WO2023035711A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023035711A1
WO2023035711A1 PCT/CN2022/098626 CN2022098626W WO2023035711A1 WO 2023035711 A1 WO2023035711 A1 WO 2023035711A1 CN 2022098626 W CN2022098626 W CN 2022098626W WO 2023035711 A1 WO2023035711 A1 WO 2023035711A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical waveguide
circuit board
input
installation
Prior art date
Application number
PCT/CN2022/098626
Other languages
English (en)
French (fr)
Inventor
金虎山
傅钦豪
李丹
谢一帆
王腾飞
任乐燕
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111068935.XA external-priority patent/CN113740980B/zh
Priority claimed from CN202122211136.5U external-priority patent/CN216052310U/zh
Priority claimed from CN202122212146.0U external-priority patent/CN215895037U/zh
Priority claimed from CN202111068979.2A external-priority patent/CN113759479B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023035711A1 publication Critical patent/WO2023035711A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the present disclosure relates to the technical field of optical communication, in particular to an optical module.
  • optical communication technology is becoming more and more important.
  • the optical module is a tool to realize the conversion between optical signals and electrical signals, and is one of the key components in optical communication equipment.
  • Wavelength Division Multiplexing (WDM) technology is a technology that simultaneously transmits two or more optical signals of different wavelengths in the same optical fiber, and it has been widely used in optical modules.
  • the optical module includes a housing, a circuit board and a light emitting device.
  • the circuit board is arranged in the casing.
  • the light emitting device is arranged in the housing.
  • the light-emitting device is electrically connected to the circuit board, and the light-emitting device is configured to emit a light signal.
  • the light emitting device includes a main housing, a laser and a planar light waveguide.
  • the main casing is arranged inside the casing.
  • the laser is arranged in the main casing, and the laser is configured to emit a laser beam.
  • the planar light guide is disposed within the main housing.
  • the planar optical waveguide is located on the light exit side of the laser, and the planar optical waveguide is configured to transmit a laser beam incident thereto.
  • the planar optical waveguide includes an optical waveguide body, an input optical waveguide, an output optical waveguide and an input-output end face.
  • the input optical waveguide and the output optical waveguide are arranged in the optical waveguide body, and the input optical waveguide and the output optical waveguide are respectively connected to the input and output end faces.
  • the input optical waveguide is arranged obliquely relative to the light output direction of the laser.
  • the input-output end surface is the surface of the optical waveguide body close to the laser, and the input-output end surface is inclined relative to a vertical plane perpendicular to the light-emitting direction of the laser.
  • the laser beam incident on the input-output end face is refracted into the input optical waveguide through the input-output end face.
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments
  • Fig. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments.
  • Figure 4 is an exploded view of an optical module according to some embodiments.
  • Fig. 5 is a structural diagram of the optical module according to some embodiments after removing the upper case, the lower case and the unlocking part;
  • FIG. 6 is an assembly diagram of a light-emitting device and a flexible circuit board in an optical module according to some embodiments
  • FIG. 7 is an assembly diagram of a light emitting device, an internal optical fiber, an optical fiber adapter, and an optical fiber connector in an optical module according to some embodiments;
  • Fig. 8 is a structural diagram of a main housing according to some embodiments.
  • Fig. 9 is an optical path diagram of a light emitting device according to some embodiments.
  • Figure 10 is a structural diagram of a planar optical waveguide according to some embodiments.
  • Fig. 11 is a schematic diagram of multiplexing optical paths in a planar optical waveguide according to some embodiments.
  • Figure 12 is a side view of a planar light guide according to some embodiments.
  • Figure 13 is an optical path diagram of a planar optical waveguide according to some embodiments.
  • Figure 14 is an optical diagram of another planar optical waveguide according to some embodiments.
  • Figure 15 is a block diagram of an isolator base according to some embodiments.
  • Figure 16 is a structural diagram of a gasket according to some embodiments.
  • Fig. 17 is a side view of a gasket in Fig. 16;
  • Figure 18 is a structural diagram of another gasket according to some embodiments.
  • Figure 19 is a side view of another gasket in Figure 18;
  • Fig. 20 is a structural diagram of another main housing according to some embodiments.
  • Fig. 21 is a structural view of another main casing in Fig. 20 at another angle;
  • Figure 22 is an optical diagram of another light emitting device according to some embodiments.
  • Figure 23 is a block diagram of a flexible circuit board according to some embodiments.
  • Fig. 24 is a sectional view of the flexible circuit board in Fig. 23;
  • 25 is a structural diagram of a main connection board, a first signal line, and a second signal line in a flexible circuit board according to some embodiments;
  • Figure 26 is an assembly view of a flexible circuit board and a circuit board according to some embodiments.
  • Figure 27 is an assembled view of a light emitting device and a flexible circuit board according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The acceptable deviation ranges are as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • optical communication technology In optical communication technology, light is used to carry information to be transmitted, and the optical signal carrying information is transmitted to information processing equipment such as a computer through optical fiber or optical waveguide and other information transmission equipment to complete the information transmission. Because optical signals have passive transmission characteristics when they are transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between devices, it is necessary to realize the mutual conversion between electrical signals and optical signals.
  • Common information processing equipment includes routers, switches, and electronic computers.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (such as an optical modem) through the electrical port.
  • I2C Inter-Integrated Circuit
  • Wi-Fi wireless fidelity technology
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • Optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, theoretically unlimited distance transmission can be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach thousands of kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: routers, switches, computers, mobile phones, tablet computers, televisions, and so on.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing (housing), and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 A two-way electrical signal connection is established.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100, as the host computer of the optical module 200, can monitor the optical module 200 jobs.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to access the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101; electrical signal connection.
  • the optical module 200 implements mutual conversion between optical signals and electrical signals, so that a connection is established between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input to the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input to the optical fiber 101 . Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the remote server 1000 establishes a two-way signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, a radiator 107 disposed on the cage 106, and an electrical circuit board disposed in the cage 106.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has a protruding structure such as a fin that increases the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the heat generated by the optical module 200 is conducted to the cage 106 and then diffused through the radiator 107 .
  • the electrical port of the optical module 200 is connected to the electrical connector in the cage 106 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101 .
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 includes a housing (shell), a circuit board 300 disposed in the housing, a light emitting device 400 and a light receiving device 500 .
  • the casing includes an upper casing 201 and a lower casing 202, and the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings.
  • the outer contour of the casing generally presents a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 covers the lower case 202 on the two lower side panels 2022 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the two upper side plates 2012 perpendicular to the cover plate 2011 are combined with the two lower side plates 2022 so as to cover the upper case 201 on the lower case 202 .
  • the direction of the line connecting the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may not be consistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger 301 of the circuit board 300 extends from the electrical port 204, and is inserted into a host computer (for example, an optical network terminal 100); the opening 205 is an optical port, configured to be connected to an external optical fiber 101, so that The optical fiber 101 connects the light emitting device 400 and the light receiving device 500 in the optical module 200 .
  • a host computer for example, an optical network terminal 100
  • the opening 205 is an optical port, configured to be connected to an external optical fiber 101, so that The optical fiber 101 connects the light emitting device 400 and the light receiving device 500 in the optical module 200 .
  • the combination of the upper housing 201 and the lower housing 202 is used to facilitate the installation of the circuit board 300, the light emitting device 400, the light receiving device 500 and other devices into the housing, and the upper housing 201 and the lower housing 202 support these device form package protection.
  • the upper housing 201 and the lower housing 202 support these device form package protection.
  • when assembling components such as the circuit board 300 , the light emitting device 400 and the light receiving device 500 it facilitates the deployment of positioning components, heat dissipation components, and electromagnetic shielding components of these components, which is conducive to automatic production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking part 203 located on the outer wall of its housing, and the unlocking part 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer walls of the two lower side panels 2022 of the lower casing 202 , and has an engaging component that matches the cage 106 of the upper computer.
  • the optical module 200 is inserted into the cage 106, the optical module 200 is fixed in the cage 106 by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the locking part
  • the connection relationship with the host computer is to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage 106 .
  • the circuit board 300 includes circuit traces, electronic components and chips, etc.
  • the electronic components and chips are connected together according to the circuit design through the circuit traces, so as to realize functions such as power supply, electrical signal transmission and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip can include, for example, a Microcontroller Unit (MCU), a laser driver chip, a limiting amplifier (Limiting Amplifier), a clock data recovery chip (Clock and Data Recovery, CDR), a power management chip (Power Management Chip), a digital signal Processing (Digital Signal Processing, DSP) chip.
  • MCU Microcontroller Unit
  • a laser driver chip a laser driver chip
  • a limiting amplifier Liting Amplifier
  • CDR clock and Data Recovery
  • Power Management Chip Power Management Chip
  • DSP digital signal Processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function, such as the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the cage 106 of the host computer in the electrical connector.
  • Gold fingers 301 of the circuit board 300 are formed on the end surface thereof.
  • the golden finger 301 is composed of multiple independent pins.
  • the circuit board 300 is inserted into the cage 106 , and is conductively connected with the electrical connector in the cage 106 by the gold finger 301 .
  • Gold fingers 301 can be set on only one side of the circuit board 300 (such as the upper surface shown in FIG. 4 ), or can be set on the upper and lower sides of the circuit board 300, so as to meet the occasions where the number of pins is large.
  • the golden finger 301 is configured to establish an electrical connection with a host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards can also be used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • Fig. 5 is a structural diagram of the optical module according to some embodiments without the upper case, the lower case and the unlocking component.
  • the circuit board 300 includes a first circuit board 310 and a second circuit board 320 .
  • the first circuit board 310 and the second circuit board 320 are respectively electrically connected to the light emitting device 400 .
  • the first circuit board 310 is also electrically connected to the light receiving device 500 .
  • the first circuit board 310 and the second circuit board 320 are stacked in the thickness direction of the optical module 200 (the JK direction shown in FIG. 5 ), and the first circuit board 310 is located on the second circuit board 320.
  • the side away from the lower housing 202 (such as the upper side of the second circuit board 320).
  • the optical module 200 further includes a flexible circuit board 600, and the flexible circuit board 600 is configured to connect the light emitting device 400 and/or the light receiving device 500 with the circuit board 300 (for example The first circuit board 310 or the second circuit board 320) are electrically connected.
  • the light-emitting device 400 and the light-receiving device 500 are stacked in the thickness direction of the optical module 200 , and the light-emitting device 400 is located on a side of the light-receiving device 500 away from the upper housing 201 side (as shown below).
  • the width of the optical module 200 can be reduced (as shown in FIG. 3 , the size of the optical module 200 in the MN direction), which is beneficial to realize the miniaturization of the optical module 200 .
  • the light module 200 includes a spacer disposed between the light emitting device 400 and the light receiving device 500 .
  • the light emitting device 400 may be disposed in the lower case 202 , and the spacer is disposed on a surface of the light emitting device 400 close to the light receiving device 500 .
  • the light receiving device 500 is disposed on the spacer, so that the light emitting device 400 and the light receiving device 500 are stacked.
  • FIG. 6 is an assembly diagram of a light-emitting device and a flexible circuit board in an optical module according to some embodiments.
  • Fig. 7 is an assembly diagram of a light emitting device, an internal optical fiber, a fiber optic adapter, and a fiber optic connector in an optical module according to some embodiments.
  • the light emitting device 400 includes a main case 410 , a planar optical waveguide 430 , a laser 440 , a first lens 450 and a second lens 460 .
  • FIG. 8 is a structural diagram of a main housing according to some embodiments.
  • FIG. 9 is an optical circuit diagram of a light emitting device according to some embodiments.
  • the main housing 410 is disposed on the lower housing 202 , and as shown in FIG. 8 and FIG. 9 , the main housing 410 includes a mounting groove 4110 and a supporting surface 4130 .
  • the installation groove 4110 is disposed on the surface (such as the upper surface) of the main housing 410 close to the laser 440 , and the installation groove 4110 is recessed into the main housing 410 in a direction away from the laser 440 .
  • the installation slot 4110 is close to one end of the circuit board 300 along the length direction (direction EF as shown in FIG. 5 ).
  • the supporting surface 4130 is a part of the surface of the main casing 410 close to the laser 440 , and the supporting surface 4130 extends away from the installation groove 4110 .
  • the supporting surface 4130 is located on a side of the installation groove 4110 away from the circuit board 300 (the left side of the installation groove 4110 as shown in FIG. 8 ). At least one end of the supporting surface 4130 close to the installation groove 4110 is higher than the bottom of the installation groove 4110 to form a first step 4150 .
  • the support surface 4130 is parallel to the horizontal plane.
  • the main housing 410 includes a first opening 403 , a baffle 4140 and a second opening 404 .
  • the first opening 403 is disposed on a side of the support surface 4130 away from the laser 440 (the left side of the support surface 4130 as shown in FIG. 8 ).
  • the baffle 4140 is disposed on the support surface 4130 and extends along a direction perpendicular to the support surface 4130 , the baffle 4140 is located between the first opening 403 and the installation groove 4110 .
  • the baffle 4140 may be disposed on the front side of the supporting surface 4130 in FIG. 8 .
  • the second opening 404 is disposed on a side of the support surface 4130 opposite to the baffle 4140 (the front side of the support surface 4130 as shown in FIG. 8 ).
  • the planar optical waveguide 430 is disposed on the main housing 410
  • the side of the planar optical waveguide 430 away from the baffle 4140 extends out of the main housing 410 through the second opening 404 .
  • the main housing 410 further includes a limiting plate 4120 .
  • the limiting plate 4120 is disposed on two sidewalls of the mounting groove 4110 that are opposite in the width direction of the main housing 410 (such as in the front and rear directions), and the limiting plate 4120 extends away from the mounting groove 4110 .
  • a surface (such as a lower surface) of the main case 410 close to the lower case 202 may be in contact with the lower case 202 .
  • the heat generated during the working process of the laser 440 can be conducted to the main housing 410 and then to the lower housing 202 through the main housing 410 to dissipate heat from the laser 440 , thereby improving the heat dissipation efficiency of the light-emitting device 400 .
  • the laser 440 is disposed on a side of the main housing 410 close to the light receiving device 500, and the laser 440 is configured to emit a laser beam.
  • the light emitting device 400 may include a plurality of lasers 440, and the plurality of lasers 440 may respectively emit laser beams of different wavelengths.
  • the first lens 450 is disposed on the light emitting side of the laser 440 , and the first lens 450 is configured to collimate the laser beam emitted by the laser 440 .
  • the second lens 460 is arranged on the side of the first lens 450 away from the laser 440, and the second lens 460 is configured to converge the laser beam collimated by the first lens 450, and couple the converged laser beam to the planar optical waveguide 430 Inside.
  • a planar lightwave circuit 430 (Planar Lightwave Circuit, PLC) is disposed on the side (such as the upper side) of the main housing 410 close to the light receiving device 500, and is located on the side of the second lens 460 away from the laser 440.
  • the planar optical waveguide 430 is configured to receive the laser beam converged by the second lens 460 and perform wavelength division multiplexing (Wavelength Division Multiplexing, WDM) on the laser beam.
  • WDM Wavelength Division Multiplexing
  • Fig. 10 is a structural diagram of a planar optical waveguide according to some embodiments.
  • Fig. 11 is a schematic diagram of optical multiplexing in a planar optical waveguide according to some embodiments.
  • the planar optical waveguide 430 includes an optical waveguide body 4340 and an input-output end surface 4330 .
  • the input-output end surface 4330 is the surface of the optical waveguide body 4340 close to the laser 440 .
  • the planar optical waveguide 430 further includes a plurality of input optical waveguides 4310 and one output optical waveguide 4320 .
  • the input optical waveguide 4310 and the output optical waveguide 4320 are disposed in the optical waveguide body 4340 , and the input optical waveguide 4310 and the output optical waveguide 4320 are respectively connected to the input and output end faces 4330 .
  • the optical module 200 includes an internal optical fiber 701 , an optical fiber adapter 702 and an optical fiber connector 703 .
  • the output optical waveguide 4320 is connected to the internal optical fiber 701 through the optical fiber connector 703 , and is connected to the optical fiber adapter 702 through the internal optical fiber 701 .
  • one end of the internal optical fiber 701 is connected to the output optical waveguide 4320 through the optical fiber connector 703 , and the other end of the internal optical fiber 701 is connected to the optical fiber adapter 702 .
  • the optical fiber adapter 702 is connected to the external optical fiber 101 , so that the optical module 200 and the external optical fiber 101 can perform signal transmission.
  • the laser beams converged by multiple second lenses 460 When the laser beams converged by multiple second lenses 460 are transmitted to the input-output end face 4330 of the planar optical waveguide 430, the laser beams converged by each second lens 460 enter the corresponding input optical waveguide 4310 through the input-output end face 4330, and It is transmitted into the planar optical waveguide 430 through the input optical waveguide 4310 .
  • Each laser beam transmitted into the planar optical waveguide 430 is multiplexed into one composite laser beam after multiple reflections in the planar optical waveguide 430 .
  • the composite laser beam is transmitted to the fiber adapter 702 through the output optical waveguide 4320 and the internal optical fiber 701, thereby realizing the emission of multiple laser beams in a single fiber.
  • the light-emitting device 400 includes eight lasers 440, eight first lenses 450, and eight second lenses 460, and the lasers 440, the first lenses 450, and the second lenses 460 are arranged in one-to-one correspondence; correspondingly, Planar optical waveguide 430 includes eight input optical waveguides 4310 .
  • Eight lasers 440 are arranged side by side in the main housing 410 along the width direction of the main housing 410 (MN direction as shown in FIG. 6 ). Each laser 440 emits a laser beam, so eight lasers 440 can emit eight laser beams with different wavelengths.
  • the eight first lenses 450 are arranged in one-to-one correspondence with the eight lasers 440 to collimate the laser beam emitted by each laser 440 .
  • the eight second lenses 460 are in one-to-one correspondence with the eight first lenses 450, so as to converge the laser beams collimated by the first lenses 450, so as to facilitate coupling of each laser beam into the input optical waveguide 4310 of the planar optical waveguide 430 .
  • Each input optical waveguide 4310 is embedded on the surface of the optical waveguide body 4340 away from the main housing 410 (the upper surface of the optical waveguide body 4340 as shown in FIG. 10 ).
  • Eight input optical waveguides 4310 are arranged side by side along the width direction of the planar optical waveguide 430 .
  • the output optical waveguide 4320 and the eight input optical waveguides 4310 are all connected to the input and output end faces 4330, and the output optical direction of the output optical waveguide 4320 is opposite to that of the laser 440 (direction A shown in FIG. 9 ).
  • the optical module 200 may include four lasers 440, four first lenses 450, and four second lenses 460, and the planar optical waveguide 430 may include four input optical waveguides 4310, the present disclosure is not limited to this .
  • Figure 12 is a side view of a planar light guide according to some embodiments.
  • the input-output end face 4330 of the planar optical waveguide 430 is arranged obliquely relative to the vertical plane perpendicular to the light-emitting direction of the laser 440 , that is, between the input-output end face 4330 and the vertical plane. form a first included angle ⁇ .
  • the input-output end surface 4330 is inclined toward a direction away from the laser 440, and the first end of the input-output end surface 4330 away from the support surface 4130 is farther away from the laser 440 than its second end close to the support surface 4130 .
  • the laser beam reflected by the input and output end face 4330 can be reflected to a position other than the laser 440 according to the first angle ⁇ , avoiding the input and output end face 4330
  • the reflected laser beam returns to the laser 440 according to the original optical path, and affects the laser 440 , so that the light emitting performance of the laser 440 can be improved.
  • the first included angle ⁇ is any value between 2° and 10°.
  • the first included angle ⁇ is 2°, 4°, 6°, 8° or 10° and so on.
  • the first included angle ⁇ should not be too large. If the first included angle ⁇ of the input-output end face 4330 is too large, the laser beam converged by the second lens 460 may not be incident into the input optical waveguide 4310, affecting the distance between the laser beam incident on the planar optical waveguide 430 and the planar optical waveguide 430. coupling efficiency.
  • Fig. 13 is an optical path diagram of a planar optical waveguide according to some embodiments
  • Fig. 14 is an optical path diagram of another planar optical waveguide according to some embodiments.
  • Snell's Law Snell's Law
  • the input optical waveguide 4310 is embedded on the upper surface of the optical waveguide body 4340, and the optical waveguide body 4340 In case the upper surface of is parallel to the horizontal plane, the input optical waveguide 4310 is parallel to the horizontal plane.
  • the laser beam incident on the input-output end surface 4330 must form a certain angle ⁇ ( ⁇ greater than zero) with the horizontal plane before entering the input optical waveguide 4310 . That is to say, the laser beam converged by the second lens 460 needs to form a certain angle ⁇ with the horizontal plane before being incident into the input optical waveguide 4310 .
  • the laser 440 is generally mounted horizontally (for example, glue bonding), that is, the light output direction of the laser 440 is parallel to the horizontal plane, therefore, before entering the input optical waveguide 4310, the optical path of the laser beam incident on the input and output end surface 4330 parallel to the horizontal plane. In this case, it is inconvenient to set the optical path of the laser beam incident on the input-output end surface 4330 to be inclined with respect to the horizontal plane.
  • the surface of the planar optical waveguide 430 where the input optical waveguide 4310 is located (that is, the upper surface of the optical waveguide body 4340 shown in FIG. 14 ) is relative to the light output direction of the laser 440 (eg horizontal) Tilt settings. That is, there is a second included angle ⁇ (for example, 3.6°, etc.) between the input optical waveguide 4310 and the light output direction of the laser 440 .
  • for example, 3.6°, etc.
  • the input optical waveguide 4310 is inclined towards the direction close to the support surface 4130, and the first end of the input optical waveguide 4310 away from the laser 440 is closer to the support surface 4130 than its second end close to the laser 440 .
  • the horizontal laser beam can be accurately incident into the input optical waveguide 4310 after being refracted by the input and output end faces 4330 of the planar optical waveguide 430 , thereby improving the coupling efficiency between the laser beam incident on the planar optical waveguide 430 and the planar optical waveguide 430 .
  • the second included angle ⁇ is equal to 3.6°. That is to say, the angle between the upper surface of the optical waveguide body 4340 and the light emitting direction of the laser 440 is equal to 3.6°.
  • both the first included angle ⁇ and the second included angle ⁇ are related to the refractive index of the planar optical waveguide 430 . Therefore, different first included angles ⁇ and second included angles ⁇ corresponding to the first included angle ⁇ can be set according to the difference in the refractive index of the planar light guide 430 .
  • the first included angle ⁇ is equal to 8°
  • the second included angle ⁇ is equal to 3.6°.
  • the light emitting device 400 further includes an isolator 470 .
  • the isolator 470 is disposed close to the planar optical waveguide 430 and between the planar optical waveguide 430 and the second lens 460 .
  • the isolator 470 can isolate the laser beam reflected by the input and output end faces 4330 .
  • the laser beam converged by the second lens 460 can directly pass through the isolator 470 and enter the input and output end surface 4330 .
  • a part of the laser beams incident on the input-output end face 4330 is refracted by the input-output end face 4330 into the corresponding input optical waveguide 4310 .
  • Another part of the laser beam incident on the input-output end face 4330 is reflected at the input-output end face 4330, and the laser beam reflected by the input-output end face 4330 enters the isolator 470 and is isolated by the isolator 470, so that reflection can be avoided
  • the laser beam returns to the laser 440, causing interference to the laser 440.
  • the laser beams refracted into the input optical waveguide 4310 are more than the laser beams reflected by the input and output end faces 4330 .
  • the isolator 470 can be a bulk isolator, an all-fiber isolator, an integrated optical waveguide optical isolator, or a polarization-independent optical isolator, and the like.
  • Figure 15 is a block diagram of an isolator base according to some embodiments.
  • the light emitting device 400 further includes an isolator base 800 on which the isolator 470 is disposed.
  • the isolator base 800 can support the isolator 470 to increase the height of the optical axis of the isolator 470 , so that the optical axis of the isolator 470 coincides with the optical axis of the second lens 460 .
  • the isolator base 800 includes a base plate 810 , a plurality of mounting plates 820 and a mounting surface 830 .
  • the substrate 810 is disposed on the main case 410 .
  • the multiple mounting plates 820 are arranged at intervals on the surface of the substrate 810 away from the main housing 410 (the upper surface of the substrate 810 as shown in FIG. 15 ), and the upper surface of the substrate 810 can be divided into multiple Mounting surface 830 .
  • the isolator 470 can be mounted on the assembly surface 830 of the isolator base 800 , so that the isolator 470 is disposed on the main housing 410 through the isolator base 800 .
  • the light emitting device 400 includes a semiconductor cooler 480 , and the semiconductor cooler 480 is disposed in the installation groove 4110 of the main housing 410 .
  • the size of the semiconductor cooler 480 in the width direction of the main housing 410 may be equal to or slightly smaller than the size of the installation groove 4110 in the width direction of the main housing 410 , so that the semiconductor cooler 480 can be embedded in the installation groove 4110 .
  • the surface of the semiconductor refrigerator 480 close to the laser 440 is a cooling surface 4801, and multiple lasers 440 and multiple first lenses 450 can be arranged side by side along the width direction of the main housing 410 on the cooling surface 4801, and the multiple lasers 440 and The multiple first lenses 450 correspond one to one.
  • the semiconductor cooler 480 can conduct the heat from the laser 440 and the first lens 450 to the main housing 410, and conduct the heat to the lower housing 202 through the main housing 410 to dissipate heat from the laser 440 and the first lens 450, The heat dissipation efficiency of the light emitting device 400 is improved.
  • the light emitting device 400 further includes a first substrate 401 .
  • the first substrate 401 is arranged between the laser 440 and the semiconductor refrigerator 480, the surface (such as the upper surface) of the first substrate 401 away from the semiconductor refrigerator 480 is in contact with the laser 440, and the surface of the first substrate 401 near the semiconductor refrigerator 480 (the following surface) is in contact with the cooling surface 4801 of the semiconductor refrigerator 480 .
  • the heat generated by the laser 440 can be transmitted to the semiconductor cooler 480 through the first substrate 401 , and the laser 440 can be dissipated through the semiconductor cooler 480 , thereby improving the heat dissipation characteristic of the laser 440 .
  • the first substrate 401 can also increase the height of the laser 440 relative to the main housing 410 , so that the height of the laser 440 corresponds to the height of the planar optical waveguide 430 .
  • the light-emitting device 400 further includes a second substrate 402 located on a side of the first substrate 401 close to the planar light guide 430 .
  • the second substrate 402 is disposed between the first lens 450 and the semiconductor cooler 480 .
  • the surface (such as the upper surface) of the second substrate 402 away from the semiconductor cooler 480 is in contact with the first lens 450
  • the surface of the second substrate 402 close to the semiconductor cooler 480 (the lower surface) is in contact with the cooling surface 4801 of the semiconductor cooler 480 .
  • the heat generated by the first lens 450 can be transferred to the semiconductor cooler 480 through the second substrate 402 , and the first lens 450 can be dissipated through the semiconductor cooler 480 , which is beneficial to improve the performance of the first lens 450 .
  • the first lens 450 may be made of glass to reduce the influence of temperature on the performance of the first lens 450 .
  • the laser beam reflected by the input-output end surface 4330 can be incident on a position other than the laser 440 .
  • the reflected laser beam can be isolated by the isolator 470 , which can prevent the reflected laser beam from returning to the laser 440 according to the original optical path and causing interference to the laser 440 .
  • FIG. 16 is a structural view of a gasket according to some embodiments
  • FIG. 17 is a side view of a gasket in FIG. 16 .
  • the light emitting device 400 further includes a spacer 420 .
  • the spacer 420 is disposed between the planar light guide 430 and the main housing 410 , and the spacer 420 is disposed on the supporting surface 4130 of the main housing 410 .
  • the planar light guide 430 is disposed on the surface of the spacer 420 away from the main housing 410 .
  • the surface of the sheet 420 close to the planar light guide 430 (such as the upper surface) is inclined relative to the light emitting direction of the laser 440 , and forms a third angle C between the surface and the light emitting direction of the laser 440 .
  • the third included angle C is equal to the second included angle ⁇ (for example, 3.6°, etc.).
  • the angle between the upper surface of the optical waveguide body 4340 and the light output direction of the laser 440 can be equal to the second angle ⁇ , that is, the input optical waveguide 4310 and the laser
  • the light output directions of 440 may form a second included angle ⁇ , so that the input optical waveguide 4310 can match the laser beam converged by the second lens 460 .
  • the spacer 420 includes a first mounting surface 4210 and a second mounting surface 4220, and the first mounting surface 4210 and the second mounting surface 4220 are the upper surface of the spacer 420 respectively. part (i.e. part one or part two).
  • the first installation surface 4210 is closer to the main housing 410 than the second installation surface 4220 , and the first installation surface 4210 is farther away from the laser 440 than the second installation surface 4220 .
  • a planar optical waveguide 430 is disposed on the first installation surface 4210 .
  • the isolator 470 and the second lens 460 are disposed on the second installation surface 4220 .
  • the isolator 470 may be directly disposed on the second mounting surface 4220 , for example, the isolator 470 is directly mounted on the second mounting surface 4220 of the spacer 420 .
  • the isolator 470 is disposed on the second installation surface 4220 through the isolator base 800 .
  • the isolator 470 is installed on the isolator base 800 , and the isolator base 800 is mounted on the second installation surface 4220 .
  • the second installation surface 4220 can be parallel to the light emitting direction of the laser 440 , and the second installation surface 4220 is a horizontal plane.
  • the first mounting surface 4210 is located on a side of the second mounting surface 4220 away from the laser 440 .
  • the first installation surface 4210 is arranged obliquely relative to the horizontal plane where the light emitting direction of the laser 440 is located, that is, the first installation surface 4210 is arranged obliquely relative to the horizontal plane.
  • the first installation surface 4210 is inclined toward the direction close to the support surface 4130, and the first end of the first installation surface 4210 away from the laser 440 is closer to the support than its second end close to the laser 440. Face 4130.
  • the planar optical waveguide 430 disposed on the first installation surface 4210 can be disposed obliquely relative to the light emitting direction of the laser 440 .
  • the first mounting surface 4210 does not need to be an inclined plane.
  • a second step 4240 is formed.
  • the input-output end surface 4330 of the planar light guide 430 abuts against the second step 4240 to limit the planar light guide 430 through the second step 4240 .
  • the spacer 420 further includes a third mounting surface 4230 .
  • the third installation surface 4230 is a surface (lower surface) of the spacer 420 close to the main casing 410 .
  • the washer 420 is mounted on the supporting surface 4130 of the main housing 410 through the third mounting surface 4230 to fix the washer 420 through the supporting surface 4130 .
  • the third mounting surface 4230 is parallel to the supporting surface 4130 .
  • both the third installation surface 4230 and the support surface 4130 are parallel to the horizontal plane.
  • the spacer 420 can be mounted on the support surface 4130 horizontally through the third installation surface 4230 .
  • both the third installation surface 4230 and the support surface 4130 can be inclined relative to the horizontal plane.
  • the first installation surface 4210 and The light emitting directions of the lasers 440 form a third included angle C.
  • the angle between the upper surface of the optical waveguide body 4340 and the light emitting direction of the laser 440 is equal to the angle between the first installation surface 4210 and the laser 440.
  • the laser beam incident on the input-output end surface 4330 can be refracted into the input optical waveguide 4310 .
  • the gasket 420 is mounted on the supporting surface 4130 horizontally.
  • the second lens 460 is disposed on the second mounting surface 4220 of the spacer 420 so that the laser beam converged by the second lens 460 is parallel to the horizontal direction. Then, attach the lower surface of the planar optical waveguide 430 to the first installation surface 4210 of the spacer 420 .
  • the included angle between the upper surface of the optical waveguide body 4340 and the light emitting direction of the laser 440 is equal to the second included angle ⁇ . In this way, the horizontal laser beam converged by the second lens 460 can enter into the input optical waveguide 4310 after being refracted by the input and output end faces 4330 .
  • the coupling efficiency between the planar light waveguide 430 and the main light beam can be adjusted according to the coupling efficiency between the laser beam converged by the second lens 460 and the planar light waveguide 430. height between housings 410 . That is to say, the planar optical waveguide 430 can move along the inclined direction of the first installation surface 4210 to adjust the height between the planar optical waveguide 430 and the main housing 410 .
  • the input-output end surface 4330 of the planar optical waveguide 430 can abut against the second step 4240 between the first installation surface 4210 and the second installation surface 4220 .
  • the planar optical waveguide 430 may also be disposed on the side of the first mounting surface 4210 away from the second step 4240 , so that the input and output end faces 4330 of the planar optical waveguide 430 do not abut against the second step 4240 , It is convenient to eliminate optical path errors, increase the stability of the optical path, and improve the coupling efficiency between the laser beam incident on the planar optical waveguide 430 and the planar optical waveguide 430 .
  • the end of the planar optical waveguide 430 away from the laser 440 may extend through the first opening 403 to the outside of the main housing 410 .
  • the assembly process of the light-emitting device 400 is as follows:
  • the semiconductor refrigerator 480 is embedded in the installation groove 4110 of the main casing 410 .
  • multiple lasers 440 are arranged side by side on the first substrate 401 , and the first substrate 401 is arranged on the cooling surface 4801 of the semiconductor refrigerator 480 .
  • a plurality of first lenses 450 are arranged side by side on the second substrate 402, and the second substrate 402 is arranged on the cooling surface 4801 of the semiconductor refrigerator 480, so that the plurality of first lenses 450 and the plurality of lasers 440 are one by one correspond.
  • the gasket 420 is mounted horizontally on the supporting surface 4130 of the main housing 410 , and the isolator 470 is mounted on the second mounting surface 4220 of the gasket 420 .
  • planar optical waveguide 430 is mounted on the first installation surface 4210 of the spacer 420, and the second lens 460 is actively coupled and mounted on the second installation surface 4220 of the spacer 420, thereby completing the coupling of the optical path .
  • the laser 440 emits a laser beam driven by the signal transmitted by the circuit board 300, and the laser beam is incident on the second lens 460 after being collimated by the first lens 450 .
  • the laser beam incident on the second lens 460 is converged by the second lens 460 , and then directly passes through the isolator 470 and enters the input and output end surface 4330 of the planar optical waveguide 430 .
  • a part of the laser beams incident on the input-output end face 4330 is refracted into the corresponding input optical waveguide 4310 through the input-output end face 4330, and reflected and combined in the planar optical waveguide 430 to form a composite laser beam.
  • the composite laser beam exits through the output optical waveguide 4320 .
  • Another part of the laser beam incident on the input and output end face 4330 is reflected at the input and output end face 4330, and the reflected laser beam is isolated by the isolator 470, which prevents the laser beam reflected by the input and output end face 4330 from returning to the
  • the laser 440 affects the light emitting performance of the laser 440 .
  • FIG. 18 is a structural diagram of another gasket according to some embodiments
  • FIG. 19 is a side view of another gasket in FIG. 18
  • FIG. 20 is a structural diagram of another main housing according to some embodiments
  • FIG. 21 is a structural diagram of another main housing in FIG. 20 at another angle.
  • the third mounting surface 4230 of the spacer 420 and the supporting surface 4130 of the main housing 410 can be inclined relative to the opposite direction of the light emitting direction of the laser 440 , that is, both the third installation surface 4230 and the support surface 4130 are inclined relative to the horizontal plane.
  • the spacer 420 can move along the inclined direction of the support surface 4130, thereby adjusting the height between the planar light waveguide 430 and the main housing 410, so as to eliminate the error of the optical path, increase the stability of the light path, and improve the incident light into the planar light waveguide 430.
  • Figure 22 is an optical diagram of another light emitting device according to some embodiments.
  • a fourth included angle D (for example, 9.4°, etc.) is formed between the third mounting surface 4230 of the spacer 420 and the direction opposite to the light emitting direction of the laser 440 .
  • the third mounting surface 4230 is inclined away from the laser 440
  • the supporting surface 4130 is inclined toward the lower housing 202 .
  • the included angle between the supporting surface 4130 and the opposite direction of the light emitting direction of the laser 440 is the same as the fourth included angle D between the third installation surface 4230 of the spacer 420 and the opposite direction of the light emitting direction of the laser 440 .
  • the third included angle C between the first installation surface 4210 and the light emitting direction of the laser 440 remains unchanged.
  • the spacer 420 can pass through the third installation surface 4230 When mounting on the support surface 4130 , adjust the position of the gasket 420 on the support surface 4130 according to the height of the planar optical waveguide 430 required.
  • the gasket 420 can move along the inclined direction of the support surface 4130 to adjust the height between the planar light waveguide 430 and the main housing 410, so as to eliminate the error of the optical path, increase the stability of the optical path, and improve the height of the incident light onto the planar surface. Coupling efficiency between the laser beam of the waveguide 430 and the planar optical waveguide 430.
  • the planar optical waveguide 430 and the gasket 420 can form a pre-assembled component. That is to say, the planar optical waveguide 430 is mounted on the first mounting surface 4210 of the spacer 420 to form a pre-assembled part. Then, the pre-assembled part is mounted on the supporting surface 4130 . During the mounting process, the height of the pre-assembled component on the supporting surface 4130 can be adjusted according to the height of the pre-assembled component and the coupling efficiency between the laser beam incident on the planar optical waveguide 430 and the planar optical waveguide 430 .
  • the planar optical waveguide 430 is mounted on the first installation surface 4210 of the pad 420 so that the planar optical waveguide 430 and the pad 420 form a pre-assembled part.
  • the pre-assembled part is pasted on the supporting surface 4130 of the main housing 410 through the third mounting surface 4230 of the gasket 420, and the pre-assembled part is made along the The inclined direction of the supporting surface 4130 is moved to adjust the height of the pre-assembled part on the supporting surface 4130 .
  • the isolator 470 is pasted on the second installation surface 4220 of the gasket 420 .
  • the second lens 460 is actively coupled and mounted on the second installation surface 4220 of the spacer 420 , so as to complete the optical path coupling.
  • the laser beam reflected by the input-output end surface 4330 is prevented from returning to the laser along the original optical path. 440.
  • the optical path can be matched, and the coupling efficiency between the laser beam incident on the planar optical waveguide 430 and the planar optical waveguide 430 can be improved.
  • the gasket 420 can be moved along the inclined direction of the supporting surface 4130 to adjust the height of the planar optical waveguide 430, which facilitates the elimination of optical path errors, simplifies the process, and increases the stability of the optical path. , and the coupling efficiency between the laser beam incident on the planar optical waveguide 430 and the planar optical waveguide 430 is improved.
  • FIG. 23 is a structural diagram of a flexible circuit board according to some embodiments
  • FIG. 24 is a cross-sectional view of the flexible circuit board in FIG. 23
  • 25 is a structural diagram of a main connection board, a first signal line and a second signal line in a flexible circuit board according to some embodiments.
  • the flexible circuit board 600 includes a main connection board 630 , a first flexible circuit board 610 , a second flexible circuit board 620 , a first signal line 640 and a second Signal line 650.
  • the main connecting board 630 is disposed in the installation slot 4110 of the main casing 410 .
  • One end of the main connecting board 630 away from the first flexible circuit board 610 or the second flexible circuit board 620 is electrically connected to the laser 440 and the semiconductor refrigerator 480, and the other end of the main connecting board 630 is connected to one end of the first flexible circuit board 610 and the second flexible circuit board 610.
  • One end of the two flexible circuit boards 620 , and the other end of the first flexible circuit board 610 and the other end of the second flexible circuit board 620 are spaced apart so that there is a gap between the first flexible circuit board 610 and the second flexible circuit board 620 .
  • a part of the first signal line 640 is provided on the surface layer of the main connection board 630, and a part of the second signal line 650 is provided on the inner layer of the main connection board 630, thereby avoiding The signal lines laid on the surface layer of the connecting board 630 are concentrated.
  • the part of the first signal line 640 and the part of the second signal line 650 are both arranged on the main connecting board 630, which facilitates the bonding process between the flexible circuit board 600, the laser 440 and the semiconductor refrigerator 480 ( Wire Bonding) to connect.
  • the semiconductor refrigerator 480 is used to provide the first signal to the laser 440 and the semiconductor refrigerator 480 .
  • An end of the second flexible circuit board 620 away from the main connection board 630 is electrically connected to the second circuit board 320 , and another part of the second signal line 650 is disposed on the second flexible circuit board 620 .
  • the second signal transmitted by the second circuit board 320 (such as a non-high-frequency signal (such as a bias current signal)) can pass through the second signal line 650 on the second flexible circuit board 620 and the second signal line on the main connection board 630.
  • the signal line 650 is transmitted to the laser 440 and the semiconductor refrigerator 480 to provide power for the laser 440 and the semiconductor refrigerator 480 .
  • the bias current signal drives the laser 440 to emit a laser beam
  • the first signal transmitted by the first flexible circuit board 610 can be modulated into the laser beam emitted by the laser 440 to generate an optical signal.
  • the first flexible circuit board 610 , the second flexible circuit board 620 and the main connection board 630 are one piece.
  • the flexible circuit board 600 further includes pads 6330 and via holes 6320 , and the pads 6330 and via holes 6320 are respectively disposed on the main connection board 630 .
  • the pad 6330 is connected to the part of the first signal line 640 on the surface layer of the main connection board 630 , and the pad 6330 is connected to the part of the second signal line 650 on the inner layer of the main connection board 630 through the via hole 6320 .
  • the via 6320 is adjacent to the pad 6330 .
  • the via hole 6320 is respectively connected to the pad 6330 on the main connection board 630 and to the second signal line 650 on the inner layer of the main connection board 630 through a wire bonding process.
  • the pad 6330 is electrically connected to the laser 440 and the semiconductor refrigerator 480 through a wire bonding process.
  • the circuit board 300 ie, the first circuit board 310 and the second circuit board 320
  • the circuit board 300 can transmit signals to the laser 440 and the semiconductor refrigerator 480 through the flexible circuit board 600 .
  • Figure 26 is an assembled view of a flex circuit board and a circuit board in accordance with some embodiments.
  • the flexible circuit board 600 further includes a first pad and a second pad.
  • the first pad is disposed on the first flexible circuit board 610 and located on a side of the first flexible circuit board 610 close to the first circuit board 310 .
  • the first flexible circuit board 610 is connected to the first circuit board 310 through the first pad.
  • the second pad is disposed on the second flexible circuit board 620 and is located on a side of the second flexible circuit board 620 close to the second circuit board 320 .
  • the second flexible circuit board 620 is connected to the second circuit board 320 through the second pad.
  • the side of the first flexible circuit board 610 close to the back of the first circuit board 310 (such as the lower surface of the first circuit board 310) is provided with the first pad, the first flexible circuit board 610 may be connected to the back side of the first circuit board 310 through the first pad.
  • the side of the second flexible circuit board 620 near the back of the second circuit board 320 (such as the lower surface of the second circuit board 320) is provided with the second pad, and the second flexible circuit board 620 can pass through the second pad Connect to the back of the second circuit board 320 .
  • the first flexible circuit board 610 and the second flexible circuit board 620 may be connected to the same circuit board 300 .
  • the optical module 200 may only include one circuit board 300 .
  • the first pad is disposed on the surface of the first flexible circuit board 610 close to the front side of the circuit board 300 , so that the first flexible circuit board 610 is connected to the front side of the circuit board 300 .
  • the second pad is disposed on the surface of the second flexible circuit board 620 close to the back of the circuit board 300 , so that the second flexible circuit board 620 is connected to the back of the circuit board 300 .
  • the first signal on the circuit board 300 can be transmitted to the laser 440 in the light emitting device 400 through the first flexible circuit board 610, and the second signal on the circuit board 300 can be transmitted through the second flexible circuit board 620.
  • the signal is transmitted to the laser 440 to drive the laser 440 to generate an optical signal.
  • the flexible circuit board 600 further includes a reinforcement board 6340 .
  • the reinforcement plate 6340 is arranged on the side of the main connection board 630 close to the main housing 410 to improve the strength of the main connection board 630 and to facilitate the laying of corresponding signal lines (including the first signal line) on the surface and inner layers of the main connection board 630 . line 640 and the second signal line 650).
  • the flexible circuit board 600 further includes a third flexible circuit board 660 .
  • the third flexible circuit board 660 is used to connect the light receiving device 500 and the first circuit board 310 .
  • the light receiving device 500 converts the received optical signal into an electrical signal, and the electrical signal is transmitted to the first circuit board 310 through the third flexible circuit board 660 , and then the electrical signal is processed by the first circuit board 310 .
  • the third flexible circuit board 660 can be connected to the front side of the circuit board 300, so that the light receiving device 500 can be converted by the third flexible circuit board 660.
  • the electrical signal is transmitted to the circuit board 300 .
  • Figure 27 is an assembled view of a light emitting device and a flexible circuit board according to some embodiments.
  • the light emitting device 400 further includes a supporting block 490 .
  • the support block 490 is embedded in the installation groove 4110 of the main housing 410, and the main connecting plate 630 of the flexible circuit board 600 is arranged on the support block 490, so as to increase the installation height of the flexible circuit board 600 through the support block 490, so that the flexible circuit board
  • the bonding height of the main connecting board 630 of the board 600 is consistent with that of the laser 440 , which is beneficial to shorten the length of the connecting wire when connecting the main connecting board 630 and the laser 440 through a wire bonding process.
  • the side 6310 of the main connecting board 630 can abut against the limiting plate 4120 of the main housing 410, thereby passing through the limiting The plate 4120 limits the main connecting plate 630 .
  • the first signal sent by the circuit board 300 is separated from the second signal, which avoids crosstalk between the first signal and the second signal, and facilitates wiring on the flexible circuit board 600 .

Abstract

一种光模块(200)包括壳体、电路板(300)以及光发射器件(400)。光发射器件(400)被配置为发出光信号。光发射器件(400)包括主壳体(410)、激光器(440)以及平面光波导(430)。激光器(440)被配置为发出激光光束。平面光波导(430)被配置为传输入射至其的激光光束。平面光波导(430)包括光波导本体(4340)、输入光波导(4310)、输出光波导(4320)以及输入输出端面(4330)。输入光波导(4310)相对于激光器(440)的出光方向倾斜设置。输入输出端面(4330)相对于垂直于激光器(440)的出光方向的竖直面倾斜设置。入射至输入输出端面(4330)的激光光束经输入输出端面(4330)折射至输入光波导(4310)内。

Description

光模块
本申请要求于2021年09月13日提交的、申请号为202111068979.2的中国专利申请的优先权;2021年09月13日提交的、申请号为202111068935.X的中国专利申请的优先权;2021年09月13日提交的、申请号为202122212146.0的中国专利申请的优先权;2021年09月13日提交的、申请号为202122211136.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频会议等新型业务和应用模式的发展,光通信技术愈加重要。而在光通信技术中,光模块是实现光信号和电信号相互转换的工具,是光通信设备中的关键器件之一。
波分复用(Wavelength Division Multiplexing,WDM)技术是一种在同一根光纤中同时传输两个或众多不同波长的光信号的技术,其已广泛应用于光模块中。
发明内容
提供一种光模块。所述光模块包括壳体,电路板以及光发射器件。所述电路板设置于所述壳体内。所述光发射器件设置于所述壳体内。所述光发射器件与所述电路板电连接,且所述光发射器件被配置为发出光信号。所述光发射器件包括主壳体、激光器以及平面光波导。所述主壳体设置于所述壳体内。所述激光器设置于所述主壳体内,且所述激光器被配置为发出激光光束。所述平面光波导设置在所述主壳体内。所述平面光波导位于所述激光器的出光侧,且所述平面光波导被配置为传输入射至其的激光光束。所述平面光波导包括光波导本体、输入光波导、输出光波导以及输入输出端面。所述输入光波导和所述输出光波导设置在所述光波导本体中,且所述输入光波导和所述输出光波导分别与所述输入输出端面连接。所述输入光波导相对于所述激光器的出光方向倾斜设置。所述输入输出端面为所述光波导本体的靠近所述激光器的表面,且所述输入输出端面相对于垂直于所述激光器的所述出光方向的竖直面倾斜设置。入射至所述输入输出端面的所述激光光束经所述输入输出端面折射至所述输入光波导内。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍。然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的光模块去掉上壳体、下壳体与解锁部件后的一种结构图;
图6为根据一些实施例的光模块中光发射器件与柔性电路板的装配图;
图7为根据一些实施例的光模块中光发射器件、内部光纤、光纤适配器以及光纤接头的装配图;
图8为根据一些实施例的一种主壳体的结构图;
图9为根据一些实施例的一种光发射器件的光路图;
图10为根据一些实施例的一种平面光波导的结构图;
图11为根据一些实施例的一种平面光波导内光路复用的示意图;
图12为根据一些实施例的一种平面光波导的侧视图;
图13为根据一些实施例的一种平面光波导的光路图;
图14为根据一些实施例的另一种平面光波导的光路图;
图15为根据一些实施例的一种隔离器底座的结构图;
图16为根据一些实施例的一种垫片的结构图;
图17为图16中的一种垫片的侧视图;
图18为根据一些实施例的另一种垫片的结构图;
图19为图18中的另一种垫片的侧视图;
图20为根据一些实施例的另一种主壳体的结构图;
图21为图20中的另一种主壳体在另一角度的结构图;
图22为根据一些实施例的另一种光发射器件的光路图;
图23为根据一些实施例的柔性电路板的结构图;
图24为图23中柔性电路板的剖视图;
图25为根据一些实施例的柔性电路板中主连接板、第一信号线以及第二信号线的结构图;
图26为根据一些实施例的柔性电路板与电路板的装配图;
图27为根据一些实施例的光发射器件和柔性电路板的装配图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此,为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。常见的信息处理设备包括路由器、交换机、电子计算机等。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于供电、二线制同步串行(Inter-Integrated Circuit,I2C)信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
光模块200包括光口和电口。光口被配置为接入光纤101,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具, 不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端结构图。为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105的表面的笼子106,设置于笼子106上的散热器107,以及设置在笼子106中的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106中的电连接器连接,从而使得光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,光模块200包括壳体(shell)、设置于壳体内的电路板300、光发射器件400与光接收器件500。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体。壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板2012,由两个上侧板2012与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从电口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200中的光发射器件400与光接收器件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射器件400与光接收器件500等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、光发射器件400与光接收器件500等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外壁,具有与上位机的笼子106匹配的卡合部件。当光模块200插入笼子106里时,由解锁部件203的卡合部件将光模块200固定在笼子106里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从笼子106里抽出。
电路板300包括电路走线、电子元件及芯片等,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect  Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、限幅放大器(Limiting Amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片(Power Management Chip)、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机的笼子106中的电连接器中。
电路板300的金手指301形成在其端部表面。金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也可以使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5为根据一些实施例的光模块中去掉上壳体、下壳体与解锁部件后的一种结构图。
在一些实施例中,如图4和图5所示,电路板300包括第一电路板310和第二电路板320。第一电路板310以及第二电路板320分别与光发射器件400电连接。第一电路板310还与光接收器件500电连接。
如图5所示,第一电路板310与第二电路板320在光模块200的厚度方向上(如图5所示的JK方向)层叠设置,且第一电路板310位于第二电路板320的远离下壳体202的一侧(如第二电路板320的上侧)。
在一些实施例中,如图4和图5所示,光模块200还包括柔性电路板600,柔性电路板600被配置为使光发射器件400和/或光接收器件500与电路板300(例如第一电路板310或第二电路板320)电连接。
在一些实施例中,如图5所示,光发射器件400与光接收器件500在光模块200的厚度方向上层叠设置,且光发射器件400位于光接收器件500的远离上壳体201的一侧(如下侧)。这样,可以减小光模块200的宽度(如图3所示,光模块200在MN方向上的尺寸),有利于实现光模块200的小型化。
在一些实施例中,光模块200包括隔板,所述隔板设置在光发射器件400与光接收器件500之间。光发射器件400可设置在下壳体202内,所述隔板设置在光发射器件400靠近光接收器件500的表面上。光接收器件500设置在所述隔板上,以便于将光发射器件400与光接收器件500层叠设置。
图6为根据一些实施例的光模块中光发射器件与柔性电路板的装配图。图7为根据一些实施例的光模块中光发射器件、内部光纤、光纤适配器以及光纤接头的装配图。
在一些实施例中,如图6和图7所示,光发射器件400包括主壳体(case)410、平面光波导430、激光器440、第一透镜450以及第二透镜460。
图8为根据一些实施例的一种主壳体的结构图。图9为根据一些实施例的一种光发射器件的光路图。
主壳体410设置在下壳体202上,如图8和图9所示,主壳体410包括安装槽4110和支撑面4130。
安装槽4110设置在主壳体410的靠近激光器440的表面(如上表面)上,且安装槽4110朝远离激光器440的方向向主壳体410内凹陷。安装槽4110靠近电路板300的沿长度方向(如图5所示的EF方向)上的一端。支撑面4130为主壳体410的靠近激光器440的表面的一部分,且支撑面4130朝远离安装槽4110的方向延伸。支撑面4130位于安装槽4110远离电路板300的一侧(如图8所示安装槽4110的左侧)。至少支撑面4130的靠近安装槽4110的一端高于安装槽4110的槽底,以形成第一台阶4150。
在一些实施例中,如图9所示,支撑面4130与水平面平行。
在一些实施例中,如图8所示,主壳体410包括第一开口403、挡板4140以及第二开口404。第一开口403设置在支撑面4130的远离激光器440的一侧(如图8所示支撑面4130的左侧)。
挡板4140设置在支撑面4130上且沿垂直于支撑面4130的方向延伸,挡板4140位于第一开口403与安装槽4110之间。例如,挡板4140可以设置在图8中支撑面4130的前侧。
第二开口404设置在支撑面4130的与挡板4140相对的一侧(如图8所示支撑面4130的前侧)。当平面光波导430设置于主壳体410上时,平面光波导430的远离挡板4140的一侧穿过第二开口404延伸至主壳体410之外。
在一些实施例中,如图8和图9所示,主壳体410还包括限位板4120。限位板4120设置在安装槽4110在主壳体410的宽度方向上相对(如前后方向相对)的两侧壁上,且该限位板4120朝远离安装槽4110的方向延伸。
在一些实施例中,主壳体410的靠近下壳体202的表面(如下表面)可与下壳体202接触。这样,激光器440工作过程中产生的热量可传导至主壳体410,并通过主壳体410传导至下壳体202,以对激光器440进行散热,从而提高光发射器件400的散热效率。
激光器440设置在主壳体410的靠近光接收器件500的一侧,且激光器440被配置为发出激光光束。
在一些实施例中,光发射器件400可包括多个激光器440,多个激光器440可分别发出不同波长的激光光束。
第一透镜450设置在激光器440的出光侧,且第一透镜450被配置为将激光器440发出的激光光束准直。
第二透镜460设置在第一透镜450的远离激光器440的一侧,且第二透镜460被配置为会聚经第一透镜450准直的激光光束,并将会聚的激光光束耦合至平面光波导430内。
平面光波导430(Planar Lightwave Circuit,PLC)设置在主壳体410的靠近光接收器件500的一侧(如上侧),且位于第二透镜460的远离激光器440的一侧。平面光波导430被配置为接收经第二透镜460会聚的激光光束并对该激光光束进行波分复用(Wavelength Division Multiplexing,WDM)。
图10为根据一些实施例的一种平面光波导的结构图。图11为根据一些实施例的一种平面光波导内光路复用的示意图。
在一些实施例中,如图10所示,平面光波导430包括光波导本体4340和输入输出端面4330。输入输出端面4330为光波导本体4340的靠近激光器440的表面。
在一些实施例中,如图10和图11所示,平面光波导430还包括多个输入光波导4310与一个输出光波导4320。输入光波导4310和输出光波导4320设置在光波导本体4340中,且输入光波导4310和输出光波导4320分别与输入输出端面4330连接。
例如,如图7所示,光模块200包括内部光纤701、光纤适配器702和光纤接头703。输出光波导4320通过光纤接头703连接内部光纤701,并通过内部光纤701与光纤适配器702相连接。例如,内部光纤701的一端通过光纤接头703连接输出光波导4320,且内部光纤701的另一端与光纤适配器702连接。光纤适配器702与外部光纤101连接,从而可使光模块200与外部光纤101进行信号传输。
当多个第二透镜460会聚的激光光束传输至平面光波导430的输入输出端面4330时,每个第二透镜460会聚的激光光束通过输入输出端面4330射入对应的输入光波导4310内,并经输入光波导4310传输至平面光波导430内。传输至平面光波导430内的各激光光束在平面光波导430内经过多次反射后复用成一路复合激光光束。该复合激光光束通过输出光波导4320以及内部光纤701传输至光纤适配器702,从而实现单纤多激光光束的发射。
在一些实施例中,光发射器件400包括八个激光器440、八个第一透镜450以及八个第二透镜460,激光器440、第一透镜450和第二透镜460一一对应设置;对应地,平面光波导430包括八个输入光波导4310。
八个激光器440沿主壳体410的宽度方向(如图6所示的MN方向)并排设置在主壳 体410内。每个激光器440发出一束激光光束,从而八个激光器440可以发出八束不同波长的激光光束。八个第一透镜450与八个激光器440一一对应设置,以将每个激光器440发出的激光光束准直。八个第二透镜460与八个第一透镜450一一对应,以将经第一透镜450准直的激光光束会聚,从而便于将每束激光光束耦合至平面光波导430的输入光波导4310内。
每个输入光波导4310嵌设于光波导本体4340的远离主壳体410的表面上(如图10所示光波导本体4340的上表面)。八个输入光波导4310沿着平面光波导430的宽度方向并排设置。输出光波导4320以及八个输入光波导4310均与输入输出端面4330连接,并且输出光波导4320的出光方向与激光器440的出光方向(如图9所示方向A)相反。
在一些实施例中,光模块200可以包括四个激光器440、四个第一透镜450以及四个第二透镜460,并且平面光波导430可以包括四个输入光波导4310,本公开对此不作限制。
图12为根据一些实施例的一种平面光波导的侧视图。
在一些实施例中,如图12所示,平面光波导430的输入输出端面4330相对于垂直于激光器440的出光方向的竖直面倾斜设置,即输入输出端面4330与所述竖直面之间呈第一夹角α。例如,在激光器440的出光方向上,输入输出端面4330朝远离激光器440的方向倾斜,且输入输出端面4330的远离支撑面4130的第一端比其靠近支撑面4130的第二端更远离激光器440。
这样,当经第二透镜460会聚的激光光束入射至输入输出端面4330时,输入输出端面4330反射的激光光束可根据第一夹角α反射到除激光器440以外的位置处,避免输入输出端面4330反射的激光光束按照原光路返回至激光器440,对激光器440造成影响,从而可以改善激光器440的发光性能。
在一些实施例中,第一夹角α为2°~10°之间的任一值。例如,第一夹角α为2°、4°、6°、8°或10°等。
需要说明的是,第一夹角α不宜过大。如果输入输出端面4330的第一夹角α过大,则第二透镜460会聚的激光光束可能无法入射至输入光波导4310内,影响入射至平面光波导430的激光光束与平面光波导430之间的耦合效率。
图13为根据一些实施例的一种平面光波导的光路图,图14为根据一些实施例的另一种平面光波导的光路图。如图13和图14所示,根据斯涅尔定律(Snell's Law),即,当光从折射率小的介质进入折射率大的介质中时,光的折射角θ 2小于光的入射角θ 1;光从折射率大的介质进入折射率小的介质中时,光的折射角大于光的入射角,在输入光波导4310嵌设于光波导本体4340的上表面上,且光波导本体4340的上表面平行于水平面的情况下,输入光波导4310与水平面平行。
此时,如图13所示,入射至输入输出端面4330的激光光束必须与水平面成一定角度γ(γ大于零)才能入射至输入光波导4310内。也就是说,第二透镜460会聚的激光光束需要与水平面成一定角度γ才能入射至输入光波导4310内。
然而,由于激光器440一般是水平贴装(例如,胶水粘接),即激光器440的出光方向与水平面平行,因此,在入射至输入光波导4310前,入射至输入输出端面4330的激光光束的光路与水平面平行。在此情况下,不便于将入射至输入输出端面4330的激光光束的光路设置成相对于水平面倾斜的光路。
为此,在一些实施例中,如图14所示,平面光波导430中的、输入光波导4310所在的表面(即图14所示光波导本体4340的上表面)相对于激光器440的出光方向(如水平方向)倾斜设置。即,输入光波导4310与激光器440的出光方向之间呈第二夹角β(例如,3.6°等)。例如,在激光器440的出光方向上,输入光波导4310朝靠近支撑面4130的方向倾斜,且输入光波导4310的远离激光器440的第一端比其靠近激光器440的第二端更靠近支撑面4130。
这样,水平的激光光束经平面光波导430的输入输出端面4330折射后可准确入射至输入光波导4310内,从而提高入射至平面光波导430的激光光束与平面光波导430之间的耦合效率。
在一些实施例中,在第一夹角α等于8°的情况下,第二夹角β等于3.6°。也就是说,光波导本体4340的上表面与激光器440的出光方向之间的夹角等于3.6°。
在一些实施例中,第一夹角α、第二夹角β均与平面光波导430的折射率有关。因此,可根据平面光波导430的折射率的不同,设置不同的第一夹角α以及与该第一夹角α相对应的第二夹角β。
例如,在平面光波导430的折射率为1.449的情况下,第一夹角α等于8°,第二夹角β等于3.6°。
在一些实施例中,如图6所示,光发射器件400还包括隔离器470。隔离器470靠近平面光波导430设置,且位于平面光波导430与第二透镜460之间,隔离器470可以隔离经输入输出端面4330反射的激光光束。
第二透镜460会聚的激光光束可直接透过隔离器470入射至输入输出端面4330。入射至输入输出端面4330的激光光束中的一部分激光光束经输入输出端面4330折射至相应的输入光波导4310内。入射至输入输出端面4330的激光光束中的另一部分激光光束在输入输出端面4330发生反射,经输入输出端面4330反射的激光光束入射至隔离器470,并被隔离器470隔离,这样,可以避免反射的激光光束返回至激光器440,对激光器440造成干扰。
需要说明的是,折射至输入光波导4310内的激光光束多于被输入输出端面4330反射的激光光束。
在一些实施例中,隔离器470可以为块状隔离器、全光纤型隔离器、集成光波导光隔离器或者与偏振无关的光隔离器等。
图15为根据一些实施例的一种隔离器底座的结构图。
在一些实施例中,如图15所示,光发射器件400还包括隔离器底座800,隔离器470设置在隔离器底座800上。这样,隔离器底座800可以支撑隔离器470,以提高隔离器470的光轴的位置高度,从而使隔离器470的光轴与第二透镜460的光轴相重合。
在一些实施例中,如图15所示,隔离器底座800包括基板810、多个安装板820以及装配面830。基板810设置在主壳体410上。所述多个安装板820间隔设置在基板810的远离主壳体410的表面(如图15所示基板810的上表面),通过多个安装板820可以将基板810的上表面划分成多个装配面830。这样,可以将隔离器470贴装于隔离器底座800的装配面830上,使得隔离器470通过隔离器底座800设置在主壳体410上。
在一些实施例中,如图6和图9所示,光发射器件400包括半导体制冷器480,半导体制冷器480设置在主壳体410的安装槽4110内。
例如,半导体制冷器480在主壳体410的宽度方向上的尺寸可等于或略小于安装槽4110在主壳体410的宽度方向上的尺寸,从而可将半导体制冷器480嵌入安装槽4110内。
半导体制冷器480的靠近激光器440的表面为制冷面4801,多个激光器440、多个第一透镜450可沿主壳体410的宽度方向并排设置在该制冷面4801上,且多个激光器440与多个第一透镜450一一对应。
半导体制冷器480可将来自激光器440以及第一透镜450的热量传导至主壳体410,并通过主壳体410将热量传导至下壳体202,以对激光器440以及第一透镜450进行散热,提高光发射器件400的散热效率。
在一些实施例中,如图9所示,光发射器件400还包括第一基板401。第一基板401设置在激光器440与半导体制冷器480之间,第一基板401的远离半导体制冷器480的表面(如上表面)与激光器440接触,且第一基板401的靠近半导体制冷器480的表面(如下表面)与半导体制冷器480的制冷面4801接触。
这样,激光器440产生的热量可通过第一基板401传输至半导体制冷器480,通过半导体制冷器480对激光器440进行散热,提高激光器440的散热特性。此外,第一基板401还可以增加激光器440相对于主壳体410的高度,以使激光器440的高度对应平面光波导430的高度。
在一些实施例中,如图9所示,光发射器件400还包括第二基板402,第二基板402 位于第一基板401的靠近平面光波导430的一侧。第二基板402设置在第一透镜450与半导体制冷器480之间。第二基板402的远离半导体制冷器480的表面(如上表面)与第一透镜450接触,第二基板402的靠近半导体制冷器480的表面(如下表面)与半导体制冷器480的制冷面4801接触。
这样,第一透镜450产生的热量可通过第二基板402传输至半导体制冷器480,通过半导体制冷器480对第一透镜450进行散热,有利于改善第一透镜450的性能。
在一些实施例中,第一透镜450可由玻璃制成,以减少温度对第一透镜450的性能的影响。
在本公开一些实施例中,通过将平面光波导430的输入输出端面4330设置成斜面,可以使经输入输出端面4330反射的激光光束入射至除激光器440以外的位置处。并且,通过隔离器470可以对反射的激光光束进行隔离,可以避免反射的激光光束按照原光路返回至激光器440,对激光器440造成干扰。
图16为根据一些实施例的一种垫片的结构图,图17为图16中的一种垫片的侧视图。
在一些实施例中,如图9和图16所示,光发射器件400还包括垫片420。
垫片420设置在平面光波导430与主壳体410之间,且垫片420设置在主壳体410的支撑面4130上。平面光波导430设置于垫片420的远离主壳体410的表面。在将垫片420贴装在支撑面4130时,垫片420的侧面可与主壳体410的挡板4140相抵接,从而通过挡板4140对垫片420进行限位。
在光波导本体4340的靠近主壳体410的表面(如平面光波导430的下表面)、以及远离主壳体410的表面(如平面光波导430的上表面)均为水平面的情况下,垫片420的靠近平面光波导430的表面(如上表面)相对于激光器440的出光方向倾斜设置,且该表面与激光器440的出光方向之间呈第三夹角C。第三夹角C等于第二夹角β(例如,3.6°等)。
这样,当平面光波导430设置在垫片420的上表面时,光波导本体4340的上表面与激光器440的出光方向之间的夹角可以等于第二夹角β,即输入光波导4310与激光器440的出光方向之间可呈第二夹角β,使得输入光波导4310可以匹配第二透镜460会聚的激光光束。
在一些实施例中,如图16和图17所示,垫片420包括第一安装面4210以及第二安装面4220,第一安装面4210和第二安装面4220分别为垫片420上表面的一部分(即第一部分或第二部分)。第一安装面4210比第二安装面4220更靠近主壳体410,且第一安装面4210比第二安装面4220更远离激光器440。第一安装面4210上设置有平面光波导430。第二安装面4220上设置有隔离器470以及第二透镜460。
隔离器470可直接设置在第二安装面4220上,例如,隔离器470直接贴装在垫片420的第二安装面4220上。或者,隔离器470通过隔离器底座800设置在第二安装面4220上。例如,隔离器470安装在隔离器底座800上,隔离器底座800贴装在第二安装面4220上。
在一些实施例中,第二安装面4220可与激光器440的出光方向相平行,且第二安装面4220为水平面。
第一安装面4210位于第二安装面4220的远离激光器440的一侧。第一安装面4210相对于激光器440的出光方向所在的水平面倾斜设置,即第一安装面4210相对于水平面倾斜设置。例如,在激光器440的出光方向上,第一安装面4210朝靠近支撑面4130的方向倾斜,且第一安装面4210的远离激光器440的第一端比其靠近激光器440的第二端更靠近支撑面4130。这样,设置在第一安装面4210上的平面光波导430可相对于激光器440的出光方向倾斜设置。
需要说明的是,在平面光波导430的下表面为水平面,平面光波导430的上表面相对于水平面倾斜设置的情况下(如图14所示),第一安装面4210无需设置成斜面。
在一些实施例中,如图16所示,至少第一安装面4210的靠近第二安装面4220的一端低于第二安装面4220,以在第一安装面4210和第二安装面4220之间形成第二台阶4240。 平面光波导430的输入输出端面4330抵接于第二台阶4240,以通过第二台阶4240对平面光波导430进行限位。
在一些实施例中,如图16和图17所示,垫片420还包括第三安装面4230。第三安装面4230为垫片420的靠近主壳体410的表面(如下表面)。垫片420通过第三安装面4230贴装在主壳体410的支撑面4130上,以通过支撑面4130固定垫片420。
在一些实施例中,第三安装面4230与支撑面4130相平行。
在此情况下,第三安装面4230和支撑面4130均可与水平面平行。此时,垫片420可通过第三安装面4230水平地贴装在支撑面4130上。或者,第三安装面4230和支撑面4130均可相对于水平面倾斜设置。
在一些实施例中,在垫片420通过第三安装面4230水平地贴装在支撑面4130的情况下(即第三安装面4230和支撑面4130均与水平面平行),第一安装面4210与激光器440的出光方向之间呈第三夹角C。
在这种情况下,当平面光波导430贴装在第一安装面4210上时,光波导本体4340的上表面与激光器440的出光方向之间的夹角等于第一安装面4210与激光器440的出光方向之间的第三夹角C。也就是说,光波导本体4340的上表面与激光器440的出光方向之间的夹角等于第二夹角β。此时,入射至输入输出端面4330的激光光束可以折射至输入光波导4310内。
例如,如图9所示,垫片420水平地贴装在支撑面4130上。第二透镜460设置在垫片420的第二安装面4220上,使得第二透镜460会聚的激光光束与水平方向平行。然后,将平面光波导430的下表面与垫片420的第一安装面4210贴合。
此时,由于第一安装面4210与激光器440的出光方向之间的第三夹角C等于第二夹角β。因此,光波导本体4340的上表面与激光器440的出光方向之间的夹角等于第二夹角β。这样,第二透镜460会聚的、呈水平方向的激光光束能够在经输入输出端面4330折射后入射至输入光波导4310内。
在一些实施例中,在将平面光波导430设置在第一安装面4210上时,可根据第二透镜460会聚的激光光束与平面光波导430之间的耦合效率来调整平面光波导430与主壳体410之间的高度。也就是说,平面光波导430可以沿第一安装面4210的倾斜方向移动,以调节平面光波导430与主壳体410之间的高度。
例如,平面光波导430的输入输出端面4330可与第一安装面4210以及第二安装面4220之间的第二台阶4240相抵接。或者,如图9所示,平面光波导430也可设置在第一安装面4210的远离第二台阶4240的一侧,使得平面光波导430的输入输出端面4330与第二台阶4240不抵接,便于消除光路误差,增加光路的稳定性,以及提高入射至平面光波导430的激光光束与平面光波导430之间的耦合效率。此时,平面光波导430的远离激光器440的一端可以穿过第一开口403延伸至主壳体410之外。
当垫片420通过第三安装面4230水平地贴装在支撑面4130时,光发射器件400的装配过程如下:
首先将半导体制冷器480嵌设于主壳体410的安装槽4110内。然后,将多个激光器440并排设置在第一基板401上,并将第一基板401设置在半导体制冷器480的制冷面4801上。接着,将多个第一透镜450并排设置在第二基板402上,并将第二基板402设置在半导体制冷器480的制冷面4801上,使得多个第一透镜450与多个激光器440一一对应。
之后,将垫片420水平地贴装在主壳体410的支撑面4130上,并将隔离器470贴装在垫片420的第二安装面4220上。
最后,将平面光波导430贴装在垫片420的第一安装面4210上,并将第二透镜460有源耦合并贴装在垫片420的第二安装面4220上,从而完成光路的耦合。
如图9所示,在装配完光发射器件400后,激光器440在电路板300传输的信号的驱动下发出激光光束,该激光光束在通过第一透镜450准直后,入射至第二透镜460。入射至第二透镜460的激光光束经第二透镜460会聚后,直接透过隔离器470入射至平面光波导430的输入输出端面4330。
入射至输入输出端面4330的激光光束中的一部分激光光束经输入输出端面4330折射至相应的输入光波导4310内,并在平面光波导430内进行反射合波,以形成一束复合激光光束。该复合激光光束通过输出光波导4320射出。
入射至输入输出端面4330的激光光束中的另一部分激光光束在输入输出端面4330处发生反射,反射的激光光束通过隔离器470进行隔离,避免了输入输出端面4330反射的激光光束沿原光路返回至激光器440,影响激光器440的发光性能。
上述实施例主要以垫片420通过第三安装面4230水平地贴装在支撑面4130为例进行了说明。然而,本公开不限于此。
图18为根据一些实施例的另一种垫片的结构图,图19为图18中的另一种垫片的侧视图。图20为根据一些实施例的另一种主壳体的结构图,图21为图20中的另一种主壳体在另一角度的结构图。
在一些实施例中,如图18、图19和图20所示,垫片420的第三安装面4230以及主壳体410的支撑面4130均可相对于激光器440的出光方向的反方向倾斜设置,即第三安装面4230以及支撑面4130均相对于水平面倾斜设置。
这样,垫片420可沿支撑面4130的倾斜方向移动,从而调整平面光波导430与主壳体410之间的高度,便于消除光路误差,增加光路稳定性,以及提高入射至平面光波导430的激光光束与平面光波导430之间的耦合效率。
图22为根据一些实施例的另一种光发射器件的光路图。
在一些实施例中,如图19所示,垫片420的第三安装面4230和激光器440的出光方向的反方向之间呈第四夹角D(例如,9.4°等)。
例如,如图21和图22所示,沿着激光器440的出光方向,第三安装面4230朝远离激光器440的方向倾斜,且支撑面4130朝靠近下壳体202的方向倾斜。该支撑面4130与激光器440的出光方向的反方向之间的夹角、与垫片420的第三安装面4230与激光器440的出光方向的反方向之间的第四夹角D相同。这样,将垫片420通过第三安装面4230贴装至主壳体410的支撑面4130上时,第一安装面4210与激光器440的出光方向之间的第三夹角C不变。
在本公开的一些实施例中,通过将第三安装面4230和支撑面4130均设置成斜面,且使第三安装面4230和支撑面4130平行,可以在将垫片420通过第三安装面4230贴装至支撑面4130上时,根据需要的平面光波导430的高度调节垫片420在支撑面4130上的位置。
也就是说,垫片420可以沿支撑面4130的倾斜方向进行移动,以调整平面光波导430与主壳体410之间的高度,便于消除光路误差,增加光路稳定性,以及提高入射至平面光波导430的激光光束与平面光波导430之间的耦合效率。
此外,在将垫片420贴装在支撑面4130上时,平面光波导430可与垫片420组成一个预装配件。也就是说,平面光波导430贴装在垫片420的第一安装面4210上,以组成一个预装配件。然后,将该预装配件贴装至支撑面4130上。在贴装过程中,可以根据预装配件的高度、以及入射至平面光波导430的激光光束与平面光波导430之间的耦合效率调节该预设配件在支撑面4130上的高度。
当垫片420的第三安装面4230相对于水平面倾斜设置时,光发射器件400的装配过程与前文所述的光发射器件400的装配过程的区别如下:
在激光器440和第一透镜450完成安装后,将平面光波导430贴装在垫片420的第一安装面4210上,以使平面光波导430与垫片420组成一预装配件。将该预装配件通过垫片420的第三安装面4230贴装至主壳体410的支撑面4130上,并根据半导体制冷器480、激光器440、第一透镜450的高度使该预装配件沿支撑面4130的倾斜方向移动,以调节该预装配件在支撑面4130上的高度。
在该预装配件安装完成后,将隔离器470贴装在垫片420的第二安装面4220上。
最后,将第二透镜460有源耦合并贴装在垫片420的第二安装面4220上,从而完成光路的耦合。
在本公开的一些实施例中,通过将平面光波导430的输入输出端面4330相对于垂直于电路板300的竖直面倾斜设置,避免了输入输出端面4330反射的激光光束沿原光路返回至激光器440。
并且,通过将平面光波导430通过垫片420的第一安装面4210倾斜设置,可以匹配光路,提高入射至平面光波导430的激光光束与平面光波导430之间的耦合效率。
此外,通过将主壳体410的支撑面4130倾斜设置,可以使垫片420沿支撑面4130的倾斜方向移动以调节平面光波导430的高度,便于消除光路误差,简化工艺,增加了光路稳定性,并且提高了入射至平面光波导430的激光光束与平面光波导430之间的耦合效率。
图23为根据一些实施例的柔性电路板的结构图,图24为图23中柔性电路板的剖视图。图25为根据一些实施例的柔性电路板中主连接板、第一信号线以及第二信号线的结构图。
在一些实施例中,如图23、图24和图25所示,柔性电路板600包括主连接板630、第一柔性电路板610、第二柔性电路板620、第一信号线640以及第二信号线650。
主连接板630设置于主壳体410的安装槽4110内。主连接板630的远离第一柔性电路板610或第二柔性电路板620的一端与激光器440以及半导体制冷器480电连接,主连接板630的另一端连接第一柔性电路板610的一端以及第二柔性电路板620的一端,且第一柔性电路板610的另一端以及第二柔性电路板620的另一端间隔开,使得第一柔性电路板610与第二柔性电路板620之间存在间隙。
在一些实施例中,如图25所示,主连接板630的表层设置有第一信号线640的一部分,主连接板630的内层设置有第二信号线650的一部分,从而避免了在主连接板630的表层上布设的信号线集中。此外,第一信号线640的所述一部分和第二信号线650的所述一部分均设置在主连接板630上,便于柔性电路板600与激光器440、半导体制冷器480之间通过打线工艺(Wire Bonding)进行连接。
第一柔性电路板610的远离主连接板630的一端与第一电路板310电连接,且第一柔性电路板610上设置有第一信号线640的另一部分。这样,第一电路板310传输的第一信号(例如高频信号)可通过第一柔性电路板610上的第一信号线640、主连接板630上的第一信号线640传输至激光器440、半导体制冷器480,以为激光器440、半导体制冷器480提供第一信号。
第二柔性电路板620的远离主连接板630的一端与第二电路板320电连接,且第二柔性电路板620上设置有第二信号线650的另一部分。这样,第二电路板320传输的第二信号(例如非高频信号(如偏置电流信号))可通过第二柔性电路板620上的第二信号线650、主连接板630上的第二信号线650传输至激光器440、半导体制冷器480,以为激光器440、半导体制冷器480供电。
在这种情况下,当偏置电流信号驱动激光器440发出激光光束时,可以将第一柔性电路板610传输的第一信号调制至激光器440发出的激光光束中,以产生光信号。
在一些实施例中,第一柔性电路板610、第二柔性电路板620以及主连接板630为一体件。
在一些实施例中,如图23和图24所示,柔性电路板600还包括焊盘6330和过孔6320,且焊盘6330和过孔6320分别设置在主连接板630上。焊盘6330与主连接板630的表层的第一信号线640的所述一部分连接,且焊盘6330通过过孔6320与主连接板630的内层的第二信号线650的所述一部分连接。过孔6320与焊盘6330相邻。
例如,过孔6320通过打线工艺分别与主连接板630上的焊盘6330、以及与主连接板630的内层的第二信号线650连接。
焊盘6330通过打线工艺与激光器440、半导体制冷器480电连接。这样,电路板300(即第一电路板310和第二电路板320)可通过柔性电路板600向激光器440以及半导体制冷器480传输信号。
图26为根据一些实施例的柔性电路板与电路板的装配图。
在一些实施例中,柔性电路板600还包括第一焊盘和第二焊盘。所述第一焊盘设置在 第一柔性电路板610上,且位于第一柔性电路板610的靠近第一电路板310的一侧。第一柔性电路板610通过所述第一焊盘与第一电路板310连接。所述第二焊盘设置在第二柔性电路板620上,且位于第二柔性电路板620的靠近第二电路板320的一侧。第二柔性电路板620通过所述第二焊盘与第二电路板320连接。
例如,如图26所示,第一柔性电路板610的靠近第一电路板310背面(如第一电路板310的下表面)的一侧设置有所述第一焊盘,第一柔性电路板610可通过该第一焊盘连接至第一电路板310的背面。第二柔性电路板620的靠近第二电路板320背面(如第二电路板320的下表面)的一侧设置有所述第二焊盘,第二柔性电路板620可通过该第二焊盘连接至第二电路板320的背面。
在一些实施例中,第一柔性电路板610与第二柔性电路板620可连接至同一电路板300。此时,光模块200可以仅包括一个电路板300。
例如,所述第一焊盘设置在第一柔性电路板610的靠近电路板300的正面的表面,使得第一柔性电路板610与电路板300的正面连接。所述第二焊盘设置在第二柔性电路板620的靠近电路板300的背面的表面,使得第二柔性电路板620与电路板300的背面连接。
这样,通过第一柔性电路板610可将电路板300上的所述第一信号传输至光发射器件400中的激光器440,并通过第二柔性电路板620将电路板300上的所述第二信号传输至激光器440,以驱动激光器440产生光信号。
在一些实施例中,如图24所示,柔性电路板600还包括补强板6340。补强板6340设置在主连接板630的靠近主壳体410的一侧,以提高主连接板630的强度,便于在主连接板630的表层和内层布设相应的信号线(包括第一信号线640和第二信号线650)。
在一些实施例中,如图4和图5所示,柔性电路板600还包括第三柔性电路板660。第三柔性电路板660用于连接光接收器件500与第一电路板310。光接收器件500将接收到的光信号转换为电信号,该电信号经第三柔性电路板660传输至第一电路板310,然后通过第一电路板310对该电信号进行信号处理。
在一些实施例中,在光模块200仅包括一个电路板300的情况下,第三柔性电路板660可连接至电路板300的正面,以通过第三柔性电路板660将光接收器件500转换的电信号传输至电路板300。
图27为根据一些实施例的光发射器件和柔性电路板的装配图。
在一些实施例中,如图27所示,光发射器件400还包括支撑块490。支撑块490嵌设在主壳体410的安装槽4110内,且柔性电路板600的主连接板630设置于支撑块490上,以通过支撑块490提高柔性电路板600的安装高度,使得柔性电路板600的主连接板630与激光器440的打线高度一致,有利于缩短主连接板630与激光器440之间通过打线工艺连接时连接线的长度。
此外,如图6和图23所示,在主连接板630贴装至支撑块490上时,主连接板630的侧面6310可与主壳体410的限位板4120相抵接,从而通过限位板4120对主连接板630进行限位。
在本公开的一些实施例中,通过将柔性电路板600的远离激光器440的一端分为第一柔性电路板610与第二柔性电路板620,以将柔性电路板600一分为二,可以使电路板300发出的所述第一信号和所述第二信号分开,避免了所述第一信号与所述第二信号之间的串扰,有利于在柔性电路板600上布线。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光模块,包括:
    壳体;
    电路板,设置于所述壳体内;以及
    光发射器件,设置于所述壳体内,所述光发射器件与所述电路板电连接,且所述光发射器件被配置为发出光信号;其中,
    所述光发射器件包括:
    主壳体,设置于所述壳体内;
    激光器,设置于所述主壳体内,所述激光器被配置为发出激光光束;以及
    平面光波导,设置在所述主壳体内,所述平面光波导位于所述激光器的出光侧,且所述平面光波导被配置为传输入射至其的所述激光光束;其中,
    所述平面光波导包括光波导本体、输入光波导、输出光波导以及输入输出端面;
    所述输入光波导和所述输出光波导设置在所述光波导本体中,且所述输入光波导和所述输出光波导分别与所述输入输出端面连接,所述输入光波导相对于所述激光器的出光方向倾斜设置;
    所述输入输出端面为所述光波导本体的靠近所述激光器的表面,且所述输入输出端面相对于垂直于所述激光器的所述出光方向的竖直面倾斜设置;
    入射至所述输入输出端面的所述激光光束经所述输入输出端面折射至所述输入光波导内。
  2. 根据权利要求1所述的光模块,其中,所述主壳体包括:
    安装槽,被配置为承载所述激光器,所述安装槽设置在所述主壳体的靠近所述激光器的表面上,且所述安装槽朝远离所述激光器的方向向所述主壳体内凹陷;以及
    支撑面,被配置为承载所述平面光波导,所述支撑面为所述主壳体的靠近所述激光器的所述表面的一部分,且至少所述支撑面的靠近所述安装槽的一端高于所述安装槽的槽底,以在所述支撑面与所述安装槽之间形成第一台阶。
  3. 根据权利要求2所述的光模块,其中,
    所述支撑面平行于所述安装槽的槽底;
    在所述激光器的所述出光方向上,所述输入输出端面朝远离所述激光器的方向倾斜,且所述输入输出端面的远离所述支撑面的第一端比其靠近所述支撑面的第二端更远离所述激光器;
    所述输入光波导嵌设于所述光波导本体的远离所述主壳体的表面上,在所述激光器的所述出光方向上,所述光波导本体的设置有所述输入光波导的所述表面朝靠近所述支撑面的方向倾斜,且所述光波导本体的设置有所述输入光波导的所述表面的远离所述激光器的第一端比其靠近所述激光器的第二端更靠近所述支撑面。
  4. 根据权利要求3所述的光模块,其中,
    所述输入输出端面与垂直于所述激光器的所述出光方向的所述竖直面之间呈第一夹角;
    所述光波导本体的设置有所述输入光波导的所述表面与所述激光器的所述出光方向呈第二夹角,以使所述入射至所述输入输出端面的所述激光光束经所述输入输出端面折射至所述输入光波导内;
    所述第一夹角大于所述第二夹角。
  5. 根据权利要求2所述的光模块,其中,所述光发射器件还包括垫片,所述垫片设置于所述支撑面上,所述平面光波导设置于所述垫片的远离所述主壳体的表面。
  6. 根据权利要求5所述的光模块,其中,所述垫片包括:
    第一安装面,所述第一安装面为所述垫片的远离所述主壳体的所述表面的第一部分;以及
    第三安装面,所述第三安装面为所述垫片的靠近所述主壳体的表面,所述第三安装面位于所述支撑面上且与所述支撑面平行;其中
    所述支撑面平行于所述安装槽的所述槽底;
    所述输入光波导嵌设于所述光波导本体的远离所述主壳体的表面上,且所述光波导本体的设置有所述输入光波导的所述表面平行于所述第一安装面;
    在所述激光器的所述出光方向上,所述输入输出端面朝远离所述激光器的方向倾斜,且所述输入输出端面的远离所述支撑面的第一端比其靠近所述支撑面的第二端更远离所述激光器;
    在所述激光器的所述出光方向上,所述第一安装面朝靠近所述支撑面的方向倾斜,且所述第一安装面的远离所述激光器的第一端比其靠近所述激光器的第二端更靠近所述支撑面,所述平面光波导位于所述第一安装面上,以使所述光波导本体的设置有所述输入光波导的所述表面朝靠近所述支撑面的方向倾斜,且所述光波导本体的设置有所述输入光波导的所述表面的远离所述激光器的第一端比其靠近所述激光器的第二端更靠近所述支撑面。
  7. 根据权利要求6所述的光模块,其中,所述第一安装面与所述激光器的所述出光方向之间呈第三夹角,以使入射至所述输入输出端面的所述激光光束经所述输入输出端面折射至所述输入光波导内。
  8. 根据权利要求6或7所述的光模块,其中,所述垫片还包括:
    第二安装面,所述第二安装面为所述垫片的远离所述主壳体的所述表面的第二部分,所述第二安装面位于所述第一安装面的靠近所述激光器的一侧,至少所述第一安装面的靠近所述第二安装面的一端低于所述第二安装面,以在所述第一安装面与所述第二安装面之间形成第二台阶。
  9. 根据权利要求5所述的光模块,其中,所述垫片包括:
    第一安装面,所述第一安装面为所述垫片的远离所述主壳体的所述表面的第一部分;以及
    第三安装面,所述第三安装面为所述垫片的靠近所述主壳体的表面,所述第三安装面位于所述支撑面上且与所述支撑面平行;其中
    所述支撑面相对于所述安装槽的所述槽底倾斜;
    所述输入光波导嵌设于所述光波导本体的远离所述主壳体的表面上,且所述光波导本体的设置有所述输入光波导的所述表面平行于所述第一安装面;
    在所述激光器的所述出光方向上,所述输入输出端面朝远离所述激光器的方向倾斜,且所述输入输出端面的远离所述支撑面的第一端比其靠近所述支撑面的第二端更远离所述激光器;
    在所述激光器的所述出光方向上,所述第一安装面朝靠近所述支撑面的方向倾斜,且所述第一安装面的远离所述激光器的第一端比其靠近所述激光器的第二端更靠近所述支撑面,所述平面光波导位于所述第一安装面上,以使所述光波导本体的设置有所述输入光波导的所述表面朝靠近所述支撑面的方向倾斜,且所述光波导本体的设置有所述输入光波导的所述表面的远离所述激光器的第一端比其靠近所述激光器的第二端更靠近所述支撑面。
  10. 根据权利要求9所述的光模块,其中,所述第一安装面与所述激光器的所述出光方向之间呈第三夹角,以使入射至所述输入输出端面的所述激光光束经所述输入输出端面折射至所述输入光波导内。
  11. 根据权利要求9或10所述的光模块,其中,所述垫片还包括:
    第二安装面,所述第二安装面为所述垫片的远离所述主壳体的所述表面的第二部分,所述第二安装面位于所述第一安装面的靠近所述激光器的一侧,至少所述第一安装面的靠近所述第二安装面的一端低于所述第二安装面,以在所述第一安装面与所述第二安装面之间形成第二台阶。
  12. 根据权利要求9至11中任一项所述的光模块,其中,在所述激光器的所述出光方向上,所述第三安装面朝远离所述激光器的方向倾斜,且所述第三安装面与所述支撑面平行。
  13. 根据权利要求12所述的光模块,其中,所述第三安装面与所述激光器的所述出 光方向的反方向之间呈第四夹角,使所述垫片沿所述支撑面移动,以调整所述平面光波导与所述主壳体之间的高度。
  14. 根据权利要求2至13中任一项所述的光模块,其中,所述主壳体还包括:
    第一开口,设置在所述支撑面的远离所述激光器的一侧;
    挡板,设置在所述支撑面上且沿垂直于所述支撑面的方向延伸,所述挡板位于所述第一开口与所述安装槽之间;以及
    第二开口,设置在所述支撑面的与所述挡板相对的一侧。
  15. 根据权利要求2至13中任一项所述的光模块,所述光模块还包括柔性电路板,所述柔性电路板被配置为使所述电路板与所述光发射器件电连接,其中,所述柔性电路板包括:
    第一信号线,被配置为传输第一信号;
    第二信号线,被配置为传输第二信号;
    第一柔性电路板,所述第一信号线的一部分位于所述第一柔性电路板上,所述第一柔性电路板的一端与所述电路板电连接;
    第二柔性电路板,所述第二信号线的一部分位于所述第二柔性电路板上,所述第二柔性电路板的一端与所述电路板电连接,且所述第二柔性电路板的所述一端与所述第一柔性电路板的所述一端间隔开;以及
    主连接板,设置于所述主壳体内,所述主连接板的一端与所述激光器电连接,所述主连接板的另一端连接所述第一柔性电路板的另一端以及所述第二柔性电路板的另一端,所述第一信号线的另一部分位于所述主连接板的表层,所述第二信号线的另一部分位于所述主连接板的内层。
  16. 根据权利要求15所述的光模块,其中,所述主连接板包括:
    焊盘,设置在所述主连接板的一侧,所述焊盘与所述激光器连接,位于所述主连接板的所述表层的所述第一信号线的所述另一部分与所述焊盘连接;以及
    过孔,其中,位于所述主连接板的所述内层的所述第二信号线的所述另一部分通过所述过孔与位于所述主连接板的所述表层的所述焊盘连接。
  17. 根据权利要求15或16所述的光模块,其中,所述柔性电路板还包括补强板,所述补强板设置在所述主连接板的靠近所述安装槽的一侧。
  18. 根据权利要求15所述的光模块,其中,所述主壳体还包括限位板,所述限位板设置在所述安装槽在所述主壳体的宽度方向上相对的两侧壁上,且所述限位板朝远离所述安装槽的方向延伸,所述主连接板抵接于所述限位板。
  19. 根据权利要求15所述的光模块,其中,所述光发射器件还包括支撑块,所述支撑块设置在所述安装槽内,所述主连接板设置在所述支撑块的远离所述安装槽的一侧。
  20. 根据权利要求15所述的光模块,其中,
    所述壳体包括上壳体和下壳体,所述上壳体盖合在所述下壳体上;
    所述电路板包括:
    第一电路板,与所述第一柔性电路板连接;以及
    第二电路板,与所述第二柔性电路板连接;其中
    所述第一电路板与所述第二电路板层叠设置,且所述第一电路板位于所述第二电路板的远离所述下壳体的一侧,所述第一柔性电路板与所述第一电路板的靠近所述第二电路板的表面连接,所述第二柔性电路板与所述第二电路板的远离所述第一电路板的表面连接。
PCT/CN2022/098626 2021-09-13 2022-06-14 光模块 WO2023035711A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111068935.XA CN113740980B (zh) 2021-09-13 2021-09-13 一种光模块
CN202122211136.5U CN216052310U (zh) 2021-09-13 2021-09-13 一种光模块
CN202111068979.2 2021-09-13
CN202122212146.0U CN215895037U (zh) 2021-09-13 2021-09-13 一种光模块
CN202111068979.2A CN113759479B (zh) 2021-09-13 2021-09-13 一种光模块
CN202122212146.0 2021-09-13
CN202122211136.5 2021-09-13
CN202111068935.X 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023035711A1 true WO2023035711A1 (zh) 2023-03-16

Family

ID=85507160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098626 WO2023035711A1 (zh) 2021-09-13 2022-06-14 光模块

Country Status (1)

Country Link
WO (1) WO2023035711A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117353825A (zh) * 2023-12-04 2024-01-05 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射系统及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062458A (ja) * 2000-08-21 2002-02-28 Toshiba Corp 光モジュールおよびその組立方法、光モジュールを用いた映像表示装置
US20040057653A1 (en) * 2002-09-25 2004-03-25 Sumitomo Electric Industries, Ltd. Integrated optical element, integrated optical element fabrication method, and light source module
CN106164725A (zh) * 2013-07-26 2016-11-23 尼奥弗托尼克斯公司 可调栅格跟踪发射器和接收器
US20190296520A1 (en) * 2018-03-20 2019-09-26 Nichia Corporation Optical module
CN111708131A (zh) * 2020-06-22 2020-09-25 武汉光迅科技股份有限公司 光发射组件以及光模块
JP2021009413A (ja) * 2020-10-21 2021-01-28 日本ルメンタム株式会社 光通信モジュール及びその製造方法
CN113740980A (zh) * 2021-09-13 2021-12-03 青岛海信宽带多媒体技术有限公司 一种光模块
CN113759479A (zh) * 2021-09-13 2021-12-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895037U (zh) * 2021-09-13 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062458A (ja) * 2000-08-21 2002-02-28 Toshiba Corp 光モジュールおよびその組立方法、光モジュールを用いた映像表示装置
US20040057653A1 (en) * 2002-09-25 2004-03-25 Sumitomo Electric Industries, Ltd. Integrated optical element, integrated optical element fabrication method, and light source module
CN106164725A (zh) * 2013-07-26 2016-11-23 尼奥弗托尼克斯公司 可调栅格跟踪发射器和接收器
US20190296520A1 (en) * 2018-03-20 2019-09-26 Nichia Corporation Optical module
CN111708131A (zh) * 2020-06-22 2020-09-25 武汉光迅科技股份有限公司 光发射组件以及光模块
JP2021009413A (ja) * 2020-10-21 2021-01-28 日本ルメンタム株式会社 光通信モジュール及びその製造方法
CN113740980A (zh) * 2021-09-13 2021-12-03 青岛海信宽带多媒体技术有限公司 一种光模块
CN113759479A (zh) * 2021-09-13 2021-12-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895037U (zh) * 2021-09-13 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117353825A (zh) * 2023-12-04 2024-01-05 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射系统及控制方法
CN117353825B (zh) * 2023-12-04 2024-02-09 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射系统及控制方法

Similar Documents

Publication Publication Date Title
CN113885143B (zh) 一种光模块
CN218350561U (zh) 一种光模块
US20230258883A1 (en) Optical module
CN114035285A (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN113740980B (zh) 一种光模块
WO2023035711A1 (zh) 光模块
WO2023185220A1 (zh) 一种光模块
CN113759479B (zh) 一种光模块
WO2022267805A1 (zh) 光模块
CN114660740B (zh) 一种光模块
WO2022257486A1 (zh) 光模块
CN114779412B (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
CN216772052U (zh) 一种光模块
CN215895037U (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
WO2024016602A1 (zh) 光模块
WO2023184922A1 (zh) 光模块
WO2023045423A1 (zh) 光模块
WO2023098071A1 (zh) 光模块
WO2024093070A1 (zh) 光模块
WO2023093130A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866186

Country of ref document: EP

Kind code of ref document: A1