the optical emitting device in the second optical transceiver assembly 500a also includes optical devices such as lenses and wavelength division multiplexers.
  • the optical devices such as lenses and wavelength division multiplexers are arranged on the first transmitting cover plate 502a, so that the optical devices such as lenses and wavelength division multiplexers are located in the light emitting direction of the laser assembly.
  • the multi-path emission light emitted by the laser assembly is coupled to the internal optical fiber through the lens, wavelength division multiplexer, etc., and then coupled to the optical fiber adapter 700 through the internal optical fiber transmission.
  • a translation prism assembly may be provided between the first collimating lens array 506a, the second collimating lens array 512a and the wavelength division multiplexer to change the propagation direction of the emitted light by means of the translation prism assembly.
  • a boss 5011a is further provided on the top surface of the second tube shell 501a, and the boss 5011a protrudes from the top surface of the second tube shell 501a toward the front surface of the circuit board 300, so that the boss 5011a is inserted into the mounting hole 302 of the circuit board 300.
  • a first baffle 5012a and a second baffle 5013a are provided on the boss 5011a, and the first baffle 5012a is provided along the front-back direction of the boss 5011a, and the second baffle 5013a is provided along the left-right direction of the boss 5011a, so that the first baffle 5012a and the second baffle 5013a are perpendicular to each other.
  • the translation prism assembly includes a first translation prism 5073a and a second translation prism 5074a, which are arranged side by side on the boss 5011a along the front-to-back direction, and the left sides of the first translation prism 5073a and the second translation prism 5074a are in contact with the first baffle 5012a, so that the first translation prism 5073a and the second translation prism 5074a are limited in the left-right direction through the first baffle 5012a; the front side of the first translation prism 5073a is in contact with the second baffle 5013a, so that the first translation prism 5073a is limited in the front-to-back direction through the second baffle 5013a. In this way, the first translation prism 5073a and the second translation prism 5074a are limited and fixed by the first baffle 5012a and the second baffle 5013a.
  • the first translation prism 5073a is located in the light emitting direction of the first laser array 505a.
  • the multi-path emission light emitted by the first laser array 505a is converted into multi-path collimated light by the first collimating lens array 506a.
  • the multi-path collimated light is transmitted in a direction parallel to the circuit board 300.
  • the multi-path collimated light is reflected by the first translation prism 5073a.
  • the reflected multi-path light is emitted in a direction perpendicular to the circuit board 300.
  • the second translation prism 5074a is located in the light emitting direction of the second laser array 511a.
  • the multi-path emission light emitted by the second laser array 511a is converted into multi-path collimated light by the second collimating lens array 512a.
  • the multi-path collimated light is transmitted in a direction parallel to the circuit board 300.
  • the multi-path collimated light is reflected by the second translation prism 5074a.
  • the reflected multi-path light is emitted in a direction perpendicular to the circuit board 300.
  • FIG24 is a schematic diagram of partial assembly of a circuit board and a second optical transceiver assembly in an optical module according to some embodiments.
  • the second optical transceiver assembly 500a further includes a third translation prism 5071a and a fourth translation prism 5072a, wherein the third translation prism 5071a is located above the first translation prism 5073a, and the third translation prism 5071a re-reflects the emission light reflected by the first translation prism 5073a, and the re-reflected emission light is transmitted parallel to the circuit board 300; the fourth translation prism 5072a is located above the second translation prism 5074a, and the fourth translation prism 5072a re-reflects the emission light reflected by the second translation prism 5074a, and the re-reflected emission light is transmitted parallel to the circuit board 300.
  • the second optical transceiver assembly 500a further includes a third wavelength division multiplexer 508a and a fourth wavelength division multiplexer 513a.
  • the third wavelength division multiplexer 508a and the third translation prism 5071a are arranged opposite to each other.
  • the multiple transmission lights reflected by the third translation prism 5071a are injected into the third wavelength division multiplexer 508a for light combination to output one composite light.
  • the fourth wavelength division multiplexer 513a and the fourth translation prism 5072a are arranged opposite to each other.
  • the multiple reflection lights reflected by the fourth translation prism 5072a are injected into the fourth wavelength division multiplexer 513a for light combination to output another composite light.
  • the third wavelength division multiplexer 508a since there is a height difference between the third wavelength division multiplexer 508a, the fourth wavelength division multiplexer 513a and the first laser array 505a, the second laser array 511a, reflection is performed through the first translation prism 5073a, the second translation prism 5074a, the third translation prism 5071a, and the fourth translation prism 5072a to offset the height difference between the wavelength division multiplexer and the laser array.
  • the third translation prism 5071a can be placed on the first translation prism 5073a to support and fix the third translation prism 5071a through the first translation prism 5073a; the fourth translation prism 5072a can be placed on the second translation prism 5074a to support and fix the fourth translation prism 5972a through the second translation prism 5074a.
  • the installation height difference between the wavelength division multiplexer and the laser array is adjusted by the gap between the third translation prism 5071a and the first translation prism 5073a, and the gap between the fourth translation prism 5072a and the second translation prism 5074a.
  • the third wavelength division multiplexer 508a and the fourth wavelength division multiplexer 513a may be directly disposed on the front surface of the circuit board 300, so that the third wavelength division multiplexer 508a and the fourth wavelength division multiplexer 513a are supported and fixed by the circuit board 300.
  • the third wavelength division multiplexer 508a and the fourth wavelength division multiplexer 513a may also be fixed by the first transmitting cover plate 502a, so that the third wavelength division multiplexer 508a and the fourth wavelength division multiplexer 513a are disposed above the front surface of the circuit board 300.
  • FIG25 is a structural schematic diagram 1 of the first emitting cover plate in the optical module according to some embodiments
  • FIG26 is a structural schematic diagram 2 of the first emitting cover plate in the optical module according to some embodiments.
  • the first emitting cover plate 502a includes a first sub-cover plate 5020a and a second sub-cover plate 5021a, the top surface of the first sub-cover plate 5020a protrudes from the top surface of the second sub-cover plate 5021a, and the bottom surface of the second sub-cover plate 5021a is bonded and fixed to the front surface of the circuit board 300, and the first sub-cover plate 5020a is located above the front surface of the circuit board 300.
  • a first assembly surface 50206a and a second assembly surface 50207a are provided on one side of the first sub-cover 5020a facing the front side of the circuit board 300.
  • the first assembly surface 50206a and the second assembly surface 50207a are connected to the bottom surface of the second sub-cover 5021a through the first connecting surface 5022a.
  • the first assembly surface 50206a and the second assembly surface 50207a are arranged side by side along the front-back direction of the first sub-cover 5020a, and a third partition 50208a is provided between the first assembly surface 50206a and the second assembly surface 50207a to separate the first assembly surface 50206a and the second assembly surface 50207a through the third partition 50208a.
  • a third assembly surface 50209a and a fourth assembly surface 50210a are also provided on one side of the first sub-cover 5020a facing the front side of the circuit board 300.
  • the third assembly surface 50209a and the fourth assembly surface 50210a are arranged side by side along the front-back direction of the first sub-cover 5020a, and the third partition 50208a separates the third assembly surface 50209a and the fourth assembly surface 50210a.
  • the third assembly surface 50209a and the first assembly surface 50206a are located on the same side of the third partition 50208a, and the fourth assembly surface 50210a and the second assembly surface 50207a are located on the same side of the third partition 50208a.
  • FIG. 27 is a second schematic diagram of the partial structure of the second optical transceiver assembly in the optical module according to some embodiments.
  • the third wavelength division multiplexer 508a is arranged on the second mounting surface 50207a
  • the fourth wavelength division multiplexer 513a is arranged on the first mounting surface 50206a
  • the third translation prism 5071a is arranged on the fourth mounting surface 50210a
  • the fourth translation prism 5072a is arranged on the third mounting surface 50209a, so as to fix the third wavelength division multiplexer 508a, the fourth wavelength division multiplexer 513a, the third translation prism 5071a and the fourth translation prism 5072a through the first sub-cover plate 5020a, and make the third translation prism 5071a reflect the reflected light from the first translation prism 5073a again into the third wavelength division multiplexer 508a
  • the fourth translation prism 5072a reflect the reflected light from the second translation prism 5074a again into the fourth wavelength division multiplexer 513a.
  • the second optical transceiver assembly 500a is located between the first DSP chip 310 and the second DSP chip 320, and the first DSP chip 310 is located on the left side of the second optical transceiver assembly 500a, when the second optical transceiver assembly 500a is connected to the optical fiber adapter 700 through the internal optical fiber, the internal optical fiber will cross the first DSP chip 310, thus affecting the contact between the first DSP chip 310 and the upper shell 201, thereby reducing the heat dissipation efficiency of the first DSP chip 310.
  • the optical fiber connected to the second optical transceiver assembly 500a needs to be bent so that the optical fiber bypasses the first DSP chip 310 and is connected to the optical fiber adapter 700, but this results in a large bending angle of the optical fiber, which is easy to cause the optical fiber to break.
  • the present disclosure tilts the optical emitting part in the second optical transceiver assembly 500a so that the optical emitting part in the second optical transceiver assembly 500a is tilted toward one side of the first DSP chip 310, which can reduce the bending angle of the optical fiber.
  • the first sub-cover plate 5020a is arranged parallel to the circuit board 300, and there is a preset angle between the second sub-cover plate 5021a and the circuit board 300, so that there is a certain angle between the first sub-cover plate 5020a and the second sub-cover plate 5021a, and along the light-emitting direction of the composite light output by the wavelength division multiplexer on the first sub-cover plate 5020a, the second sub-cover plate 5021a is inclined toward the left front of the circuit board 300, and there is a first preset angle between the second sub-cover plate 5021a and the light-emitting direction of the composite light.
  • the first preset angle between the second sub-cover plate 5021a and the light emitting direction of the composite light is 30°.
  • a mounting groove is provided on the side (front side) of the first sub-cover 5020a facing away from the front side of the circuit board 300, the assembly surface of the mounting groove is recessed in the front side of the first sub-cover 5020a, and a through hole 50201a penetrating the first sub-cover 5020a is provided in the mounting groove, the through hole 50201a penetrates from the assembly surface of the mounting groove to the first assembly surface 50206a and the second assembly surface 50207a.
  • the assembly surface of the mounting groove includes a fifth assembly surface 50202a and a sixth assembly surface 50203a, and a fourth partition plate 50204a is disposed between the fifth assembly surface 50202a and the sixth assembly surface 50203a to separate the fifth assembly surface 50202a and the sixth assembly surface 50203a through the fourth partition plate 50204a.
  • a mounting groove is provided on the front side of the second sub-cover 5021a facing away from the circuit board 300, and the mounting groove includes a seventh mounting surface 50211a, an eighth mounting surface 50212a and a ninth mounting surface 50213a, the seventh mounting surface 50211a is connected to the fifth mounting surface 50202a and the sixth mounting surface 50203a, the ninth mounting surface 50213a faces the optical fiber adapter 700, the eighth mounting surface 50212a is located between the seventh mounting surface 50211a and the ninth mounting surface 50213a, and the seventh mounting surface 50211a, the eighth mounting surface 50212a and the ninth mounting surface 50213a are all arranged at a first preset angle with respect to the light output direction of the composite light output by the wavelength division multiplexer.
  • FIG28 is a third partial structural schematic diagram of a second optical transceiver assembly in an optical module according to some embodiments.
  • a first corner prism 509a is disposed on the fifth assembly surface 50202a, and the first corner prism 509a is disposed opposite to the third wavelength division multiplexer 508a, so that one path of composite light output by the third wavelength division multiplexer 508a passes through the through hole 50201a, and then is reflected multiple times by the first corner prism 509a and then is obliquely emitted toward the left front of the circuit board 300;
  • a second corner prism 514a is disposed on the sixth assembly surface 50230a, and the second corner prism 514a is disposed opposite to the fourth wavelength division multiplexer 513a, so that another path of composite light output by the fourth wavelength division multiplexer 513a passes through the through hole 50201a, and then is reflected multiple times by the second corner prism 514a and then is obliquely emitted toward the left front of the circuit board
  • the first corner prism 509a and the second corner prism 514a have the same structure, both are dispersion prisms, and both are isosceles trapezoidal in shape. That is, the first corner prism 509a includes an incident surface, a reflection surface, and an exit surface.
  • the incident surface and the exit surface have the same size, the reflection surface is smaller than the side surface opposite thereto, and the incident surface faces the third wavelength division multiplexer 508a, the exit surface faces the optical fiber adapter 700, and the two ends of the reflection surface are connected to the incident surface and the exit surface respectively.
  • the composite light emitted by the third wavelength division multiplexer 508a is horizontally incident on the incident surface of the first corner prism 509a, refracted from the incident surface to the reflection surface, totally reflected at the reflection surface, reflected to the exit surface, and then refracted out through the exit surface, so that the exit direction of the composite light forms a first preset angle with the incident direction of the first corner prism 509a.
  • a third converging lens 510a and a fourth converging lens 515a are arranged on the seventh assembly surface 50211a.
  • the third converging lens 510a is arranged opposite to the first corner prism 509a, and is used to convert the composite light emitted by the first corner prism 509a into converging light;
  • the fourth converging lens 515a is arranged opposite to the second corner prism 514a, and is used to convert the composite light emitted by the second corner prism 514a into converging light.
  • An optical coupler 518a is arranged on the ninth assembly surface 50213a, and two optical fibers are arranged in the optical coupler 518a.
  • the third converging lens 510a converges one path of composite light into one optical fiber in the optical coupler 518a
  • the fourth converging lens 515a converges another path of composite light into another optical fiber in the optical coupler 518a, so as to transmit the two paths of composite light to the optical fiber adapter 700 through the two optical fibers, so as to realize the emission of multiple paths of light.
  • An internal optical fiber connected to the optical coupler 518a is connected to the optical fiber adapter 700 through the third light outlet 4032, and another internal optical fiber connected to the optical coupler 518a is connected to the optical fiber adapter 700 through the fourth light outlet 4033.
  • the optical emitting part of the second optical transceiver assembly 500a is connected to the optical fiber adapter 700 using a pigtail connection method.
  • the converged light emitted by the convergent lens when the converged light emitted by the convergent lens is emitted to the optical fiber in the optical coupler 518a, the converged light is easily reflected at the end face of the optical fiber due to changes in the transmission medium, and the reflected light may return to the laser along the original path, affecting the light-emitting performance of the laser.
  • a third isolator 516a and a fourth isolator 517a are provided on the eighth assembly surface 50212.
  • the third isolator 516a is located between the third convergent lens 510a and the optical coupler 518a, and is used to isolate the reflected light of one composite light from the optical coupler 518a;
  • the fourth isolator 517a is located between the fourth convergent lens 515a and the optical coupler 518a, and is used to isolate the reflected light of another composite light from the optical coupler 518a.
  • the central axes of the third converging lens 510a, the fourth converging lens 515a, the third isolator 516a, the fourth isolator 517a and the optical coupler 518a are all arranged at a first preset angle with the central axis of the circuit board 300.
  • the second corner prism 514a is set on the sixth assembly surface 50230a
  • the third converging lens 510a and the fourth converging lens 515a are set on the seventh assembly surface 50211a
  • the third isolator 516a and the fourth isolator 517a are set on the eighth assembly surface 50212
  • the optical coupler 518a is set on the ninth assembly surface 50213a
  • the third transmitting cover plate 504a is covered on the mounting groove on the second sub-cover plate 5021a to encapsulate the first corner prism 509a, the second corner prism 514a, the third converging lens 510a, the fourth converging lens 515a, the third isolator 516a, the fourth isolator 517a and the optical coupler 518a.
  • FIG29 is a schematic diagram of the flip structure of the second emission cover in the optical module according to some embodiments.
  • the first emission cover 502a is set on the front of the circuit board 300
  • the wavelength division multiplexer, corner prism, convergence lens, isolator, optical coupler and other optical devices are set on the first emission cover 502a
  • the second emission cover 503a is covered on the mounting hole 302 of the circuit board 300
  • the third emission cover 502a is connected to the first sub-cover 5020a to encapsulate the laser array, collimating lens array, and translation prism assembly.
  • the second launch cover plate 503a includes a launch cover 5030a, a first protruding side plate 5032a and a second protruding side plate 5033a, a cavity 5031a is arranged in the launch cover 5030a, the first protruding side plate 5032a and the second protruding side plate 5033a are respectively connected to the launch cover 5030a, the first protruding side plate 5032a and the second protruding side plate 5033a are arranged opposite to each other, and there is a gap between the first protruding side plate 5032a and the second protruding side plate 5033a.
  • the bottom surface of the emission cover 5030a is bonded to the front surface of the circuit board 300, and the emission cover 5030a covers the mounting hole 302, so that the laser array and the collimating lens array are located in the cavity 5031a of the emission cover 5030a.
  • the first sub-cover plate 5020a is located between the first protruding side plate 5032a and the second protruding side plate 5033a of the second emission cover plate 503a, so that the first protruding side plate 5032a and the second protruding side plate 5033a are in contact with the side surface of the first sub-cover plate 5020a; the left side surfaces of the first protruding side plate 5032a and the second protruding side plate 5033a are in contact with the first sub-cover plate 5022a, so that the first emission cover plate 502a, the second emission cover plate 503a and the circuit board 300 form a cavity.
  • Figure 30 is a schematic diagram of the transmission optical path of the second optical transceiver component in the optical module according to some embodiments
  • Figure 31 is a partial cross-sectional view 1 of the second optical transceiver component in the optical module according to some embodiments
  • Figure 32 is a partial cross-sectional view 2 of the second optical transceiver component in the optical module according to some embodiments.
  • the second semiconductor refrigerator 519a, the first laser array 505a, the second laser array 511a, the first collimating lens array 506a and the second collimating lens array 512a are arranged in the assembly groove 5010a of the second tube shell 501a, the first translation prism 5073a and the second translation prism 5074a are arranged on the boss 5011a of the second tube shell 501a, and then the top surface of the second tube shell 501a is bonded to the back side of the circuit board 300, so that the first laser array 505a, the second laser array 511a, the first collimating lens array 506a, the second collimating lens array 512a, the first translation prism 5073a and the second translation prism 5074a are embedded in the mounting hole 302 of the circuit board 300.
  • the third wavelength division multiplexer 508a, the fourth wavelength division multiplexer 513a, the third translation prism 5071a, and the fourth translation prism 5072a are arranged on the assembly surface of the first sub-cover 5020a facing the front side of the circuit board 300, and the first corner prism 509a, the second corner prism 514a, the third converging lens 510a, the fourth converging lens 515a, the third isolator 516a, the fourth isolator 517a, and the optical coupler 518a are arranged on the assembly surface of the second sub-cover 5021a, and then the bottom surface of the assembled first transmitting cover 502a is bonded to the front side of the circuit board 300.
  • the third emitting cover plate 504a is covered on the second sub-cover plate 5021a to encapsulate the first corner prism 509a, the second corner prism 514a, the third converging lens 510a, the fourth converging lens 515a, the third isolator 516a, the fourth isolator 517a, and the optical coupler 518a.
  • the second transmitting cover plate 503a is covered on the mounting hole 302 of the circuit board 300, and the first sub-cover plate 5020a of the first transmitting cover plate 502a is embedded in the second transmitting cover plate 503a, thereby realizing the device assembly of the optical transmitting part in the second optical transceiver assembly 500a.
  • the four-path divergent light emitted by the first laser array 505a is converted into multiple-path collimated light by the first collimating lens array 506a.
  • the multiple-path collimated light is reflected twice by the first translation prism 5073a and the third translation prism 5071a and then enters the third wavelength division multiplexer 508a.
  • the four-path emission light is multiplexed into one composite light by the third wavelength division multiplexer 508a.
  • the composite light is refracted and reflected by the first corner prism 509a to tilt the transmission direction.
  • the composite light is then coupled to the optical coupler 518a via the third converging lens 510a and then transmitted to the optical fiber adapter 700 via the internal optical fiber, thereby realizing the emission of the four-path emission light.
  • the other four divergent lights emitted by the second laser array 511a are converted into multiple collimated lights by the second collimating lens array 512a.
  • the multiple collimated lights are reflected twice by the second translation prism 5074a and the fourth translation prism 5072a and then enter the fourth wavelength division multiplexer 513a.
  • the four divergent lights are multiplexed into another composite light by the fourth wavelength division multiplexer 513a.
  • the other composite light is refracted and reflected by the second corner prism 514a to incline its transmission direction, and then coupled to the optical coupler 518a via the fourth converging lens 515a, and then transmitted to the optical fiber adapter 700 via the internal optical fiber, thereby realizing the emission of the other four emission lights.
  • FIG33 is a schematic diagram of the flip structure of the second tube shell in the optical module according to some embodiments
  • FIG34 is a schematic diagram of the partial structure of the second optical transceiver assembly in the optical module according to some embodiments.
  • the second tube shell 501a is provided with a first accommodating cavity, a second accommodating cavity, a first plug hole 5018a and a second plug hole 50113a on the side (bottom surface) facing away from the back of the circuit board 300, and the first plug hole 5018a is connected to the first accommodating cavity, and the second plug hole 50113a is connected to the second accommodating cavity.
  • the first accommodating cavity includes a first supporting surface 5014a, a second supporting surface 5015a, a third supporting surface 5016a and a fourth supporting surface 5017a, the first supporting surface 5014a protrudes from the second supporting surface 5015a, the third supporting surface 5016a and the fourth supporting surface 5017a, the second supporting surface 5015a is connected to the first plug hole 5018a, the third supporting surface 5016a is located between the second supporting surface 5015a and the fourth supporting surface 5017a, and the fourth supporting surface 5017a is recessed in the third supporting surface 5016a.
  • the first receiving optical coupler 520a is inserted into the first plug hole 5018a, so that the first receiving optical coupler 520a is inserted into the first accommodating cavity through the first plug hole 5018a.
  • one end of the internal optical fiber is connected to the first receiving optical coupler 520a, and the other end is connected to the optical fiber adapter 700 through the third light inlet 4052, so that the external light transmitted by the optical fiber adapter 700 is transmitted to the first receiving optical coupler 520a through the internal optical fiber.
  • a third collimating lens 521a is arranged on the second supporting surface 5015a, and the third collimating lens 521a is used to convert the receiving light transmitted by the first receiving optical coupler 520a into collimated light; a third wave splitter multiplexer 522a is arranged on the third supporting surface 5016a, and the third wave splitter multiplexer 522a is used to demultiplex the collimated light into four receiving lights; a first converging lens array 523a is arranged on the fourth supporting surface 5017a, and the four receiving lights are converted into four converging lights through the first converging lens array 523a.
  • a ninth supporting surface 50114a is further provided at one end of the second tube shell 501a connected to the fourth supporting surface 5017a.
  • the ninth supporting surface 50114a is recessed in the fourth supporting surface 5017a and connected to the fourth supporting surface 5017a via the second connecting surface 50115a.
  • the back of the circuit board 300 is provided with a first detector array 307, and the first converging lens array 523a is provided on the fourth supporting surface 5017a, so that there is a height difference between the first detector array 307 and the first converging lens array 523a, and the receiving direction of the first detector array 307 is perpendicular to the back of the circuit board 300, while the transmission direction of the received light emitted by the first converging lens array 523a is parallel to the back of the circuit board 300.
  • a third reflecting prism 524a needs to be provided between the first converging lens array 523a and the first detector array 307, and the third reflecting prism 524a is provided on the ninth supporting surface 50114a, and the transmission direction of the received light emitted by the first converging lens array 523a is changed by the third reflecting prism 524a, so that the reflected received light enters the first detector array 307.
  • the first receiving cover plate is covered on the first supporting surface 5014a to encapsulate the third collimating lens 521a, the third WDM 522a and the first converging lens array 523a.
  • the second accommodating cavity includes a fifth supporting surface 5019a, a sixth supporting surface 50110a, a seventh supporting surface 50111a and an eighth supporting surface 50112a, the fifth supporting surface 5019a protrudes from the sixth supporting surface 50110a, the seventh supporting surface 50111a and the eighth supporting surface 50112a, the sixth supporting surface 50110a is connected to the second plug hole 50113a, the seventh supporting surface 50111a is located between the sixth supporting surface 50110a and the eighth supporting surface 50112a, and the eighth supporting surface 50112a is recessed in the seventh supporting surface 50111a.
  • the second receiving optical coupler 525a is inserted into the second jack 50113a, so that the second receiving optical coupler 525a is inserted into the second accommodating cavity through the second jack 50113a.
  • one end of the internal optical fiber is connected to the second receiving optical coupler 525a, and the other end is connected to the optical fiber adapter 700 through the fourth light inlet 4053, so that the external light transmitted by the optical fiber adapter 700 is transmitted to the second receiving optical coupler 525a through the internal optical fiber.
  • a fourth collimating lens 526a is arranged on the sixth supporting surface 50110a, and the fourth collimating lens 526a is used to convert the receiving light transmitted by the second receiving optical coupler 525a into collimated light; a fourth wave splitter multiplexer 527a is arranged on the seventh supporting surface 50111a, and the fourth wave splitter multiplexer 527a is used to demultiplex the collimated light into four receiving lights; a second converging lens array 528a is arranged on the eighth supporting surface 50112a, and the four receiving lights are converted into four converging lights through the second converging lens array 528a.
  • the back of the circuit board 300 is provided with a second detector array 308, and the second converging lens array 528a is provided on the eighth supporting surface 50112a, so that there is a height difference between the second detector array 308 and the second converging lens array 528a, and the receiving direction of the second detector array 308 is perpendicular to the back of the circuit board 300, while the transmission direction of the received light emitted by the second converging lens array 528a is parallel to the back of the circuit board 300.
  • a fourth reflecting prism 529a needs to be provided between the second converging lens array 528a and the second detector array 308, and the fourth reflecting prism 529a is provided on the ninth supporting surface 50114a, and the transmission direction of the received light emitted by the second converging lens array 528a is changed by the fourth reflecting prism 529a, so that the reflected received light enters the second detector array 308.
  • the second receiving cover plate is covered on the fifth supporting surface 5019a to encapsulate the fourth collimating lens 526a, the fourth wavelength division multiplexer 527a, and the second converging lens array 528a.
  • FIG35 is a schematic diagram of a receiving optical path of a second optical transceiver assembly in an optical module according to some embodiments
  • FIG36 is a partial cross-sectional view three of the second optical transceiver assembly in an optical module according to some embodiments.
  • the first receiving optical coupler 520a is inserted into the first accommodating cavity of the second tube shell 501a through the first plug hole 5018a, the third collimating lens 521a is arranged on the second supporting surface 5015a, the third wavelength division multiplexer 522a is arranged on the third supporting surface 5016a, the first converging lens array 523a is arranged on the fourth supporting surface 5017a, and the third reflecting prism 524a is arranged on the ninth supporting surface 50114a, so that the reflecting surface of the third reflecting prism 524a is located above the first detector array 307 on the back of the circuit board 300, and then the first receiving cover plate is covered on the first supporting surface 5014a.
  • the received light transmitted by the optical fiber adapter 700 is transmitted to the first receiving optical coupler 520a through the internal optical fiber, and is emitted to the third collimating lens 521a through the first receiving optical coupler 520a.
  • the third collimating lens 521a converts the received light into collimated light.
  • the collimated light is demultiplexed into four-path light by the third wavelength division multiplexer 522a.
  • the four-path light is converged to the third reflecting prism 524a through the first converging lens array 523a, and then the four-path light is reflected and converged to the first detector array 307 by the third reflecting prism 524a.
  • the received light transmitted by the optical fiber adapter 700 is transmitted via the internal optical fiber to the second receiving optical coupler 525a, and then emitted to the fourth collimating lens 526a through the second receiving optical coupler 525a.
  • the fourth collimating lens 526a converts the received light into collimated light.
  • the collimated light is demultiplexed into four-path light by the fourth wavelength division multiplexer 527a.
  • the four-path light is converged to the fourth reflecting prism 529a through the second converging lens array 528a, and then the four-path light is reflected and converged to the second detector array 308 by the fourth reflecting prism 529a.
  • a third receiving cover plate 530a can be covered above the third reflecting prism 524a and the fourth reflecting prism 529a, and the left side of the third receiving cover plate 530a is abutted against the second connecting surface 50115a, and the right side of the third receiving cover plate 530a is bonded and fixed to the back side of the circuit board 300, thereby setting the third reflecting prism 524a, the fourth reflecting prism 529a, the first detector array 307, the second detector array 308, the transimpedance amplifier, etc. in the cavity formed by the third receiving cover plate 530a and the back side of the circuit board 300.
  • the first detector array 307 and the second detector array 308 are electrically connected to the Rx pad of the second DSP chip 320 through high-speed signal lines. In this way, after the first detector array 307 and the second detector array 308 convert the optical signal into an electrical signal, the electrical signal is transmitted to the second DSP chip 320 via the high-speed signal line, and the second DSP chip 320 transmits the processed electrical signal to the host computer via the gold finger.
  • a via can be arranged on the circuit board 300, and the Rx pad of the second DSP chip 320 is connected to one end of the via.
  • a high-speed signal line is arranged on the back side of the circuit board 300, one end of the high-speed signal line is connected to the other end of the via, and the other end of the high-speed signal line is connected to the first detector array 307 and the second detector array 308, thereby realizing the electrical connection between the first detector array 307, the second detector array 308 and the second DSP chip 320.
  • FIG37 is a cross-sectional view 1 of the second optical transceiver assembly in the optical module according to some embodiments
  • FIG38 is a cross-sectional view 2 of the second optical transceiver assembly in the optical module according to some embodiments.
  • the present disclosure forms a second optical transceiver assembly 500a with an optical emitting device and an optical receiving device connected to the second DSP chip 320 signal, wherein the optical emitting device is located above the front of the circuit board 300, the laser component of the optical emitting device is embedded in the mounting hole 302 of the circuit board 300, and the optical receiving device is located on the back of the circuit board 300, thereby realizing 8-channel 800G transmission data transmission and 8-channel 800G reception data transmission.
  • the optical module includes 4 groups of optical emitting devices and 4 groups of optical receiving devices, 2 groups of optical emitting devices and 2 groups of optical receiving devices are integrated into one structure, and the two groups share a tube shell and are arranged back to back to form a first optical transceiver assembly, and the two groups of optical emitting devices and 2 groups of optical receiving devices are electrically connected to the first DSP chip, and are assembled by hard connection with the optical fiber adapter using the MDC optical port.
  • 2 groups of optical emitting devices and 2 groups of optical receiving devices are integrated into one structure, and the two groups share a tube shell and are arranged back to back to form a second optical transceiver assembly, and the two groups of optical emitting components are arranged on the front of the circuit board, and the laser components of the optical emitting devices are embedded in the mounting holes of the circuit board, and the wavelength division multiplexer, corner prism and other optical processing components of the optical emitting components are arranged obliquely, so that the internal optical fiber connected to the optical emitting device bypasses the first DSP chip and is connected to the optical fiber adapter; 2 groups of optical receiving device groups are arranged on the back of the circuit board, and the optical emitting devices and optical receiving devices are electrically connected to the second DSP chip, and are connected to the optical fiber adapter using a pigtail connection method.

Abstract

一种光模块(200),包括电路板(300)、光纤适配器(700)及第一、二光收发组件(400,500a)。电路板(300)正面设有安装孔(302)与第一、二数据处理器(310,320)。第一光收发组件(400)与第一数据处理器(310)电连接,与光纤适配器(700)硬连接;第二光收发组件(500a)包括第二管壳(501a)、第一发射盖板(502a)与光发射、接收器件。第一发射盖板(502a)设于电路板(300)正面,与光发射方向具有第一预设角度;光发射器件包括光处理组件及通过安装孔(302)设于第二管壳(501a)顶面上的激光器、平移棱镜组件。光处理组件设于第一发射盖板(502a)上、通过光纤尾纤与光纤适配器(700)连接;光接收器件设于第二管壳(501a)背面的容纳腔内,通过光纤尾纤与光纤适配器(700)连接。

Description

光模块
相关申请的交叉引用
本公开要求在2022年09月29日提交中国专利局、申请号为202211203799.5的专利优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变得愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
本公开提供了一种光模块,包括:电路板,正面设置有第一数据处理器、第二数据处理器与安装孔;第一光收发组件,与电路板插接,与第一数据处理器电连接;第二光收发组件,与第二数据处理器电连接;光纤适配器,与第一光收发组件硬连接,通过光纤尾纤与第二光收发组件连接;其中,第二光收发组件包括:第二管壳,顶面与电路板背面连接,底面设置有容纳腔;第一发射盖板,设置于电路板的正面,其与光发射方向具有第一预设角度;光发射器件,包括激光器组件、平移棱镜组件与光处理组件,激光器组件、平移棱镜组件通过安装孔设置于第二管壳的顶面上;光处理组件设置于第一发射盖板上,光处理组件通过光纤尾纤与光纤适配器连接;光接收器件,设置于容纳腔内,通过光纤尾纤与光纤适配器连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光模块中电路板、第一光收发组件与第二光收发组件的装配示意图一;
图6为根据一些实施例的一种光模块中电路板、第一光收发组件与第二光收发组件的装配示意图二;
图7为根据一些实施例的一种光模块中电路板与第一光收发组件的局部分解示意图;
图8为根据一些实施例的一种光模块中电路板的结构示意图;
图9为根据一些实施例的一种光模块中第一管壳的结构示意图一;
图10为根据一些实施例的一种光模块中第一管壳的结构示意图二;
图11为根据一些实施例的一种光模块中第一光收发组件的结构示意图一;
图12为根据一些实施例的一种光模块中第一棱镜组件的结构示意图;
图13为根据一些实施例的一种光模块中第一棱镜组件的发射光路示意图;
图14为根据一些实施例的一种光模块中第一光收发组件的发射光路示意图;
图15为根据一些实施例的一种光模块中第一光收发组件的结构示意图二;
图16为根据一些实施例的一种光模块中第一光收发组件的接收光路示意图;
图17为根据一些实施例的一种光模块中第二棱镜组件的结构示意图;
图18为根据一些实施例的一种光模块中第二棱镜组件的接收光路示意图;
图19为根据一些实施例的一种光模块中电路板与第一光收发组件的局部装配剖视图;
图20为根据一些实施例的一种光模块中电路板与第二光收发组件的装配示意图;
图21为根据一些实施例的一种光模块中电路板与第二光收发组件的局部分解示意图;
图22为根据一些实施例的一种光模块中第二管壳的结构示意图;
图23为根据一些实施例的一种光模块中第二光收发组件的局部结构示意图一;
图24为根据一些实施例的一种光模块中电路板与第二光收发组件的局部装配示意图;
图25为根据一些实施例的一种光模块中第一发射盖板的结构示意图一;
图26为根据一些实施例的一种光模块中第一发射盖板的结构示意图二;
图27为根据一些实施例的一种光模块中第二光收发组件的局部结构示意图二;
图28为根据一些实施例的一种光模块中第二光收发组件的局部结构示意图三;
图29为根据一些实施例的一种光模块中第二发射盖板的翻转结构示意图;
图30为根据一些实施例的一种光模块中第二光收发组件的发射光路示意图;
图31为根据一些实施例的一种光模块中第二光收发组件的局部剖视图一;
图32为根据一些实施例的一种光模块中第二光收发组件的局部剖视图二;
图33为根据一些实施例的一种光模块中第二管壳的翻转结构示意图;
图34为根据一些实施例的一种光模块中第二光收发组件的局部结构示意图四;
图35为根据一些实施例的一种光模块中第二光收发组件的接收光路示意图;
图36为根据一些实施例的一种光模块中第二光收发组件的局部剖视图三;
图37为根据一些实施例的一种光模块中第二光收发组件的剖视图一;
图38为根据一些实施例的一种光模块中第二光收发组件的剖视图二。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要被配置为实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000之间的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口,光口被配置为接入光纤101,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立信息连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光信号与电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光 网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105表面的笼子106,设置在笼子106上的散热器107,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建议双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3、图4所示,光模块200包括壳体(shell),设置于壳体内的电路板300、第一光收发组件400及第二光收发组件500a。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开的一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,盖板盖合在下壳体202的两个下侧板上,以形成上述壳体。
在一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板以及位于盖板两侧、与盖板垂直设置的两个上侧板,由两个上侧板与两个下侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指从电口伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光收发组件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、第一光收发组件400、第二光收发组件500a等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、第一光收发组件400、第二光收发组件500a等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁上,具有与上位机笼子(例 如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳地承载;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的正面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。例如,硬性电路板与光收发组件之间可以采用柔性电路板连接。
图5为根据一些实施例的光模块中电路板、第一光收发组件与第二光收发组件的装配示意图一,图6为根据一些实施例的光模块中电路板、第一光收发组件与第二光收发组件的装配示意图二。如图5、图6所示,根据一些实施例的光模块包括第一光收发组件400与第二光收发组件500a,第一光收发组件400设置在电路板300的端部,与光纤适配器700采用硬连接方式进行连接,以实现8通道发射光的发射与8通道接收光的接收;第二光收发组件500a设置于电路板300上,与光纤适配器700采用尾纤式连接方式进行连接,第二光收发组件500a中的光发射部分位于电路板300的正面,以实现8通道发射光的发射,第二光收发组件500a中的光接收部分位于电路板300的背面,以实现8通道接收光的接收。
通过第一光收发组件400中8通道的发射光与第二光收发组件500a中8通道的发射光实现了16通道的100G数据传输,通过第一光收发组件400中8通道的接收光与第二光收发组件500a中8通道的接收光实现了16通道的100G数据传输。
图7为根据一些实施例的光模块中电路板与第一光收发组件的局部分解示意图,图8为根据一些实施例的光模块中电路板的结构示意图。如图7、图8所示,电路板300的正面上设置有第一DSP芯片310与第二DSP芯片320,第一DSP芯片310、第二DSP芯片320分别通过信号线与金手指连接。第一DSP芯片310与第二DSP芯片320可沿左右方向设置在电路板300的表面上,且第一DSP芯片310靠近光纤适配器700,第二DSP芯片320位于第一DSP芯片310的右侧。
在一些实施例中,第一DSP芯片310与第二DSP芯片320可位于电路板300的同一侧,如第一DSP芯片310与第二DSP芯片320位于电路板300的正面或背面;第一DSP芯片310与第二DSP芯片320也可位于电路板300的不同侧,如第一DSP芯片310位于电路板300的正面或背面,第二DSP芯片320位于电路板300的背面或正面。
由于系统风扇的风主要从光模块的上壳走,靠近上壳体201的部分散热会好一些,因此为了散热考虑,第一DSP芯片310与第二DSP芯片320位于同一侧,设置在电路板300的正面处。
电路板300上与金手指相对的一端设置有突出板303,该突出板303由电路板300的左侧端面向光纤适配器700方向延伸,突出板303与电路板300相对的两侧面之间均具有预设距离,使得电路板300的左侧部分为T型。
电路板300的突出板303插入第一光收发组件400内,使得第一光收发组件400内的光发射器件与电路板300的左端面相对设置,第一光收发组件400内的光接收器件位于电路板300的背面,如此电路板300的正面可与光发射器件平齐,电路板300的背面与光接收器件平齐,以方便将第一DSP芯片310与第一光收发组件400电连接。
在一些实施例中,电路板300上设置有贯穿的安装孔302,第二光收发组件500a通过该安装孔302设置在电路板300的正面与背面上,且第二DSP芯片320通过信号线与第二光收发组件500a电连接,以驱动第二光收发组件500a中的光发射器件发射信号光,以及将第二光收发组件500a中的光接收器件输出的电信号传输至第二DSP芯片320内。
图9为根据一些实施例的光模块中第一管壳的结构示意图一,图10为根据一些实施例的光模块中第一管壳的结构示意图二。如图9、图10所示,第一光收发组件400包括第一管壳401,该第一管壳401包括第一腔402、第二腔403、第三腔404与第四腔405,第一腔402与第二腔403位于电路板300正面的上方,第三腔404与第四腔405位于电路板300背面的下方,第一腔402与第三腔404相对设置,第二腔403与第四腔405相对设置,且第一腔402与第三腔404之间、第二腔403与第四腔405之间通过隔板隔开。
在一些实施例中,第一腔402与第三腔404上下层叠设置,第一腔402的一端设置有缺口4018,电路板300通过缺口4018插入第一管壳401内;第二腔403与第四腔405上下层叠设置,且第二腔403、第四腔405与突出板303相对,突出板303插入第二腔403内。
第一光收发组件400还包括第一盖板4101,第一盖板4101盖合于第一腔402、第二腔403上;第一腔402内设置有激光器、透镜等光发射器件,第一腔402与第一盖板4101形成密封腔体,激光器、透镜等光发射器件位于该密封腔体内。
第一光收发组件400还包括第二盖板4201,第二盖板4201盖合于第三腔404、第四腔405上;第三腔404内设置有透镜、反射棱镜等光接收器件,第三腔404与第二盖板4201形成密封腔体,透镜、反射棱镜等光接收器件位于该密封腔体内。
在一些实施例中,由于协议中对发射光口设置在顶层,接收光口设置在底层,因此光发射器件与光接收器件通过第一腔402、第三腔404背靠背设置,且光发射器件位于电路板300的正侧,光接收器件位于电路板300的背侧。
第一管壳401包括第一侧板4013、第二侧板4011、第三侧板4012与第一隔板4016,第二侧板4011与第三侧板4012相对设置,第一隔板4016位于第二侧板4011与第三侧板4012之间,第二侧板4011、第三侧板4012、第一隔板4016分别与第一侧板4013连接,且第一侧板4013、第二侧板4011与第一隔板4016围成第一腔402,第一侧板4013、第三 侧板4012与第一隔板4016围城第二腔403。
在一些实施例中,第一侧板4013位于第一管壳401的左侧,第二侧板4011位于第一管壳401的后侧,第三侧板4012位于第一管壳401的前侧,第一腔402、第二腔403的右侧开口,如此第一腔402、第二腔403均为右侧开口的U型腔体。
由左至右方向上,第一腔402在前后方向的宽度尺寸(第二侧板4011与第一隔板4016之间的距离)逐渐增大,第二腔403在前后方向的宽度尺寸(第三侧板4012与第一隔板4016之间的距离)逐渐减小,即第一腔402右侧的宽度尺寸大于左侧的宽度尺寸,第二腔403右侧的宽度尺寸小于左侧的宽度尺寸。
第一腔402内包括第一安装面4021、第二安装面4022、第三安装面4023与第四安装面4024,第一安装面4021朝向电路板300,第二安装面4022与第一安装面4021连接,第四安装面4024与第一侧板4013连接,第三安装面4023分别与第二安装面4022、第四安装面4024连接。在一些实施例中,第一管壳401上缺口4018的底面即为第一安装面4021。
在一些实施例中,第二安装面4022凹陷于第一安装面4021,第四安装面4024突出于第三安装面4023,电路板300的一端通过缺口4018插入第一管壳401内,电路板300的背面与第一安装面4021接触连接。
图11为根据一些实施例的光模块中第一光收发组件的结构示意图一。如图11所示,第二安装面4022上设置有第一半导体制冷器,第一半导体制冷器的制冷面上设置有第一激光器组4103与第二激光器组4104,第一激光器组4103与第二激光器组4104沿前后方向并排设置在第一半导体制冷器上。
在一些实施例中,第一激光器组4103可包括四个激光器,四个激光器沿前后方向并排设置;第二激光器组4104可包括四个激光器,四个激光器沿前后方向并排设置。如此,在第一半导体制冷器的制冷面上,沿前后方向并排设置有8个激光器。
在一些实施例中,电路板300正面的第一DSP芯片310为8通道的800G DSP,如此第一DSP芯片310的每一通道能够传输100Gb/s的电信号,100Gb/s电信号能够驱动100Gb/s的激光器,如此第一腔402内的每个激光器均为100Gb/s激光器。
在一些实施例中,第一激光器组4103、第二激光器组4104的激光器通过信号线与第一DSP芯片310信号连接,第一DSP芯片310的信号通过差分信号线传输至激光器,为避免差分信号产生干扰,相邻激光器之间的间距为1.1mm。
在第一半导体制冷器的支撑作用下,第一激光器组4103、第二激光器组4104的打线高度与电路板300的正面位于同一平面上,如此第一激光器组4103、第二激光器组4104与电路板300的正面打线距离最短,能够减小损耗。
在一些实施例中,电路板300的正面上还设置有第一激光驱动芯片,该第一激光驱动芯片位于第一DSP芯片310与第一光收发组件400之间,第一DSP芯片310将电信号经由信号线传输至第一激光驱动芯片,第一激光驱动芯片将电信号转换为驱动电信号,该驱动电信号传输至第一激光器组4103、第二激光器组4104,以驱动第一激光器组4103、第二激光器组4104分别产生4路发射光。
第一半导体制冷器的制冷面上还设置有第一准直透镜组4105与第二准直透镜组4106, 第一准直透镜组4105位于第一激光器组4103的出光方向上,第二准直透镜组4106位于第二激光器组4104的出光方向上,准直透镜与激光器一一对应设置,如此每个激光器发射的发射光经准直透镜转换为准直光。
第三安装面4023上设置有第一波分复用器4107与第二波分复用器4108,第一波分复用器4107包括四个输入端与一个输出端,四个输入端与第一准直透镜组4105一一对应设置,如此第一准直透镜组4105输出的四路准直光均射入第一波分复用器4107,通过第一波分复用器4107将四路准直光复用为一路复合光,一路复合光经由输出端射出;第二波分复用器4108包括四个输入端与一个输出端,四个输入端与第二准直透镜组4106一一对应设置,如此第二准直透镜组4106输出的四路准直光均射入第二波分复用器4108,通过第二波分复用器4108将四路准直光复用纬一路复合光,一路复合光经由输出端射出。
第四安装面4024上设置有第一汇聚透镜4109与第二汇聚透镜4110,第一汇聚透镜4109与第一波分复用器4107的输出端对应设置,以将第一波分复用器4107输出的一路复合光转换为汇聚光;第二汇聚透镜4110与第二波分复用器4108对应设置,以将第二波分复用器4108输出的一路复合光转换为汇聚光。
在一些实施例中,第一波分复用器4107输出的第一复合光与第二波分复用器4108输出的第二复合光之间的距离小于第一汇聚透镜4109与第二汇聚透镜4110之间的距离,即第一波分复用器4107的出光口与第一汇聚透镜4109不位于同一直线上,第二波分复用器4108与第二汇聚透镜4110不位于同一直线上。
为将第一波分复用器4107输出的第一复合光射入第一汇聚透镜4109,将第二波分复用器4108输出的第二复合光射入第二汇聚透镜4110,第三安装面4023上还设置有第一棱镜组件4113,第一棱镜组件4113位于第一波分复用器4107与第一汇聚透镜4109之间,第一棱镜组件4113用于改变光的传输方向,第一波分复用器4107输出的第一复合光经第一棱镜组件4113反射后射至第一汇聚透镜4109,第二波分复用器4108输出的第二复合光经第一棱镜组件4113反射后射至第二汇聚透镜4110。
图12为根据一些实施例的光模块中第一棱镜组件的结构示意图,图13为根据一些实施例的光模块中第一棱镜组件的发射光路示意图。如图12、图13所示,第一棱镜组件4113包括第一支撑件41130、第一棱镜41135与第二棱镜41136,第一支撑件41130相对的两侧分别设置有第一固定面41131、第二固定面41132、第三固定面41133与第四固定面41134,,第一固定面41131与第二固定面41132之间呈预设角度连接,第三固定面41133与第四固定面41134之间呈预设角度连接,使得第一支撑件41130的顶部、底部较宽,第一支撑件41130的中间部分较窄。
第一棱镜41135包括相对的第一入光面41137与第一出光面41138,第一入光面41137与第一出光面41138之间在前后方向上具有偏移,第一棱镜41135的侧面粘贴于第一固定面41131上,使得第一入光面41137朝向第二波分复用器4108,第一出光面41138朝向光纤适配器700。如此,第二波分复用器4108输出第二复合光经第一入光面41137射入第一棱镜41135,在第一棱镜41135内进行多次反射后由第一出光面41138射出。
第二棱镜41136的结构与第一棱镜41135的结构相同,第二棱镜41136的侧面粘贴于 第三固定面41133上,使得第二棱镜41136的入光面朝向第一波分复用器4107,出光面朝向光纤适配器700,。如此,第一波分复用器4107输出的第一复合光经入光面射入第二棱镜41136,在第二棱镜41136内进行多次反射后由出光面射出。
在一些实施例中,复用光射至第一棱镜组件4113时,因传输介质发生变化,复合光会在第一棱镜组件4113的入光面处发生反射,反射后的复合光可能会沿原路返回激光器,影响激光器的发光性能。
图14为根据一些实施例的光模块中第一光收发组件的发射光路示意图。如图14所示,为了避免在第一棱镜组件4113的入光面反射的光沿原路返回激光器,第三安装面4023上还设置有第一隔离器4111与第二隔离器4112,第一隔离器4111设置在第一波分复用器4107与第一棱镜组件4113之间,第二隔离器4112设置在第二波分复用器4108与第一棱镜组件4113之间。第一复合光在第一棱镜组件4113上反射的光被第一隔离器4111隔离,第二复合光在第一棱镜组件4113上反射的光被第二隔离器4112隔离。
第一侧板4013上设置有第一出光口4025与第二出光口4026,第一出光口4025、第二出光口4026均与第一腔402相连通,如此第一腔402通过第一出光口4025、第二出光口4026与光纤适配器700硬连接,使得第一汇聚透镜4109射出的汇聚光透过第二出光口4026射入光纤适配器700,第二汇聚透镜4110射出的汇聚光透过第一出光口4025射入光纤适配器700,实现了2路复合光(8路发射光)的发射。
在一些实施例中,第一出光口4025与第二出光口4026采用MDC光口与光纤适配器700硬连接,实现了第一腔402与光纤适配器700的硬连接组装。
在一些实施例中,第二腔403包括第五安装面4031,该第五安装面4031由第一侧板4013向电路板300的方向延伸,第五安装面4031与第一腔402内的安装面并排设置。电路板300的突出板303插入第二腔403内,突出板303的背面与第五安装面4031接触连接。
第一侧板4013上还设置有第三出光口4032与第四出光口4033,第三出光口4032、第四出光口4033均与第二腔403相连通,如此第二腔403通过第三出光口4032、第四出光口4033与光纤适配器700连接。
在一些实施例中,第三侧板4012的内侧设置有固定槽4019,该固定槽4019的右侧设置有开口,固定槽4019朝向第一腔402的一侧设置有开口。连接第二光收发组件500a中光发射部分的光纤穿过第二腔403、第三出光口4032、第四出光口4033与光纤适配器700连接,光纤进入第二腔403时,通过固定槽4019固定光纤,避免光纤杂乱影响光模块的封装。
在一些实施例中,第一管壳401还包括第四侧板4014、第五侧板4015与第二隔板4017,第四侧板4014与第五侧板4015相对设置,第二隔板4017位于第四侧板4014与第五侧板4015之间,第四侧板4014、第五侧板4015、第二隔板4017分别与第一侧板4013相连接,且第一侧板4013、第四侧板4014与第二隔板4017围成第三腔404,第一侧板4013、第五侧板4015与第二隔板4017围城第四腔405。
在一些实施例中,第一侧板4013位于第三腔404的左侧,第三腔404与第四腔405 的右侧开口,如此第三腔404、第四腔405为右侧开口的U型腔体。第二侧板4011可与第四侧板4014相平齐,第三侧板4012可与第五侧板4015相平齐。
第三腔404包括第六安装面4041、第七安装面4045与第八安装面4046,第六安装面4041与第一侧板4013连接,第八安装面4046朝向电路板300,第七安装面4045位于第六安装面4041与第八安装面4046之间,且第八安装面4046凹陷于第七安装面4045。
第七安装面4045朝向第六安装面4041的一端设置有挡块4042,该挡块4042将第七安装面4045分成第一通道4043与第二通道4044,第六安装面4041通过第一通道4043、第二通道4044与第七安装面4045连通。
第一侧板4013上设置有第一入光口4047与第二入光口4048,第一入光口4047、第二入光口均与第三腔404连通,即光纤适配器700传输的两路复合接收光分别通过第一入光口4047、第二入光口4048射入第三腔404内。
在一些实施例中,第一入光口4047与第二入光口4048采用MDC光口与光纤适配器700连接,实现了第三腔404与光纤适配器700的硬连接组装。
图15为根据一些实施例的光模块中第一光收发组件的结构示意图二,图16为根据一些实施例的光模块中第一光收发组件的接收光路示意图。如图15、图16所示,第六安装面4041上设置有第一准直透镜4202与第二准直透镜4203,第一准直透镜4202与第二准直透镜4203并排设置于第六安装面4041上。第一准直透镜4202与第一入光口4047对应设置,如此经由第一入光口4047射入的一路复合光通过第一准直透镜4202转换为准直光;第二准直透镜4203与第二入光口4048对应设置,如此经由第二入光口4048射入的另一路复合光通过第二准直透镜4203转换为准直光。
第七安装面4045上设置有第一波分解复用器4204与第二波分解复用器4205,第一波分解复用器4204具有一个输入端与四个输出端,第一波分解复用器4204的输入端与第一准直透镜4202对应设置,如此第一准直透镜4202射出的准直光射入第一波分解复用器4204内,第一波分解复用器4204将一路复合光解复用为四路接收光,四路接收光分别经由四个输出端射出。
第二波分解复用器4205具有一个输入端与四个输出端,第二波分解复用器4205的输入端与第二准直透镜4203对应设置,如此第二准直透镜4203射出的准直光射入第二波分解复用器4205内,第二波分解复用器4205将一路复合光解复用为四路接收光,四路接收光分别经由四个输出端射出。
在一些实施例中,第一准直透镜4202射出的准直光经第一通道4043传输至第一波分解复用器4204,第二准直透镜4203射出的准直光经第二通道4044传输至第二波分解复用器4205,第一通道4043与第二通道4044之间的距离可能小于第一准直透镜4202与第二准直透镜4203之间的距离,即第一准直透镜4202与第一通道4043不位于同一直线上,第二准直透镜4203与第二通道4044不位于同一直线上。
为将第一准直透镜4202射出的准直光传输至第一通道4043,将第二准直透镜4203射出的准直光传输至第二通道4044,第六安装面4041上还设置有第二棱镜组件4210,第二棱镜组件4210位于第一准直透镜4202与第一通道4043之间,第二棱镜组件4210用于改 变光的传输方向,第一准直透镜4202射出的准直光经第二棱镜组件4210反射后传输至第一通道4043,第二准直透镜4203射出的准直光经第二棱镜组件4210反射后传输至第二通道4044。
图17为根据一些实施例的光模块中第二棱镜组件的结构示意图,图18为根据一些实施例的光模块中第二棱镜组件的接收光路示意图。如图17、图18所示,第二棱镜组件4210包括第二支撑件42100、第三棱镜42103与第四棱镜42104,第二支撑件42100相对的两侧分别设置有第五固定面42101与第六固定面42102,第三棱镜42103的侧面粘贴于第五固定面42101上,第四棱镜42104的侧面粘贴于第六固定面42102上。
第三棱镜42103包括相对的第二入光面42106与第二出光面42105,第二入光面42106与第二出光面42105之间在前后方向上具有偏移,且第二入光面42106朝向光纤适配器700,第二出光面42105朝向第一通道4043。如此,第一准直透镜4202射出的准直光经第二入光面42106射入第三棱镜42103,在第三棱镜42103内进行多次反射后由第二出光面42105射出,且射出的光传输至第一通道4043。
第三棱镜42103与第四棱镜42104的结构相同,第二准直透镜4203射出的准直光经第四棱镜42104的入光面射入第四棱镜42104,在第四棱镜42104内进行多次反射后由出光面射出,射出的光传输至第二通道4044。
第七安装面4045上还设置有第一汇聚透镜组4206与第二汇聚透镜组4207,第一汇聚透镜组4206包括四个汇聚透镜,每个汇聚透镜与第一波分解复用器4204的每一输出端对应设置,如此第一波分解复用器4204输出的四路接收光经第一汇聚透镜组4206转换为汇聚光。
第二汇聚透镜组4207包括四个汇聚透镜,每个汇聚透镜与第二波分解复用器4205的每一输出端对应设置,如此第二波分解复用器4205输出的四路接收光经第二汇聚透镜组4207转换为汇聚光。
在一些实施例中,由于电路板300的背面上设置有第一探测器组305与第二探测器组306,第一探测器组305、第二探测器组306与第八安装面4046之间具有高度差;且第一探测器组305、第二探测器组306的接收方向垂直于电路板300的背面,而第一汇聚透镜组4206、第二汇聚透镜组4207射出的接收光传输方向平行于电路板300的背面。如此,需在第一汇聚透镜组4206、第二汇聚透镜组4207与第一探测器组305、第二探测器组306之间设置反射镜,以改变第一汇聚透镜组4206、第二汇聚透镜组4207射出接收光的传输方向,使得接收光射入第一探测器组305与第二探测器组306。
第八安装面4046上设置有第一反射棱镜4208与第二反射棱镜4209,第一反射棱镜4208的一端与第一汇聚透镜组4206对应设置,第一反射棱镜4208的另一端设置有反射面,该反射面位于第一探测器组305的上方。如此,第一反射棱镜4208的反射面对第一汇聚透镜组4206射出的四路接收光进行反射,反射后的四路接收光分别射入第一探测器组305的相应探测器内。
第二反射棱镜4209的一端与第二汇聚透镜组4207对应设置,第二反射棱镜4209的另一端设置有反射面,该反射面位于第二探测器组306的上方。如此,第二反射棱镜4209 的反射面对第二汇聚透镜组4207射出的四路接收光进行反射,反射后的四路接收光分别射入第二探测器组306的相应探测器内。
在一些实施例中,第四腔405包括第九安装面4051,该第九安装面4051与第五安装面4031上下相对设置,且该第九安装面4051由第一侧板4013向电路板300的方向延伸,第九安装面4051与第三腔404内的安装面并排设置。电路板300的突出板303插入第二腔403内,第九安装面4051位于电路板300背面的下方。
第一侧板4013上还设置有第三入光口4052与第四入光口4053,第三入光口4052、第四入光口4053均与第四腔405相连通,如此第四腔405通过第三入光口4052、第四入光口4053与光纤适配器700连接。
图19为根据一些实施例的光模块中电路板与第一光收发组件的局部装配剖视图。如图19所示,第一腔402、第三腔404上下层叠设置,将第一激光器组4103、第二激光器组4104、第一准直透镜组4105、第二准直透镜组4106、第一波分复用器4107、第二波分复用器4108、第一隔离器4111、第二隔离器4112、第一棱镜组件4113、第一汇聚透镜4109、第二汇聚透镜4110分别安装至第一腔402后,第一DSP芯片310的Tx焊盘通过高速信号线与第一激光驱动芯片连接,第一激光驱动芯片通过信号线分别与第一激光器组4103、第二激光器组4104连接,使得第一DSP芯片310输出的电信号传输至第一激光驱动芯片,第一激光驱动芯片根据该电信号输出驱动电信号,以驱动第一激光器组4103、第二激光器组4104产生多路发射光。
第一激光器组4103射出的四路发射光经第一准直透镜组4105转换为四路准直光,四路准直光经第一波分复用器4107复用为一路复合光,一路复合光经第一汇聚透镜4109转换为汇聚光,汇聚光透过第一出光口4025耦合至光纤适配器700。
第二激光器组4104射出的四路发射光经第二准直透镜组4106转换为四路准直光,四路准直光经第二波分复用器4108复用为一路复合光,一路复合光经第二汇聚透镜4110转换为汇聚光,汇聚光透过第二出光口4026耦合至光纤适配器700。
将第一准直透镜4202、第二准直透镜4203、第一波分解复用器4204、第二波分解复用器4205、第一汇聚透镜组4206、第二汇聚透镜组4207、第一反射棱镜4208、第二反射棱镜4209分别安装至第三腔404后,光纤适配器700传输的两路复合光分别通过第一入光口4047、第二入光口4048射入第三腔404。
射入第三腔404的一路复合光经第一准直透镜4202转换为准直光,准直光经第一波分解复用器4204解复用为四路接收光,四路接收光经第一汇聚透镜组4206转换为四路汇聚光,四路汇聚光经第一反射棱镜4208反射后射入第一探测器组305。
射入第三腔404的一路复合光经第二准直透镜4203转换为准直光,准直光经第二波分解复用器4205解复用为四路接收光,四路接收光经第二汇聚透镜组4207转换为四路汇聚光,四路汇聚光经第二反射棱镜4209反射后射入第二探测器组306。
第一探测器组305、第二探测器组306通过高速信号线与第一DSP芯片310的Rx焊盘电连接,如此,第一探测器组305、第二探测器组306将光信号转换为电信号后,电信号经由高速信号线传输至第一DSP芯片310,第一DSP芯片310将处理后的电信号经由金 手指传输至上位机。
在一些实施例中,由于探测器设置在电路板300的背面,第一DSP芯片310设置在电路板300的正面,因此可在电路板300上设置过孔,第一DSP芯片310的Rx焊盘与过孔的一端连接,电路板300的背面布设有高速信号线,高速信号线的一端与过孔的另一端连接,高速信号线的另一端与探测器连接,实现了探测器与第一DSP芯片310的电连接。
本公开将2组光发射器件与2组光接收器件集成为一体结构,光发射器件与光接收器件共用一个管壳背靠背设置,光发射器件位于管壳的上层,光接收器件位于管壳的下层,实现了8通道800G发射数据传输与8通道800G接收数据传输。
图20为根据一些实施例的光模块中电路板与第二光收发组件的装配示意图,图21为根据一些实施例的光模块中电路板与第二光收发组件的局部分解示意图。如图20、图21所示,第二光收发组件500a包括第二管壳501a、第一发射盖板502a、第二发射盖板503a与第三发射盖板504a,第二管壳501a设置于电路板300的背面,第二光收发组件500a中的激光器组件嵌设于电路板300的安装孔302内,且激光器组件设置于第二管壳501a上,如此第二管壳501a的顶面固定于电路板300的背面上,第二管壳501a支撑固定激光器组件,使得激光器组件嵌在安装孔302内。
激光器组件通过第二管壳501a嵌在电路板300的安装孔302内,第二发射盖板503a罩在激光器组件上,使得激光器组件位于第二发射盖板503a、电路板300与第二管壳501a组成的密封腔内。
图22为根据一些实施例的光模块中第二管壳的结构示意图,图23为根据一些实施例的光模块中第二光收发组件的局部结构示意图一。如图22、图23所示,第二管壳501a的顶面设置有装配槽5010a,该装配槽5010a与安装孔302相对设置,且该装配槽5010a的装配面凹陷于第二管壳501a的顶面,第二光收发组件500a的激光器组件设置于装配槽5010a内,使得激光器组件设置于第二管壳501a上。
第二光收发组件500a的激光器组件包括第一激光器阵列505a与第二激光器阵列511a,第一激光器阵列505a与第二激光器阵列511a沿前后方向并排设置于装配槽5010a内。为对第一激光器阵列505a与第二激光器阵列511a工作产生的热量进行散热,装配槽5010a内还设置有第二半导体制冷器,第一激光器阵列505a、第二激光器阵列511a并排设置在第二半导体制冷器的制冷面上,如此第二半导体制冷器工作制冷,以降低第一激光器阵列505a、第二激光器阵列511a的温度,同时第一激光器阵列505a、第二激光器阵列511a工作产生的热量传导至第二半导体制冷器,再传导至第二管壳501a进行散热。
第一激光器阵列505a可包括四个激光器,四个激光器沿前后方向并排设置;第二激光器阵列511a可包括四个激光器,四个激光器沿前后方向并排设置。如此,在第二半导体制冷器的制冷面上,沿前后方向并排设置有8个激光器。
电路板300正面的第二DSP芯片320为8通道的800G DSP,如此,第二DSP芯片320的每一通道能够传输100Gb/s的电信号,100Gb/s电信号能够驱动100Gb/s的激光器,如此第一激光器阵列505a、第二激光器阵列511a的每个激光器均为100Gb/s激光器。
在第二半导体制冷器、第二管壳501a的支撑作用下,第一激光器阵列505a、第二激 光器阵列511a的打线高度与电路板300的正面位于同一平面上,如此第一激光器阵列505a、第二激光器阵列511a与电路板300的正面打线距离最短,能够减小损耗。
在一些实施例中,电路板300的正面上还设置有第二激光驱动芯片,该第二激光驱动芯片位于第二DSP芯片320与第二光收发组件500a之间,第二DSP芯片320将电信号经由信号线传输至第二激光驱动芯片,第二激光驱动芯片将电信号转换为驱动电信号,该驱动电信号传输至第一激光器阵列505a、第二激光器阵列511a,以驱动第一激光器阵列505a、第二激光器阵列511a分别产生4路发射光。
第二半导体制冷器的制冷面上还设置有第一准直透镜阵列506a与第二准直透镜阵列512a,第一准直透镜506a位于第一激光器阵列505a的出光方向上,第二准直透镜阵列512a位于第二激光器阵列511a的出光方向上,准直透镜与激光器一一对应设置,如此每个激光器发射的发射光经准直透镜转换为准直光。
第二光收发组件500a中的光发射器件还包括透镜、波分复用器等光器件,透镜、波分复用器等光器件设置于第一发射盖板502a上,使得透镜、波分复用器等光器件位于激光器组件的出光方向上,激光器组件射出的多路发射光经透镜、波分复用器等耦合至内部光纤,再经内部光纤传输耦合至光纤适配器700。
由于第一激光器阵列505a、第二激光器阵列511a中激光器的打线高度与电路板300的正面位于同一平面,透镜、波分复用器等光器件位于电路板300的正面上方,如此激光器的打线高度与透镜、波分复用器等光器件之间存在高度差,因此可在第一准直透镜阵列506a、第二准直透镜阵列512a与波分复用器之间设置有平移棱镜组件,通过平移棱镜组件改变发射光的传播方向。
为设置平移棱镜组件,第二管壳501a的顶面上还设置有凸台5011a,该凸台5011a由第二管壳501a的顶面向电路板300的正面突出,使得凸台5011a插入电路板300的安装孔302内。凸台5011a上设置有第一挡板5012a与第二挡板5013a,第一挡板5012a沿凸台5011a的前后方向设置,第二挡板5013a沿凸台5011a的左右方向设置,如此第一挡板5012a与第二挡板5013a相互垂直。
平移棱镜组件包括第一平移棱镜5073a与第二平移棱镜5074a,第一平移棱镜5073a与第二平移棱镜5074a沿前后方向并排设置于凸台5011a上,且第一平移棱镜5073a、第二平移棱镜5074a的左侧与第一挡板5012a相抵接,以通过第一挡板5012a对第一平移棱镜5073a、第二平移棱镜5074a进行左右方向的限位;第一平移棱镜5073a的前侧与第二挡板5013a相抵接,以通过第二挡板5013a对第一平移棱镜5073a进行前后方向的限位。如此,通过第一挡块5012a、第二挡板5013a对第一平移棱镜5073a、第二平移棱镜5074a进行限位固定。
第一平移棱镜5073a位于第一激光器阵列505a的出光方向上,第一激光器阵列505a发射的多路发射光经第一准直透镜阵列506a转换为多路准直光,多路准直光沿平行于电路板300的方向传输,多路准直光经第一平移棱镜5073a反射,反射后的多路光沿垂直于电路板300的方向射出。
第二平移棱镜5074a位于第二激光器阵列511a的出光方向上,第二激光器阵列511a 发射的多路发射光经第二准直透镜阵列512a转换为多路准直光,多路准直光沿平行于电路板300的方向传输,多路准直光经第二平移棱镜5074a反射,反射后的多路光沿垂直于电路板300的方向射出。
图24为根据一些实施例的光模块中电路板与第二光收发组件的局部装配示意图。如图24所示,第二光收发组件500a还包括第三平移棱镜5071a与第四平移棱镜5072a,第三平移棱镜5071a位于第一平移棱镜5073a的上方,第三平移棱镜5071a对第一平移棱镜5073a反射的发射光进行再次反射,再次反射后的发射光平行于电路板300传输;第四平移棱镜5072a位于第二平移棱镜5074a的上方,第四平移棱镜5072a对第二平移棱镜5074a反射的发射光进行再次反射,再次反射后的发射光平行于电路板300传输。
第二光收发组件500a还包括第三波分复用器508a与第四波分复用器513a,第三波分复用器508a与第三平移棱镜5071a相对设置,第三平移棱镜5071a反射后的多路发射光射入第三波分复用器508a内进行合光,以输出一路复合光。第四波分复用器513a与第四平移棱镜5072a相对设置,第四平移棱镜5072a反射后的多路反射光射入第四波分复用器513a内进行合光,以输出另一路复合光。
在一些实施例中,由于第三波分复用器508a、第四波分复用器513a与第一激光器阵列505a、第二激光器阵列511a之间存在高度差,因此通过第一平移棱镜5073a、第二平移棱镜5074a、第三平移棱镜5071a、第四平移棱镜5072a进行反射以抵消波分复用器与激光器阵列之间的高度差,第三平移棱镜5071a可放置在第一平移棱镜5073a上,以通过第一平移棱镜5073a支撑固定第三平移棱镜5071a;第四平移棱镜5072a可放置在第二平移棱镜5074a上,以通过第二平移棱镜5074a支撑固定第四平移棱镜5972a。
第三平移棱镜5071a与第一平移棱镜5073a之间也可存在间隙,第四平移棱镜5072a与第二平移棱镜5074a之间也可存在间隙,并通过第三平移棱镜5071a与第一平移棱镜5073a、第四平移棱镜5072a与第二平移棱镜5074a之间的间隙来调整波分复用器与激光器阵列之间的安装高度差。
在一些实施例中,第三波分复用器508a、第四波分复用器513a可直接设置在电路板300的正面上,以通过电路板300支撑固定第三波分复用器508a与第四波分复用器513a。也可通过第一发射盖板502a来固定第三波分复用器508a、第四波分复用器513a,使得第三波分复用器508a、第四波分复用器513a设置在电路板300正面的上方。
图25为根据一些实施例的光模块中第一发射盖板的结构示意图一,图26为根据一些实施例的光模块中第一发射盖板的结构示意图二。如图25、图26所示,第一发射盖板502a包括第一子盖板5020a与第二子盖板5021a,第一子盖板5020a的顶面突出于第二子盖板5021a的顶面,且第二子盖板5021a的底面与电路板300的正面粘接固定,第一子盖板5020a位于电路板300正面的上方。
第一子盖板5020a朝向电路板300正面的一侧设置有第一装配面50206a与第二装配面50207a,第一装配面50206a、第二装配面50207a通过第一连接面5022a与第二子盖板5021a的底面相连接。第一装配面50206a与第二装配面50207a沿第一子盖板5020a的前后方向并排设置,且第一装配面50206a与第二装配面50207a之间设置有第三隔板50208a,以通 过第三隔板50208a隔开第一装配面50206a与第二装配面50207a。
第一子盖板5020a朝向电路板300正面的一侧还设置有第三装配面50209a与第四装配面50210a,第三装配面50209a与第四装配面50210a沿第一子盖板5020a的前后方向并排设置,且第三隔板50208a隔开第三装配面50209a与第四装配面50210a。第三装配面50209a与第一装配面50206a位于第三隔板50208a的同一侧,第四装配面50210a与第二装配面50207a位于第三隔板50208a的同一侧。
图27为根据一些实施例的光模块中第二光收发组件的局部结构示意图二。如图27所示,第三波分复用器508a设置于第二装配面50207a上,第四波分复用器513a设置于第一装配面50206a上,第三平移棱镜5071a设置于第四装配面50210a上,第四平移棱镜5072a设置于第三装配面50209a上,以通过第一子盖板5020a来固定第三波分复用器508a、第四波分复用器513a、第三平移棱镜5071a与第四平移棱镜5072a,且使得第三平移棱镜5071a将来自第一平移棱镜5073a的反射光再次反射至第三波分复用器508a内,第四平移棱镜5072a将来自第二平移棱镜5074a的反射光再次反射至第四波分复用器513a内。
在一些实施例中,由于第二光收发组件500a位于第一DSP芯片310与第二DSP芯片320之间,第一DSP芯片310位于第二光收发组件500a的左侧,第二光收发组件500a通过内部光纤与光纤适配器700连接时,内部光纤会跨过第一DSP芯片310,如此影响第一DSP芯片310与上壳体201之间的接触,从而降低了第一DSP芯片310的散热效率。
为了提高第一DSP芯片310的散热效率,需对连接第二光收发组件500a的光纤进行弯曲,使得光纤绕过第一DSP芯片310与光纤适配器700连接,但这样导致光纤弯曲角度较大,容易造成光纤的折断。如此,本公开对第二光收发组件500a中的光发射部分进行倾斜设置,使得第二光收发组件500a中的光发射部分向第一DSP芯片310的一侧倾斜,这样能够减小光纤的弯曲角度。
在本公开的某一些实施例中,第一子盖板5020a与电路板300平行设置,第二子盖板5021a与电路板300之间具有预设角度,使得第一子盖板5020a与第二子盖板5021a之间存在一定的角度,且沿着第一子盖板5020a上波分复用器输出复合光的出光方向,第二子盖板5021a向电路板300的左前方倾斜,第二子盖板5021a与复合光的出光方向之间存在第一预设角度。
在一些实施例中,第二子盖板5021a与复合光的出光方向之间的第一预设角度为30°。
第一子盖板5020a背向电路板300正面的一侧(正面)设置有安装槽,该安装槽的装配面凹陷于第一子盖板5020a的正面,且安装槽内设置有贯穿第一子盖板5020a的通孔50201a,该通孔50201a由安装槽的装配面贯穿至第一装配面50206a、第二装配面50207a。
安装槽的装配面包括第五装配面50202a与第六装配面50203a,第五装配面50202a与第六装配面50203a之间设置有第四隔板50204a,以通过第四隔板50204a隔开第五装配面50202a与第六装配面50203a。
第二子盖板5021a背向电路板300的正面上设置有安装槽,该安装槽包括第七装配面50211a、第八装配面50212a与第九装配面50213a,第七装配面50211a与第五装配面50202a、第六装配面50203a相连接,第九装配面50213a朝向光纤适配器700,第八装配面50212a 位于第七装配面50211a与第九装配面50213a之间,且第七装配面50211a、第八装配面50212a与第九装配面50213a均与波分复用器输出复合光的出光方向之间成第一预设角度设置。
图28为根据一些实施例的一种光模块中第二光收发组件的局部结构示意图三。如图28所示,第五装配面50202a上设置有第一转角棱镜509a,第一转角棱镜509a与第三波分复用器508a相对设置,使得第三波分复用器508a输出的一路复合光穿过通孔50201a,再经第一转角棱镜509a多次反射后向电路板300的左前方倾斜射出;第六装配面50230a上设置有第二转角棱镜514a,第二转角棱镜514a与第四波分复用器513a相对设置,使得第四波分复用器513a输出的另一路复合光穿过通孔50201a,再经第二转角棱镜514a多次反射后向电路板300的左前方倾斜射出。
第一转角棱镜509a与第二转角棱镜514a的结构相同,均为色散棱镜,且其形状均为等腰梯形。即第一转角棱镜509a包括入射面、反射面与出射面,入射面与出射面的尺寸相同,反射面的尺寸小于与其相对的侧面尺寸,且入射面朝向第三波分复用器508a,出射面朝向光纤适配器700,反射面的两端分别连接入射面与出射面。
如此,第三波分复用器508a射出的复合光水平射入第一转角棱镜509a的入射面,经入射面折射至反射面,在反射面处发生全反射,反射至出射面,再经出射面折射出去,使得复合光的出射方向与射入第一转角棱镜509a的入射方向成第一预设角度。
第七装配面50211a上设置有第三汇聚透镜510a与第四汇聚透镜515a,第三汇聚透镜510a与第一转角棱镜509a相对设置,用于将第一转角棱镜509a射出的复合光转换为汇聚光;第四汇聚透镜515a与第二转角棱镜514a相对设置,用于将第二转角棱镜514a射出的复合光转换为汇聚光。
第九装配面50213a上设置有光耦合器518a,光耦合器518a内设置有两根光纤,第三汇聚透镜510a将一路复合光汇聚至光耦合器518a内的一根光纤内,第四汇聚透镜515a将另一路复合光汇聚至光耦合器518a内的另一根光纤内,以通过两根光纤将两路复合光传输至光纤适配器700,以实现多路光的发射。
连接光耦合器518a的一内部光纤穿过第三出光口4032与光纤适配器700连接,连接光耦合器518a的另一内部光纤穿过第四出光口4033与光纤适配器700连接,如此第二光收发组件500a的光发射部分采用尾纤式连接方式与光纤适配器700连接。
在一些实施例中,汇聚透镜射出的汇聚光射至光耦合器518a内的光纤时,因传输介质发生变化,汇聚光在光纤端面处易发生反射,反射后的光可能会沿原路返回激光器,影响激光器的发光性能。为了避免在光纤端面处反射的光原路返回,在第八装配面50212上设置有第三隔离器516a与第四隔离器517a,第三隔离器516a位于第三汇聚透镜510a与光耦合器518a之间,用于对光耦合器518a对一路复合光的反射光进行隔离;第四隔离器517a位于第四汇聚透镜515a与光耦合器518a之间,用于对光耦合器518a对另一路复合光的反射光进行隔离。
在一些实施例中,第三汇聚透镜510a、第四汇聚透镜515a、第三隔离器516a、第四隔离器517a与光耦合器518a的中轴线与电路板300的中轴线之间均成第一预设角度设置。
将第一转角棱镜509a设置于第五装配面50202a上,将第二转角棱镜514a设置于第六装配面50230a,将第三汇聚透镜510a、第四汇聚透镜515a设置于第七装配面50211a,将第三隔离器516a与第四隔离器517a设置于第八装配面50212,将光耦合器518a设置于第九装配面50213a上后,将第三发射盖板504a盖合于第二子盖板5021a上的安装槽上,以对第一转角棱镜509a、第二转角棱镜514a、第三汇聚透镜510a、第四汇聚透镜515a、第三隔离器516a、第四隔离器517a与光耦合器518a进行封装。
图29为根据一些实施例的光模块中第二发射盖板的翻转结构示意图。如图29所示,将第一发射盖板502a设置于电路板300的正面上,将波分复用器、转角棱镜、汇聚透镜、隔离器、光耦合器等光器件设置于第一发射盖板502a上后,将第二发射盖板503a盖合于电路板300的安装孔302上方,且第三发射盖板502a与第一子盖板5020a相连接,以对激光器阵列、准直透镜阵列、平移棱镜组件进行封装。
在本公开的某一些实施例中,第二发射盖板503a包括发射罩5030a、第一突出侧板5032a与第二突出侧板5033a,发射罩5030a内设置有腔体5031a,第一突出侧板5032a、第二突出侧板5033a分别与发射罩5030a连接,第一突出侧板5032a与第二突出侧板5033a相对设置,且第一突出侧板5032a与第二突出侧板5033a之间存在间隙。
将发射罩5030a的底面粘接于电路板300的正面,且发射罩5030a罩在安装孔302上,使得激光器阵列、准直透镜阵列位于发射罩5030a的腔体5031a内。第一子盖板5020a位于第二发射盖板503a的第一突出侧板5032a、第二突出侧板5033a之间,使得第一突出侧板5032a、第二突出侧板5033a与第一子盖板5020a的侧面相抵接;第一突出侧板5032a、第二突出侧板5033a的左侧面与第一子盖板5022a相抵接,使得第一发射盖板502a、第二发射盖板503a与电路板300形成腔体。
图30为根据一些实施例的光模块中第二光收发组件的发射光路示意图,图31为根据一些实施例的光模块中第二光收发组件的局部剖视图一,图32为根据一些实施例的光模块中第二光收发组件的局部剖视图二。如图30、图31、图32所示,将第二半导体制冷器519a、第一激光器阵列505a、第二激光器阵列511a、第一准直透镜阵列506a、第二准直透镜阵列512a设置在第二管壳501a的装配槽5010a内,将第一平移棱镜5073a与第二平移棱镜5074a设置在第二管壳501a的凸台5011a上,然后将第二管壳501a的顶面粘接于电路板300的背面,使得第一激光器阵列505a、第二激光器阵列511a、第一准直透镜阵列506a、第二准直透镜阵列512a、第一平移棱镜5073a与第二平移棱镜5074a嵌在电路板300的安装孔302内。
然后将第三波分复用器508a、第四波分复用器513a、第三平移棱镜5071a、第四平移棱镜5072a设置在第一子盖板5020a朝向电路板300正面的装配面上,将第一转角棱镜509a、第二转角棱镜514a、第三汇聚透镜510a、第四汇聚透镜515a、第三隔离器516a、第四隔离器517a、光耦合器518a设置在第二子盖板5021a的装配面上,然后将装配好的第一发射盖板502a的底面粘接在电路板300的正面。
然后将第三发射盖板504a罩在第二子盖板5021a上,以对第一转角棱镜509a、第二转角棱镜514a、第三汇聚透镜510a、第四汇聚透镜515a、第三隔离器516a、第四隔离器 517a、光耦合器518a进行封装。
然后将第二发射盖板503a罩在电路板300的安装孔302上,且第一发射盖板502a的第一子盖板5020a嵌在第二发射盖板503a内,由此实现了第二光收发组件500a中光发射部分的器件装配。
完成第二光收发组件500a中光发射部分的器件装配后,第一激光器阵列505a发射的四路发散光经第一准直透镜阵列506a转换为多路准直光,多路准直光经第一平移棱镜5073a、第三平移棱镜5071a的两次反射后射入第三波分复用器508a,经第三波分复用器508a将四路发射光复用为一路复合光,复合光经第一转角棱镜509a折射、反射后使传输方向发生倾斜,再经由第三汇聚透镜510a耦合至光耦合器518a,再经由内部光纤传输至光纤适配器700,实现了四路发射光的发射。
第二激光器阵列511a发射的另外四路发散光经第二准直透镜阵列512a转换为多路准直光,多路准直光经第二平移棱镜5074a、第四平移棱镜5072a的两次反射后射入第四波分复用器513a,经第四波分复用器513a将四路发散光复用为另一路复合光,另一路复合光经第二转角棱镜514a折射、反射后使传输方向发生倾斜,再经由第四汇聚透镜515a耦合至光耦合器518a,再经由内部光纤传输至光纤适配器700,实现了另外四路发射光的发射。
图33为根据一些实施例的光模块中第二管壳的翻转结构示意图,图34为根据一些实施例的光模块中第二光收发组件的局部结构示意图四。如图33、图34所示,第二管壳501a背向电路板300背面的一侧(底面)设置有第一容纳腔、第二容纳腔、第一插孔5018a与第二插孔50113a,第一插孔5018a与第一容纳腔相连通,第二插孔50113a与第二容纳腔相连通。
第一容纳腔包括第一支撑面5014a、第二支撑面5015a、第三支撑面5016a与第四支撑面5017a,第一支撑面5014a突出于第二支撑面5015a、第三支撑面5016a与第四支撑面5017a,第二支撑面5015a与第一插孔5018a相连接,第三支撑面5016a位于第二支撑面5015a与第四支撑面5017a之间,且第四支撑面5017a凹陷于第三支撑面5016a。
第一插孔5018a处插有第一接收光耦合器520a,使得第一接收光耦合器520a通过第一插孔5018a插入第一容纳腔内。在一些实施例中,内部光纤的一端与第一接收光耦合器520a连接,另一端穿过第三入光口4052与光纤适配器700连接,如此光纤适配器700传输的外部光经内部光纤传输至第一接收光耦合器520a。
第二支撑面5015a上设置有第三准直透镜521a,该第三准直透镜521a用于将第一接收光耦合器520a传输的接收光转换为准直光;第三支撑面5016a上设置有第三波分解复用器522a,第三波分解复用器522a用于将准直光解复用为四路接收光;第四支撑面5017a上设置有第一汇聚透镜阵列523a,四路接收光经第一汇聚透镜阵列523a转换为四路汇聚光。
第二管壳501a与第四支撑面5017a连接的一端还设置有第九支撑面50114a,第九支撑面50114a凹陷于第四支撑面5017a,且第九支撑面50114a通过第二连接面50115a与第四支撑面5017a相连接。
电路板300的背面设置有第一探测器阵列307,第一汇聚透镜阵列523a设置在第四支撑面5017a上,如此第一探测器阵列307与第一汇聚透镜阵列523a之间存在高度差,且第一探测器阵列307的接收方向垂直于电路板300的背面,而第一汇聚透镜阵列523a射出的接收光传输方向平行于电路板300的背面。如此需在第一汇聚透镜阵列523a与第一探测器阵列307之间设置第三反射棱镜524a,第三反射棱镜524a设置于第九支撑面50114a上,通过第三反射棱镜524a改变第一汇聚透镜阵列523a射出接收光的传输方向,使得反射后的接收光射入第一探测器阵列307。
将第三准直透镜521a、第三波分解复用器522a、第一汇聚透镜阵列523a设置在第一容纳腔后,将第一接收盖板盖合在第一支撑面5014a,以对第三准直透镜521a、第三波分解复用器522a、第一汇聚透镜阵列523a进行封装。
第二容纳腔包括第五支撑面5019a、第六支撑面50110a、第七支撑面50111a与第八支撑面50112a,第五支撑面5019a突出于第六支撑面50110a、第七支撑面50111a与第八支撑面50112a,第六支撑面50110a与第二插孔50113a相连接,第七支撑面50111a位于第六支撑面50110a与第八支撑面50112a之间,第八支撑面50112a凹陷于第七支撑面50111a。
第二插孔50113a处插有第二接收光耦合器525a,使得第二接收光耦合器525a通过第二插孔50113a插入第二容纳腔内。在一些实施例中,内部光纤的一端与第二接收光耦合器525a连接,另一端穿过第四入光口4053与光纤适配器700连接,如此光纤适配器700传输的外部光经内部光纤传输至第二接收光耦合器525a。
第六支撑面50110a上设置有第四准直透镜526a,该第四准直透镜526a用于将第二接收光耦合器525a传输的接收光转换为准直光;第七支撑面50111a上设置有第四波分解复用器527a,第四波分解复用器527a用于将准直光解复用为四路接收光;第八支撑面50112a上设置有第二汇聚透镜阵列528a,四路接收光经第二汇聚透镜阵列528a转换为四路汇聚光。
电路板300的背面设置有第二探测器阵列308,第二汇聚透镜阵列528a设置在第八支撑面50112a上,如此第二探测器阵列308与第二汇聚透镜阵列528a之间存在高度差,且第二探测器阵列308的接收方向垂直于电路板300的背面,而第二汇聚透镜阵列528a射出的接收光传输方向平行于电路板300的背面。如此需在第二汇聚透镜阵列528a与第二探测器阵列308之间设置第四反射棱镜529a,第四反射棱镜529a设置于第九支撑面50114a上,通过第四反射棱镜529a改变第二汇聚透镜阵列528a射出接收光的传输方向,使得反射后的接收光射入第二探测器阵列308。
将第四准直透镜526a、第四波分解复用器527a、第二汇聚透镜阵列528a设置在第二容纳腔后,将第二接收盖板盖合在第五支撑面5019a上,以对第四准直透镜526a、第四波分解复用器527a、第二汇聚透镜阵列528a进行封装。
图35为根据一些实施例的光模块中第二光收发组件的接收光路示意图,图36为根据一些实施例的光模块中第二光收发组件的局部剖视图三。如图35、图36所示,将第一接收光耦合器520a通过第一插孔5018a插入第二管壳501a的第一容纳腔,将第三准直透镜521a设置在第二支撑面5015a上,将第三波分解复用器522a设置在第三支撑面5016a上, 将第一汇聚透镜阵列523a设置在第四支撑面5017a上,将第三反射棱镜524a设置在第九支撑面50114a上,使得第三反射棱镜524a的反射面位于电路板300背面上第一探测器阵列307的上方,然后将第一接收盖板盖合在第一支撑面5014a上。
如此,光纤适配器700传输的接收光经内部光纤传输至第一接收光耦合器520a,通过第一接收光耦合器520a射至第三准直透镜521a,第三准直透镜521a将接收光转换成准直光,准直光经第三波分解复用器522a解复用为四路光,四路光经第一汇聚透镜阵列523a汇聚至第三反射棱镜524a,再经由第三反射棱镜524a将四路光分别反射汇聚至第一探测器阵列307。
将第二接收光耦合器525a通过第二插孔50113a插入第二管壳501a的第二容纳腔,将第四准直透镜526a设置在第六支撑面50110a上,将第四波分解复用器527a设置在第七支撑面50111a上,将第二汇聚透镜阵列528a设置在第八支撑面50112a,将第四反射棱镜529a设置在第九支撑面50114a上,使得第四反射棱镜529a的反射面位于电路板300背面上第二探测器阵列308的上方,然后将第二接收盖板盖合在第五支撑面5019a上。
如此,光纤适配器700传输的接收光经内部光纤传输至第二接收光耦合器525a,通过第二接收光耦合器525a射至第四准直透镜526a,第四准直透镜526a将接收光转换成准直光,准直光经第四波分解复用器527a解复用为四路光,四路光经第二汇聚透镜阵列528a汇聚至第四反射棱镜529a,再经由第四反射棱镜529a将四路光分别反射汇聚至第二探测器阵列308。
在一些实施例中,将第三反射棱镜524a、第四反射棱镜529a设置在第九支撑面50114a上后,可在第三反射棱镜524a、第四反射棱镜529a上方罩设第三接收盖板530a,该第三接收盖板530a的左侧与第二连接面50115a相抵接,第三接收盖板530a的右侧与电路板300的背面粘接固定,由此将第三反射棱镜524a、第四反射棱镜529a、第一探测器阵列307、第二探测器阵列308、跨阻放大器等设置在第三接收盖板530a与电路板300背面形成的腔体内。
第一探测器阵列307、第二探测器阵列308通过高速信号线与第二DSP芯片320的Rx焊盘电连接,如此,第一探测器阵列307、第二探测器阵列308将光信号转换为电信号后,电信号经由高速信号线传输至第二DSP芯片320,第二DSP芯片320将处理后的电信号经由金手指传输至上位机。
在一些实施例中,由于第一探测器阵列307、第二探测器阵列308设置在电路板300的背面,第二DSP芯片320设置在电路板300的正面,因此可在电路板300上设置过孔,第二DSP芯片320的Rx焊盘与过孔的一端连接,电路板300的背面布设有高速信号线,高速信号线的一端与过孔的另一端连接,高速信号线的另一端与第一探测器阵列307、第二探测器阵列308连接,实现了第一探测器阵列307、第二探测器阵列308与第二DSP芯片320的电连接。
图37为根据一些实施例的光模块中第二光收发组件的剖视图一,图38为根据一些实施例的光模块中第二光收发组件的剖视图二。如图37、图38所示,本公开将与第二DSP芯片320信号连接的光发射器件、光接收器件组成一个第二光收发组件500a,光发射器件 位于电路板300的正面上方,光发射器件的激光器组件嵌在电路板300的安装孔302内,光接收器件位于电路板300的背面,实现了8通道800G发射数据传输与8通道800G接收数据传输。
根据一些实施例的光模块共包括4组光发射器件与4组光接收器件,2组光发射器件与2组光接收器件集成一体结构,两者共用一个管壳背靠背设置,组成第一光收发组件,2组光发射器件、2组光接收器件与第一DSP芯片电连接,且采用MDC光口与光纤适配器硬连接组装。另外2组光发射器件与2组光接收器件集成一体结构,两者共用一个管壳背靠背设置,组成第二光收发组件,2组光发射组件设置在电路板的正面,且光发射器件的激光器组件嵌在电路板的安装孔内,光发射组件的波分复用器、转角棱镜等光处理组件倾斜设置,使得连接光发射器件的内部光纤绕过第一DSP芯片与光纤适配器连接;2组光接收器件组设置在电路板的背面,光发射器件、光接收器件与第二DSP芯片电连接,且采用尾纤式连接方式与光纤适配器连接。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (6)

  1. 一种光模块,包括:
    电路板,正面设置有第一数据处理器、第二数据处理器与安装孔;
    第一光收发组件,与所述电路板插接,与所述第一数据处理器电连接;
    第二光收发组件,与所述第二数据处理器电连接;
    光纤适配器,与所述第一光收发组件硬连接,通过光纤尾纤与所述第二光收发组件连接;
    其中,所述第二光收发组件包括:
    第二管壳,顶面与所述电路板背面连接,底面设置有容纳腔;
    第一发射盖板,设置于所述电路板的正面,其与光发射方向具有第一预设角度;
    光发射器件,包括激光器组件、平移棱镜组件与光处理组件,所述激光器组件、所述平移棱镜组件通过所述安装孔设置于所述第二管壳的顶面上;所述光处理组件设置于所述第一发射盖板上,所述光处理组件通过所述光纤尾纤与所述光纤适配器连接;
    光接收器件,设置于所述容纳腔内,通过所述光纤尾纤与所述光纤适配器连接。
  2. 根据权利要求1所述的光模块,其中,所述第一发射盖板包括第一子盖板与第二子盖板,所述第一子盖板的顶面突出于所述第二子盖板的顶面,所述第二子盖板的底面与所述电路板的正面连接,所述第一子盖板位于所述电路板的上方;
    所述第一子盖板沿所述光发射方向设置,所述第二子盖板与所述第一子盖板之间具有所述第一预设角度。
  3. 根据权利要求2所述的光模块,其中,所述光处理组件包括:
    波分复用器,设置于所述第一子盖板朝向所述电路板正面的侧面上,与所述平移棱镜组件相对设置,用于对所述平移棱镜组件反射的多路发射光进行复合;
    转角棱镜,设置于所述第一子盖板上,其入光面与所述波分复用器的输出端相对设置,用于对所述波分复用器射出的复合光进行反射折转,其出光方向与其入光方向之间成第一预设角度设置;
    汇聚透镜,设置于所述第二子盖板上,用于对所述转角棱镜射出的光转换为汇聚光;
    光耦合器,设置于所述第二子盖板上,用于将所述汇聚光耦合至所述光纤尾纤。
  4. 根据权利要求3所述的光模块,其中,所述第一子盖板上设置有安装槽,所述安装槽内设置有贯穿的通孔,所述转角棱镜设置于所述安装槽内,所述波分复用器射出的复合光经所述通孔射入所述转角棱镜。
  5. 根据权利要求2所述的光模块,其中,还包括第二发射盖板,所述第二发射盖板盖合于所述安装孔上,且所述第二发射盖板与所述第一子盖板连接。
  6. 根据权利要求5所述的光模块,其中,所述第二发射盖板包括发射罩、第一突出侧板与第二突出侧板,所述第一突出侧板与所述第二突出侧板分别与所述发射罩连接,所述发射罩罩在所述安装孔上,所述第一子盖板位于所述第一突出侧板与所述第二突出侧板之间。
PCT/CN2022/141868 2022-09-29 2022-12-26 光模块 WO2024066092A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/399,670 US20240146417A1 (en) 2022-09-29 2023-12-28 Optical Module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211203799.5A CN117826339A (zh) 2022-09-29 2022-09-29 一种光模块
CN202211203799.5 2022-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,670 Continuation US20240146417A1 (en) 2022-09-29 2023-12-28 Optical Module

Publications (1)

Publication Number Publication Date
WO2024066092A1 true WO2024066092A1 (zh) 2024-04-04

Family

ID=90475779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141868 WO2024066092A1 (zh) 2022-09-29 2022-12-26 光模块

Country Status (3)

Country Link
US (1) US20240146417A1 (zh)
CN (1) CN117826339A (zh)
WO (1) WO2024066092A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531472A (zh) * 2019-09-24 2019-12-03 武汉光迅科技股份有限公司 一种光发射器件、光接收器件及光模块
US20190391348A1 (en) * 2018-02-19 2019-12-26 Infinera Corporation Heterogeneous common substrate multi-chip package including photonic integrated circuit and digital signal processor
CN111722331A (zh) * 2020-06-28 2020-09-29 武汉英飞光创科技有限公司 光模块及其制作方法
US20210239924A1 (en) * 2020-01-30 2021-08-05 Sumitomo Electric Industries, Ltd. Optical transceiver
CN214795314U (zh) * 2021-06-17 2021-11-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN215678864U (zh) * 2021-09-24 2022-01-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN114624829A (zh) * 2020-12-14 2022-06-14 青岛海信宽带多媒体技术有限公司 一种光模块
CN216772051U (zh) * 2022-03-07 2022-06-17 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022166350A1 (zh) * 2021-02-08 2022-08-11 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190391348A1 (en) * 2018-02-19 2019-12-26 Infinera Corporation Heterogeneous common substrate multi-chip package including photonic integrated circuit and digital signal processor
CN110531472A (zh) * 2019-09-24 2019-12-03 武汉光迅科技股份有限公司 一种光发射器件、光接收器件及光模块
US20210239924A1 (en) * 2020-01-30 2021-08-05 Sumitomo Electric Industries, Ltd. Optical transceiver
CN111722331A (zh) * 2020-06-28 2020-09-29 武汉英飞光创科技有限公司 光模块及其制作方法
CN114624829A (zh) * 2020-12-14 2022-06-14 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022166350A1 (zh) * 2021-02-08 2022-08-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN214795314U (zh) * 2021-06-17 2021-11-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN215678864U (zh) * 2021-09-24 2022-01-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN216772051U (zh) * 2022-03-07 2022-06-17 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN117826339A (zh) 2024-04-05
US20240146417A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
CN114035285B (zh) 一种光模块
CN215895036U (zh) 一种光模块
CN215813458U (zh) 一种光模块
CN113885143B (zh) 一种光模块
CN113721331B (zh) 一种光模块
CN111948762A (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN113740980B (zh) 一种光模块
CN216013740U (zh) 一种光模块
CN215895035U (zh) 一种光模块
CN215678864U (zh) 一种光模块
CN115097579A (zh) 光模块
CN113625399A (zh) 一种光模块
WO2023035711A1 (zh) 光模块
CN113759479B (zh) 一种光模块
CN215895037U (zh) 一种光模块
WO2024066092A1 (zh) 光模块
CN115016074B (zh) 一种光模块
WO2022100278A1 (zh) 一种光模块
WO2022127059A1 (zh) 一种光模块
CN114895411A (zh) 光模块
WO2024093070A1 (zh) 光模块
CN218272816U (zh) 光模块
CN219936149U (zh) 光模块
CN115032749B (zh) 一种光模块