WO2023093130A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023093130A1
WO2023093130A1 PCT/CN2022/111548 CN2022111548W WO2023093130A1 WO 2023093130 A1 WO2023093130 A1 WO 2023093130A1 CN 2022111548 W CN2022111548 W CN 2022111548W WO 2023093130 A1 WO2023093130 A1 WO 2023093130A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
sub
laser
circuit board
Prior art date
Application number
PCT/CN2022/111548
Other languages
English (en)
French (fr)
Inventor
吴涛
慕建伟
濮宏图
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111434220.1A external-priority patent/CN114035285B/zh
Priority claimed from CN202111429761.5A external-priority patent/CN116184579A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023093130A1 publication Critical patent/WO2023093130A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, in particular to an optical module.
  • optical communication technology the optical module is a tool to realize the mutual conversion of photoelectric signals, and is one of the key components in optical communication equipment.
  • the optical module includes a housing, a circuit board, a light emitting device, a light receiving device and an optical fiber adapter.
  • the circuit board is located in the housing.
  • the light-emitting device is mounted on the circuit board, the light-emitting device includes a laser and an optical circulator; the laser is configured to emit a laser beam; the optical circulator includes a light entrance, a light exit, and a light exit , the light entrance and the light exit are located on the same side of the optical circulator, and the light entrance and exit are located on the opposite side of the optical circulator.
  • the light receiving device is installed on the circuit board and is located on one side of the light emitting device along a direction perpendicular to the light emitting direction of the laser, and the light receiving device is configured to receive the laser beam.
  • the optical fiber adapter is optically coupled to the optical entrance and exit port of the optical circulator, and is configured to send the laser beam from the laser to the outside of the optical module through the optical circulator, or send the laser beam from the laser to the outside of the optical module through the optical circulator. A laser beam from outside the optical module is sent to the light receiving device.
  • the light inlet of the optical circulator is optically coupled to the laser
  • the light output of the optical circulator is optically coupled to the light receiving device
  • the optical circulator is configured to make the laser light from the laser
  • a light beam is coupled into the fiber optic adapter
  • a laser beam from the fiber optic adapter is coupled into the light receiving device.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Fig. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments.
  • Fig. 4A is an exploded structure diagram of an optical module according to some embodiments.
  • Fig. 4B is an exploded structure diagram of another optical module according to some embodiments.
  • Fig. 5A is a structural diagram of an optical module without a housing and an unlocking component according to some embodiments
  • Fig. 5B is a structural diagram of another optical module without the housing and unlocking components according to some embodiments.
  • Fig. 6A is a structural diagram of a light-emitting device in an optical module according to some embodiments.
  • Fig. 6B is a structural diagram of a light-emitting device in another optical module according to some embodiments.
  • Fig. 7A is an optical path diagram of a light-emitting device in an optical module according to some embodiments.
  • Fig. 7B is an optical path diagram of another light-emitting device in an optical module according to some embodiments.
  • Fig. 8 is a structure and an optical path diagram of an optical circulator in an optical module according to some embodiments.
  • Fig. 9A is a structural diagram of a circuit board in an optical module according to some embodiments.
  • Fig. 9B is a structural diagram of a circuit board in another optical module according to some embodiments.
  • Fig. 10A is a partial exploded view of a circuit board, an optical transmitting device, an optical receiving device and an optical fiber adapter in an optical module according to some embodiments;
  • Figure 10B is a partially exploded view of a circuit board, an optical emitting device, and an optical fiber adapter in another optical module according to some embodiments;
  • FIG. 10C is a partial assembly diagram of another angle of the circuit board and the light-emitting device in another optical module shown in FIG. 10B;
  • 11A is a cross-sectional view of an assembly structure of a circuit board and a light-emitting device in an optical module according to some embodiments;
  • 11B is a cross-sectional view of an assembly structure of a circuit board and a light-emitting device in another optical module according to some embodiments;
  • Fig. 12A is an optical path diagram of another angle of the light-emitting device in the optical module shown in Fig. 7A;
  • Fig. 12B is an optical path diagram of another angle of the light-emitting device in the optical module shown in Fig. 7B;
  • 13A is an electrical connection diagram of a circuit board and a light-emitting device in an optical module according to some embodiments
  • 13B is an electrical connection diagram of a circuit board and a light-emitting device in another optical module according to some embodiments
  • Fig. 14A is a structural diagram of a base in an optical module according to some embodiments.
  • Fig. 14B is a structural diagram of a base in another optical module according to some embodiments.
  • Fig. 15 is a structural diagram of another angle of the base in the optical module shown in Fig. 14A;
  • Fig. 16 is a structural diagram of another angle of the base in the optical module shown in Fig. 14A;
  • Fig. 17A is an assembly diagram of a base and a light receiving device in an optical module according to some embodiments.
  • Fig. 17B is an assembly diagram of a base and a light receiving device in another optical module according to some embodiments.
  • Fig. 18A is an optical circuit diagram of an optical receiving device in an optical module according to some embodiments.
  • Fig. 18B is an optical path diagram of another optical receiving device in an optical module according to some embodiments.
  • Fig. 18C is an optical path diagram of another angle of the light receiving device in the optical module shown in Fig. 18A;
  • Fig. 19A is an electrical connection diagram of a circuit board and a light receiving device in an optical module according to some embodiments
  • Fig. 19B is an electrical connection diagram between a circuit board and a light receiving device in another optical module according to some embodiments.
  • Fig. 19C is an electrical connection diagram of another angle between a circuit board and a light receiving device in another optical module according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • optical communication technology In optical communication technology, light is used to carry information to be transmitted, and the optical signal carrying information is transmitted to information processing equipment such as a computer through optical fiber or optical waveguide and other information transmission equipment to complete the information transmission. Because optical signals have passive transmission characteristics when they are transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (such as an optical modem) through the electrical port. It is mainly used to realize power supply, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission and grounding, etc.; optical network terminals transmit electrical signals to computers through network cables or wireless fidelity technology (Wi-Fi) and other information processing equipment.
  • I2C Inter-Integrated Circuit
  • Wi-Fi wireless fidelity technology
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • Optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long-distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach thousands of kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: routers, switches, computers, mobile phones, tablet computers, televisions, and so on.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 A two-way electrical signal connection is established.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200, so the optical network terminal 100, as the host computer of the optical module 200, can monitor the optical module 200 jobs.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101; electrical signal connection.
  • the optical module 200 implements mutual conversion between optical signals and electrical signals, so that a connection is established between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input to the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input to the optical fiber 101 . Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the remote server 1000 establishes a two-way signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, a radiator 107 disposed on the cage 106, and an electrical circuit board disposed inside the cage 106.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has a protruding structure such as fins for increasing the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the heat generated by the optical module 200 is conducted to the cage 106 and then diffused through the radiator 107 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101 .
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4A is an exploded structural diagram of an optical module according to some embodiments
  • Fig. 4B is an exploded structural diagram of another optical module according to some embodiments .
  • the optical module 200 includes a shell, a circuit board 300 disposed in the shell, a light emitting device 400 and a light receiving device 500 .
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing is generally square.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate and perpendicular to the bottom plate; Two lower side panels 2022 to form the above-mentioned housing.
  • the lower housing 202 includes a bottom plate 2021 and two lower side plates 2022 positioned on both sides of the bottom plate and perpendicular to the bottom plate; The two upper side plates provided are combined with the two lower side plates 2022 so as to cover the upper case 201 on the lower case 202 .
  • the direction of the line connecting the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may not be consistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the gold finger 301 of the circuit board 300 extends from the electrical port 204, and is inserted into a host computer (such as the optical network terminal 100); the opening 205 is an optical port, which is configured to be connected to an external optical fiber 101, so that The optical fiber 101 connects the light emitting device 400 and the light receiving device 500 inside the optical module 200 .
  • the combination of the upper housing 201 and the lower housing 202 is used to facilitate the installation of components such as the circuit board 300, the light emitting device 400 and the light receiving device 500 into the housing, and the upper housing 201 and the lower housing 202 control these devices. Form package protection.
  • components such as the circuit board 300 , the light emitting device 400 and the light receiving device 500 , it is convenient to deploy the positioning components, heat dissipation components and electromagnetic shielding components of these components, which is conducive to automatic production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking part 203 located on the outer wall of its housing, and the unlocking part 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer side of the two lower side plates 2022 of the lower housing 202 , and includes a locking component matching with a cage of the upper computer (for example, the cage 106 of the optical network terminal 100 ).
  • a cage of the upper computer for example, the cage 106 of the optical network terminal 100 .
  • the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, and then Change the connection relationship between the engaging component and the host computer to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, through which the electronic components and chips are connected together according to the circuit design, so as to realize functions such as power supply, electrical signal transmission and grounding.
  • the electronic components may include, for example, capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip can include, for example, a Microcontroller Unit (MCU), a laser driver chip, a transimpedance amplifier (Transimpedance Amplifier, TIA), a limiting amplifier (Limiting Amplifier), a clock data recovery chip (Clock and Data Recovery, CDR), a power supply Management chip (Power Management Chip), digital signal processing (Digital Signal Processing, DSP) chip.
  • MCU Microcontroller Unit
  • TIA Transimpedance Amplifier
  • Limiting Amplifier Low-Voltage Amplifier
  • CDR clock and Data Recovery
  • Power Management Chip Power Management Chip
  • DSP digital signal processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function, such as the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the cage of the host computer in the electrical connector.
  • the circuit board 300 also includes a gold finger 301 formed on the surface of its end, and the gold finger 301 is composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106 , and is conductively connected with the electrical connector in the cage 106 by the gold finger 301 .
  • Gold fingers 301 can be set on only one side of the circuit board 300 (for example, the upper surface shown in FIGS. 4A and 4B ), or can be set on the upper and lower sides of the circuit board 300, so as to meet the occasions where the number of pins is large.
  • the golden finger 301 is configured to establish an electrical connection with a host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • Fig. 5A is a structural diagram of an optical module according to some embodiments without the housing and unlocking components
  • Fig. 5B is a structural diagram of another optical module according to some embodiments without the housing and unlocking components
  • Fig. 6A is According to a structural diagram of a light-emitting device in an optical module according to some embodiments
  • FIG. 6B is a structural diagram of another light-emitting device in an optical module according to some embodiments.
  • the optical module 200 further includes an optical fiber adapter 600 and an internal optical fiber 700 .
  • the fiber optic adapter 600 is connected to the light emitting device 400 and the light receiving device 500 through the same inner fiber 700 .
  • the optical signal emitted by the optical transmitting device 400 is transmitted through the internal optical fiber 700 and the optical fiber adapter 600 to realize the emission of the optical signal; the external optical signal is transmitted to the optical receiving device 500 through the optical fiber adapter 600 and the internal optical fiber 700 to realize optical signal transmission. reception.
  • the light transmitting signal and the light receiving signal share a single optical fiber, thereby reducing the demand and occupation of optical fiber resources.
  • the fiber optic adapter 600 includes a first sub-fiber optic adapter 601 and a second sub-fiber optic adapter 602 .
  • the inner fiber 700 includes a first sub-inner fiber 701 and a second sub-inner fiber 702 .
  • the light receiving device 500 includes a first sub light receiving device 501 and a second sub light receiving device 502 .
  • the first sub-fiber adapter 601 is connected to the light emitting device 400 and the first sub-light receiving device 501 through the same first sub-internal optical fiber 701
  • the second sub-fiber adapter 602 is connected to the light emitting device 400 and the first sub-internal optical fiber 702 through the same second sub-internal optical fiber 702.
  • the two sub-light receiving devices 502 are connected. In this way, part of the optical signal emitted by the light-emitting device 400 is transmitted through the first sub-internal optical fiber 701 and the first sub-fiber adapter 601, and the remaining part of the optical signal is transmitted through the second sub-internal optical fiber 702 and the second sub-fiber adapter 602, so that Realize the emission of optical signals; the external optical signal is transmitted to the first sub-optical receiving device 501 through the first sub-fiber adapter 601 and the first sub-internal optical fiber 701, and is transmitted to the first sub-optical receiving device 501 through the second sub-fiber adapter 602 and the second sub-internal optical fiber 702.
  • Two sub-light receiving devices 502 are used to receive light signals. In this way, it is realized that the light transmitting signal and the light receiving signal share a single optical fiber, thereby reducing the demand and occupation of optical fiber resources.
  • the light-emitting device 400 and the light-receiving device 500 are both arranged on the surface of the circuit board 300 close to the upper housing 201 (hereinafter, the surface is referred to as the front side, and the surface of the circuit board 300 close to the lower housing 202 called the back).
  • the light-emitting device 400 includes a base 410 and a laser 420 disposed on the base 410, a collimating lens 430, an optical multiplexer 440, a first translation prism 450, an optical circulator (Optical Circulator) 460, a fiber coupler 470, and a semiconductor refrigerator (Thermo Electric Cooler, TEC) 480.
  • the base 410 has a mounting surface and a bottom surface.
  • the laser 420 , the collimating lens 430 , the optical multiplexer 440 , the first translational prism 450 , the optical circulator 460 , the fiber coupler 470 and the semiconductor refrigerator 480 are all installed on the installation surface of the base 410 .
  • the bottom surface of the base 410 is the surface opposite to its mounting surface.
  • the laser 420 includes a laser chip 421 and a spacer 422 .
  • the laser chip 421 has a cathode and an anode
  • the spacer 422 includes an insulating heat conducting layer and a metal layer
  • the metal layer includes a ground wire and a signal wire.
  • the cathode of the laser chip 421 can be fixed on the ground wire by means of welding or conductive glue, so as to be electrically connected to the ground wire.
  • the anode of the laser chip 421 can be electrically connected to the signal line through the connection line. Apply voltage to the cathode and anode of the laser chip 421 through the ground wire and the signal wire respectively, and the laser chip 421 can emit a laser beam parallel to the front surface of the circuit board 300 .
  • the number of lasers 420 is not limited, and it may be 2, 4 or 8, or may be 1. It can be understood that increasing the number of lasers 420 can increase the signal transmission rate of the optical module 200 .
  • the light emitting device 400 includes 4 lasers 420 ; as shown in FIG. 6B , the light emitting device 400 includes 8 lasers 420 .
  • the semiconductor cooler 480 is disposed on the mounting surface of the base 410 , and the laser 420 is disposed on a surface of the semiconductor cooler 480 away from the base 410 .
  • the semiconductor cooler 480 is configured to conduct the heat generated by the laser chip 421 to the base 410 , and export the heat to the outside of the optical module 200 through the base 410 and the housing of the optical module 200 .
  • the peltier cooler 480 includes a first heat exchange surface and a second heat exchange surface opposite to each other, and a plurality of heat conducting columns located between the first heat exchange surface and the second heat exchange surface. The first heat exchange surface and the second heat exchange surface are connected by a plurality of heat conduction columns.
  • a plurality of heat conducting columns can be arranged in an array, which can be made of semiconductor material.
  • the first heat exchange surface of the semiconductor refrigerator 480 is disposed on the installation surface of the base 410
  • the laser 420 is disposed on the second heat exchange surface of the semiconductor refrigerator 480 .
  • the peltier cooler 480 can be omitted.
  • the collimator lens 430 can adjust the divergent laser beam generated by the laser chip 421 into a parallel laser beam, that is, a collimated beam. It should be noted that the number of collimating lenses 430 is not limited, but there is a corresponding relationship between the collimating lenses 430 and the lasers 420, which can be one-to-one correspondence, or one collimating lens 430 can correspond to multiple lasers 420 . Exemplarily, as shown in FIG. 6A , the light emitting device 400 includes four collimating lenses 430 , and each collimating lens 430 corresponds to one laser 420 . But in some embodiments, the collimating lens 430 can also be omitted.
  • the first translation prism 450 is a rhombic prism, which has a first reflective surface 451 and a second reflective surface 452 . Both the first reflective surface 451 and the second reflective surface 452 can change the propagation direction of the laser beam, for example, bend the propagation direction of the laser beam by 90°.
  • the first reflective surface 451 reflects a laser beam parallel to the front of the circuit board 300 emitted by the laser chip 421, so that the laser beam continues to propagate in a direction perpendicular to the front of the circuit board 300;
  • the surface 452 reflects the laser beam perpendicular to the front surface of the circuit board 300 , so that the laser beam propagates in a direction parallel to the front surface of the circuit board 300 again.
  • the installation position of the first translational prism 450 is not limited, it can be arranged between the optical multiplexer 440 and the optical circulator 460 along the light emitting direction of the laser 420 (as shown in FIG. 6A ), or, along the The light output direction of the laser 420 is set between the collimator lens 430 and the optical multiplexer 440 (as shown in FIG. 6B ). It can be understood that, in the light emitting device 400, adjusting the installation position of the first translation prism 450 does not affect the function of the first translation prism 450 for changing the transmission direction and position of the laser beam.
  • One laser beam emitted by the laser 420 is converted into a collimated beam through the collimating lens 430 .
  • the collimated light beam is reflected twice by the first translational prism 450 and then directly passes through the optical circulator 460 .
  • the laser beam emitted by the laser 420 is linearly polarized light.
  • the laser beam is transmitted in a straight line in the optical circulator 460, and the path remains unchanged, so that the laser beam directly passes through the optical circulator 460 and enters the optical fiber.
  • the coupler 470 the laser beam is coupled to the fiber adapter 600 via the fiber coupler 470 to realize the transmission of one optical signal.
  • Fig. 7A is an optical path diagram of a light emitting device in an optical module according to some embodiments
  • Fig. 7B is an optical path diagram of another light emitting device in an optical module according to some embodiments.
  • the optical multiplexer 440 has an optical input end and an optical output end. The optical input end of the optical multiplexer 440 faces the optical output end of the collimator lens 430, so that the multiple laser beams parallel to the front of the circuit board 300 enter the optical multiplexer 440, and the optical multiplexer 440 synthesizes the multiple laser beams is at least one composite beam.
  • the light output end of the optical multiplexer 440 is the end opposite to the light input end thereof, that is, the end far away from the light output end of the collimator lens 430 . It should be noted that there is no limitation on whether other components are arranged between the collimator lens 430 and the optical multiplexer 440 , as long as the optical input end of the optical multiplexer 440 and the optical output end of the collimator lens 430 are arranged correspondingly. For example, as shown in FIG. 6A and FIG. 7A, no other components are arranged between the collimating lens 430 and the optical multiplexer 440, that is, the optical input end of the optical multiplexer 440 is directly facing the optical output end of the collimating lens 430; or, As shown in FIGS.
  • a first translation prism 450 may be arranged between the collimator lens 430 and the optical multiplexer 440 , that is, the light input end of the optical multiplexer 440 faces toward the side of the collimator lens 430 through the first translation prism 450 . light output port.
  • the optical multiplexer 440 includes at least one sub-optical multiplexer.
  • Each sub-optical multiplexer includes 4 incident lights for receiving light of 4 wavelengths (for example, wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 in FIGS. 7A and 7B , or wavelengths ⁇ 5, ⁇ 6, ⁇ 7, and ⁇ 8 in FIG. 7B ).
  • Each light entrance of the sub-optical multiplexer is used to receive light of one wavelength.
  • the light entrance of the sub-optical multiplexer is located at the light input end of the optical multiplexer 440 on the side close to the collimator lens 430 .
  • Each sub-optical combiner also includes a light outlet for emitting light.
  • the light output port of the sub-optical multiplexer is located at the light input end of the optical multiplexer 440 on the side away from the collimator lens 430 .
  • the number of sub-optical multiplexers in the optical multiplexer 440 is not limited, and it may be one or two.
  • the optical multiplexer 440 includes a sub-optical multiplexer 4410 ; as shown in FIG. 6B and FIG. 7B , the optical multiplexer 440 includes two sub-optical multiplexers 4410 and 4420 .
  • the optical input end of the optical fiber coupler 470 is optically coupled with the optical entrance and exit port 4690 of the optical circulator 460 , and the optical output end of the optical fiber coupler 470 is connected with the optical fiber adapter 600 through the internal optical fiber 700 .
  • the composite beam output by the optical circulator 460 is coupled to the internal fiber 700 through the fiber coupler 470 , and then transmitted to the fiber adapter 600 through the internal fiber 700 to realize the emission of the composite beam.
  • the fiber coupler 470 includes at least one sub-fiber coupler, and the at least one sub-fiber coupler is arranged in a one-to-one correspondence with the at least one sub-optical combiner.
  • Each sub-fiber coupler includes a ferrule 4730 , a focusing lens 4740 and a fiber flange 4750 .
  • the sleeve 4730 is set on the outside of the focusing lens 4740 and the fiber flange 4750, the internal optical fiber 700 is inserted into the fiber flange 4750, the light incident surface of the focusing lens 4740 faces the optical circulator 460, and the light exit surface faces the fiber flange 4750, and the optical multiplexer
  • the composite light beam output by the filter 440 is transmitted to the focusing lens 4740 through the first translation prism 450 and the optical circulator 460, and the focusing lens 4740 converges the composite light beam to the internal optical fiber 700 inserted in the fiber flange 4750.
  • the focusing lens 4740 and fiber flange 4750 are installed in the sleeve 4730 to ensure their concentricity. But it is not limited thereto, the focusing lens 4740 and the fiber flange 4750 can also be assembled by using separate components through active coupling.
  • Fig. 8 is a structure and an optical path diagram of an optical circulator in an optical module according to some embodiments.
  • the unidirectional arrow indicates the propagation direction of light, which is parallel to the light output direction of the laser 420 herein;
  • the double-headed arrow and circle both indicate the polarization direction of light, and the double-headed arrow indicates parallel to the front of the circuit board 300 herein.
  • the circle indicates the direction perpendicular to the front surface of the circuit board 300 .
  • the optical circulator 460 includes at least one sub-optical circulator, and the at least one sub-optical circulator and at least one sub-optical combiner are provided in a one-to-one correspondence.
  • Each sub-optical circulator includes polarizers 4630 and 4660 , a Faraday rotator 4640 and a half-wave plate 4650 .
  • the polarizers 4630 and 4660 include a first polarizer 4630 and a second polarizer 4660 .
  • the first polarizer 4630 , the Faraday rotator 4640 , the half-wave plate 4650 and the second polarizer 4660 are sequentially arranged along the light emitting direction of the laser 420 .
  • Each sub-optical circulator has a light entrance 4670 , a light exit 4680 and a light entrance 4690 .
  • the light entrance 4670 and the light exit 4680 of each sub-optical circulator are located on the same side of the optical circulator 460, and are arranged on the surface of the first polarizer 4630 away from the second polarizer 4660 along the light exit direction of the laser 420, namely Set away from the fiber optic adapter 600;
  • the light entrance and exit port 4690 of each sub-optical circulator is located on the opposite side of the light entrance 4670 or light exit port 4680 of each sub-optical circulator, and is arranged on the second polarizer along the light exit direction of the laser 420 4660 is disposed on the surface away from the first polarizer 4630 , that is, close to the optical fiber adapter 600 .
  • the polarizers 4630 and 4660 are configured to polarize and split the laser beam; the linearly polarized light parallel to the front of the circuit board 300 directly passes through the polarizers 4630 and 4660, and the laser beam formed by the linearly polarized light will not be split; After the unpolarized light enters the polarizers 4630 and 4660, it will be split into two paths of light whose polarization directions are perpendicular to each other on the coating surface of the polarizers 4630 and 4660.
  • the Faraday rotator 4640 is configured to change the polarization direction of light under the action of a magnetic field, so that the polarization direction of the light passing through the Faraday rotator 4640 in the forward direction rotates clockwise in the direction of light propagation;
  • the polarization direction of 4640 light rotates counterclockwise in the direction of light propagation.
  • the half-wave plate 4650 is configured to rotate the laser beam by a fixed angle relative to its polarization axis as it passes through the half-wave plate 4650 .
  • the installation position of the optical circulator 460 is not limited, it can be arranged between the first translation prism 450 and the fiber coupler 470 along the light emitting direction of the laser 420 (as shown in FIG. 6A ), at this time,
  • the first polarizer 4630 is arranged corresponding to the light output end of the first translation prism 450
  • the second polarizer 4660 is arranged corresponding to the fiber coupler 470; it can also be arranged between the optical multiplexer 440 and the fiber coupler along the light output direction of the laser 420 470 (as shown in FIG.
  • the first polarizer 4630 is set corresponding to the optical output end of the optical multiplexer 440
  • the second polarizer 4660 is set corresponding to the fiber coupler 470 .
  • the laser beam entering the optical circulator 460 along the light emitting direction of the laser 420 is referred to as the emitting beam 1 . Since the laser beam emitted by the laser 420 is linearly polarized, the emitted beam 1 is also linearly polarized, and the emitted beam 1 only includes linearly polarized light whose polarization direction is parallel to the front surface of the circuit board 300 . The emitted light beam 1 will not be split after entering the first polarizer 4630 , but directly passes through the first polarizer 4630 , and then enters the Faraday rotator 4640 and the half-wave plate 4650 in sequence.
  • the emitted beam 1 is a composite beam; for example, the emitted beam 1 can be a composite beam emitted from the first translation prism 450 (as shown in FIG. 6A ), and can also be a composite beam emitted from the optical combiner 440 ( as shown in Figure 6B).
  • the light emitting device 400 and the light receiving device 500 share a single optical fiber, that is, the light emitting device 400 and the light receiving device 500 share the same fiber adapter 600, the same internal fiber 700, the same fiber coupler 470 and the same optical ring device 460.
  • the laser beam emitted by the laser 420 is coupled to the internal optical fiber 700 through the collimator lens 430, the optical multiplexer 440, the first translation prism 450, the optical circulator 460 and the fiber coupler 470 in sequence, and then passes through the fiber optic adapter 600 launch out.
  • the laser beam emitted by the laser 420 is coupled to the internal optical fiber 700 through the collimator lens 430, the optical multiplexer 440, the first translation prism 450, the optical circulator 460 and the fiber coupler 470 in sequence, and then passes through the fiber optic adapter 600 launch out.
  • the external optical signal is transmitted to the optical receiving device 500 via the optical fiber adapter 600 , the internal optical fiber 700 , and the optical circulator 460 in sequence.
  • the laser beam containing the external optical signal enters the optical circulator 460 against the light emitting direction of the laser 420 , and the laser beam is called the receiving beam 2 .
  • the received light beam 2 is unpolarized light, but can be decomposed into first polarized light indicated by a double arrow and second polarized light indicated by a circle, and the polarization directions of the first polarized light and the second polarized light are perpendicular to each other.
  • the received light beam 2 will be divided into two polarized lights whose polarization directions are perpendicular to each other on the coating surface of the second polarizer 4660.
  • the transmission continues into the light receiving device 500 . In this way, the purpose of separating the received light beam 2 from the emitted light beam 1 is achieved through the optical circulator 460 .
  • the received light beam 2 enters the second polarizer 4660 , it is divided into the first polarized light and the second polarized light on the coating surface of the second polarizer 4660 .
  • the first polarized light is transmitted from the second polarizer 4660, and then sequentially enters the half-wave plate 4650 and the Faraday rotator 4640; after passing through the half-wave plate 4650 and the Faraday rotator 4640, the polarization direction of the first polarized light changes, and the second One polarized light is converted into a second polarized light; the second polarized light enters the first polarizer 4630 .
  • the second polarized light is reflected at a certain angle at the second polarizer 4660, and the reflected second polarized light is reflected at a certain angle at the second polarizer 4660 again, so that the second polarized light starts from the second
  • the exit direction of the polarizer 4660 is parallel to the exit direction of the first polarized light from the second polarizer 4660; after that, the second polarized light enters the half-wave plate 4650 and the Faraday rotator 4640 in sequence, and the second polarized light is converted into the first polarized light Linearly polarized light; the first polarized light enters the first polarizer 4630.
  • the aforementioned second polarized light and the first polarized light are combined, and the combined external light signal enters the light receiving device 500 .
  • the optical module 200 when the optical module 200 is a high-speed optical module, such as a 400G (signal transmission rate of 400Gbit/s) optical module, it is necessary to package 4 optical signal transmission channels in the housing of the optical module 200, and each optical The signal transmission rate of the signal transmission channel is 100Gbit/s. Therefore, the light emitting device 400 includes 4 lasers 420 to realize the transmission of 4 optical signals; the light receiving device 500 includes 4 optical receivers to realize the reception of 4 optical signals.
  • a high-speed optical module such as a 400G (signal transmission rate of 400Gbit/s) optical module
  • the light emitting device 400 includes 4 lasers 420 to realize the transmission of 4 optical signals
  • the light receiving device 500 includes 4 optical receivers to realize the reception of 4 optical signals.
  • the light emitting device 400 includes 4 lasers 420 , 4 collimating lenses 430 and 1 first translation prism 450 .
  • the 4 lasers 420 correspond to the 4 collimating lenses 430 one by one.
  • Each laser 420 emits a laser beam
  • each collimating lens 430 converts the laser beam into a collimated beam
  • the collimated beam emitted by each collimating lens 430 is transmitted to the optical multiplexer 440 for multiplexing to output one Composite light beams, one of the composite light beams shoots to the first translation prism 450 .
  • the first translation prism 450 reflects the collimated beam to change the transmission direction and position of the laser beam.
  • the light emitting device 400 is not limited to include one first translation prism 450 , and may also include multiple first translation prisms 450 , and each first translation prism 450 corresponds to one or more collimator lenses 430 .
  • the light-emitting device 400 is not limited to including 4 collimating lenses 430, and may also include 2 (every 2 lasers 420 share 1 collimating lens 430) or 1 collimating lens 430 (all lasers 420 share 1 collimating lens 430). lens 430).
  • At least one sub-optical combiner includes a first sub-optical combiner 4410 .
  • Four optical entrances of the first sub-optical multiplexer 4410 are located at the optical input end of the first sub-optical multiplexer 4410 , and one optical exit port is located at the optical output end of the first sub-optical multiplexer 4410 .
  • the light input end of the first sub-optical multiplexer 4410 faces the light output end of the collimating lens 430, and after the four laser beams parallel to the front of the circuit board 300 are injected into the first sub-optical multiplexer 4410, the first sub-optical multiplexer
  • the device 4410 synthesizes the 4 laser beams into a composite beam.
  • FIG. 7A shows the multiplexing effect of the optical multiplexer 440 (ie, the first sub-optical multiplexer 4410 ) on light of four wavelengths, ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4.
  • the optical multiplexer 440 ie, the first sub-optical multiplexer 4410
  • FIG. 7A shows the multiplexing effect of the optical multiplexer 440 (ie, the first sub-optical multiplexer 4410 ) on light of four wavelengths, ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4.
  • the first sub-optical multiplexer 4410 receiving light of four wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 as an example, light with a wavelength of ⁇ 1 enters the first sub-optical multiplexer 4410 through the first optical entrance, and passes through the first sub-optical multiplexer 4410.
  • a plurality of (such as 6) different positions in the waveguide 4410 have carried out multiple (such as 6) different reflections to reach the light outlet; the light with a wavelength of ⁇ 2 enters the first sub-optical combiner 4401 through the second light entrance Multiple (for example, 4) different reflections at multiple (for example, 4) different positions in the first sub-optical multiplexer 4410 reach the light outlet; light with a wavelength of ⁇ 3 enters the first sub-optical multiplexer through the third light entrance through multiple (for example 2) different positions in the first sub-optical multiplexer 4410 and perform multiple (for example 2) different reflections to reach the light outlet; A sub-light multiplexer 4410 directly reaches the light outlet without reflection. In this way, through the first sub-optical multiplexer 4410, the light of different wavelengths is input through different light entrances and output through the same light exit, and then the lights of different wavelengths are combined into a composite light beam.
  • the light input end of the first translation prism 450 is set corresponding to the light output end of the first sub-optical multiplexer 4410, the light output end of the first translation prism 450 is set corresponding to the light entrance 4670 of the first sub-optical circulator 4610, through
  • the first translational prism 450 reflects a composite beam to change the transmission direction and position of the composite beam, so that the composite beam enters the first sub-optical circulator 4610 .
  • the composite light beam is transmitted in a straight line in the first sub-optical circulator 4610 , and the transmission path remains unchanged, so that the composite light beam directly passes through the first sub-optical circulator 4610 and enters the first sub-optical fiber coupler 4710 .
  • the composite beam is coupled to the fiber adapter 600 through the first sub-fiber coupler 4710 and the internal optical fiber 700, so as to synthesize multiple beams into one composite beam and emit it.
  • the optical module 200 when the optical module 200 is a high-speed optical module, such as an 800G (signal transmission rate of 800Gbit/s) optical module, it is necessary to package 8 optical signal transmission channels in the housing of the optical module 200, and each optical The signal transmission rate of the signal transmission channel is 100Gbit/s. Therefore, the light emitting device 400 includes 8 lasers 420 to realize the transmission of 8 optical signals; the light receiving device 500 includes 8 optical receivers to realize the reception of 8 optical signals. For example, as shown in FIG. 5B, the first sub-light receiving device 501 includes 4 optical receivers to realize the reception of 4-way optical signals; the second sub-light-receiving device 502 includes 4 light receivers to realize 4-way Reception of optical signals.
  • 800G signal transmission rate of 800Gbit/s
  • the light emitting device 400 includes 8 lasers 420 , 8 collimating lenses 430 and 1 first translation prism 450 .
  • the 8 lasers 420 correspond to the 8 collimating lenses 430 one by one.
  • Each laser 420 emits a laser beam
  • each collimating lens 430 converts the laser beam into a collimated beam
  • the collimated beam emitted by each collimating lens 430 is transmitted to the first translation prism 450 .
  • the first translation prism 450 reflects the collimated beam to change the transmission direction and position of the laser beam.
  • the light emitting device 400 is not limited to include one first translation prism 450 , and may also include multiple first translation prisms 450 , and each first translation prism 450 corresponds to one or more collimator lenses 430 .
  • the light-emitting device 400 is not limited to including 8 collimating lenses 430, and may also include 4 (every 2 lasers 420 share 1 collimating lens 430), 2 (every 4 lasers 420 share 1 collimating lens 430) ) or one collimating lens 430 (all lasers 420 share one collimating lens 430).
  • At least one sub-optical combiner includes a first sub-optical combiner 4410 and a second sub-optical combiner 4420 .
  • the first sub-optical multiplexer 4410 and the second sub-optical multiplexer 4420 are arranged side by side on the mounting surface of the base 410 .
  • the first sub-optical multiplexer 4410 and the second sub-optical multiplexer 4420 are arranged side by side on the installation surface of the base 410 along a direction perpendicular to the light emitting direction of the laser 420 .
  • the optical input ends of the first sub-optical multiplexer 4410 and the second sub-optical multiplexer 4420 are directed towards the optical output end of the first translation prism 450, so that the 8 laser beams parallel to the front side of the circuit board 300 are injected into the first sub-optical multiplexer 4420 respectively.
  • An optical multiplexer 4410 and a second sub-optical multiplexer 4420 are arranged. For example, 4 laser beams enter the first sub-optical combiner 4410, and the first sub-optical combiner 4410 synthesizes the 4 laser beams into the first composite beam; the remaining 4 laser beams enter the second sub-optical combiner In 4420, the second sub-optical combiner 4420 combines the remaining 4 laser beams into a second composite beam.
  • Fig. 7B shows the optical multiplexer 440 (that is, the first sub-optical multiplexer 4410 and the second sub-optical multiplexer 4420) to the light of ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8. Synthesis effect.
  • the structure and function of the first sub-optical multiplexer 4410 in FIG. 7B are the same as those of the first sub-optical multiplexer 4410 in FIG. 7A , and will not be repeated here.
  • the structure and function of the second sub-optical multiplexer 4420 in FIG. 7B are similar to those of the first sub-optical multiplexer 4410 in FIG. 7A , and will not be repeated here.
  • the wavelength ⁇ 5 may be the same or different from the wavelength ⁇ 1
  • the wavelength ⁇ 6 may be the same or different from the wavelength ⁇ 2
  • the wavelength ⁇ 7 may be the same or different from the wavelength ⁇ 3
  • the wavelength ⁇ 8 may be the same or different from the wavelength ⁇ 4.
  • At least one sub-optical circulator includes a first sub-optical circulator 4610 and a second sub-optical circulator 4620 .
  • At least one sub-fiber coupler includes a first sub-fiber coupler 4710 and a second sub-fiber coupler 4720 .
  • the first composite light beam emitted from the first sub-optical multiplexer 4410 is coupled to the first sub-fiber optic adapter 601 via the first sub-fiber coupler 4710 through the first sub-internal optical fiber 701 to emit the first composite light beam.
  • the second composite light beam emitted from the second sub-optical multiplexer 4420 is coupled to the second sub-fiber optic adapter 602 through the second sub-internal optical fiber 702 via the second sub-fiber coupler 4720 to emit the second composite light beam.
  • the internal structure of the optical module is required to be as simple as possible in order to rationally arrange the optical components and electronic components.
  • the optical combiner 440 is used to combine multiple beams in multiple (for example, 4, 8) optical signal transmission channels into one composite beam, which simplifies the interior of the optical module 200
  • the structure is beneficial for the optical module 200 to realize high-speed signal transmission.
  • a compact and miniaturized optical circulator 460 is integrated in the light-emitting device 400 to separate the light beam 1 emitted by the light-emitting device 400 from the received light beam 2 of the light-receiving device 500, so that in the narrow space of the optical module 200 In space, the merging and separation of bidirectionally transmitted light is realized.
  • the transmitted optical signal and the received optical signal share a single optical fiber, thereby reducing the demand and occupation of optical fiber resources.
  • Fig. 9A is a structural diagram of a circuit board in an optical module according to some embodiments
  • Fig. 10A is a partial exploded view of a circuit board, an optical transmitting device, an optical receiving device and an optical fiber adapter in an optical module according to some embodiments.
  • the circuit board 300 includes a mounting hole 320
  • the base 410 of the light-emitting device 400 is installed on the front of the circuit board 300, and embedded in the mounting hole 320, the mounting surface of the base 410 faces away from the circuit board 300 frontage.
  • the laser 420 and the collimating lens 430 on the base 410 are close to the front of the circuit board 300, and the surface of the laser 420 for wiring is located in the same plane as the front of the circuit board 300 , so that the connection line between the front side of the circuit board 300 and the laser 420 is the shortest, so as to ensure excellent high-frequency signal transmission performance.
  • Fig. 11A is a cross-sectional view of an assembly structure of a circuit board and a light-emitting device in an optical module according to some embodiments;
  • Fig. 12A is an optical path diagram of another angle of the light-emitting device in the optical module shown in Fig. 7A.
  • a plurality of lasers 420 emit laser beams respectively, and these laser beams are parallel to the front of the circuit board 300; Collimated beams, multiple collimated beams are respectively transmitted to the first sub-optical combiner 4410, the first sub-optical combiner 4410 combines the 4 collimated beams into a composite beam, and the composite beam is transmitted to the first translation
  • the prism 450 , the first reflective surface 451 and the second reflective surface 452 of the first translational prism 450 reflect the composite light beam, so that the composite light beam with a smaller height is reflected to the first sub-optical circulator 4610 with a higher height.
  • the first reflective surface 451 of the first translational prism 450 faces the first sub-optical multiplexer 4410, is located on the front side of the circuit board 300, and is configured to reflect a composite light beam with a smaller height parallel to the front side of the circuit board 300 as A composite light beam perpendicular to the circuit board 300;
  • the second reflective surface 452 of the first translational prism 450 faces the first reflective surface 451, is located on the front side of the circuit board 300, and is configured to reflect a composite light beam perpendicular to the circuit board 300 It is a composite light beam with a relatively high height parallel to the front side of the circuit board 300 .
  • the mounting surface of the base 410 faces away from the front of the circuit board 300 so that the bottom surface of the light-emitting device 400 is close to the lower case 202 and away from the upper case 201 .
  • a plurality of lasers 420 and a plurality of collimating lenses 430 are embedded in the mounting holes 320 of the circuit board 300, and the gasket 422 in the laser 420 is in contact with the front side of the circuit board 300. so as to make the connecting wires between the ground wires and signal wires on the pad 422 and the circuit traces on the front of the circuit board 300 the shortest, so as to ensure excellent high-frequency signal transmission performance.
  • Fig. 13A is an electrical connection diagram of a circuit board and a light-emitting device in an optical module according to some embodiments.
  • the digital signal processing chip 310 is located on the front side of the circuit board 300, and is configured to transmit high-frequency signals to the laser 420 of the light emitting device 400, provide signals for the laser beam emitted by the laser 420, and modulate the laser beam for the light signal.
  • the digital signal processing chip 310 is provided with output pads on the side facing the circuit board 300, and the corresponding pads and solder balls are provided on the front side of the circuit board 300, and the digital signal processing chip 310 is connected to the circuit through the pads, solder balls and Plate 300 is soldered.
  • the circuit board 300 includes a first high-frequency signal line 330 , and the first high-frequency signal line 330 is located on the front side of the circuit board 300 .
  • One end of the first high-frequency signal line 330 is electrically connected to the output pad of the digital signal processing chip 310 to transmit high-frequency signals.
  • the high-frequency signal line 330 is wired along the front of the circuit board 300, and then electrically connected to the gasket 422 of the laser 420 through a wire bonding process. Then, electrical connection is realized by bonding the gasket 422 and the laser 420 . That is, the other end of the first high frequency signal line 330 is electrically connected to the laser 420 through a wire bonding process.
  • the high-frequency signal transmitted from the golden finger 301 of the circuit board 300 passes through the digital signal processing chip 310 and then is transmitted to the laser 420 through the first high-frequency signal line 330 , so that the laser 420 emits an optical signal.
  • the circuit board 300 includes a plurality of first high-frequency signal lines 330 , and each first high-frequency signal line 330 corresponds to a laser 420 , so that each first high-frequency signal line 330 is connected to the corresponding laser 420 .
  • Figure 14A is a structural diagram of a base in an optical module according to some embodiments
  • Figure 15 is a structural diagram of another angle of the base in an optical module shown in Figure 14A
  • Figure 16 is a structural diagram of a light module shown in Figure 14A Another perspective view of the base in the module.
  • the base 410 includes a base body 4110 and a protrusion 4120, the base body 4110 has the same mounting surface and bottom surface as the base 410;
  • the circuit board 300 extends in the rear direction.
  • the size of the protrusion 4120 in the direction perpendicular to the light emitting direction of the laser 420 is smaller than the size of the base body 4110 in this direction, and the size of the protrusion 4120 in the light emitting direction of the laser 420 is smaller than or equal to that of the base body 4110 dimension in this direction.
  • the protrusion 4110 is embedded in the mounting hole 320 of the circuit board 300, so that the protrusion 4120 penetrates the circuit board 300; contact to mount the base 410 on the front side of the circuit board 300 .
  • the mounting surface of the base body 4110 includes a first mounting surface 4130, a second mounting surface 4140, and a third mounting surface 4150 connected in sequence, so as to carry a laser 420, a collimating lens 430, and an optical multiplexer 450 , a first translational prism 450 , an optical circulator 460 , a fiber coupler 470 and a semiconductor refrigerator 480 .
  • the second installation surface 4140 is recessed from the third installation surface 4150 toward the bottom surface of the base body 4110
  • the first installation surface 4130 is recessed from the second installation surface 4140 toward the bottom surface of the base body 4110 .
  • the distance between the third installation surface 4150 and the bottom surface of the base body 4110 is greater than the distance between the second installation surface 4140 and the bottom surface of the base body 4110, and the distance between the second installation surface 4140 and the bottom surface of the base body 4110 is greater than the distance between the first installation surface 4130 and the bottom surface of the base body
  • the size of the bottom surface of 4110 makes the first installation surface 4130 , the second installation surface 4140 and the third installation surface 4150 form a stepped surface.
  • the first installation surface 4130 , the second installation surface 4140 and the third installation surface 4150 are all parallel to the bottom surface of the base body 4110 .
  • the laser 420 and the collimator lens 430 are fixed on the first installation surface 4130 .
  • the optical multiplexer 440 and the first translational prism 450 are fixed on the second installation surface 4140 ; the optical circulator 460 and the fiber coupler 470 are fixed on the third installation surface 4130 .
  • the installation height of the laser 420 and the collimator lens 430 on the base 410 is lower than the installation height of the optical multiplexer 440 and the first translation prism 450, and the installation height of the optical multiplexer 440 and the first translation prism 450 is lower than that of the optical circulator. 460 and the installation height of fiber coupler 470.
  • the semiconductor cooler 480 is located on the first installation surface 4130 , and the laser 420 is located on the semiconductor cooler 480 .
  • the installation surface of the laser 420 can be raised by the semiconductor cooler 480 , so that the surface of the spacer 422 of the laser 420 is on the same plane as the front surface of the circuit board 300 .
  • the collimating lens 430 corresponding to each laser 420 is also arranged on the semiconductor refrigerator 480 and arranged in the light emitting direction of the laser 420 .
  • the size of the first installation surface 4130 in a direction perpendicular to the light emitting direction of the laser 420 is slightly larger than the size of the second installation surface 4140 in this direction.
  • the wider first installation surface 4130 can facilitate the placement of a plurality of lasers 420, avoiding a large distance between adjacent lasers 420. Small, so that the crosstalk between the multiple laser beams emitted by the multiple lasers 420 can be avoided.
  • the second installation surface 4140 is slightly recessed in the front of the circuit board 300 , and the third installation surface 4150 is higher than the front of the circuit board 300 .
  • the first reflection surface 451 of the first translation prism 450 is close to the second installation surface 4140 and close to the laser 420 ; the second reflection surface 452 of the first translation prism 450 is away from the second installation surface 4140 . In this way, the laser beam whose propagation height is lower than the front side of the circuit board 300 is reflected to the front side of the circuit board 300 by the first translating prism 450 .
  • the optical multiplexer 440 and the first translational prism 450 are arranged along the light emitting direction of the laser 420 .
  • the shaper 460 and the fiber coupler 470 are fixed on the base 410 to form the installation between the laser 420 and the collimating lens 430, the optical multiplexer 440 and the first translation prism 450, and the optical circulator 460 and the fiber coupler 470 height difference, and embed the laser 420 and the collimating lens 430 with a relatively small installation height in the installation hole 320 of the circuit board 300, and embed the optical multiplexer 440, the first translational prism 450, and the optical circulator with a relatively large installation height 460 and the optical fiber coupler 470 are disposed on the front side of the circuit board 300 , so that the spatial overlapping area between the light emitting device 400 and the circuit board 300 can be reduced.
  • the base body 4110 also includes support blocks 4170 .
  • the supporting block 4170 extends from the third mounting surface 4150 to a direction away from the bottom surface of the base body 4110 .
  • the support block 4170 is located at an end of the third installation surface 4150 away from the second installation surface 4140 .
  • the support block 4170 has at least one through hole 4171 , the at least one through hole 4171 passes through the support block 4170 along the light emitting direction of the laser 420 , and is arranged in a one-to-one correspondence with at least one sub-fiber coupler.
  • at least one through hole 4171 includes a through hole 4171, and the first sub-fiber coupler 4710 is inserted in the through hole 4171, so that the first sub-fiber coupler 4710 is fixed on the base body 4110.
  • Fig. 17A is an assembly diagram of a base and a light receiving device in an optical module according to some embodiments.
  • the light receiving device 500 may be disposed on one side of the installation hole 320 of the circuit board 300 in a direction perpendicular to the light emitting direction of the laser 420 .
  • the optical receiving device 500 is connected to the internal optical fiber 700 , and the optical signal received by the optical fiber adapter 600 from the outside of the optical module 200 is transmitted to the optical receiving device 500 through the internal optical fiber 700 to realize the reception of the composite light beam.
  • the light-receiving device 500 includes a sub-light-receiving device, which includes a second translational prism 5011, an optical splitter 5012, a coupling lens group 5013, a reflective prism 5014, and a light-receiving chip 5015 (such as a PIN diode or an avalanche diode)
  • a sub-light-receiving device which includes a second translational prism 5011, an optical splitter 5012, a coupling lens group 5013, a reflective prism 5014, and a light-receiving chip 5015 (such as a PIN diode or an avalanche diode)
  • the combination formed by the second translation prism 5011 , the optical splitter 5012 , the coupling lens group 5013 , the reflective prism 5014 and the light receiving chip 5015 may also be referred to as the above-mentioned light receiver.
  • the light input end of the second translation prism 5011 is set corresponding to the light output port 4680 of the optical circulator 460, and the light output end of the second translation prism 5011 is set corresponding to the light input end of the optical splitter 5012, so that the light output from the optical circulator 460
  • the received light beam is translated by the optical path of the second translation prism 5011 and then enters the optical splitter 5012 .
  • the second translational prism 5011 is a rhomboidal prism with a third reflective surface 50111 and a fourth reflective surface 50112 . Both the third reflective surface 50111 and the fourth reflective surface 50112 can change the propagation direction of the laser beam, for example, bend the propagation direction of the laser beam by 90°. It should be noted that the structure and function of the second translating prism 5011 are the same as those of the first translating prism 450 , and will not be repeated here.
  • the light receiving device 500 is disposed outside the base 410 .
  • the base 410 includes an opening 4160 .
  • the opening 4160 is located on the side wall of the base body 4110 close to the light receiving device 500 and runs through the side wall of the base body 4110 .
  • the opening 4160 communicates with the third installation surface 4150, and one end of the second translation prism 5011 is fixed on the third installation surface 4150 through the opening 4160, so that the light outlet 4680 of the optical circulator 460 is connected to the light input end of the second translation prism 5011 Corresponding setting; the other end of the second translation prism 5011 is located outside the base 410, and the other end of the second translation prism 5011 is set corresponding to the light input end of the optical splitter 5012, so that the receiving The light beam enters the optical splitter 5012.
  • the second translation prism 5011 is horizontally fixed on the third installation surface 4150, so that the installation height of the optical circulator 460, the installation height of the second translation prism 5011 and the installation height of the optical splitter 5012 can be the same,
  • the received light beam is horizontally translated by the optical circulator 460 to the optical demultiplexer 5012 .
  • Fig. 18A is an optical circuit diagram of a light receiving device in an optical module according to some embodiments
  • Fig. 18C is an optical circuit diagram of another angle of the light receiving device in an optical module shown in Fig. 18A.
  • the received light beam 2 enters the optical circulator 460 through the light entrance and exit port 4690, and the received light beam 2 passes through the second polarizer 4660, the half-wave plate 4650, the Faraday rotator 4640 and the first polarizer in sequence. device 4630.
  • the received light beam 2 passes through the optical circulator 460 and shoots to the second translation prism 5011 , and is reflected and translated in the second translation prism 5011 , so that the reflected received light beam 2 can enter the optical splitter 5012 .
  • the light receiving device 500 uses the optical circulator 460 and the second translation prism 5011 to separate the bidirectionally transmitted emission beam 1 and the reception beam 2 and translate the reception beam 2 to a suitable position, so that the reception beam 2 enters the optical splitter 5012 carries out the wave division operation of light.
  • the light receiving device 500 further includes a support plate 5016 and a transimpedance amplifier 5017, the support plate 5016 is arranged on the front side of the circuit board 300, and the optical splitter 5012 and the coupling lens group 5013 are both arranged on the support plate 5016 , so as to increase the installation height of the optical splitter 5012 and the coupling lens group 5013 .
  • the coupling lens group 5013 includes 4 coupling lenses, and each coupling lens is set correspondingly to the output beam of the optical splitter 5012, so that the optical splitter 5012 demultiplexes the received beam after one reflection into 4 beams; 4 beams respectively inject into the corresponding coupling lenses in the coupling lens group 5013, thereby converting each beam into a converging beam; perpendicular to the circuit board 300 .
  • the light-receiving chip 5015 is arranged on the front side of the circuit board 300, and the light-receiving chip 5015 is positioned under the reflective prism 5014, so that the converging light beam is reflected by the reflective prism 5014 and injected into the light-receiving chip 5015, and the light is transmitted by the light-receiving chip 5015.
  • the signal is converted into an electrical signal.
  • the transimpedance amplifier 5017 is arranged on the front surface of the circuit board 300 , the electrical signal converted by the light receiving chip 5015 is transmitted to the transimpedance amplifier 5017 , and the electrical signal is amplified through the transimpedance amplifier 5017 .
  • Fig. 19A is an electrical connection diagram of a circuit board and a light receiving device in an optical module according to some embodiments.
  • the digital signal processing chip 310 is also configured to transmit the electrical signal amplified by the transimpedance amplifier 5017 to the circuit board 300 .
  • the digital signal processing chip 310 is also provided with input pads on the side facing the circuit board 300, and the corresponding pads and solder balls are provided on the front side of the circuit board 300, and the digital signal processing chip 310 is connected with the solder pads, solder balls and The circuit board 300 is soldered.
  • the circuit board 300 also includes a second high frequency signal line 380 , and the second high frequency signal line 380 is located on the front side of the circuit board 300 .
  • the second high-frequency signal line 380 is electrically connected to the input pad of the digital signal processing chip 310 to transmit high-frequency signals; The directions are set side by side.
  • one end of the second high-frequency signal line 380 is electrically connected to the input pad of the digital signal processing chip 310, and the other end is connected to the transimpedance amplifier 5017 through a wire bonding process. electrical connection.
  • the high-frequency signal transmitted from the transimpedance amplifier 5017 of the optical receiving device 500 is transmitted to the digital signal processing chip 310 through the second high-frequency signal line 380, and then transmitted to the optical network terminal 100 through the gold finger 301, so as to realize the transmission of the optical signal. take over.
  • the optical circulator 460 by using the optical circulator 460, the combining and splitting of bidirectionally transmitted light is realized in the narrow space of the optical module 200, so that the transmitting light beam and the receiving light beam share a single optical fiber, reducing the need for Fiber resource requirements and occupancy.
  • FIG. 9B is a structural diagram of a circuit board in another optical module according to some embodiments
  • Fig. 10B is a partial decomposition of a circuit board, an optical transmitting device, an optical receiving device and an optical fiber adapter in another optical module according to some embodiments
  • FIG. 10C is a partial assembly view of another angle of the circuit board and the light-emitting device in another optical module shown in FIG. 10B.
  • the circuit board 300 includes a mounting hole 320
  • the base 410 of the light-emitting device 400 is installed on the front of the circuit board 300, and the mounting surface of the base 410 faces the front of the circuit board 300, and the light-emitting device
  • the laser 420 , the collimator lens 430 and the first translation prism 450 in 400 are embedded in the mounting hole 320 .
  • the laser 420 and the collimator lens 430 are located at the back side of the circuit board 300, and the optical multiplexer 440, the optical circulator 460, and the fiber coupler 470 are located at the front side of the circuit board 300,
  • the first translation prism 450 is partly located at the back side of the circuit board 300, and the other part is located at the front side of the circuit board 300, and the wiring surface of the laser 420 is located on the same plane as the front side of the circuit board 300, so that the front side of the circuit board 300
  • the connection line with the laser 420 is the shortest to ensure excellent high-frequency signal transmission performance.
  • Fig. 11B is a cross-sectional view of an assembly structure of a circuit board and a light-emitting device in another optical module according to some embodiments;
  • Fig. 12B is an optical path diagram from another angle of the light-emitting device in the optical module shown in Fig. 7B.
  • a plurality of lasers 420 emit laser beams respectively, and these laser beams are parallel to the back side of the circuit board 300; Collimated light beams, multiple collimated light beams are transmitted to the first translation prism 450, and the first reflection surface 451 and the second reflection surface 452 of the first translation prism 450 reflect the multiple collimation light beams, thereby placing the A plurality of laser beams on the side are reflected to the front side of the circuit board 300 .
  • the optical combiner 440 combines the multiple collimated beams into a composite beam.
  • the first reflective surface 451 of the first translation prism 450 faces the plurality of collimating lenses 430, is located on the back side of the circuit board 300, and is configured to reflect a plurality of collimated light beams parallel to the back side of the circuit board 300 to be perpendicular to the circuit board.
  • a plurality of collimated beams of the board 300; the second reflective surface 452 of the first translational prism 450 faces the first reflective surface 451 and is located on the front side of the circuit board 300, and is configured to direct the multiple collimated beams perpendicular to the circuit board 300 Reflected as a plurality of collimated beams parallel to the front side of the circuit board 300 .
  • the mounting surface of the base 410 faces the front of the circuit board 300, and the multiple lasers 420 are installed on the back side of the circuit board 300, so that the bottom surface of the light-emitting device 400 is close to the upper housing 201 and away from the lower housing 202, which This mounting method is called a flip-chip method of the light emitting device 400 .
  • the spacer 422 in the laser 420 is flush with the back side of the circuit board 300, so that the ground wire and the signal line on the spacer 422 are aligned with the back side of the circuit board 300.
  • the connecting lines between the circuit traces are the shortest to ensure excellent high-frequency signal transmission performance.
  • Fig. 13B is an electrical connection diagram of a circuit board and a light-emitting device in another optical module according to some embodiments.
  • the circuit board 300 includes a first high-frequency signal line 330 and a first via hole 340 .
  • the first via hole 340 is located at the output pad of the digital signal processing chip 310 , and the first via hole 340 runs through the front and back of the circuit board 300 .
  • the first high-frequency signal line 330 is located in the first via hole 340 , and the first high-frequency signal line 330 passes through the first via hole 340 and is electrically connected to the output pad of the digital signal processing chip 310 to transmit a high-frequency signal.
  • the first high-frequency signal line 330 passes through the first via hole 340 and then is routed along the back of the circuit board 300, and then electrically connected to the laser 420 through the wire bonding process. connect.
  • the high-frequency signal transmitted from the golden finger 301 of the circuit board 300 passes through the digital signal processing chip 310 and then is transmitted to the laser 420 through the first high-frequency signal line 330 , so that the laser 420 emits an optical signal.
  • the circuit board 300 further includes a photodetector 350 disposed on the back of the circuit board 300 .
  • the photodetector 350 is located on a side of the mounting hole 320 away from the golden finger 301 , and the photosensitive surface of the photodetector 350 faces the light emitting direction of the laser 420 .
  • the light detector 350 is configured to collect the forward light emitted by the laser 420 and send the collected data to the circuit board 300 to monitor the forward light output power of the laser 420 .
  • a small part of the collimated light beam leaks through the first reflective surface 451, and is emitted to the photosensitive surface of the photodetector 350, so that the light
  • the detector 350 can receive a part of the light beam, so as to obtain the emitted light power of the laser 420 .
  • the first reflective surface 451 of the first translating prism 450 faces the light-emitting direction of the laser 420 and is configured to split the laser beam generated by the laser 420 into two beams, one beam (usually accounting for 95% of the total power of the laser) Reflected by the first reflective surface 451 to the second reflective surface 452, the laser beam is reflected from the back side of the circuit board 300 to the front side of the circuit board 300, and another beam of light passes through the first reflective surface 451 and enters the photodetector
  • the photosensitive surface of 350 receives the laser beam emitted by the laser 420 through the photosensitive surface.
  • Fig. 14B is a structural diagram of a base in another optical module according to some embodiments.
  • the mounting surface of the base 410 includes a first mounting surface 4130 , a second mounting surface 4140 and a third mounting surface 4150 sequentially connected to carry a laser 420 , a collimating lens 430 , a first translational prism 450 , and a light-combining prism.
  • Waveform 440, Optical Circulator 460, Fiber Coupler 4720, and Semiconductor Refrigerator 480 The second installation surface 4140 is recessed from the first installation surface 4130 toward the bottom surface of the base 410 , and the third installation surface 4150 is substantially flush with the second installation surface 4140 .
  • the distance between the third installation surface 4150 and the bottom surface of the base 410 is approximately equal to the distance between the second installation surface 4140 and the bottom surface of the base 410 , and the distance between the second installation surface 4140 and the bottom surface of the base 410 is smaller than the distance between the first installation surface 4130 and the bottom surface of the base 410
  • the dimensions are such that the first installation surface 4130 forms a stepped surface with the second installation surface 4140 and the third installation surface 4150 .
  • the first installation surface 4130 , the second installation surface 4140 and the third installation surface 4150 are all parallel to the bottom surface of the base 410 .
  • the base 410 also includes two baffles 4131 , the two baffles 4131 are respectively located at the two sides of the first installation surface 4130 parallel to the light emitting direction of the laser 420 , and the two baffles 4131 face away from the bottom surface of the base 410 Extend so that when the light-emitting device 400 is installed on the circuit board 300 , the two baffles 4131 abut against the front surface of the circuit board 300 .
  • the laser 420 and the collimator lens 430 are fixed on the first installation surface 4130 .
  • the second mounting surface 4140 is open in a direction perpendicular to the light emitting direction of the laser 420, so as to facilitate fixing the first translation prism 450 on the second mounting surface 4140;
  • the third mounting surface 4150 is in a direction perpendicular to the light emitting direction of the laser 420
  • the top is open to facilitate fixing the optical multiplexer 440 , the optical circulator 460 and the fiber coupler 470 on the third installation surface 4150 .
  • the installation height of the laser 420 and the collimator lens 430 on the base 410 is greater than the installation height of the first translation prism 450 .
  • the optical multiplexer 440, the optical circulator 460 and the fiber coupler 470 is located on the front side of the circuit board 300 .
  • the size of the first installation surface 4130 in a direction perpendicular to the light emitting direction of the laser 420 is slightly larger than the size of the second installation surface 4140 in this direction.
  • the wider first installation surface 4130 can facilitate the placement of a plurality of lasers 420, avoiding a large distance between adjacent lasers 420. Small, so that the crosstalk between the multiple laser beams emitted by the multiple lasers 420 can be avoided.
  • the first translation prism 450 is disposed on the second installation surface 4140 .
  • the first translation prism 450 is vertically fixed on the second installation surface 4120, and the first reflection surface 451 of the first translation prism 450 is away from the second installation surface 4140, and is close to the laser 420; the second reflection surface of the first translation prism 450 452 is adjacent to the second mounting surface 4140 . In this way, the laser beam on the back side of the circuit board 300 is reflected to the front side of the circuit board 300 by the first translational prism 450 .
  • Sub-optical multiplexers 4410 and 4420 , sub-optical circulators 4610 and 4620 , and sub-optical fiber couplers 4710 and 4720 are disposed on the third installation surface 4130 .
  • the first sub-optical multiplexer 4410 and the second sub-optical multiplexer 4420 are arranged side by side along a direction perpendicular to the light emitting direction of the laser 420, and the first sub-optical circulator 4610 and the second sub-optical circulator 4620 are also arranged side by side along this direction,
  • the first sub-fiber coupler 4710 and the second sub-fiber coupler 4720 are also arranged side by side along this direction, and the optical multiplexer 440 , optical circulator 460 and fiber coupler 470 are arranged along the light emitting direction of the laser 420 .
  • the semiconductor refrigerator 480, the laser 420, the collimator lens 430, the optical multiplexer 440, the first translational prism 450, the optical circulator, etc. 460 and the fiber coupler 470 are fixed on the base 410 to form the installation height difference between the laser 420 and the collimating lens 430 and the optical multiplexer 440, the optical circulator 460 and the fiber coupler 470, and the installation height is relatively high
  • the large laser 420 and the collimating lens 430 are embedded in the mounting hole 320 of the circuit board 300 through the mounting hole 320 of the circuit board 300, and the relatively small optical multiplexer 440, optical circulator 460, and fiber coupler 470 are installed It is arranged on the front side of the circuit board 300 , so that the spatial overlapping area between the light-emitting device 400 and the circuit board 300 can be reduced.
  • base 410 also includes support blocks 4170 .
  • the supporting block 4170 extends from the third installation surface 4150 to a direction away from the bottom surface of the base 410 .
  • the support block 4170 is located at an end of the third installation surface 4150 away from the second installation surface 4140 .
  • the support block 4170 has at least one through hole 4171 , the at least one through hole 4171 passes through the support block 4170 along the light emitting direction of the laser 420 , and is arranged in a one-to-one correspondence with at least one sub-fiber coupler.
  • at least one through hole 4171 includes two through holes 4171, and the first sub-fiber coupler 4710 and the second sub-fiber coupler 4720 are respectively inserted into a corresponding through hole 4171 on the support block 4170 , so as to fix the first sub-fiber coupler 4710 and the second sub-fiber coupler 4720 on the base 410 through the support block 4170 .
  • the base 410 further includes two positioning pins 4172 , and the two positioning pins 4172 are respectively located on the end surface of the support block 4170 facing away from the third installation surface 4150 .
  • the circuit board 300 includes two first positioning holes 360 , and the two first positioning holes 360 are provided in one-to-one correspondence with the two positioning pins 4172 .
  • the base 410 further includes a positioning block 4180 located at the end of the first installation surface 4130 away from the sub-fiber adapters 601 and 602 .
  • the positioning block 4180 extends away from the bottom surface of the base 410 .
  • the base 410 further includes two positioning protrusions 4181 , the two positioning protrusions 4181 are located on the end surface of the positioning block 4180 facing away from the first installation surface 4130 .
  • the circuit board 300 includes two second positioning holes 370 , and the two second positioning holes 370 are provided in one-to-one correspondence with the two positioning protrusions 4181 .
  • the support block 4170 and the positioning block 4180 of the base 410 are in contact with the front of the circuit board 300, and the positioning pin 4172 on the support block 4170 is inserted into the first positioning pin on the circuit board 300.
  • the positioning protrusion 4181 on the positioning block 4180 is inserted into the second positioning hole 370 on the circuit board 300 .
  • Fig. 17B is an assembly structure diagram of a circuit board and a light receiving device in another optical module according to some embodiments.
  • the light receiving device 500 of the 800G (signal transmission rate is 800Gbit/s) optical module in some embodiments of the present disclosure includes two sub-light receiving devices 501 and 502, the first sub-light receiving device 501
  • the second sub-light receiving device 502 can be arranged on one side of the mounting hole 320 of the circuit board 300 in a direction perpendicular to the light emitting direction of the laser 420 , and arranged along a direction perpendicular to the light emitting direction of the laser 420 .
  • first sub-light receiving device 501 and the second sub-light receiving device 502 are staggered by an appropriate distance along the light output direction of the laser 420, so that the transmission of the two external optical signals will not be blocked; for example, the first sub-light receiving device 501 is located on the side of the second sub-light receiving device 502 close to the golden finger 301 .
  • the first sub-optical receiving device 501 is connected to the first sub-fiber optic adapter 601 through the first sub-internal optical fiber 701, and the optical signal received by the first sub-fiber optic adapter 601 from the outside of the optical module 200 is transmitted to the second sub-internal optical fiber 701 through the first sub-internal optical fiber 701.
  • a sub-light receiving device 501 to realize the reception of the third composite light beam; the second sub-light receiving device 502 is connected with the second sub-fiber optic adapter 602 through the second internal optical fiber 702, and the second sub-fiber optic adapter 602 receives from the light
  • the optical signal outside the module 200 is transmitted to the second sub-light receiving device 502 through the second internal optical fiber 702, so as to realize the reception of the fourth composite light beam.
  • the first sub-light receiving device 501 includes a second translation prism 5011, a first optical splitter 5012, a first coupling lens group 5013, a first reflecting prism 5014, a first light receiving chip 5015 (such as a PIN diode or an avalanche diode) and The first transimpedance amplifier 5017.
  • the light input end of the second translation prism 5011 is arranged corresponding to the light output port 4680 of the first sub-optical circulator 4610, and the light output end of the second translation prism 5011 extends to the outside of the light-emitting device 400, and is connected to the first optical wave splitter 5012
  • the optical input ports of the optical components are correspondingly arranged, so that the external optical signal emitted by the first sub-optical circulator 4610 is transmitted to the first optical demultiplexer 5012 after being shifted by the optical path of the second translation prism 5011 .
  • the second sub-light receiving device 502 includes a third translational prism 5021, a second optical splitter 5022, a second coupling lens group 5023, a second reflective prism 5024, a second light receiving chip 5025 (such as a PIN diode or an avalanche diode) and The second transimpedance amplifier 5027.
  • the light input end of the third translation prism 5021 is arranged corresponding to the light output port 4680 of the second sub-optical circulator 4620, and the light output end of the third translation prism 5021 extends to the outside of the light-emitting device 400, and is connected to the second optical wave splitter 5022
  • the optical input ends of the optical signals are correspondingly arranged, so that the external optical signal emitted by the second sub-optical circulator 4620 is transmitted to the second optical demultiplexer 5022 after being shifted by the optical path of the third translation prism 5021 .
  • the third translational prism 5021 is a rhomboidal prism and has a fifth reflective surface 50211 and a sixth reflective surface 50212 . Both the fifth reflective surface 50211 and the sixth reflective surface 50212 can change the propagation direction of the laser beam, for example, bend the propagation direction of the laser beam by 90°. It should be noted that the structure and function of the third translating prism 5021 are the same as those of the first translating prism 450 , and will not be repeated here.
  • the base 410 further includes an extension 4190 disposed toward one side of the first sub-light receiving device 501 and the second sub-light receiving device 502 .
  • the extension part 4190 extends from the side of the base 410 in a direction close to the light receiving device 500 .
  • the extension portion 4190 is connected to the third installation surface 4130 and is located on the same plane as the third installation surface 4130 .
  • One end of the second translational prism 5011 is set corresponding to the light outlet 4680 of the first sub-optical circulator 4610, and the other end is fixed on the extension part 4190, so that the external optical signal output by the first sub-optical circulator 4610 enters the second translational prism 5011, to realize the translation of the optical path, and reflect the translated external optical signal to the first optical demultiplexer 5012.
  • One end of the third translational prism 5021 is set corresponding to the light outlet 4680 of the second sub-optical circulator 4620, and the other end is fixed on the extension part 4190, so that the external optical signal output by the second sub-optical circulator 4620 enters the third translational prism 5021, to realize the translation of the optical path, and reflect the translated external optical signal to the second optical demultiplexer 5022.
  • the second translation prism 5011 and the third translation prism 5021 are arranged side by side parallel to the light output direction of the laser 420, and the third translation prism 5021 protrudes from the second translation prism in a direction perpendicular to the light output direction of the laser 420 5011, and the second translational prism 5011 is close to the first sub-optical circulator 4610 and the second sub-optical circulator 4620, and the third translational prism 5021 is close to the first optical demultiplexer 5012 and the second optical demultiplexer 5022.
  • the installation heights of the first sub-optical circulator 4610, the second translation prism 5011 and the first optical demultiplexer 5012 are the same; the second sub-optical circulator 4620, the third translation prism 5021 and the second The installation heights of the three optical splitters 5022 are the same.
  • Fig. 18B is an optical circuit diagram of another light-receiving device in an optical module according to some embodiments.
  • one external optical signal enters the first sub-optical circulator 4610 through the optical port 4690, and the external optical signal passes through the second polarizer 4660, the half-wave plate 4650, and the Faraday rotator in sequence.
  • the polarizer 4640 and the first polarizer 4630 are incident to the second translating prism 5011 and reflectively translated in the second translating prism 5011 , and then enter the first light splitter 5012 .
  • Another external optical signal enters the second sub-optical circulator 4620 through the optical entrance and exit port 4690, and the external optical signal passes through the second polarizer 4660, the half-wave plate 4650, the Faraday rotator 4640 and the second sub-optical circulator in sequence.
  • a polarizer 4630 is incident to the third translation prism 5021 and is reflected and translated in the third translation prism 5021 , and then enters the second light splitter 5022 .
  • the first sub-optical circulator 4610 can separate the bidirectionally transmitted emission light beam from the external optical signal, so that one external optical signal can be injected into the first optical demultiplexer 5012 for optical demultiplexing operation.
  • the second sub-optical circulator 4620 can separate the bidirectionally transmitted emission beam from the external optical signal, so that another external optical signal can be injected into the second optical demultiplexer 5022 for optical demultiplexing operation.
  • Fig. 19B is an electrical connection diagram of a circuit board and a light-receiving device in an optical module according to some embodiments
  • Fig. 19C is an electrical connection of another angle between a circuit board and a light-receiving device in another optical module according to some embodiments picture.
  • the circuit board 300 further includes a second high-frequency signal line 380 , and the second high-frequency signal line 380 is located on the front side of the circuit board 300 .
  • the second high-frequency signal line 380 is electrically connected to the input pad of the digital signal processing chip 310 to transmit high-frequency signals.
  • one end of the second high-frequency signal line 380 is electrically connected to the input pad of the digital signal processing chip 310, and the other end is connected to the first through a wire bonding process.
  • a transimpedance amplifier 5017 is electrically connected.
  • the high-frequency signal transmitted from the first transimpedance amplifier 5017 of the first sub-light receiving device 501 is transmitted to the digital signal processing chip 310 through the second high-frequency signal line 380, and then transmitted to the optical network terminal 100 through the golden finger 301, To realize the reception of the first optical signal.
  • the circuit board 300 also includes a third high frequency signal line 390 , a second via hole 391 and a third via hole 392 .
  • the second via hole 391 is located at the input pad of the digital signal processing chip 310 .
  • the third via hole 392 is located on the circuit board 300 near the second transimpedance amplifier 5027 . Both the second via hole 391 and the third via hole 392 pass through the front and back of the circuit board 300 .
  • one end of the third high-frequency signal line 390 is electrically connected to the input pad of the digital signal processing chip 310 through the second via hole 391, and the other end It goes through the third via hole 392 and is electrically connected to the second transimpedance amplifier 5027 through a wire bonding process.
  • the high-frequency signal transmitted from the second transimpedance amplifier 5027 of the second sub-light receiving device 502 is transmitted to the digital signal processing chip 310 through the third high-frequency signal line 390, and then transmitted to the optical network terminal 100 through the golden finger 301, To realize the reception of the second optical signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括壳体、电路板、光发射器件、光接收器件和光纤适配器。所述光发射器件包括激光器和光环形器;所述激光器被配置为发射激光光束。所述光接收器件被配置为接收激光光束。所述光纤适配器与所述光环形器的出入光口光耦合,被配置为通过所述光环形器将来自所述激光器的激光光束发送至所述光模块外部,或者通过所述光环形器将来自所述光模块外部的激光光束发送至所述光接收器件。所述光环形器的入光口与所述激光器光耦合,所述光环形器的出光口与所述光接收器件光耦合,所述光环形器被配置为使来自所述激光器的激光光束耦合进入所述光纤适配器中,且使来自所述光纤适配器的激光光束耦合进入所述光接收器件中。

Description

光模块
本申请要求于2021年11月29日提交的、申请号为202111429761.5的中国专利申请的优先权和2021年11月29日提交的、申请号为202111434220.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频会议等新型业务和应用模式发展,光通信技术的发展进步变得愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。
发明内容
本公开一些实施例提供一种光模块。所述光模块包括壳体、电路板、光发射器件、光接收器件和光纤适配器。所述电路板位于所述壳体内。所述光发射器件安装于所述电路板上,所述光发射器件包括激光器和光环形器;所述激光器被配置为发射激光光束;所述光环形器包括入光口、出光口和出入光口,所述入光口与所述出光口位于所述光环形器的同一侧,所述出入光口位于所述光环形器的另一相对侧。所述光接收器件安装于所述电路板上,且沿与所述激光器的出光方向垂直的方向位于所述光发射器件的一侧,所述光接收器件被配置为接收激光光束。所述光纤适配器与所述光环形器的出入光口光耦合,被配置为通过所述光环形器将来自所述激光器的激光光束发送至所述光模块外部,或者通过所述光环形器将来自所述光模块外部的激光光束发送至所述光接收器件。此外,所述光环形器的入光口与所述激光器光耦合,所述光环形器的出光口与所述光接收器件光耦合,所述光环形器被配置为使来自所述激光器的激光光束耦合进入所述光纤适配器中,且使来自所述光纤适配器的激光光束耦合进入所述光接收器件中。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4A为根据一些实施例的一种光模块的分解结构图;
图4B为根据一些实施例的另一种光模块的分解结构图;
图5A为根据一些实施例的一种光模块去除壳体与解锁部件后的结构图;
图5B为根据一些实施例的另一种光模块去除壳体与解锁部件后的结构图;
图6A为根据一些实施例的一种光模块中光发射器件的结构图;
图6B为根据一些实施例的另一种光模块中光发射器件的结构图;
图7A为根据一些实施例的一种光模块中光发射器件的光路图;
图7B为根据一些实施例的另一种光模块中光发射器件的光路图;
图8为根据一些实施例的一种光模块中光环形器的结构及光路图;
图9A为根据一些实施例的一种光模块中电路板的结构图;
图9B为根据一些实施例的另一种光模块中电路板的结构图;
图10A为根据一些实施例的一种光模块中电路板、光发射器件、光接收器件与光纤适配器的局部分解图;
图10B为根据一些实施例的另一种光模块中电路板、光发射器件与光纤适配器 的局部分解图;
图10C为图10B所示的另一种光模块中电路板和光发射器件另一角度的局部装配图;
图11A为根据一些实施例的一种光模块中电路板和光发射器件的装配结构的剖视图;
图11B为根据一些实施例的另一种光模块中电路板和光发射器件的装配结构的剖视图;
图12A为图7A所示光模块中光发射器件另一角度的光路图;
图12B为图7B所示光模块中光发射器件另一角度的光路图;
图13A为根据一些实施例的一种光模块中电路板和光发射器件的电连接图;
图13B为根据一些实施例的另一种光模块中电路板和光发射器件的电连接图;
图14A为根据一些实施例的一种光模块中底座的结构图;
图14B为根据一些实施例的另一种光模块中底座的结构图;
图15为图14A所示的一种光模块中底座另一角度的结构图;
图16为图14A所示的一种光模块中底座又一角度的结构图;
图17A为根据一些实施例的一种光模块中底座与光接收器件的装配图;
图17B为根据一些实施例的另一种光模块中底座与光接收器件的装配图;
图18A为根据一些实施例的一种光模块中光接收器件的光路图;
图18B为根据一些实施例的另一种光模块中光接收器件的光路图;
图18C为图18A所示的一种光模块中光接收器件另一角度的光路图;
图19A为根据一些实施例的一种光模块中电路板与光接收器件的电连接图;
图19B为根据一些实施例的另一种光模块中电路板与光接收器件的电连接图;
图19C为根据一些实施例的另一种光模块中电路板与光接收器件另一角度的电连接图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括 以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、二线制同步串行(Inter-Integrated Circuit,I2C)信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光网络终端100包括大致呈长方体的壳体(housing),以及设置于壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以 包括光线路终端(Optical Line Terminal,OLT)等。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图。为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置于电路板105的表面的笼子106,设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有用于增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4A为根据一些实施例的一种光模块的分解结构图,图4B为根据一些实施例的另一种光模块的分解结构图。如图3、图4A和图4B所示,光模块200包括壳体(shell)、设置于壳体中的电路板300、光发射器件400以及光接收器件500。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板两侧、与底板垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板两侧、与底板垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,被配置为接入外部的光纤101,以使光纤101连接光模块200内部的光发射器件400和光接收器件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射器件400和光接收器件500等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、光发射器件400和光接收器件500等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外侧,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里时,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(Limiting Amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片(Power Management Chip)、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机的笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置于电路板300一侧的表面(例如图4A和4B所示的上表面),也可以设置于电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5A为根据一些实施例的一种光模块去除壳体与解锁部件后的结构图,图5B为根据一些实施例的另一种光模块去除壳体与解锁部件后的结构图,图6A为根据一些实施例的一种光模块中光发射器件的结构图,图6B为根据一些实施例的另一种光模块中光发射器件的结构图。如图5A、图5B、图6A和图6B所示,光模块200还包括光纤适配器600和内部光纤700。光纤适配器600通过同一内部光纤700与光发射器件400和光接收器件500连接。这样,光发射器件400发射的光信号通过内部光纤700与光纤适配器600传输出去,以实现光信号的发射;外部光信号通过光纤适配器600与内部光纤700传输至光接收器件500,以实现光信号的接收。如此,实现了光发射信号和光接收信号共享单根光纤,从而能够减少对光纤资源的需求和占用。
如图5B所示,在一些实施例中,光纤适配器600包括第一子光纤适配器601和第二子光纤适配器602。内部光纤700包括第一子内部光纤701和第二子内部光纤702。光接收器件500包括第一子光接收器件501和第二子光接收器件502。第一子光纤适配器601通过同一第一子内部光纤701与光发射器件400和第一子光接收器件501连接,第二子光纤适配器602通过同一第二子内部光纤702与光发射器件400和第二子光接收器件502连接。这样,光发射器件400发射的部分光信号通过第一子内部光纤701与第一子光纤适配器601传输出去,剩余部分光信号通过第二子内部光纤702与第二子光纤适配器602传输出去,以实现光信号的发射;外部光信号通过第一子光纤适配器601与第一子内部光纤701传输至第一子光接收器件501,通过第二子光纤适配器602与第二子内部光纤702传输至第二子光接收器件502,以实现光信号的接收。如此,实现了光发射信号和光接收信号共享单根光纤,从而能够减少对光纤资源的需求和占用。
在一些实施例中,光发射器件400和光接收器件500均设于电路板300靠近上壳体201的表面(下文中,将该表面称为正面,并将电路板300靠近下壳体202的表面称为背面)上。
光发射器件400包括底座410及设置在底座410上的激光器420、准直透镜430、光合波器440、第一平移棱镜450、光环形器(Optical Circulator)460、光纤耦合器470、以及半导体制冷器(Thermo Electric Cooler,TEC)480。
底座410具有安装面和底面。激光器420、准直透镜430、光合波器440、第一平移棱镜450、光环形器460、光纤耦合器470和半导体制冷器480均安装在底座410的安装面上。底座410的底面为与其安装面相对的表面。
激光器420包括激光芯片421和垫片422。激光芯片421具有阴极和阳极,垫片422包括绝缘导热层和金属层,金属层包括地线和信号线。激光芯片421的阴极可以通过焊接或导电胶水等方式固定在地线上,从而与地线电连接。激光芯片421的阳极可以通过连接线与信号线电连接。通过地线和信号线分别为激光芯片421的阴极和阳极施加电压,激光芯片421可以发出平行于电路板300的正面的一路激光光束。需要说明的是,对激光器420的数量不做限定,其可以是2个、4个或8个,还可以是1个。可以理解的是,增加激光器420的数量可以提升光模块200的信号传输速率。示例地,如图6A所示,光发射器件400包括4个激光器420;如图6B所示,光发射器件400包括8个激光器420。
半导体制冷器480设置在底座410的安装面上,激光器420设置在半导体制冷器480远离底座410的表面上。半导体制冷器480被配置为将激光芯片421产生的热量传导至底座410,通过底座410和光模块200的壳体向光模块200外部导出。在一些实施例中,半导体制冷器480包括相对设置的第一热交换面和第二热交换面,以及位于第一热交换面和第二热交换面之间的多个导热柱。第一热交换面和第二热交换面通过多个导热柱连接。在一些实施例中,多个导热柱可以成阵列排布,其可以采用半导体材料制成。例如,半导体制冷器480的第一热交换面设置在底座410的安装面上,激光器420设置在半导体制冷器480的第二热交换面上。但在一些实施例中,半导体制冷器480是可以省略的。
准直透镜430能够将激光芯片421产生的、发散的激光光束调整为平行的激光光束,即,准直光束。需要说明的是,对准直透镜430的数量不做限定,但准直透镜430与激光器420之间存在对应关系,其可以是一一对应,也可以是一个准直透镜430对应多个激光器420。示例地,如图6A所示,光发射器件400包括4个准直透镜430,每个准直透镜430对应一个激光器420。但在一些实施例中,准直透镜430也是可以省略的。
第一平移棱镜450是一种斜方棱镜,具有第一反射面451和第二反射面452。第一反射面451和第二反射面452均能够使激光光束的传播方向发生改变,例如使激光光束的传播方向转折90°。在一些实施例中,第一反射面451反射激光芯片421发出的平行于电路板300的正面的一路激光光束,使该路激光光束沿与电路板300的正面垂直的方向继续传播;第二反射面452反射垂直于电路板300的正面的该路激光光束,使该路激光光束再次沿与电路板300的正面平行的方向传播。需要说明的是,对第一平移棱镜450的安装位置不做限定,其可以沿激光器420的出光方向设置在光合波器440与光环形器460之间(如图6A所示),或者,沿激光器420的出光方向设置在准直透镜430和光合波器440之间(如图6B所示)。可以理解的是,光发射器件400中,调整第一平移棱镜450的安装位置并不影响第一平移棱镜450用于改变激光光束的传输方向及位置的作用。
激光器420发射的一路激光光束经由准直透镜430转换为准直光束。准直光束经由第一平移棱镜450进行两次反射后直接透过光环形器460。激光器420发射的激光光束是线偏振光,激光光束射入光环形器460后,激光光束在光环形器460内保持直线传输,路径不变,使得激光光束直接穿过光环形器460射入光纤耦合器470中,经由光纤耦合器470将激光光束耦合至光纤适配器600,实现一路光信号的发射。
图7A为根据一些实施例的一种光模块中光发射器件的光路图;图7B为根据一些实施例的另一种光模块中光发射器件的光路图。如图7A和图7B所示,光合波器440具有光输入端和光输出端。光合波器440的光输入端朝向准直透镜430的光输出端,以使平行于电路板300的正面的多路激光光束射入光合波器440,光合波器440将该多路激光光束合成为至少一束复合光束。光合波器440的光输出端为与其光输入端相对的一端,即远离准直透镜430的光输出端的一端。需要说明的是,对准直透镜430与光合波器440之间是否设置其他部件不做限定,只要满足上述光合波器440的光输入端与准直透镜430的光输出端对应设置即可。示例地,如图6A和图7A所示,准直透镜430与光合波器440之间未设置其他部件,即光合波器440的光输入端直接朝向准直透镜430的光输出端;或 者,如图6B和图7B所示,准直透镜430与光合波器440之间可以设置有第一平移棱镜450,即光合波器440的光输入端通过第一平移棱镜450朝向准直透镜430的光输出端。
光合波器440包括至少一个子光合波器。每个子光合波器包括4个用于接收4种波长(例如图7A和7B中的波长λ1、λ2、λ3和λ4,或者图7B中的波长λ5、λ6、λ7和λ8)的光的入光口,子光合波器的每一入光口用于接收一种波长的光。所述子光合波器的入光口位于光合波器440靠近准直透镜430一侧的光输入端处。每个子光合波器还包括一个用于出射光的出光口。所述子光合波器的出光口位于光合波器440远离准直透镜430一侧的光输入端处。需要说明的是,对光合波器440中子光合波器的数量不做限定,其可以是1个或2个。示例地,如图6A和图7A所示,光合波器440包括一个子光合波器4410;如图6B和图7B所示,光合波器440包括两个子光合波器4410和4420。
光纤耦合器470的光输入端与光环形器460的出入光口4690光耦合,光纤耦合器470的光输出端通过内部光纤700与光纤适配器600相连接。如此,光环形器460输出的复合光束通过光纤耦合器470耦合至内部光纤700,再通过内部光纤700传输至光纤适配器600,以实现复合光束的发射。
光纤耦合器470包括至少一个子光纤耦合器,且至少一个子光纤耦合器与至少一个子光合波器一一对应设置。每个子光纤耦合器均包括套管4730、聚焦透镜4740与光纤法兰4750。套管4730套在聚焦透镜4740与光纤法兰4750的外侧,内部光纤700插在光纤法兰4750内,聚焦透镜4740的入光面朝向光环形器460、出光面朝向光纤法兰4750,光合波器440输出的复合光束经过第一平移棱镜450与光环形器460传输至聚焦透镜4740,聚焦透镜4740将该复合光束会聚至插在光纤法兰4750内的内部光纤700中。将聚焦透镜4740和光纤法兰4750安装在套管4730中,以保证其同心度。但并不局限于此,聚焦透镜4740和光纤法兰4750也可以采用分离部件,通过有源耦合的方式进行组装。
图8为根据一些实施例的一种光模块中光环形器的结构及光路图。光环形器460的光路中,单向箭头表示光的传播方向,本文中平行于激光器420的出光方向;双向箭头和圆圈均表示光的偏振方向,本文中双向箭头表示平行于电路板300的正面的方向,圆圈表示垂直于电路板300的正面的方向。
如图7A、7B和图8所示,光环形器460包括至少一个子光环形器,且至少一个子光环形器与至少一个子光合波器一一对应设置。每个子光环形器均包括起偏器4630和4660、法拉第旋转器4640和半波片4650。起偏器4630和4660包括第一起偏器4630和第二起偏器4660。第一起偏器4630、法拉第旋转器4640、半波片4650与第二起偏器4660沿激光器420的出光方向依次设置。每个子光环形器均具有入光口4670、出光口4680与出入光口4690。所述每个子光环形器的入光口4670与出光口4680位于光环形器460的同一侧,沿激光器420的出光方向设置在第一起偏器4630远离第二起偏器4660的表面上,即远离光纤适配器600设置;所述每个子光环形器的出入光口4690位于每个子光环形器的入光口4670或出光口4680的相对侧,沿激光器420的出光方向设置在第二起偏器4660远离第一起偏器4630的表面上,即靠近光纤适配器600设置。
起偏器4630和4660被配置为对激光光束进行偏振分光;平行于电路板300的正面的线偏振光直接通过起偏器4630和4660,由该线偏振光形成的激光光束不会进行分光;非偏振光射入起偏器4630和4660后,会在起偏器4630和4660的镀膜面被分成两路偏振方向相互垂直的光。法拉第旋转器4640被配置为在磁场的作用下改变光的偏振方向,使正向通过该法拉第旋转器4640的光的偏振方向在光的传播方向上进行顺时针旋转;使逆向通过该法拉第旋转器4640的光的偏振方向在光的传播方向上进行逆时针旋转。半波片4650被配置为将激光光束通过该半波片4650时相对于其偏振轴旋转固定角度。
需要说明的是,对光环形器460的安装位置不做限定,其可以沿激光器420的出光方向设置在第一平移棱镜450与光纤耦合器470之间(如图6A所示),此时,第一起 偏器4630与第一平移棱镜450的光输出端对应设置,第二起偏器4660与光纤耦合器470对应设置;还可以沿激光器420的出光方向设置在光合波器440与光纤耦合器470之间(如图6B所示),此时,第一起偏器4630与光合波器440的光输出端对应设置,第二起偏器4660与光纤耦合器470对应设置。可以理解的是,本文中,调整光环形器460的安装位置并不会改变射入光环形器460的激光光束为偏振光的性质,也不会影响光环形器460用于对激光光束进行偏振分光的作用。
沿激光器420的出光方向射入光环形器460的激光光束被称为发射光束1。由于激光器420发射的激光光束是线偏振光,使得发射光束1也是线偏振光,且发射光束1仅包括偏振方向平行于电路板300的正面的线偏振光。发射光束1射入第一起偏器4630后不会进行分光,而是直接穿过第一起偏器4630,之后依次进入法拉第旋转器4640、半波片4650。在发射光束1的传输过程中,其偏振方向未发生改变,且发射光束1保持直线传输,路径不变,使得发射光束1直接穿过光环形器460而射入对应的光纤耦合器470内。需要说明的是,发射光束1为复合光束;例如,发射光束1可以是从第一平移棱镜450射出的复合光束(如图6A所示),还可以是从光合波器440射出的复合光束(如图6B所示)。
在一些实施例中,光发射器件400与光接收器件500共享单根光纤,即光发射器件400与光接收器件500共用同一光纤适配器600、同一内部光纤700、同一光纤耦合器470与同一光环形器460。
如图6A所示,激光器420发射的激光光束依次经由准直透镜430、光合波器440、第一平移棱镜450、光环形器460与光纤耦合器470耦合至内部光纤700,并经由光纤适配器600发射出去。如图6B所示,激光器420发射的激光光束依次经由准直透镜430、光合波器440、第一平移棱镜450、光环形器460与光纤耦合器470耦合至内部光纤700,并经由光纤适配器600发射出去。
外部光信号依次经由光纤适配器600、内部光纤700、光环形器460传输至光接收器件500。
包含外部光信号的激光光束逆着激光器420的出光方向射入光环形器460,该激光光束被称为接收光束2。接收光束2为非偏振光,但可以分解为由双向箭头指示的第一偏振光与由圆圈指示的第二偏振光,第一偏振光的偏振方向和第二偏振光的偏振方向相互垂直。接收光束2在第二起偏器4660的镀膜面会被分成两路偏振方向相互垂直的偏振光,这两路偏振光分别传输,最后在第一起偏器4630处再合成一束光,该束光继续传输进入光接收器件500。如此,通过光环形器460达到了接收光束2与发射光束1分开的目的。
例如,接收光束2射入第二起偏器4660后,在第二起偏器4660的镀膜面分成第一偏振光与第二偏振光。第一偏振光从该第二起偏器4660透射,之后依次进入半波片4650与法拉第旋转器4640;通过半波片4650与法拉第旋转器4640后,第一偏振光的偏振方向发生改变,第一偏振光转换为第二偏振光;该第二偏振光进入第一起偏器4630。
而第二偏振光在第二起偏器4660处以一定角度被反射,且反射后的第二偏振光在第二起偏器4660处再次以一定角度被反射,使得第二偏振光从第二起偏器4660出射的方向与第一偏振光从第二起偏器4660出射的方向平行;之后,第二偏振光依次进入半波片4650与法拉第旋转器4640,第二偏振光被转换为第一线偏振光;该第一偏振光进入第一起偏器4630。
在第一起偏器4630处,前述第二偏振光和第一偏振光进行合光,合光后的外部光信号进入光接收器件500。
在一些实施例中,当光模块200为高速光模块,如400G(信号传输速率为400Gbit/s)光模块时,需要在光模块200的壳体中封装4路光信号传输通道,每路光信号传输通道的信号传输速率为100Gbit/s。因此光发射器件400包括4个激光器420,以实现4路光信号的发射;光接收器件500包括4个光接收器,以实现4路光信号的接收。
基于此,如图6A所示,光发射器件400包括4个激光器420、4个准直透镜430和1个第一平移棱镜450。4个激光器420和4个准直透镜430一一对应。每个激光器420发射一路激光光束,每个准直透镜430将该路激光光束转换为准直光束,每个准直透镜430射出的准直光束传输至光合波器440内进行合波以输出一路复合光束,一路复合光束射至第一平移棱镜450。第一平移棱镜450对准直光束进行反射以改变激光光束的传输方向及位置。需要说明的是,光发射器件400不限于包括1个第一平移棱镜450,也可以包括多个第一平移棱镜450,每个第一平移棱镜450对应一个或多个准直透镜430。光发射器件400也不限于包括4个准直透镜430,也可以包括2个(每2个激光器420共用1个准直透镜430)或1个准直透镜430(全部激光器420共用1个准直透镜430)。
如图7A所示,至少一个子光合波器包括一个第一子光合波器4410。第一子光合波器4410的4个入光口位于第一子光合波器4410的光输入端处、一个出光口位于第一子光合波器4410的光输出端处。第一子光合波器4410的光输入端朝向准直透镜430的光输出端,将平行于电路板300的正面的4路激光光束射入第一子光合波器4410后,第一子光合波器4410将该4路激光光束合成为一束复合光束。
图7A示出了光合波器440(即第一子光合波器4410)对λ1、λ2、λ3和λ4这4种波长的光的合波作用。以第一子光合波器4410接收λ1、λ2、λ3和λ4这4种波长的光为例,波长为λ1的光通过第一入光口进入第一子光合波器4410,经过第一子光合波器4410内多个(例如6个)不同位置进行了多次(例如6次)不同的反射到达出光口;波长为λ2的光通过第二入光口进入第一子光合波器4401,经过第一子光合波器4410内多个(例如4个)不同位置进行了多次(例如4次)不同的反射到达出光口;波长为λ3的光通过第三入光口进入第一子光合波器4410,经过第一子光合波器4410内多个(例如2个)不同位置进行了多次(例如2次)不同的反射到达出光口;波长为λ4的光通过第四入光口进入第一子光合波器4410,未经过反射直接到达出光口。如此,通过第一子光合波器4410实现不同波长的光经不同入光口输入、经同一出光口输出,进而将不同波长的光复合成一束复合光束。
第一平移棱镜450的光输入端与第一子光合波器4410的光输出端对应设置,第一平移棱镜450的光输出端与第一子光环形器4610的入光口4670对应设置,通过第一平移棱镜450对一束复合光束进行反射,以改变复合光束的传输方向及位置,从而将该束复合光束射至第一子光环形器4610内。该束复合光束在第一子光环形器4610内保持直线传输,传输路径不变,使得该束复合光束直接穿过第一子光环形器4610并入射至第一子光纤耦合器4710。然后,该束复合光束经由第一子光纤耦合器4710和内部光纤700耦合至光纤适配器600,以将多路发射光束合成一路复合光束发射出去。
在一些实施例中,当光模块200为高速光模块,如800G(信号传输速率为800Gbit/s)光模块时,需要在光模块200的壳体中封装8路光信号传输通道,每个光信号传输通道的信号传输速率为100Gbit/s。因此光发射器件400包括8个激光器420,以实现8路光信号的发射;光接收器件500包括8个光接收器,以实现8路光信号的接收。示例地,如图5B所示,第一子光接收器件501包括4个光接收器,以实现4路光信号的接收;第二子光接收器件502包括4个光接收器,以实现4路光信号的接收。
基于此,如图6B所示,光发射器件400包括8个激光器420、8个准直透镜430和1个第一平移棱镜450。8个激光器420和8个准直透镜430一一对应。每个激光器420发射一路激光光束,每个准直透镜430将该路激光光束转换为准直光束,每个准直透镜430射出的准直光束传输至第一平移棱镜450。第一平移棱镜450对准直光束进行反射以改变激光光束的传输方向及位置。需要说明的是,光发射器件400不限于包括1个第一平移棱镜450,也可以包括多个第一平移棱镜450,每个第一平移棱镜450对应一个或多个准直透镜430。光发射器件400也不限于包括8个准直透镜430,也可以包括4个(每2个激光器420共用1个准直透镜430)、2个(每4个激光器420共用1个准直透镜430)或1个准直透镜430(全部激光器420共用1个准直透镜430)。
如图7B所示,至少一个子光合波器包括第一子光合波器4410和第二子光合波器4420。 第一子光合波器4410与第二子光合波器4420并排设置在底座410的安装面上。例如,第一子光合波器4410与第二子光合波器4420沿与激光器420的出光方向垂直的方向并排设置在底座410的安装面上。第一子光合波器4410与第二子光合波器4420的光输入端朝向第一平移棱镜450的光输出端,以将平行于电路板300的正面的8路激光光束分别射入第一子光合波器4410和第二子光合波器4420。例如,4路激光光束射入第一子光合波器4410,第一子光合波器4410将该4路激光光束合成为第一束复合光束;剩余4路激光光束射入第二子光合波器4420内,第二子光合波器4420将该剩余的4路激光光束合成为第二束复合光束。
图7B示出了光合波器440(即第一子光合波器4410和第二子光合波器4420)对λ1、λ2、λ3、λ4、λ5、λ6、λ7和λ8这8种波长的光的合波作用。图7B中的第一子光合波器4410的结构和功能与图7A中的第一子光合波器4410的结构和功能相同,不再赘述。图7B中的第二子光合波器4420的结构和功能与图7A中的第一子光合波器4410的结构和功能类似,也不再赘述。
需要说明的是,波长λ5可以与波长λ1相同或不同,波长λ6可以与波长λ2相同或不同,波长λ7可以与波长λ3相同或不同,波长λ8可以与波长λ4相同或不同。
至少一个子光环形器包括第一子光环形器4610和第二子光环形器4620。至少一个子光纤耦合器包括第一子光纤耦合器4710和第二子光纤耦合器4720。从第一子光合波器4410出射的第一束复合光束经由第一子光纤耦合器4710被通过第一子内部光纤701耦合至第一子光纤适配器601,以将第一束复合光束发射出去。从第二子光合波器4420出射的第二束复合光束经由第二子光纤耦合器4720被通过第二子内部光纤702耦合至第二子光纤适配器602,以将第二束复合光束发射出去。
随着光模块的体积越来越小,信号传输速率越高,要求光模块内部的结构尽量简洁,以便合理布局光学元器件和电子元器件。在本公开一些实施例的光模块200中,使用光合波器440将多路(例如4路、8路)光信号传输通道中的多路光束复合成一路复合光束,简化了光模块200的内部结构,有利于光模块200实现高速的信号传输。此外,在光发射器件400中集成装配了结构紧凑且小型化的光环形器460,以便将光发射器件400的发射光束1与光接收器件500的接收光束2分开,从而在光模块200的狭小空间里,实现了双向传输的光的合并与分离。此外,实现了发射的光信号和接收的光信号共享单根光纤,从而减少了对光纤资源的需求和占用。
图9A为根据一些实施例的一种光模块中电路板的结构图,图10A为根据一些实施例的一种光模块中电路板、光发射器件、光接收器件与光纤适配器的局部分解图。如图9A和图10A所示,电路板300包括安装孔320,光发射器件400的底座410安装在电路板300的正面,且嵌在该安装孔320内,底座410的安装面背向电路板300的正面。这使得电路板300与光发射器件400安装后,位于底座410上的激光器420与准直透镜430靠近电路板300的正面,激光器420用于打线的表面与电路板300的正面位于同一平面中,使得电路板300的正面与激光器420的连接线最短,以保证优良的高频信号传输性能。
图11A为根据一些实施例的一种光模块中电路板和光发射器件的装配结构的剖视图;图12A为图7A所示光模块中光发射器件另一角度的光路图。如图11A和图12A所示,多个激光器420分别发射激光光束,这些激光光束平行于电路板300的正面;多个准直透镜430将多个激光器420发射的多个激光光束转换为多个准直光束,多个准直光束分别传输至第一子光合波器4410内,第一子光合波器4410将4路准直光束合成为一束复合光束,该束复合光束传输至第一平移棱镜450,第一平移棱镜450的第一反射面451和第二反射面452对该复合光束进行反射,从而将高度较小的复合光束反射至高度较高的第一子光环形器4610。
第一平移棱镜450的第一反射面451朝向第一子光合波器4410,位于电路板300的正面侧,被配置为将平行于电路板300的正面侧的高度较小的一路复合光束反射为垂直于电路板300的一路复合光束;第一平移棱镜450的第二反射面452朝 向第一反射面451,位于电路板300的正面侧,被配置为将垂直于电路板300的一路复合光束反射为平行于电路板300正面侧的高度较大的一路复合光束。
将底座410的安装面背向电路板300的正面,使得光发射器件400的底面靠近下壳体202而远离上壳体201,这种安装方式被称为光发射器件400的正装方式。将光发射器件400正装在电路板300的正面上时,多个激光器420和多个准直透镜430嵌在电路板300的安装孔320内,激光器420中的垫片422与电路板300的正面平齐,从而使垫片422上的地线和信号线与电路板300正面上的电路走线之间的连接线最短,以保证优良的高频信号传输性能。
图13A为根据一些实施例的一种光模块中电路板和光发射器件的电连接图。如图13A所示,数字信号处理芯片310位于电路板300的正面,被配置为将高频信号传输至光发射器件400的激光器420,为激光器420发射的激光光束提供信号,将该激光光束调制为光信号。为此目的,数字信号处理芯片310朝向电路板300的侧面上设置有输出焊盘,电路板300正面上设置有相应的焊盘和焊球,数字信号处理芯片310通过焊盘、焊球与电路板300焊接。电路板300包括第一高频信号线330,第一高频信号线330位于电路板300的正面。第一高频信号线330的一端与数字信号处理芯片310的输出焊盘电连接,以传输高频信号。
由于激光器420中的垫片422与电路板300的正面平齐,因此高频信号线330沿电路板300的正面布线,再通过打线工艺(wire bonding)与激光器420的垫片422电连接,再通过垫片422与激光器420的打线实现电连接。即,该第一高频信号线330的另一端通过打线工艺与激光器420电连接。从电路板300的金手指301传输过来的高频信号经过数字信号处理芯片310后,再经由第一高频信号线330传输至激光器420,使得激光器420发射光信号。
电路板300包括多条第一高频信号线330,每个第一高频信号线330对应一个激光器420,使得穿过每条第一高频信号线330与对应的激光器420连接。
图14A为根据一些实施例的一种光模块中底座的结构图;图15为图14A所示的一种光模块中底座另一角度的结构图;图16为图14A所示的一种光模块中底座又一角度的结构图。如图14A所示,底座410包括底座本体4110和凸起4120,底座本体4110具有与底座410相同的安装面和底面;凸起4120设置在底座本体4110的底面上,由底座本体4110的底面向电路板300的背面方向延伸。
在一些实施例中,凸起4120在与激光器420的出光方向垂直的方向上的尺寸小于底座本体4110在该方向上的尺寸,凸起4120在激光器420的出光方向上的尺寸小于或等于底座本体4110在该方向上的尺寸。如此,将光发射器件400安装至电路板300上时,将凸起4110嵌在电路板300的安装孔320内,使得凸起4120贯穿电路板300;底座本体4110的底面与电路板300的正面相接触,以将底座410安装至电路板300的正面上。
如图15和图16所示,底座本体4110的安装面包括依次连接的第一安装面4130、第二安装面4140和第三安装面4150,以便承载激光器420、准直透镜430、光合波器450、第一平移棱镜450、光环形器460和光纤耦合器470以及半导体制冷器480。第二安装面4140从第三安装面4150朝向底座本体4110的底面凹陷,第一安装面4130从第二安装面4140朝向底座本体4110的底面凹陷。第三安装面4150距离底座本体4110的底面的尺寸大于第二安装面4140距离底座本体4110的底面的尺寸,第二安装面4140距离底座本体4110的底面的尺寸大于第一安装面4130距离底座本体4110的底面的尺寸,使得第一安装面4130、第二安装面4140与第三安装面4150形成台阶面。
在一些实施例中,第一安装面4130、第二安装面4140与第三安装面4150均平行于底座本体4110的底面。激光器420和准直透镜430固定在第一安装面4130上。光合波器440与第一平移棱镜450固定在第二安装面4140上;光环形器460与光纤耦合器470固定在第三安装面4130上。
如此,激光器420和准直透镜430在底座410上的安装高度低于光合波器440和第一平移棱镜450的安装高度,光合波器440和第一平移棱镜450的安装高度低于光环形器460和光纤耦合器470的安装高度。在将激光器420和准直透镜430嵌入在电路板300的安装孔320内后,激光器420和准直透镜430靠近电路板300的背面侧,光合波器440、光环形器460和光纤耦合器470位于电路板300的正面侧。
在一些实施例中,半导体制冷器480位于第一安装面4130上,激光器420位于半导体制冷器480上。如此,通过半导体制冷器480可以抬高激光器420的安装面,使得激光器420的垫片422的表面与电路板300的正面位于同一平面上。与每个激光器420对应的准直透镜430也设置在半导体制冷器480上,且设置在激光器420的出光方向上。
在一些实施例中,第一安装面4130在与激光器420的出光方向垂直的方向上的尺寸略大于第二安装面4140在该方向上的尺寸。在将多个激光器420沿与各自的出光方向垂直的方向并排固定于第一安装面4130时,较宽的第一安装面4130可便于放置多个激光器420,避免相邻激光器420之间距离较小,从而可避免多个激光器420发射的多个激光光束之间的串扰。
第二安装面4140略凹陷于电路板300的正面,第三安装面4150高于电路板300的正面。第一平移棱镜450的第一反射面451靠近第二安装面4140,并靠近激光器420;第一平移棱镜450的第二反射面452远离第二安装面4140。如此,通过第一平移棱镜450将传播高度低于电路板300正面的激光光束反射至电路板300的正面侧。光合波器440与第一平移棱镜450沿着激光器420的出光方向排布。
如此,通过呈台阶状的第一安装面4130、第二安装面4140与第三安装面4150将半导体制冷器480、激光器420、准直透镜430、光合波器440、第一平移棱镜450、光环形器460、以及光纤耦合器470固定在底座410上,以形成激光器420和准直透镜430、光合波器440和第一平移棱镜450、以及光环形器460和光纤耦合器470之间的安装高度差,并将安装高度相对较小的激光器420与准直透镜430嵌在电路板300的安装孔320内,将安装高度相对较大的光合波器440、第一平移棱镜450、光环形器460、以及光纤耦合器470设置在电路板300的正面侧,如此可减小光发射器件400与电路板300在空间上的重叠区域。
在一些实施例中,底座本体4110还包括支撑块4170。支撑块4170由第三安装面4150向远离底座本体4110底面的方向延伸。支撑块4170位于第三安装面4150远离第二安装面4140的一端。
支撑块4170具有至少一个通孔4171,该至少一个通孔4171沿着激光器420的出光方向贯穿支撑块4170,且与至少一个子光纤耦合器一一对应设置。示例地,如图15和图16所示,至少一个通孔4171包括一个通孔4171,第一子光纤耦合器4710插在该通孔4171内,以通过支撑块4170将第一子光纤耦合器4710固定在底座本体4110上。
图17A为根据一些实施例的一种光模块中底座与光接收器件的装配图。如图17A和图5A所示,光接收器件500可在与激光器420的出光方向垂直的方向上设置在电路板300的安装孔320的一侧。光接收器件500与内部光纤700相连接,光纤适配器600接收的来自光模块200外部的光信号通过内部光纤700传输至光接收器件500,以实现复合光束的接收。
光接收器件500包括一个子光接收器件,该子光接收器件包括第二平移棱镜5011、光分波器5012、耦合透镜组5013、反射棱镜5014与光接收芯片5015(例如PIN二极管或雪崩二极管),第二平移棱镜5011、光分波器5012、耦合透镜组5013、反射棱镜5014与光接收芯片5015形成的组合也可以被称为前文所述的光接收器。第二平移棱镜5011的光输入端与光环形器460的出光口4680对应设置,第二平移棱镜5011的光输出端与光分波器5012的光输入端对应设置,如此光环形器460射出的接收光束经第二平移棱镜5011的光路平移后射至光分波器5012。
第二平移棱镜5011是一种斜方棱镜,具有第三反射面50111和第四反射面50112。第三反射面50111和第四反射面50112均能够使激光光束的传播方向发生改变,例如使激光光束的传播方向转折90°。需要说明的是,第二平移棱镜5011的结构和功能与第一平移棱镜450的结构和功能相同,不再赘述。
光接收器件500设置在底座410的外部。如图15和图16所示,底座410包括开口4160,开口4160位于底座本体4110靠近光接收器件500的侧壁上,且贯穿底座本体4110一侧的侧壁。开口4160与第三安装面4150相连通,第二平移棱镜5011的一端穿过开口4160固定于第三安装面4150上,使得光环形器460的出光口4680与第二平移棱镜5011的光输入端对应设置;第二平移棱镜5011的另一端位于底座410的外部,且第二平移棱镜5011的另一端与光分波器5012的光输入端对应设置,如此经由第二平移棱镜5011光路平移的接收光束射入光分波器5012。
在一些实施例中,第二平移棱镜5011水平固定在第三安装面4150上,如此光环形器460的安装高度、第二平移棱镜5011的安装高度与光分波器5012的安装高度可相同,使得接收光束由光环形器460水平平移至光分波器5012。
图18A为根据一些实施例的一种光模块中光接收器件的光路图,图18C为图18A所示的一种光模块中光接收器件另一角度的光路图。如图18A和图18C所示,接收光束2经由出入光口4690射入光环形器460内,接收光束2依次经过第二起偏器4660、半波片4650、法拉第旋转器4640与第一起偏器4630。接收光束2透过光环形器460射至第二平移棱镜5011,并在第二平移棱镜5011内进行反射平移,使得反射后的接收光束2能够射入光分波器5012内。
光接收器件500通过采用光环形器460及第二平移棱镜5011将双向传输的发射光束1和接收光束2分开并将接收光束2平移至合适的位置,以便将接收光束2射入光分波器5012进行光的分波操作。
在一些实施例中,光接收器件500还包括支撑板5016与跨阻放大器5017,支撑板5016设置在电路板300的正面上,光分波器5012与耦合透镜组5013均设置在支撑板5016上,以抬高光分波器5012与耦合透镜组5013的安装高度。
耦合透镜组5013包括4个耦合透镜,每个耦合透镜与光分波器5012的输出光束对应设置,如此光分波器5012将一路反射后的接收光束解复用为4路光束;4路光束分别射入耦合透镜组5013中对应的耦合透镜,从而将各路光束转换为会聚光束;4路会聚光束射至反射棱镜5014,每路会聚光束在反射棱镜5014处发生反射,反射后的会聚光束垂直于电路板300。
光接收芯片5015设置在电路板300的正面上,且光接收芯片5015位于反射棱镜5014的下方,如此会聚光束在经反射棱镜5014反射后射入光接收芯片5015内,通过光接收芯片5015将光信号转换为电信号。
跨阻放大器5017设置在电路板300的正面上,通过光接收芯片5015转换的电信号传输至跨阻放大器5017,经由跨阻放大器5017对电信号进行放大。
图19A为根据一些实施例的一种光模块中电路板与光接收器件的电连接图。如图19A所示,数字信号处理芯片310还被配置为将经由跨阻放大器5017放大的电信号传输至电路板300。为此目的,数字信号处理芯片310朝向电路板300的侧面上还设置有输入焊盘,电路板300正面上设置有相应的焊盘和焊球,数字信号处理芯片310通过焊盘、焊球与电路板300焊接。电路板300还包括第二高频信号线380,第二高频信号线380位于电路板300的正面。该第二高频信号线380与数字信号处理芯片310的输入焊盘电连接,以传输高频信号;第二高频信号线380与第一高频信号线330沿与激光器420的出光方向垂直的方向并排设置。
为了将跨阻放大器5017的高频信号传输至信号处理芯片310,第二高频信号线380的一端与数字信号处理芯片310的输入焊盘电连接、另一端通过打线工艺与跨阻放大器5017电连接。从光接收器件500的跨阻放大器5017传输过来的高频信号经过第二高频信号线380传输至数字信号处理芯片310后,再经由金手指301传送 至光网络终端100,以实现光信号的接收。
在本公开一些实施例中,通过采用光环形器460,在光模块200的狭小空间里实现了双向传输的光的合并与分离,从而实现了发射光束和接收光束共享单根光纤,减少了对光纤资源的需求和占用。
需要说明的是,本公开并不限于上文所记载的示例。即,也可以对上文中的示例进行适当改变。下面将对代表性的另一示例进行说明。在以下的示例的说明中,仅对与上述示例不同的部分进行说明。另外,在上述示例和下述示例中,对彼此相同或等同的部件标注相同的附图标记。因此,在以下对另一示例的说明中,关于具有与上述示例相同的附图标记的构成要素,只要不存在技术上的矛盾或特别的追加说明,均可相应援引上述示例中的说明。
图9B为根据一些实施例的另一种光模块中电路板的结构图,图10B为根据一些实施例的另一种光模块中电路板、光发射器件、光接收器件与光纤适配器的局部分解图;图10C为图10B所示的另一种光模块中电路板和光发射器件另一角度的局部装配图。如图9B、图10B和图10C所示,电路板300包括安装孔320,光发射器件400的底座410安装在电路板300的正面,底座410的安装面朝向电路板300的正面,光发射器件400中的激光器420、准直透镜430和第一平移棱镜450嵌入在该安装孔320内。这使得电路板300与光发射器件400安装后,激光器420和准直透镜430位于电路板300的背面侧,光合波器440、光环形器460、光纤耦合器470位于电路板300的正面侧,而第一平移棱镜450则是一部分位于电路板300的背面侧、另一部分位于电路板300的正面侧,激光器420的打线表面与电路板300的正面位于同一平面上,使得电路板300的正面与激光器420的连接线最短,以保证优良的高频信号传输性能。
图11B为根据一些实施例的另一种光模块中电路板和光发射器件的装配结构的剖视图;图12B为图7B所示光模块中光发射器件另一角度的光路图。如图11B和图12B所示,多个激光器420分别发射激光光束,这些激光光束平行于电路板300的背面;多个准直透镜430将多个激光器420发射的多个激光光束转换为多个准直光束,多个准直光束传输至第一平移棱镜450,第一平移棱镜450的第一反射面451和第二反射面452对多个准直光束进行反射,从而将位于电路板300背面侧的多个激光光束反射至电路板300的正面侧。之后,光合波器440将多路准直光束合成为复合光束。
第一平移棱镜450的第一反射面451朝向多个准直透镜430,位于电路板300的背面侧,被配置为将平行于电路板300的背面侧的多个准直光束反射为垂直于电路板300的多个准直光束;第一平移棱镜450的第二反射面452朝向第一反射面451,位于电路板300的正面侧,被配置为将垂直于电路板300的多个准直光束反射为平行于电路板300正面侧的多个准直光束。
将底座410的安装面朝向电路板300的正面,并使多个激光器420位于电路板300的背面侧的安装方式,使得光发射器件400的底面靠近上壳体201而远离下壳体202,这种安装方式被称为光发射器件400的倒装方式。将光发射器件400倒装在电路板300的正面上时,激光器420中的垫片422与电路板300的背面平齐,从而使垫片422上的地线和信号线与电路板300背面上的电路走线之间的连接线最短,以保证优良的高频信号传输性能。
图13B为根据一些实施例的另一种光模块中电路板和光发射器件的电连接图。如图13B所示,电路板300包括第一高频信号线330和第一过孔340。第一过孔340位于数字信号处理芯片310的输出焊盘处,该第一过孔340贯穿电路板300的正面与背面。第一高频信号线330位于第一过孔340内,该第一高频信号线330穿过第一过孔340与数字信号处理芯片310的输出焊盘电连接,以传输高频信号。
由于激光器420中的垫片422与电路板300的背面平齐,因此第一高频信号线330穿过第一过孔340后沿电路板300的背面布线,再通过打线工艺与激光器420 电连接。从电路板300的金手指301传输过来的高频信号经过数字信号处理芯片310后,再经由第一高频信号线330传输至激光器420,使得激光器420发射光信号。
此外,如图13B所示,为监测激光器420的发射光功率,电路板300还包括光探测器350,光探测器350设置在电路板300的背面。光探测器350位于安装孔320远离金手指301的一侧,且该光探测器350的光敏面朝向激光器420的出光方向。光探测器350被配置为采集激光器420发射的前向光,并将采集到的数据发送至电路板300,来实现对激光器420前向出光功率的监控。
在一些实施例中,利用第一平移棱镜450的第一反射面451的透光特性,使少部分准直光束漏过第一反射面451,并射向光探测器350的光敏面,使得光探测器350能够接收到部分光束,从而得到激光器420的发射光功率。
例如,第一平移棱镜450的第一反射面451朝向激光器420的出光方向,被配置为将激光器420产生的一路激光光束分裂为两束光,一束光(通常占激光器总功率的95%)被第一反射面451反射至第二反射面452,以将激光光束由电路板300的背面侧反射至电路板300的正面侧,另一束光透过第一反射面451射入光探测器350的光敏面,通过该光敏面接收激光器420发射的激光光束。
图14B为根据一些实施例的另一种光模块中底座的结构图。如图14B所示,底座410的安装面包括依次连接的第一安装面4130、第二安装面4140和第三安装面4150,以便承载激光器420、准直透镜430、第一平移棱镜450、光合波器440、光环形器460、光纤耦合器4720、以及半导体制冷器480。第二安装面4140从第一安装面4130朝向底座410的底面凹陷,第三安装面4150与第二安装面4140大致平齐。第三安装面4150距离底座410的底面的尺寸大致等于第二安装面4140距离底座410的底面的尺寸,第二安装面4140距离底座410的底面的尺寸小于第一安装面4130距离底座410的底面的尺寸,使得第一安装面4130与第二安装面4140和第三安装面4150形成台阶面。
在一些实施例中,第一安装面4130、第二安装面4140与第三安装面4150均平行于底座410的底面。底座410还包括两个挡板4131,两个挡板4131分别位于第一安装面4130与激光器420的出光方向平行的两个侧边处,该两个挡板4131朝远离底座410的底面的方向延伸,以便在将光发射器件400安装在电路板300上时,该两个挡板4131与电路板300的正面相抵接。激光器420和准直透镜430固定在第一安装面4130上。第二安装面4140在与激光器420的出光方向垂直的方向上敞开,以方便将第一平移棱镜450固定在第二安装面4140上;第三安装面4150在与激光器420的出光方向垂直的方向上敞开以方便将光合波器440、光环形器460与光纤耦合器470固定在第三安装面4150上。
如此,激光器420和准直透镜430在底座410上的安装高度大于第一平移棱镜450的安装高度。在将激光器420和准直透镜430嵌入在电路板300的安装孔320内后,使得激光器420和准直透镜430靠近电路板300的背面侧,光合波器440、光环形器460和光纤耦合器470位于电路板300的正面侧。
在一些实施例中,第一安装面4130在与激光器420的出光方向垂直的方向上的尺寸略大于第二安装面4140在该方向上的尺寸。在将多个激光器420沿与各自的出光方向垂直的方向并排固定于第一安装面4130时,较宽的第一安装面4130可便于放置多个激光器420,避免相邻激光器420之间距离较小,从而可避免多个激光器420发射的多个激光光束之间的串扰。
第二安装面4140上设置有第一平移棱镜450。该第一平移棱镜450垂直固定于第二安装面4120上,且第一平移棱镜450的第一反射面451远离第二安装面4140,并靠近激光器420;第一平移棱镜450的第二反射面452靠近第二安装面4140。如此,通过第一平移棱镜450将位于电路板300背面侧的激光光束反射至电路板300正面侧。
第三安装面4130上设置有子光合波器4410和4420、子光环形器4610和4620、 以及子光纤耦合器4710和4720。第一子光合波器4410与第二子光合波器4420沿与激光器420的出光方向垂直的方向并排设置,第一子光环形器4610与第二子光环形器4620也沿该方向并排设置,第一子光纤耦合器4710与第二子光纤耦合器4720同样沿该方向并排设置,且光合波器440、光环形器460与光纤耦合器470沿着激光器420的出光方向排布。
通过呈台阶状的第一安装面4130、第二安装面4140与第三安装面4150将半导体制冷器480、激光器420、准直透镜430、光合波器440、第一平移棱镜450、光环形器460、以及光纤耦合器470固定在底座410上,以形成激光器420和准直透镜430与光合波器440、光环形器460和光纤耦合器470之间的安装高度差,并将安装高度相对较大的激光器420与准直透镜430通过电路板300的安装孔320嵌在电路板300的安装孔320内,将安装高度相对较小的光合波器440、光环形器460、以及光纤耦合器470设置在电路板300的正面侧,如此可减小光发射器件400与电路板300在空间上的重叠区域。
在一些实施例中,底座410还包括支撑块4170。支撑块4170由第三安装面4150向远离底座410底面的方向延伸。支撑块4170位于第三安装面4150远离第二安装面4140的一端。
支撑块4170具有至少一个通孔4171,该至少一个通孔4171沿着激光器420的出光方向贯穿支撑块4170,且与至少一个子光纤耦合器一一对应设置。示例地,如图14B所示,至少一个通孔4171包括两个通孔4171,第一子光纤耦合器4710和第二子光纤耦合器4720分别插在支撑块4170上对应的一个通孔4171内,以通过支撑块4170将第一子光纤耦合器4710和第二子光纤耦合器4720固定在底座410上。
在一些实施例中,底座410还包括两个定位销4172,该两个定位销4172分别位于支撑块4170背向第三安装面4150的端面上。电路板300包括两个第一定位孔360,两个第一定位孔360与两个定位销4172一一对应设置。
在一些实施例中,底座410还包括定位块4180,定位块4180位于第一安装面4130远离子光纤适配器601和602的一端。定位块4180沿远离底座410底面的方向延伸。底座410还包括两个定位凸起4181,该两个定位凸起4181位于定位块4180背向第一安装面4130的端面上。电路板300包括两个第二定位孔370,两个第二定位孔370与两个定位凸起4181一一对应设置。
将底座410反向安装至电路板300正面上时,底座410的支撑块4170和定位块4180与电路板300的正面相接触,支撑块4170上的定位销4172插入电路板300上的第一定位孔360内,定位块4180上的定位凸起4181插入电路板300上的第二定位孔370内。从而将底座410固定在电路板300上,并将设置在第一安装面4130上的激光器420和准直透镜430及设置在第二安装面4140上的第一平移棱镜450嵌入电路板300的安装孔320内。
图17B为根据一些实施例的另一种光模块中电路板与光接收器件的组装结构图。如图17B和图5B所示,本公开一些实施例中的800G(信号传输速率为800Gbit/s)光模块的光接收器件500包括两个子光接收器件501和502,第一子光接收器件501与第二子光接收器件502可在与激光器420的出光方向垂直的方向上设置在电路板300的安装孔320的一侧,沿与激光器420的出光方向垂直的方向排列。此外,第一子光接收器件501与第二子光接收器件502在沿激光器420的出光方向上错开适当距离,以使两路外部光信号传输时不受阻挡;例如,第一子光接收器件501位于第二子光接收器件502靠近金手指301的一侧。第一子光接收器件501与第一子光纤适配器601通过第一子内部光纤701相连接,第一子光纤适配器601接收的来自光模块200外部的光信号通过第一子内部光纤701传输至第一子光接收器件501,以实现第三束复合光束的接收;第二子光接收器件502与第二子光纤适配器602通过第二内部光纤702相连接,第二子光纤适配器602接收的来自光模块200外部的光信号通过第二内部光纤702传输至第二子光接收器件502,以实现第四束复合光 束的接收。
第一子光接收器件501包括第二平移棱镜5011、第一光分波器5012、第一耦合透镜组5013、第一反射棱镜5014、第一光接收芯片5015(例如PIN二极管或雪崩二极管)与第一跨阻放大器5017。第二平移棱镜5011的光输入端与第一子光环形器4610的出光口4680对应设置,第二平移棱镜5011的光输出端向光发射器件400的外部延伸、与第一光分波器5012的光输入端对应设置,如此第一子光环形器4610射出的外部光信号经第二平移棱镜5011的光路平移后射至第一光分波器5012。
第二子光接收器件502包括第三平移棱镜5021、第二光分波器5022、第二耦合透镜组5023、第二反射棱镜5024、第二光接收芯片5025(例如PIN二极管或雪崩二极管)与第二跨阻放大器5027。第三平移棱镜5021的光输入端与第二子光环形器4620的出光口4680对应设置,第三平移棱镜5021的光输出端向光发射器件400的外部延伸、与第二光分波器5022的光输入端对应设置,如此第二子光环形器4620射出的外部光信号经第三平移棱镜5021的光路平移后射至第二光分波器5022。
第三平移棱镜5021是一种斜方棱镜,具有第五反射面50211和第六反射面50212。第五反射面50211和第六反射面50212均能够使激光光束的传播方向发生改变,例如使激光光束的传播方向转折90°。需要说明的是,第三平移棱镜5021的结构和功能与第一平移棱镜450的结构和功能亦相同,不再赘述。
在一些实施例中,如图14B所示,底座410还包括延伸部4190,该延伸部4190朝向第一子光接收器件501和第二子光接收器件502的一侧设置。延伸部4190由底座410的侧面向靠近光接收器件500的方向延伸。延伸部4190与第三安装面4130相连接,且与第三安装面4130位于同一平面。
第二平移棱镜5011的一端与第一子光环形器4610的出光口4680对应设置、另一端固定于延伸部4190上,使得第一子光环形器4610输出的外部光信号射入第二平移棱镜5011,以实现光路的平移,并将平移后的外部光信号反射至第一光分波器5012。
第三平移棱镜5021的一端与第二子光环形器4620的出光口4680对应设置、另一端固定于延伸部4190上,使得第二子光环形器4620输出的外部光信号射入第三平移棱镜5021,以实现光路的平移,并将平移后的外部光信号反射至第二光分波器5022。
在一些实施例中,第二平移棱镜5011与第三平移棱镜5021沿平行于激光器420的出光方向并排设置,第三平移棱镜5021在与激光器420的出光方向垂直的方向上突出于第二平移棱镜5011,且第二平移棱镜5011靠近第一子光环形器4610与第二子光环形器4620,第三平移棱镜5021靠近第一光分波器5012与第二光分波器5022。
在一些实施例中,第一子光环形器4610、第二平移棱镜5011与第一光分波器5012三者的安装高度相同;第二子光环形器4620、第三平移棱镜5021与第二光分波器5022三者的安装高度相同。
图18B为根据一些实施例的另一种光模块中光接收器件的光路图。如图18B所示,一路外部光信号(一接收光束)经由出入光口4690射入第一子光环形器4610内,外部光信号依次经过第二起偏器4660、半波片4650、法拉第旋转器4640与第一起偏器4630,入射至第二平移棱镜5011并在第二平移棱镜5011内进行反射平移,之后射入第一光分波器5012内。
另一路外部光信号(另一接收光束)经由出入光口4690射入第二子光环形器4620内,外部光信号依次经过第二起偏器4660、半波片4650、法拉第旋转器4640与第一起偏器4630,入射至第三平移棱镜5021并在第三平移棱镜5021内进行反射平移,之后射入第二光分波器5022内。
采用第一子光环形器4610能够将双向传输的发射光束和外部光信号分开,以便将一路外部光信号射入第一光分波器5012进行光的分波操作。采用第二子光环 形器4620能够将双向传输的发射光束和外部光信号分开,以便将另一路外部光信号射入第二光分波器5022进行光的分波操作。
图19B为根据一些实施例的一种光模块中电路板与光接收器件的电连接图;图19C为根据一些实施例的另一种光模块中电路板与光接收器件另一角度的电连接图。如图19B和图19C所示,电路板300还包括第二高频信号线380,第二高频信号线380位于电路板300的正面。该第二高频信号线380与数字信号处理芯片310的输入焊盘电连接,以传输高频信号。
为了第一跨阻放大器5017的高频信号传输至第一跨阻放大器5017,第二高频信号线380的一端与数字信号处理芯片310的输入焊盘电连接、另一端通过打线工艺与第一跨阻放大器5017电连接。从第一子光接收器件501的第一跨阻放大器5017传输过来的高频信号经过第二高频信号线380传输至数字信号处理芯片310后,再经由金手指301传送至光网络终端100,以实现第一路光信号的接收。
电路板300还包括第三高频信号线390、第二过孔391和第三过孔392。第二过孔391位于数字信号处理芯片310的输入焊盘处。第三过孔392位于电路板300靠近第二跨阻放大器5027的位置处。第二过孔391和第三过孔392均贯穿电路板300的正面与背面。
为了将第二跨阻放大器5027的高频信号传输至信号处理芯片310,第三高频信号线390的一端穿过第二过孔391与数字信号处理芯片310的输入焊盘电连接、另一端穿过第三过孔392并通过打线工艺与第二跨阻放大器5027电连接。从第二子光接收器件502的第二跨阻放大器5027传输过来的高频信号经过第三高频信号线390传输至数字信号处理芯片310后,再经由金手指301传送至光网络终端100,以实现第二路光信号的接收。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光模块,包括:
    壳体;
    电路板,位于所述壳体内;
    光发射器件,安装于所述电路板上,所述光发射器件包括:
    激光器,被配置为发射激光光束;和
    光环形器,包括入光口、出光口和出入光口,所述入光口与所述出光口位于所述光环形器的同一侧,所述出入光口位于所述光环形器的另一相对侧;
    光接收器件,安装于所述电路板上,且沿与所述激光器的出光方向垂直的方向位于所述光发射器件的一侧,所述光接收器件被配置为接收激光光束;
    光纤适配器,与所述光环形器的出入光口光耦合,被配置为通过所述光环形器将来自所述激光器的激光光束发送至所述光模块外部,或者通过所述光环形器将来自所述光模块外部的激光光束发送至所述光接收器件;
    其中,所述光环形器的入光口与所述激光器光耦合,所述光环形器的出光口与所述光接收器件光耦合,所述光环形器被配置为使来自所述激光器的激光光束耦合进入所述光纤适配器中,且使来自所述光纤适配器的激光光束耦合进入所述光接收器件中。
  2. 根据权利要求1所述的光模块,其中,所述光环形器包括第一起偏器、法拉第旋转器、半波片与第二起偏器;
    所述光环形器被配置为使来自所述激光器的激光光束在不进行偏振分光的情况下依次穿过所述第一起偏器、所述法拉第旋转器、所述半波片与所述第二起偏器后,被传输至所述光纤适配器;
    所述光环形器还被配置为使来自所述光纤适配器的激光光束在所述第二起偏器处进行偏振分光以形成偏振方向相互垂直的第一偏振光和第二偏振光,并使所述第一偏振光和所述第二偏振光分别穿过所述半波片和所述法拉第旋转器后在所述第一起偏器处进行偏振合光,并使合光后的所述第一偏振光和所述第二偏振光传输至所述光接收器件。
  3. 根据权利要求1或2所述的光模块,其中,所述光发射器件还包括第一平移棱镜,所述第一平移棱镜位于所述光环形器靠近所述激光器的一侧,被配置为对来自所述激光器的激光光束进行平移后将所述激光光束传输至所述光环形器;
    所述第一平移棱镜包括:
    第一反射面,与所述激光器对应设置,被配置为将来自所述激光器且平行于所述电路板的表面的激光光束反射为垂直于所述电路板的表面的激光光束;和,
    第二反射面,与所述光环形器的入光口对应设置,被配置为将垂直于所述电路板的表面的激光光束再次反射为平行于所述电路板的表面的激光光束,以使所述激光光束射入所述光环形器的入光口。
  4. 根据权利要求1至3任一项所述的光模块,其中,所述光发射器件还包括:
    多个激光器,被配置为发射多束激光光束;
    光合波器,被配置为使所述多束激光光束形成一束复合光束,以使所述复合光束耦合进入所述光环形器的入光口。
  5. 根据权利要求4所述的光模块,其中,所述多个激光器发射的多束激光光束中,每束激光光束的波长均不相同。
  6. 根据权利要求4所述的光模块,还包括内部光纤,所述内部光纤的一端与所述光纤适配器光耦合;
    所述光发射器件还包括光纤耦合器,所述光纤耦合器位于所述光环形器远离所述光合波器的一侧,包括光输入端和光输出端;
    其中,所述光纤耦合器的光输入端与所述光环形器的出入光口光耦合,所述光纤耦合器的光输出端与所述内部光纤光耦合,所述光纤耦合器被配置为将来自所述光环形器的出入光口的所述复合光束耦合至所述内部光纤,或者将来自所述内部光纤的复合光束耦合至所述光环形器的出入光口。
  7. 根据权利要求6所述的光模块,其中,
    所述壳体包括上壳体和下壳体;
    所述电路板位于所述上壳体和所述下壳体之间,所述电路板具有朝向所述上壳体的正面和朝向所述下壳体的背面,所述电路板包括安装孔,所述安装孔贯通所述正面和所述背面;
    所述光发射器件还包括底座,所述底座安装在所述电路板的正面上,所述底座具有安装面和与所述安装面相对的底面;
    其中,所述底座包括:
    底座本体,所述底座本体具有与所述底座相同的安装面和底面;和
    凸起,所述凸起设置在所述底座本体的底面上,由所述底座本体的底面向所述安装面方向延伸,且所述凸起嵌在所述安装孔内,以使所述安装面朝向所述上壳体。
  8. 根据权利要求7所述的光模块,其中,所述底座的安装面包括依次连接的第一安装面、第二安装面和第三安装面;
    所述第一安装面自所述第二安装面朝向所述底座本体的底面凹陷,所述多个激光器安装在所述第一安装面上;
    所述第二安装面自所述第三安装面朝向所述底座本体的底面凹陷,所述光合波器安装在所述第二安装面上;
    所述光环形器安装在所述第三安装面上。
  9. 根据权利要求8所述的光模块,其中,所述底座本体包括支撑块,所述支撑块由所述第三安装面向远离所述底座本体的底面的方向延伸,且位于所述第三安装面远离所述第二安装面的一端;
    所述支撑块具有通孔,所述通孔沿着所述多个激光器的出光方向贯穿所述支撑块,所述光纤耦合器插在所述通孔内。
  10. 根据权利要求1或2所述的光模块,其中,所述光接收器件包括:
    光接收芯片,被配置为接收来自所述光纤适配器的复合光束;
    第二平移棱镜,位于所述光环形器靠近所述光接收芯片的一侧;
    其中,所述第二平移棱镜的光输入端与所述光环形器的出光口对应设置,所述第二平移棱镜的光输出端与所述光接收芯片对应设置,所述第二平移棱镜被配置为将来自所述光环形器的激光光束平移至所述光接收芯片。
  11. 根据权利要求10所述的光模块,其中,所述光接收器件还包括光分波器,所述光分波器位于所述第二平移棱镜与所述光接收芯片之间,被配置为将来自所述光纤适配器的复合光束解复用为多束激光光束。
  12. 根据权利要求1所述的光模块,其中,所述光发射器件包括多个激光器、第一子光环形器和第二子光环形器,所述光纤适配器包括第一子光纤适配器和第二子光纤适配器;其中,
    所述多个激光器被配置为发射多束激光光束,所述多束激光光束中的一部分形成第一束复合光束、另一部分形成第二束复合光束;
    所述第一子光环形器的入光口被配置为接收所述第一束复合光束,所述第一子光环形器的出入光口与所述第一子光纤适配器光耦合,所述第一子光环形器被配置为使所述第一束复合光束耦合进入所述第一子光纤适配器中,所述第一子光纤适配器被配置为将所述第一束复合光束发送至所述光模块外部;
    所述第二子光环形器的入光口被配置为接收所述第二束复合光束,所述第二子光环形器的出入光口与所述第二子光纤适配器光耦合,所述第二子光环形器被配置为使所述第二束复合光束耦合进入所述第二子光纤适配器中,所述第二子光纤适配器被配置为将所述第二束复合光束发送至所述光模块外部。
  13. 根据权利要求12所述的光模块,其中,所述光发射器件还包括:
    第一子光合波器,被配置为使所述多束激光光束中的一部分形成所述第一束复合光束,以使所述第一束复合光束耦合进入所述第一子光环形器的入光口;
    第二子光合波器,被配置为使所述多束激光光束中的另一部分形成所述第二束复合光 束,以使所述第二束复合光束耦合进入所述第二子光环形器的入光口。
  14. 根据权利要求13所述的光模块,其中,形成所述第一束复合光束的两束或更多束激光光束中,每束激光光束的波长均不相同;
    形成所述第二束复合光束的两束或更多束激光光束中,每束激光光束的波长均不相同。
  15. 根据权利要求13所述的光模块,还包括:
    第一子内部光纤,所述第一子内部光纤的一端与所述第一子光纤适配器光耦合;
    第二子内部光纤,所述第二子内部光纤的一端与所述第二子光纤适配器光耦合;
    所述光发射器件还包括:
    第一子光纤耦合器,位于所述第一子光环形器远离所述第一子光合波器的一侧,包括光输入端和光输出端;其中,所述第一子光纤耦合器的光输入端与所述第一子光环形器的出入光口光耦合,所述第一子光纤耦合器的光输出端与所述第一子内部光纤光耦合,所述第一子光纤耦合器被配置为将来自所述第一子光环形器的出入光口的所述第一束复合光束耦合至所述第一子内部光纤,或者将来自所述第一子内部光纤的第三束复合光束耦合至所述第一子光环形器的出入光口;
    第二子光纤耦合器,位于所述第二子光环形器远离所述第二子光合波器的一侧,包括光输入端和光输出端;其中,所述第二子光纤耦合器的光输入端与所述第二子光环形器的出入光口光耦合,所述第二子光纤耦合器的光输出端与所述第二子内部光纤光耦合,所述第二子光纤耦合器被配置为将来自所述第二子光环形器的出入光口的所述第二束复合光束耦合至所述第二子内部光纤,或者将来自所述第二子内部光纤的第四束复合光束耦合至所述第二子光环形器的出入光口。
  16. 根据权利要求15所述的光模块,其中,
    所述壳体包括上壳体和下壳体;
    所述电路板位于所述上壳体和所述下壳体之间,所述电路板具有朝向所述上壳体的正面和朝向所述下壳体的背面,所述电路板包括安装孔,所述安装孔贯通所述正面和所述背面;
    所述光发射器件还包括底座,所述底座安装在所述电路板的正面上,所述底座具有安装面和与所述安装面相对的底面,所述安装面朝向所述电路板的正面,所述底面朝向所述上壳体;
    所述多个激光器安装于所述安装面上,且伸入至所述电路板的安装孔中。
  17. 根据权利要求16所述的光模块,其中,所述底座包括支撑块,所述支撑块由所述安装面向远离所述底座的底面的方向延伸,且位于所述安装面远离所述多个激光器的一端;
    所述支撑块具有两个通孔,所述两个通孔沿着所述多个激光器的出光方向贯穿所述支撑块,所述第一子光纤耦合器和所述第二子光纤耦合器分别插在所述两个通孔内。
  18. 根据权利要求12所述的光模块,其中,所述光接收器件包括第一子光接收器件和第二子光接收器件;
    所述第一子光接收器件包括:
    第一光接收芯片,被配置为接收来自所述第一子光纤适配器的第三束复合光束;
    第二平移棱镜,位于所述第一子光环形器靠近所述第一光接收芯片的一侧;
    其中,所述第二平移棱镜的光输入端与所述第一子光环形器的出光口对应设置,所述第二平移棱镜的光输出端与所述第一光接收芯片对应设置,所述第二平移棱镜被配置为将来自所述第一子光环形器的第三束复合光束平移至所述第一光接收芯片;
    所述第二子光接收器件包括:
    第二光接收芯片,被配置为接收来自所述第二子光纤适配器的第四束复合光束;
    第三平移棱镜,位于所述第二子光环形器靠近所述第二光接收芯片的一侧,且相对于所述第二平移棱镜更靠近所述第二光接收芯片;
    其中,所述第三平移棱镜的光输入端与所述第二子光环形器的出光口对应设置,所述第三平移棱镜的光输出端与所述第二光接收芯片对应设置,所述第三平移棱镜被配置为将来自所述第二子光环形器的第四束复合光束平移至所述第二光接收芯片。
  19. 根据权利要求18所述的光模块,其中,所述第一子光环形器或所述第二子光环形器包括第一起偏器、法拉第旋转器、半波片与第二起偏器;
    所述第一子光环形器被配置为使所述第一束复合光束在不进行偏振分光的情况下依次穿过所述第一起偏器、所述法拉第旋转器、所述半波片与所述第二起偏器后,被传输至所述第一子光纤适配器,还被配置为使所述第三束复合光束在所述第二起偏器处进行偏振分光以形成偏振方向相互垂直的第一偏振光和第二偏振光,并使所述第一偏振光和所述第二偏振光分别穿过所述半波片和所述法拉第旋转器后在所述第一起偏器处进行偏振合光,并使合光后的所述第一偏振光和所述第二偏振光传输至所述第一子光接收器件;
    所述第二子光环形器被配置为使所述第二束复合光束在不进行偏振分光的情况下依次穿过所述第一起偏器、所述法拉第旋转器、所述半波片与所述第二起偏器后,被传输至所述第二子光纤适配器,还被配置为使所述第四束复合光束在所述第二起偏器处进行偏振分光以形成偏振方向相互垂直的第一偏振光和第二偏振光,并使所述第一偏振光和所述第二偏振光分别穿过所述半波片和所述法拉第旋转器后在所述第一起偏器处进行偏振合光,并使合光后的所述第一偏振光和所述第二偏振光传输至所述第二子光接收器件。
  20. 根据权利要求18所述的光模块,其中,
    所述第一子光接收器件还包括第一子光分波器,所述第一子光分波器位于所述第二平移棱镜与所述第一光接收芯片之间,被配置为将来自所述第一子光纤适配器的第三束复合光束解复用为多束激光光束;
    所述第二子光接收器件还包括第二子光分波器,所述第二子光分波器位于所述第三平移棱镜与所述第二光接收芯片之间,被配置为将来自所述第二子光纤适配器的第四束复合光束解复用为多束激光光束。
PCT/CN2022/111548 2021-11-29 2022-08-10 光模块 WO2023093130A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111429761.5 2021-11-29
CN202111434220.1A CN114035285B (zh) 2021-11-29 2021-11-29 一种光模块
CN202111434220.1 2021-11-29
CN202111429761.5A CN116184579A (zh) 2021-11-29 2021-11-29 一种光模块

Publications (1)

Publication Number Publication Date
WO2023093130A1 true WO2023093130A1 (zh) 2023-06-01

Family

ID=86538816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111548 WO2023093130A1 (zh) 2021-11-29 2022-08-10 光模块

Country Status (1)

Country Link
WO (1) WO2023093130A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263132B1 (en) * 1999-08-25 2001-07-17 Lucent Technologies Inc. Apparatus and method for laterally displacing an optical signal
CN205229520U (zh) * 2015-11-02 2016-05-11 苏州旭创科技有限公司 单纤双向bosa结构
CN108873199A (zh) * 2018-08-21 2018-11-23 福建海创光电有限公司 一种单纤双向转换器结构
CN110554463A (zh) * 2018-05-30 2019-12-10 珠海保税区光联通讯技术有限公司 光整合器件及环形器
CN211348752U (zh) * 2019-07-03 2020-08-25 苏州旭创科技有限公司 光模块
CN112698450A (zh) * 2019-10-22 2021-04-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN113014326A (zh) * 2019-12-19 2021-06-22 中兴通讯股份有限公司 光收发模块、光网络终端及通信系统
CN114035285A (zh) * 2021-11-29 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263132B1 (en) * 1999-08-25 2001-07-17 Lucent Technologies Inc. Apparatus and method for laterally displacing an optical signal
CN205229520U (zh) * 2015-11-02 2016-05-11 苏州旭创科技有限公司 单纤双向bosa结构
CN110554463A (zh) * 2018-05-30 2019-12-10 珠海保税区光联通讯技术有限公司 光整合器件及环形器
CN108873199A (zh) * 2018-08-21 2018-11-23 福建海创光电有限公司 一种单纤双向转换器结构
CN211348752U (zh) * 2019-07-03 2020-08-25 苏州旭创科技有限公司 光模块
CN112698450A (zh) * 2019-10-22 2021-04-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN113014326A (zh) * 2019-12-19 2021-06-22 中兴通讯股份有限公司 光收发模块、光网络终端及通信系统
CN114035285A (zh) * 2021-11-29 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN114035285B (zh) 一种光模块
CN214174689U (zh) 一种光模块
CN215895036U (zh) 一种光模块
US20230258883A1 (en) Optical module
CN117693697A (zh) 光模块
CN113721331A (zh) 一种光模块
CN216013740U (zh) 一种光模块
CN115097579A (zh) 光模块
CN114624829B (zh) 一种光模块
WO2023185220A1 (zh) 一种光模块
CN218350566U (zh) 一种光模块
WO2023035711A1 (zh) 光模块
WO2022100278A1 (zh) 一种光模块
CN217606136U (zh) 光模块
WO2023093130A1 (zh) 光模块
CN215895032U (zh) 一种光模块
CN115016074B (zh) 一种光模块
CN114895411A (zh) 光模块
WO2023029707A1 (zh) 光模块
WO2024016602A1 (zh) 光模块
CN218272816U (zh) 光模块
WO2023045423A1 (zh) 光模块
CN214540151U (zh) 一种光模块
WO2023184906A1 (zh) 光模块
WO2023184919A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897225

Country of ref document: EP

Kind code of ref document: A1