WO2023184906A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023184906A1
WO2023184906A1 PCT/CN2022/121888 CN2022121888W WO2023184906A1 WO 2023184906 A1 WO2023184906 A1 WO 2023184906A1 CN 2022121888 W CN2022121888 W CN 2022121888W WO 2023184906 A1 WO2023184906 A1 WO 2023184906A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
optical
housing
optical module
mounting surface
Prior art date
Application number
PCT/CN2022/121888
Other languages
English (en)
French (fr)
Inventor
邵乾
慕建伟
吴涛
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220776501.9U external-priority patent/CN217085337U/zh
Priority claimed from CN202210331564.8A external-priority patent/CN114675383A/zh
Priority claimed from CN202220740523.XU external-priority patent/CN217543461U/zh
Priority claimed from CN202220735904.9U external-priority patent/CN220543163U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023184906A1 publication Critical patent/WO2023184906A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an optical module.
  • optical communication technology optical modules are tools for realizing mutual conversion of optical and electrical signals. They are one of the key components in optical communication equipment. With the development of optical communication technology, the transmission rate of optical modules continues to increase.
  • the optical module includes a housing, a circuit board, and a light emitting component.
  • the housing includes an upper housing and a lower housing.
  • the circuit board is located between the upper housing and the lower housing, and has a front side facing the upper housing and a back side facing the lower housing; the circuit board includes a first mounting through hole, The first mounting through hole penetrates the front and back of the circuit board.
  • the light emitting component is mounted on the circuit board and is configured to convert electrical signals from the circuit board into optical signals and transmit the optical signals to the outside of the optical module.
  • the light emitting assembly includes a first emitting housing and a first emitting cover.
  • the first launch housing is located on the front side of the circuit board, covers the first mounting through hole, and is sealingly connected to the front side of the circuit board; the first launch cover is located on the back side of the circuit board side, covering the first mounting through hole, and sealingly connected with the back side of the circuit board.
  • the optical module includes a housing, a circuit board, and a light emitting component.
  • the housing includes an upper housing and a lower housing.
  • the circuit board is located between the upper housing and the lower housing, and has a front side facing the upper housing and a back side facing the lower housing; the circuit board includes a first mounting through hole, The first mounting through hole penetrates the front and back of the circuit board.
  • the light emitting component is mounted on the circuit board and is configured to convert electrical signals from the circuit board into optical signals and transmit the optical signals to the outside of the optical module.
  • the light emitting assembly includes a second emitting housing and a second emitting cover.
  • a part of the second emission housing is located on the front side of the circuit board and is sealingly connected to the front side of the circuit board.
  • the other part of the second emission housing is located on the back side of the circuit board and is connected with the front side of the circuit board.
  • the lower housing is thermally connected; the second launch cover is located on the second launch housing and is sealingly connected to the second launch housing.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Figure 3 is a structural diagram of an optical module according to some embodiments.
  • Figure 4 is an exploded view of an optical module according to some embodiments.
  • Figure 5 is a schematic diagram of the assembly of the light transmitting component, the light receiving component, the circuit board and the internal optical fiber in an optical module according to some embodiments;
  • Figure 6 is a structural diagram of a light emitting component in an optical module according to some embodiments.
  • Figure 7 is a structural diagram of a circuit board in an optical module according to some embodiments.
  • Figure 8 is a partial assembly diagram of a light emitting component and a circuit board in an optical module according to some embodiments
  • Figure 9 is a partial assembly diagram of the light emitting component and the circuit board in an optical module from another angle according to some embodiments.
  • Figure 10 is a partial optical path diagram of a light emitting component in an optical module according to some embodiments.
  • Figure 11 is a partially assembled cross-sectional view of a light emitting component and a circuit board in an optical module according to some embodiments
  • Figures 12A and 12B are electrical connection diagrams of a circuit board and a light-emitting component in an optical module according to some embodiments;
  • Figure 13A is a structural diagram of a first transmitting housing in an optical module according to some embodiments.
  • Figure 13B is another angle structural view of the first emission housing in an optical module according to some embodiments.
  • Figure 14 is a heat dissipation channel diagram of an optical module according to some embodiments.
  • Figure 15 is a cross-sectional view of the monitoring optical path of an optical module according to some embodiments.
  • Figure 16 is a structural diagram of a light receiving component in an optical module according to some embodiments.
  • Figure 17 is another angle structural view of a light receiving component in an optical module according to some embodiments.
  • Figure 18 is a partial assembly cross-sectional view of the light receiving component and the circuit board in an optical module according to some embodiments
  • Figure 19 is a schematic diagram of the assembly of the light transmitting component, the light receiving component, the circuit board and the internal optical fiber in an optical module according to some modifications;
  • Figure 20 is a partial structural diagram of a light emitting component in an optical module according to some modifications.
  • Figure 21A is a cross-sectional view of a light emitting component in an optical module according to some modifications
  • Figure 21B is a partial assembly cross-sectional view of the light emitting component and the circuit board in an optical module according to some modifications
  • Figure 22 is a structural diagram of a circuit board in an optical module according to some modifications.
  • Figure 23A is an assembly structure diagram of a light emitting component in an optical module according to some modifications.
  • Figure 23B is an exploded structural view of a light emitting component in an optical module according to some modifications.
  • Figures 24A to 24C are structural diagrams of a transmitting housing in an optical module according to some modifications.
  • Figure 25A is a structural diagram of a light emitting component in an optical module according to other modifications.
  • Figure 25B is a structural diagram of the first emission housing in the light emission assembly shown in Figure 25A;
  • Figure 25C is a partial optical path diagram of the light emitting component shown in Figure 25A;
  • Figure 26A is a schematic assembly diagram of a transmitting fiber array component and an optical isolator in an optical module according to other modifications;
  • Figure 26B is an exploded schematic diagram of a transmitting fiber array component and an optical isolator in an optical module according to other modifications;
  • Figure 27A is a structural diagram of a light receiving component in an optical module according to other modifications.
  • Figure 27B is a structural diagram of the receiving housing in the light receiving assembly shown in Figure 27A;
  • Figure 27C is a partial optical path diagram of the light receiving component shown in Figure 27A;
  • Figure 28A is a partial structural diagram of an optical module according to some embodiments.
  • Figure 28B is a partial structural diagram of another optical module according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated. Thus, example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. The regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • optical signals are used to carry information to be transmitted, and the optical signals carrying information are transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since light has passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by computers and other information processing equipment are electrical signals. Therefore, in order to distinguish between information transmission equipment such as optical fibers or optical waveguides and computers and other information processing equipment To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • Optical modules realize the mutual conversion function of the above-mentioned optical signals and electrical signals in the field of optical fiber communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection Mainly used for power supply, I2C signal transmission, data information transmission and grounding; optical network terminals transmit electrical signals to computers and other information processing equipment through network cables or wireless fidelity technology (Wi-Fi).
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103.
  • the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of thousands of meters (6 kilometers to 8 kilometers). On this basis, if a repeater is used, unlimited distance transmission can be theoretically achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers, or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: router, switch, computer, mobile phone, tablet computer, television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to access the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port is configured to access the optical network terminal 100, so that The optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical module 200 realizes mutual conversion between optical signals and electrical signals, thereby establishing an information connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101. Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 provided on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 Establish a two-way electrical signal connection.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100 serves as the host computer of the optical module 200 and can monitor the optical module. 200 job.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT), etc.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101, the optical module 200, the optical network terminal 100 and the network cable 103.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments. In order to clearly show the connection relationship between the optical module 200 and the optical network terminal 100, Figure 2 only shows the parts of the optical network terminal 100 related to the optical module 200. structure. As shown in Figure 2, the optical network terminal 100 also includes a circuit board 105 provided in the housing, a cage 106 provided on the surface of the circuit board 105, a heat sink provided on the cage 106, and an electrical connector provided inside the cage 106 .
  • the electrical connection is configured as an electrical port of the optical module 200; the heat sink 107 has a protruding structure such as fins to increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the optical module 200 is fixed by the cage 106.
  • the heat generated by the optical module 200 is conducted to the cage 106, and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a housing, a circuit board 300 disposed in the housing, a light emitting component 400 and a light receiving component 500 .
  • the housing includes an upper housing 201 and a lower housing 202.
  • the upper housing 201 is covered on the lower housing 202 to form the above-mentioned housing with two openings; the outer contour of the housing generally presents a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 is closed underneath. on the two lower side plates 2022 of the housing 202 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the upper case 201 includes a cover plate 2011, and two lower side plates 2022 located on both sides of the cover plate 2011.
  • the two upper side plates 2012 arranged perpendicularly to the cover plate 2011 are combined with the two lower side plates 2022 to realize that the upper housing 201 is covered on the lower housing 202 .
  • the direction of the connection line between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at an end of the optical module 200 and the opening 205 is located at a side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger 301 of the circuit board 300 extends from the electrical port 204 and is inserted into the host computer (for example, the optical network terminal 100); the opening 205 is an optical port, configured to access the external optical fiber 101, so that The external optical fiber 101 connects the light emitting component 400 and the light receiving component 500 inside the optical module 200 .
  • the assembly method of combining the upper housing 201 and the lower housing 202 is used to facilitate the installation of the circuit board 300, the light emitting component 400, the light receiving component 500 and other devices into the housing.
  • the upper housing 201 and the lower housing 202 connect these components.
  • the device forms a package for protection.
  • the deployment of positioning components, heat dissipation components, and electromagnetic shielding components of these components is facilitated, which is conducive to automated production.
  • the upper housing 201 and the lower housing 202 are generally made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the optical module 200 also includes an unlocking component 203 located outside its housing, configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer. .
  • the unlocking component 203 is located outside the two lower side plates 2022 of the lower housing 202 and has a snapping component that matches the host computer cage (for example, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the host computer, the optical module 200 is fixed in the cage of the host computer by the engaging parts of the unlocking part 203; when the unlocking part 203 is pulled, the engaging parts of the unlocking part 203 move accordingly, thereby changing
  • the connection relationship between the engaging component and the host computer is to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit wiring, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit wiring to realize functions such as power supply, electrical signal transmission, and grounding.
  • Electronic components may include, for example, capacitors, resistors, transistors, and Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • the chip may include, for example, a microcontroller unit (Microcontroller Unit, MCU), a limiting amplifier (limiting amplifier), a transimpedance amplifier (Transimpedance Amplifier, TIA), a clock data recovery chip (Clock and Data Recovery, CDR), a power management chip, a digital Signal processing (Digital Signal Processing, DSP) chip.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also perform a load-bearing function. For example, the rigid circuit board can smoothly carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the host computer cage 106 in electrical connectors.
  • the circuit board 300 also includes a gold finger 301 formed on an end surface thereof, and the gold finger 301 is composed of a plurality of mutually independent pins.
  • the circuit board 300 is inserted into the cage 106 and is electrically connected to the electrical connector in the cage 106 by the gold finger 301 .
  • the gold finger 301 can be disposed only on one side of the circuit board 300 (for example, the upper surface shown in FIG. 4 ), or can be disposed on the upper and lower surfaces of the circuit board 300 to adapt to situations where a large number of pins are required.
  • the golden finger 301 is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • the optical module 200 is usually used indoors with suitable indoor temperature and humidity, high cleanliness, and little dust. For example, most buildings used as data centers have an enclosed indoor space to avoid dust ingress, and air conditioning is used to control the temperature and humidity of that indoor space. Therefore, the use environment of the optical module 200 usually does not have high requirements on its air tightness. Based on this and for cost considerations, in the optical module of some embodiments of the present disclosure, the light emitting component 400 and the light receiving component 500 are packaged in a non-hermetic manner.
  • a liquid cooling method has been proposed.
  • a switch equipped with an optical module is immersed in a refrigerant liquid (such as fluorinated liquid, FC-40) to dissipate heat.
  • FC-40 fluorinated liquid
  • some embodiments of the present disclosure provide an optical module.
  • the optical module adopts a sealed package, thereby realizing long-term and reliable operation of the optical module in a liquid cooling environment, and greatly improving the light emitting components in the optical module. 400 and the heat dissipation effect of the light receiving component 500.
  • Figure 5 is a schematic diagram of the assembly of a circuit board, a light transmitting component, a light receiving component and an internal optical fiber in an optical module according to some embodiments of the present disclosure.
  • the optical module 200 includes a light emitting component 400 , a light receiving component 500 and an internal optical fiber 600 .
  • the light emitting component 400 and the light receiving component 500 are both disposed on the surface of the circuit board 300 close to the upper housing 201 (hereinafter, this surface is called the front surface, and the surface of the circuit board 300 close to the lower housing 202 is called the back surface).
  • the inner optical fiber 600 includes a first inner optical fiber 601 and a second inner optical fiber 602.
  • the first internal optical fiber 601 is connected to the light emitting component 400, and the optical signal emitted by the light emitting component 400 is transmitted through the first internal optical fiber 601 to realize the emission of the optical signal.
  • the second inner optical fiber 602 is connected to the light receiving component 500.
  • the external optical signal is transmitted to the light receiving component 500 through the second inner optical fiber 602, and is photoelectrically converted through the light receiving component 500 to realize the reception of the optical signal.
  • the optical module 200 further includes an optical fiber adapter 700 , and the optical fiber adapter 700 includes a first optical fiber adapter 701 and a second optical fiber adapter 702 .
  • the first optical fiber adapter 701 is connected to the light emitting component 400 through the first inner optical fiber 601
  • the second optical fiber adapter 702 is connected to the light receiving component 500 through the second inner optical fiber 602.
  • Figure 6 is a structural diagram of a light emitting component in an optical module according to some embodiments of the present disclosure.
  • Figure 7 is a structural diagram of a circuit board in an optical module according to some embodiments of the present disclosure.
  • Figure 8 is a structural diagram of a circuit board in an optical module according to some embodiments of the present disclosure.
  • FIG. 9 is a partial assembly schematic diagram of a circuit board and a light emitting component in an optical module according to some embodiments of the present disclosure from another angle.
  • the light emitting assembly 400 includes a first emitting housing 401, a first emitting cover 402, and a laser 410 and a collimating lens 420 disposed in the first emitting housing 401.
  • the first optical path translation prism 430, optical multiplexer 440, optical isolator 450, optical fiber coupler 460 and semiconductor refrigerator (Thermo Electric Cooler, TEC) 470 see Figure 11).
  • the first emission housing 401 is located on the front side of the circuit board 300 and is connected (for example, sealedly connected) with the front side of the circuit board 300 .
  • the first launch housing 401 includes an accommodation cavity and a mounting surface located in the accommodation cavity.
  • the laser 410, the collimating lens 420, the first optical path translation prism 430, the optical combiner 440, the optical isolator 450 and the optical fiber coupler 460 are all installed on the mounting surface of the first emission housing 401.
  • the first emission cover 402 is located on the back side of the circuit board 300 and is connected (for example, sealedly connected) to the back side of the circuit board 300 . In this way, the circuit board 300 is located between the first launch housing 401 and the first launch cover 402, and the first launch housing 401, the circuit board 300 and the first launch cover 402 form a sandwich structure.
  • the laser 410 includes a laser chip 411 and a spacer 412.
  • the laser chip 411 has a cathode and an anode
  • the gasket 412 includes an insulating and thermally conductive layer and a metal layer
  • the metal layer includes a ground line and a signal line.
  • the cathode of the laser chip 411 is electrically connected to the ground.
  • the anode of the laser chip 411 is electrically connected to the signal line. Voltage is applied to the cathode and anode of the laser chip 411 through the ground wire and the signal wire respectively, and the laser chip 411 can emit a laser beam parallel to the front surface of the circuit board 300 .
  • the semiconductor refrigerator 470 is disposed on the mounting surface of the first emitting housing 401 , and the laser 410 is disposed on a surface of the semiconductor refrigerator 470 away from the mounting surface of the first emitting housing 401 .
  • the semiconductor refrigerator 470 is configured to conduct the heat generated by the laser chip 411 to the first emitting housing 401 and export it to the outside of the optical module 200 through the first emitting housing 401 and the upper housing 201 of the optical module 200 .
  • the semiconductor refrigerator 470 can be omitted.
  • the collimating lens 420 can adjust the divergent laser beam generated by the laser chip 411 into a parallel laser beam, that is, a collimated beam. In some embodiments, the collimating lens 420 may also be omitted.
  • the first optical path translation prism 430 is a rhombus prism having a first reflective surface 431 and a second reflective surface 432 (see FIG. 11 ). Both the first reflective surface 431 and the second reflective surface 432 can change the propagation direction of the laser beam, for example, turn the propagation direction of the laser beam by 90°.
  • the first reflective surface 431 is located on the back side of the circuit board 300 and is used to reflect a laser beam emitted by the laser chip 411 parallel to the back side of the circuit board 300 so that the laser beam is in contact with the back side of the circuit board 300 .
  • the vertical direction continues to propagate to the front of the circuit board 300 and propagates perpendicularly to the front of the circuit board 300; the second reflective surface 432 is located on the front side of the circuit board 300 and is used to reflect the laser beam propagating perpendicular to the front of the circuit board 300. , causing the laser beam to propagate in a direction parallel to the front surface of the circuit board 300 .
  • a laser beam emitted by the laser 410 and parallel to the back of the circuit board 300 is converted into a collimated beam through the collimating lens 420 .
  • the collimated beam is reflected by the first optical path translation prism 430 and then translated to the front side of the circuit board 300. It passes through the optical combiner 440 and the optical isolator 450 and enters the fiber coupler 460.
  • the laser beam passes through the fiber coupler 460.
  • the internal optical fiber 600 is coupled to the optical fiber adapter 700 to realize the transmission of one optical signal.
  • the optical module 200 is a high transmission rate optical module, such as a 400G (signal transmission rate is 400Gbit/s) optical module
  • a 400G signal transmission rate is 400Gbit/s
  • the light emitting component 400 includes four light emitters (for example, the light emitter is a laser 410) to realize the transmission of four optical signals
  • the light receiving component 500 includes four light receivers (for example, the light receiver is a PIN diode). or avalanche diode) to achieve the reception of 4-way optical signals.
  • the light emitting component 400 includes four lasers 410, four collimating lenses 420, and one first optical path translation prism 430.
  • the four lasers 410 and the four collimating lenses 420 correspond to each other.
  • Each laser 410 emits a laser beam
  • each collimating lens 420 converts the laser beam into a collimated beam.
  • the collimated beam emitted by each collimating lens 420 is transmitted to the first optical path translation prism 430, and the first optical path is translated.
  • the prism 430 reflects the collimated beam to change the transmission direction and position of the laser beam.
  • the light emitting component 400 is not limited to including one first optical path translation prism 430, but may also include multiple first optical path translation prisms 430, and each first optical path translation prism 430 corresponds to one or more collimating lenses 420. .
  • the light emitting assembly 400 is not limited to including four collimating lenses 420, and may also include two (each two lasers 410 share one collimating lens 420) or one collimating lens 420 (all lasers 410 share one collimating lens). Lens 420).
  • the optical multiplexer 440 When the light emitting component 400 includes four lasers 410, the optical multiplexer 440 includes four light entrances for receiving light of multiple wavelengths, and each light entrance is used for receiving light of one wavelength.
  • the optical multiplexer 440 also includes a light outlet for emitting light.
  • the light with the wavelength ⁇ 1 enters the optical multiplexer 440 through the first light entrance and passes through the optical multiplexer 440. It is reflected multiple times (for example, 6 times) at multiple (for example, 6) different positions in the optical waveguide and reaches the light outlet; the light with wavelength ⁇ 2 enters the optical multiplexer 440 through the second optical input port, and passes through multiple (for example, 6) multiplexers in the optical multiplexer 440.
  • the optical combiner 440 realizes that signal lights of different wavelengths are input through different light inlets and output through the same light outlet, and then the lights of different wavelengths are combined into a composite beam.
  • FIG. 10 shows the reflection positions and reflection times of the four wavelengths of light ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 in the optical multiplexer 440.
  • the light input port of the optical fiber coupler 460 is optically coupled with the light output port of the optical multiplexer 440 , and the light output port of the optical fiber coupler 460 is connected to the optical fiber adapter 700 through the first internal optical fiber 601 .
  • a composite beam output from the optical combiner 440 is coupled to the first internal optical fiber 601 through the optical fiber coupler 460, and then transmitted to the optical fiber adapter 700 through the first internal optical fiber 601 to achieve emission of a composite beam.
  • the optical isolator 450 is disposed between the optical multiplexer 440 and the optical fiber coupler 460.
  • the optical isolator 450 It is used to absorb the reflected beam and prevent the reflected beam from returning to the laser 410 along the original path.
  • the fiber coupler 460 includes a ferrule 461 , a focusing lens 462 and a single-mode fiber flange 463 .
  • the sleeve 461 is placed on the outside of the focusing lens 462 and the single-mode optical fiber flange 463.
  • the first internal optical fiber 601 is inserted into the single-mode optical fiber flange 463.
  • the light entrance of the focusing lens 462 faces the optical isolator 450 and the light outlet faces the single-mode optical fiber flange 463.
  • Mode fiber flange 463 the composite beam output by the optical combiner 440 is transmitted to the focusing lens 462 through the optical isolator 450, and the focusing lens 462 converges the composite beam to the first internal optical fiber 601 in the single-mode fiber flange 463.
  • the focusing lens 462 is a cylindrical lens, and the outer diameters of the cylindrical lens and the single-mode fiber flange 463 are slightly smaller than the inner diameter of the sleeve 461 to ensure the coupling between the focusing lens 462 and the single-mode fiber flange 463 .
  • the focusing lens 462 and the single-mode fiber flange 463 are inserted into the sleeve 461, in order to improve the coupling between the focusing lens 462 and the single-mode fiber flange 463, the focusing lens 462 and the single-mode fiber flange 463 can only be moved axially. .
  • the focusing lens 462 protrudes from the sleeve 461, thereby reducing the distance between the light entrance of the focusing lens 462 and the light exit of the optical isolator 450. distance, making the structure more compact.
  • the circuit board 300 includes a first mounting through hole 320 penetrating the front and back of the circuit board 300 , and the first emitting housing 401 of the light emitting assembly 400 is installed on the circuit board 300 On the front, the mounting surface of the first emitting housing 401 faces the front of the circuit board 300 , and the laser 410 , the collimating lens 420 and the first optical path translation prism 430 in the light emitting assembly 400 are embedded in the first mounting through hole 320 .
  • the laser 410 and the collimating lens 420 are located on the back side of the circuit board 300, and the optical combiner 440, optical isolator 450, and fiber coupler 460 are located on the front side of the circuit board 300.
  • a part of the translation prism 430 is located on the back side of the circuit board 300 , and the other part is located on the front side of the circuit board 300 .
  • Figure 11 is a partially assembled cross-sectional view of a light emitting component and a circuit board in an optical module according to some embodiments.
  • multiple lasers 410 respectively emit laser beams, and these laser beams are parallel to the back of the circuit board 300; multiple collimating lenses 420 convert the multiple laser beams emitted by the multiple lasers 410 into multiple collimated beams.
  • the plurality of collimated beams are transmitted to the first optical path translation prism 430, and the first reflective surface 431 and the second reflective surface 432 of the first optical path translation prism 430 reflect the multiple collimated beams, thereby positioning them on the back side of the circuit board 300
  • the plurality of laser beams are reflected to the front side of the circuit board 300 .
  • the optical combiner 440 combines the four collimated beams into a composite beam.
  • the optical components (optical combiner 440, optical isolator 450, fiber coupler 460, etc.) behind the plurality of collimating lenses 420 are located on the circuit board 300 the front side of the circuit board 300 and maintain an appropriate gap with the front side of the circuit board 300 .
  • the installation method in which the mounting surface of the first emission housing 401 faces the front of the circuit board 300 and the plurality of lasers 410 is located on the back side of the circuit board 300 is called a flip-chip method of the light emitting assembly 400 .
  • the laser 410 is flush with the back side of the circuit board 300, so that there is no gap between the ground wires and signal lines in the laser 410 and the circuit traces on the back side of the circuit board 300.
  • the connecting cable is the shortest to ensure excellent high-frequency signal transmission performance.
  • the digital signal processing chip 310 is located on the front side of the circuit board 300 and is configured to transmit high-frequency signals to the laser 410 of the light emitting component 400 to provide signals for the laser beam emitted by the laser 410, thereby This laser beam is modulated into an optical signal.
  • the circuit board 300 includes high-frequency signal lines 330 and vias 340 .
  • the via hole 340 is located at the output pad of the digital signal processing chip 310 , and the via hole 340 penetrates the front and back of the circuit board 300 .
  • the high-frequency signal line 330 is located in the via hole 340.
  • the high-frequency signal line 330 passes through the via hole 340 and is electrically connected to the output pad of the digital signal processing chip 310 to transmit high-frequency signals.
  • the high-frequency signal line 330 passes through the via 340 and is routed along the back of the circuit board 300, and then is electrically connected to the laser 410 through a wire bonding process. connect. That is, one end of the high-frequency signal line 330 is electrically connected to the output pad of the digital signal processing chip 310, and the other end is located on the back of the circuit board 300, and is electrically connected to the laser 410 through a wiring process.
  • the high-frequency signal transmitted from the gold finger 301 of the circuit board 300 passes through the digital signal processing chip 310 and then is transmitted to the laser 410 through the high-frequency signal line 330, so that the laser 410 emits an optical signal.
  • the circuit board 300 includes a plurality of via holes 340.
  • the plurality of via holes 340 are provided on a side of the first mounting through hole 320 close to the gold finger 301.
  • Each via hole 340 corresponds to a laser 410, so that the laser 410 passes through each via hole 340.
  • the high-frequency signal line 330 is connected to the corresponding laser 410 .
  • the circuit board 300 also includes a DC signal line 302 located on the back of the circuit board 300 .
  • the DC signal line 302 is electrically connected to the laser 410 and transmits a bias current to drive the laser 410 to emit light.
  • the DC signal line 302 can be electrically connected to the laser 410 through a wiring process from the side of the first mounting through hole 320 on the circuit board 300 away from the gold finger 301.
  • the laser 410 emits light after receiving the bias current transmitted by the DC signal line 302. After the high-frequency signal transmitted through the high-frequency signal line 330 is transmitted to the laser 410, the laser 410 modulates the high-frequency signal into a light beam, so that the laser 410 generates an optical signal.
  • the DC signal line 302 can also be connected to the laser 410 from other sides of the first mounting through hole 320 , that is, the DC signal line 302 and the high frequency signal line 330 connected to the laser 410 are located on different sides of the first mounting through hole 320 . This avoids interference between high-frequency signals and DC signals, shortens the transmission path of DC signals, and avoids overcrowding of wiring in the circuit board 300 .
  • FIG. 13A is a structural diagram of the first emitting housing in an optical module according to some embodiments.
  • FIG. 13B is a schematic structural diagram of the first emitting housing in an optical module according to some embodiments from another angle.
  • the first launch housing 401 includes an opposite first top surface 4011 and a first bottom surface 4014 .
  • the first top surface 4011 has an opening connected to the accommodation cavity of the first launch housing 401 .
  • the mounting surface of the first emission housing 401 includes a first mounting surface 4110, a second mounting surface 4120, and a third mounting surface 4130 that are connected in sequence to carry the laser 410, the collimating lens 420, the first optical path translation prism 430, and the optical multiplexer.
  • the first mounting surface 4110 , the second mounting surface 4120 and the third mounting surface 4130 are provided in the receiving cavity of the first launch housing 401 , and are all parallel to the first bottom surface 4014 .
  • the second mounting surface 4120 is recessed from the first mounting surface 4110 toward the first bottom surface 4014, and the third mounting surface 4130 is recessed from the second mounting surface 4120 toward the first bottom surface 4014.
  • the distance between the third mounting surface 4130 and the first bottom surface 4014 is smaller than the distance between the second mounting surface 4120 and the first bottom surface 4014 .
  • the distance between the second mounting surface 4120 and the first bottom surface 4014 is smaller than the distance between the first mounting surface 4110 and the first bottom surface 4014 .
  • the size is such that the first mounting surface 4110, the second mounting surface 4120, and the third mounting surface 4130 form a step surface.
  • the first top surface 4011 of the first emitting housing 401 abuts the front surface of the circuit board 300, and the first bottom surface 4014 is thermally connected to the upper housing 201. Since the upper housing 201 is thermally connected to the heat sink 107 in the optical network terminal 100, when the light emitting component 400 is flipped onto the circuit board 300, the heat dissipation effect of the optical module 200 is better.
  • the laser 410 and the collimating lens 420 are fixed on the first mounting surface 4110.
  • the first optical path translation prism 430 is fixed on the second mounting surface 4120.
  • the optical multiplexer 440, the optical isolator 450, and the optical fiber coupler 460 are fixed on the third mounting surface 4130.
  • the installation height of the laser 410 and the collimating lens 420 is greater than the installation height of the first optical path translation prism 430, and the installation height of the first optical path translation prism 430 is greater than the optical combiner 440 and the optical isolator. 450, and the installation height of fiber optic coupler 460.
  • the collimating lens 420 and the first optical path translation prism 430 are embedded in the first mounting through hole 320 of the circuit board 300, so that the laser 410 and the collimating lens 420 are located on the back side of the circuit board 300, the optical multiplexer 440.
  • the optical isolator 450 and the optical fiber coupler 460 are located on the front side of the circuit board 300, while a part of the first optical path translation prism 430 is located on the back side of the circuit board 300, and the other part is located on the front side of the circuit board 300. In this way, the spatial overlap area between the light emitting component 400 and the circuit board 300 can be reduced.
  • the semiconductor refrigerator 470 is placed on the first mounting surface 4110, and the plurality of lasers 410 are disposed on the semiconductor refrigerator 470.
  • the laser 410 includes a laser chip 411 and a gasket 412.
  • the laser chip 411 is located on the gasket 412, and the gasket 412 is provided on the semiconductor refrigerator 470.
  • a collimating lens 420 corresponding to each laser 410 is also disposed on the semiconductor refrigerator 470 , and the collimating lens 420 is disposed in the light emitting direction of the laser 410 .
  • a first optical path translation prism 430 is provided on the second mounting surface 4120.
  • the first optical path translation prism 430 is vertically fixed on the second mounting surface 4120, and the first reflective surface 431 of the first optical path translation prism 430 is away from the second mounting surface 4120 and close to the laser 410;
  • the two reflective surfaces 432 are close to the second mounting surface 4120. In this way, the laser beam located on the back side of the circuit board 300 is reflected to the front side of the circuit board 300 through the first optical path translation prism 430 .
  • the optical multiplexer 440, the optical isolator 450 and the optical fiber coupler 460 are arranged along the light emitting direction of the laser 410.
  • the first launch housing 401 also includes a first fixing hole 4140.
  • the first fixing hole 4140 is located on the side of the third mounting surface 4130 away from the second mounting surface 4120 .
  • the optical fiber coupler 460 passes through the first fixing hole 4140 and is connected to the first optical fiber adapter 701 through the first internal optical fiber 601 . In this way, the composite light beam that passes through the optical isolator 450 is injected into the optical fiber coupler 460 and coupled to the first internal optical fiber 601 via the optical fiber coupler 460 .
  • the outer wall of the optical fiber coupler 460 is sealingly connected to the inner wall of the first fixing hole 4140 .
  • refrigerant liquid such as fluorinated liquid, FC-40
  • the refrigerant liquid will not enter the receiving cavity of the first launch housing 401 from the first fixing hole 4140 , to prevent the optical components in the light emitting assembly 400 from being corroded by the refrigerant liquid.
  • the optical fiber coupler 460 and the first fixing hole 4140 are sealed with glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the optical fiber coupler 460 and the first fixing hole 4140, and can work stably in fluorinated liquid for a long time.
  • the semiconductor refrigerator 470 When assembling the light emitting assembly 400, first install the semiconductor refrigerator 470 on the first mounting surface 4110, and fix the laser 410 on the semiconductor refrigerator 470; then fix the first optical path translation prism 430 on the second mounting surface 4120 on; then, the optical combiner 440, the optical isolator 450, and the optical fiber coupler 460 are independently fixed on the third mounting surface 4130 according to the light emission direction of the laser 410; finally, the collimating lens 420 is installed in an active mode along the light emission direction of the laser 410.
  • the coupling method is fixed on the first mounting surface 4110. Active coupling refers to mounting the collimating lens 420 when the laser chip 411 is powered on and emitting light, while simultaneously detecting the coupling efficiency in the internal optical fibers 601 and 602 and optimizing the position of the collimating lens 420.
  • the A launch housing 401 is mounted on the front side of the circuit board 300 in reverse. That is, the first bottom surface 4014 of the first launching housing 401 faces the upper housing 201 , and the first mounting surface 4110 , the second mounting surface 4120 and the third mounting surface 4130 of the first launching housing 401 face the front of the circuit board 300 .
  • the first top surface 4011 is sealingly connected to the front surface of the circuit board 300 .
  • the switch equipped with the optical module When immersed in the refrigerant liquid for heat dissipation, the refrigerant liquid will not enter the receiving cavity of the first transmitting case 401 from the gap between the first transmitting case 401 and the front of the circuit board 300. This prevents the optical components in the light emitting assembly 400 from being corroded by the refrigerant liquid.
  • the first top surface 4011 is sealingly connected to the front surface of the circuit board 300 through glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the first emission housing 401 and the circuit board 300, and can work stably in fluorinated liquid for a long time.
  • the first emission cover 402 is sealed and installed on the back side of the circuit board 300 .
  • the first emission cover 402 covers the first mounting through hole 320 , so that the first emission cover 402 can cover the laser 410 , the collimating lens 420 and the first optical path translation prism 430 extending from the first mounting through hole 320 .
  • the refrigerant liquid When the switch equipped with the optical module 200 is immersed in the refrigerant liquid for heat dissipation, the refrigerant liquid will not enter the accommodation cavity of the first launch housing 401 from the gap between the first launch cover 402 and the back of the circuit board 300 , to prevent the optical components in the light emitting assembly 400 from being corroded by the refrigerant liquid.
  • the first emission cover 402 is sealingly connected to the back side of the circuit board 300 through glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the first emission cover 402 and the circuit board 300, and can work stably in fluorinated liquid for a long time.
  • first launch housing 401 is sealingly connected to the front side of the circuit board 300
  • first launch cover 402 is sealingly connected to the back side of the circuit board 300, thereby realizing the connection between the first launch housing 401, the circuit board 300 and the first launcher. Sealing assembly of cover plate 402.
  • the first bottom surface 4014 of the first launch housing 401 includes a first launch vent 4013 extending toward the first top surface 4011 .
  • the first launch vent hole 4013 is connected with the accommodation cavity of the first launch housing 401 .
  • the first launch vent hole 4013 is a tapered hole, and the diameter of the tapered hole gradually decreases in the direction from the first bottom surface 4014 to the first top surface 4011, so that the first launch shell
  • the body 401 can communicate with the outside world through the first emission vent 4013. This is to ensure that during the sealing and assembly process of the first launch housing 401, the circuit board 300, and the first launch cover 402, no leak holes will occur due to air expansion at various locations that need to be sealed. After the first launch housing 401, the circuit board 300 and the first launch cover 402 are sealed and assembled, the first launch vent hole 4013 in the first launch housing 401 is closed.
  • Figure 14 is a heat dissipation channel diagram of an optical module according to some embodiments.
  • the first bottom surface 4014 of the first emitting housing 401 in the light emitting assembly 400 faces the upper housing 201 and is in contact with the upper housing 201.
  • Thermal connection After the laser 410 in the light emitting component 400 is connected to the digital signal processing chip 310 on the front of the circuit board 300 through the high-frequency signal line 330, the laser 410 generates an optical signal driven by the bias current and the high-frequency signal, so that the laser 410 will Generate heat.
  • the light-emitting performance of the laser 410 is easily affected by temperature, so the laser 410 needs to work within a certain fixed temperature range. Placing the laser 410 on the semiconductor refrigerator 470 can ensure the operating temperature of the laser 410, but in this case the heat will be transferred from the laser 410 to the semiconductor refrigerator 470, so the heat needs to be conducted out to ensure the cooling of the semiconductor refrigerator 470. efficiency.
  • the heat generated by the laser 410 is conducted to the first emission housing 401 through the semiconductor refrigerator 470 to maintain the temperature of the laser 410 within a fixed temperature range.
  • the first emitting housing 401 can be made of tungsten copper or other metal materials with good thermal conductivity, and the mass of the first emitting housing 401 and the area of its first bottom surface 4014 can be appropriately increased. In this way, the heat generated by the operation of the laser 410 can be conducted to the upper housing 201 through the first emitting housing 401 and dissipated through the upper housing 201, thereby effectively improving the heat dissipation effect of the laser 410.
  • the optical module 200 also includes a first thermal pad.
  • a first thermal conductive pad is provided between the first bottom surface 4014 of the first emission housing 401 and the inner surface of the upper housing 201 .
  • the first thermal pad conducts the heat to the upper shell 201 to effectively improve the heat dissipation effect.
  • the first thermally conductive pad is thermally conductive glue. Through the thermally conductive glue, the first emitting housing 401 can be pasted on the inner surface of the upper housing 201 and the heat of the first emitting housing 401 can be conducted to the upper housing 201 .
  • the main heat source of the optical module is the digital signal processing chip 310.
  • the side of the digital signal processing chip 310 facing away from the circuit board 300 is in contact with the upper case 201 . In this way, the heat generated by the operation of the digital signal processing chip 310 can be conducted to the upper housing 201 to conduct the heat generated by the digital signal processing chip 310 to the outside of the optical module 200 .
  • the optical module 200 also includes a second thermal pad.
  • a second thermal pad is provided between the digital signal processing chip 310 and the inner surface of the upper housing 201 . In this way, the heat generated by the digital signal processing chip 310 is conducted to the second thermal pad, and the second thermal pad conducts the heat to the upper case 201 to effectively improve the heat dissipation effect.
  • Figure 15 is a cross-sectional view of a monitoring optical path of an optical module according to some embodiments.
  • the laser 410 emits a laser beam driven by the bias current and high-frequency signal transmitted by the circuit board 300.
  • the circuit board 300 also includes a photodetector 350.
  • the photodetector 350 is provided on the back of the circuit board 300.
  • the photodetector 350 is located on the side of the first mounting through hole 320 away from the gold finger 301 , and the photosensitive surface of the photodetector 350 faces the light emitting direction of the laser 410 .
  • the light detector 350 is configured to collect the forward light emitted by the laser 410 and send the collected data to the circuit board 300 to monitor the forward light power of the laser 410 .
  • the photosensitive surface of the photodetector 350 can be flush with the inner wall of the first mounting through hole 320 to facilitate light alignment.
  • the detector 350 is positioned; the photosensitive surface of the photodetector 350 can also be made to protrude from the inner wall of the first mounting through hole 320 to reduce the distance between the photosensitive surface of the photodetector 350 and the first reflective surface 431, so that The photodetector 350 can collect as much laser beam as possible through the first reflective surface 431 .
  • the light transmission characteristics of the first reflective surface 431 of the first optical path translation prism 430 are used to cause a small part of the collimated light beam to leak through the first reflective surface 431 and be directed to the photosensitive surface of the photodetector 350, so that The photodetector 350 can receive part of the light beam, thereby obtaining the emitted optical power of the laser 410 .
  • the first reflective surface 431 of the first optical path translation prism 430 faces the light emitting direction of the laser 410 and is configured to split a laser beam generated by the laser 410 into two beams of light, one beam of light (usually accounting for 95% of the total power of the laser) ) is reflected by the first reflective surface 431 to the second reflective surface 432 to reflect the laser beam from the back side of the circuit board 300 to the front side of the circuit board 300. Another beam of light passes through the first reflective surface 431 and is incident on the light detection
  • the photosensitive surface of the device 350 receives the laser beam emitted by the laser 410 through the photosensitive surface.
  • the central axis of the photosensitive surface of the photodetector 350 can be coincident with the central axis of the laser 410, and the photodetector 350 can be installed through surface mounting technology (Surface Mounted Technology, SMT) is mounted on the back of the circuit board 300 so that the light beam passing through the first reflective surface 431 is incident into the photodetector 350 as much as possible.
  • SMT Surface Mounted Technology
  • the circuit board 300 includes four photodetectors 350 , and each photodetector 350 is configured corresponding to a laser 410 . In this way, each photodetector 350 collects a portion of the laser beam emitted by a laser 410 that passes through the first reflective surface 431, and measures the forward light power of the corresponding laser 410.
  • the photodetector 350 receives parallel light with a certain area, so the assembly position accuracy of the photodetector 350 is low and the assembly is easier. After the light-transmitting area of the first reflective surface 431 in the first optical path translation prism 430 is aligned with the photosensitive surface of the photodetector 350, the photodetector 350 can collect the laser beam that passes through the first reflective surface 431.
  • Photodetector 350 has a cathode and an anode.
  • the cathode can be fixed on the ground metal layer of the circuit board 300 by welding or conductive adhesive bonding.
  • the anode and cathode of the photodetector 350 are arranged oppositely, and the anode is electrically connected to the circuit board 300 through a wiring process, thereby realizing the electrical connection between the photodetector 350 and the circuit board 300 .
  • Figure 16 is a structural diagram of a light receiving component in an optical module according to some embodiments.
  • Figure 17 is a structural diagram of a light receiving component in an optical module according to some embodiments from another angle.
  • Figure 18 is a structural diagram of a light receiving component in an optical module according to some embodiments.
  • the light receiving assembly 500 includes a receiving housing 501 and an optical splitter 520 , a lens array 530 , a reflective prism 540 and a light collimator 550 disposed in the receiving housing 501 .
  • the second internal optical fiber 602 connected to the second optical fiber adapter 702 is inserted into the optical collimator 550.
  • the optical signal from outside the optical module 200 is transmitted through the optical collimator 550 to the optical splitter 520, and then passes through the optical splitter.
  • the 520 demultiplexes a composite beam into 4 laser beams; the 4 laser beams are respectively converged to the reflective prism 540 through the lens array 530; the 4 laser beams are reflected at the reflective surface of the reflective prism 540 and will be parallel to the circuit board
  • the laser beam on the front of circuit board 300 is reflected into a laser beam perpendicular to the front of circuit board 300, and the reflected laser beam is injected into the optical receiver 380 on the circuit board 300 (for example, the optical receiver is a PIN diode or an avalanche diode), so as to Realize the reception of light.
  • the receiving housing 501 includes a contact surface 5140 and a connection surface 5110 corresponding to the contact surface 5140 .
  • the contact surface 5140 faces the upper housing 201 and is thermally connected to the upper housing 201 . Since the upper housing 201 is thermally connected to the heat sink 107 in the optical network terminal 100, when the light receiving assembly 500 is flipped onto the circuit board 300, the heat dissipation effect of the optical module 200 is better.
  • the optical collimator 550 includes a sleeve 551, a single-mode optical fiber flange 552, and a collimating lens 553.
  • the single-mode optical fiber flange 552 and the collimating lens 553 are inserted into the sleeve 551.
  • the second inner optical fiber 602 is inserted into the single-mode optical fiber flange 552 and is opposite to the collimating lens 553 .
  • the collimating lens 553 is configured to convert the light beam transmitted by the second inner optical fiber 602 from outside the optical module 200 into a collimated light beam.
  • the receiving housing 501 includes a first jack 5150.
  • the optical collimator 550 passes through the first jack 5150 and is connected to the second optical fiber adapter 702 through the second internal optical fiber 602 . In this way, the composite light beam passing through the optical collimator 550 enters the optical splitter 520 and is reflected to the optical receiver 380 via the reflective prism 540 .
  • the outer wall of the optical collimator 550 is sealingly connected to the inner wall of the first insertion hole 5150 .
  • a refrigerant liquid such as fluorinated liquid, FC-40
  • FC-40 fluorinated liquid
  • the refrigerant liquid will not enter the installation groove of the receiving housing 501 from the first jack 5150 to avoid
  • the optical components in the light receiving assembly 500 are corroded by the refrigerant liquid.
  • the optical collimator 550 and the first socket 5150 are sealed with glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the optical collimator 550 and the first socket 5150, and can work stably in fluorinated liquid for a long time.
  • the light incident surface of the optical splitter 520 faces the light exit surface of the collimating lens 553, and is configured to demultiplex one collimated beam output by the collimating lens 553 into four laser beams, thereby combining multiple beams with different wavelengths. separate.
  • the optical splitter 520 outputs four beams of different wavelengths, and the four beams of different wavelengths are respectively injected into corresponding lenses in the lens array 530 to converge the four beams of different wavelengths onto the reflecting surface of the reflecting prism 540 .
  • the reflective prism 540 is disposed directly above the optical receiver 380 of the circuit board 300.
  • the reflective prism 540 reflects four beams of different wavelengths into the corresponding optical receivers 380, and converts the optical signals into electrical signals through the optical receivers 380. .
  • the transimpedance amplifier of the circuit board 300 is connected to the optical receiver 380 through circuit traces.
  • the optical receiver 380 first converts the received optical signal into a high-frequency current signal, and then transmits the high-frequency current signal to the transimpedance amplifier;
  • the transimpedance amplifier converts the high-frequency current signal into a high-frequency voltage signal, amplifies the high-frequency voltage signal, and then transmits the high-frequency voltage signal to the digital signal processing chip 310 through the high-frequency signal line 330 .
  • the digital signal processing chip 310 extracts the data in the high-frequency voltage signal, and then transmits the data to the optical network terminal 100 via the golden finger 301 .
  • one end of the transimpedance amplifier is connected to the optical receiver 380 through circuit wiring, and the other end is connected to the digital signal processing chip 310 through a high-frequency signal line 330.
  • the high-frequency current signal converted by the optical receiver 380 is converted into a high-frequency voltage signal by a transimpedance amplifier and amplified, and then transmitted to the digital signal processing chip 310 through the high-frequency signal line 330 for processing.
  • the light receiving component may also use a light splitting device based on Arrayed Waveguide Grating (AWG) technology to achieve the same light splitting effect.
  • AWG Arrayed Waveguide Grating
  • the optical collimator 550, the optical splitter 520, the lens array 530 and the reflective prism 540 are sequentially fixed in the receiving housing 501 and assembled into a pre-assembled assembly.
  • the pre-assembled component is then mounted backwards on the circuit board 300 in an active coupling manner. That is, the contact surface 5140 of the receiving housing 501 faces the upper housing 201 , and the connecting surface 5110 of the receiving housing 501 faces the front surface of the circuit board 300 .
  • connection surface 5110 is sealingly connected to the front surface of the circuit board 300 .
  • the switch equipped with the optical module When the switch equipped with the optical module is immersed in the refrigerant liquid for heat dissipation, the refrigerant liquid will not enter the installation groove of the receiving case 501 from the gap between the receiving case 501 and the front of the circuit board 300, thus preventing light reception.
  • Optical components in assembly 500 are corroded by the refrigerant.
  • the connection surface 5110 is sealingly connected to the front side of the circuit board 300 through glue.
  • the glue is, for example, epoxy resin glue, such as UV curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the receiving housing 501 and the circuit board 300, and can work stably in fluorinated liquid for a long time.
  • the contact surface 5140 of the receiving housing 501 includes a receiving vent hole 5130 extending toward the connection surface 5110 .
  • the receiving and venting hole 5130 is connected with the mounting groove of the receiving housing 501 .
  • the receiving and venting hole 5130 is a tapered hole, and the diameter of the tapered hole gradually decreases in the direction from the contact surface 5140 toward the connecting surface 5110, so that the receiving housing 501 can pass through the receiving and releasing hole.
  • the stomata 5130 are connected to the outside world. This is to ensure that during the sealing and assembly process of the receiving housing 501 and the circuit board 300, no leak holes will occur due to air expansion at various locations that need to be sealed. After the receiving housing 501 and the circuit board 300 are sealed and assembled, the receiving vent hole 5130 in the receiving housing 501 is closed.
  • Figure 19 is a schematic diagram of the assembly of the light emitting component, the light receiving component, the circuit board and the internal optical fiber in an optical module according to some modifications.
  • Figure 20 is a partial structural diagram of the light emitting component in an optical module according to some modifications.
  • FIG. 21A is a cross-sectional view of a light-emitting component in an optical module according to some modifications;
  • FIG. 21B is a partially assembled cross-sectional view of a light-emitting component and a circuit board in an optical module according to some modifications.
  • the light emitting assembly 400 includes a second emitting housing 403 and a second emitting cover 404.
  • the second emitting housing 403 includes an accommodating cavity and a mounting device located in the accommodating cavity.
  • the installation mode in which the mounting surface of the second emission housing 403 faces away from the front side of the circuit board 300 and the plurality of lasers 410 is located on the front side of the circuit board 300 is called the formal installation mode of the light emitting assembly 400 .
  • the light emitting component 400 is installed on the front side of the circuit board 300, the laser 410, the collimating lens 420, the optical combiner 440, the second optical path translation prism 480, the optical isolator 450, the optical fiber coupler 460 and the semiconductor refrigerator 470 are set On the mounting surface of the second launch housing 403.
  • the second emission cover 404 is located on the front side of the circuit board 300 and covers the second emission housing 403 .
  • the semiconductor refrigerator 470 is disposed on the mounting surface of the second emitting housing 403, and the laser 410 is disposed on the surface of the semiconductor refrigerator 470 away from the mounting surface of the second emitting housing 403.
  • the semiconductor refrigerator 470 is configured to conduct the heat generated by the laser chip 411 to the second emitting housing 403 and export it to the outside of the optical module 200 through the second emitting housing 403 and the lower housing 202 of the optical module 200 .
  • the second optical path translation prism 480 is disposed in the light emitting direction of the laser 410 to reflect the light emitted by the laser chip 411 and is located on the front side of the circuit board 300 and parallel to the circuit board.
  • a laser beam on the front of the prism 300, and translate the laser beam a certain distance away from the front of the circuit board 300, so that the second optical path translates the optical components behind the prism 480 (optical isolator 450, fiber coupler 460, etc. ) are located on the front side of the circuit board 300 and maintain an appropriate gap from the front side of the circuit board 300 .
  • Figure 22 is a structural diagram of a circuit board in an optical module according to some modifications.
  • Figure 23A is an assembly structural diagram of a light emitting component in an optical module according to some modifications.
  • Figure 23B is a structural diagram of a light emitting component in an optical module according to some modifications.
  • Figures 24A to 24C are structural views of a transmitting housing in an optical module according to some modifications.
  • the circuit board 300 includes a second mounting through hole 360 penetrating the front and back of the circuit board 300 ; the second mounting through hole 360 is located at the edge of one side of the circuit board 300 and is in contact with the light emitting component.
  • the second launch housing 403 includes a snap portion 4035 and a snap slot 4033 located between the snap portion 4035 and the second bottom surface 4034 of the second launch housing 403 .
  • the card slot 4033 of the light emitting component 400 cooperates with the second mounting through hole 360 of the circuit board 300, so that the circuit board 300 is clamped between the clamping portion 4035 and the second bottom surface 4034 of the second emission housing 403.
  • the latching part 4035 includes three sub-latching parts, namely a first sub-latching part 40351, a second sub-latching part 40352 and a third sub-latching part 40353.
  • the connecting parts 40353 are arranged oppositely, and one end of the first sub-locking part 40351 is connected to the second sub-locking part 40352, and the other end is connected to the third sub-locking part 40353.
  • the card slot 4033 includes three sub-card slots, namely the first sub-card slot 40331, the second sub-card slot 40332 and the third sub-card slot 40333.
  • the second sub-card slot 40332 and the third sub-card slot 40333 are arranged oppositely, and the third sub-card slot 40332 is arranged opposite to the third sub-card slot 40333.
  • One end of a sub-card slot 40331 is connected to the second sub-card slot 40332, and the other end is connected to the third sub-card slot 40333.
  • the portions of the circuit board 300 located around the second mounting through hole 360 extend into the first sub-slot 40331, respectively.
  • the front side of the circuit board 300 is fixed to the second bottom surface 4034 of the second launch housing 403
  • the back side of the circuit board 300 is fixed to the first sub-card connecting portion 40351 and the second sub-card slot 40333.
  • the sub-locking part 40352 and the third sub-locking part 40353 are fixed.
  • the second launch housing 403 includes an opposite second top surface 4031 and a second bottom surface 4034 , and the second top surface 4031 has an opening communicating with the accommodation cavity of the second launch housing 403 .
  • the mounting surface of the second emission housing 403 includes a first mounting surface 4310, a second mounting surface 4320, and a third mounting surface 4330 connected in sequence to carry the laser 410, the collimating lens 420, the optical combiner 440, and the second optical path translation Prism 480, optical isolator 450, fiber coupler 460, and semiconductor refrigerator 470.
  • the first mounting surface 4310 , the second mounting surface 4320 and the third mounting surface 4330 are provided in the receiving cavity of the second launch housing 403 , and are all parallel to the second bottom surface 4034 .
  • the second mounting surface 4320 is recessed from the third mounting surface 4330 toward the second bottom surface 4034, and the first mounting surface 4310 is recessed from the second mounting surface 4320 toward the second bottom surface 4034.
  • the distance between the first mounting surface 4310 and the second bottom surface 4034 is smaller than the distance between the second mounting surface 4320 and the second bottom surface 4034 .
  • the distance between the second mounting surface 4320 and the second bottom surface 4034 is smaller than the distance between the third mounting surface 4310 and the second bottom surface 4034 .
  • the size is such that the first mounting surface 4310, the second mounting surface 4320, and the third mounting surface 4330 form a step surface.
  • the second bottom surface 4034 of the second emitting housing 403 abuts the front surface of the circuit board 300, and the second top surface 4031 is further away from the circuit board 300 than the second bottom surface 4034.
  • the laser 410 and the collimating lens 420 are fixed on the first mounting surface 4310
  • the semiconductor refrigerator 470 is fixed on the first mounting surface 4310
  • the laser 410 and the collimating lens 420 are fixed on the semiconductor refrigerator 470.
  • the optical combiner 440 and the second optical path translation prism 480 are fixed on the second mounting surface 4320.
  • the optical isolator 450 and the optical fiber coupler 460 are fixed on the third mounting surface 4330.
  • the second optical path translation prism 480 is located between the optical combiner 440 and the optical isolator 450 . But it is not limited to this.
  • the second optical path translation prism 480 can also be positioned between the collimating lens 420 and the optical combiner 440. In this case, the laser 410 and the collimating lens 420 are fixed on the first mounting surface 4310 and the second optical path
  • the translation prism 480 is fixed on the second mounting surface 4320, and the optical multiplexer 440, the optical isolator 450 and the optical fiber coupler 460 are fixed on the third mounting surface 4330.
  • the first mounting surface 4310 is located on the back side of the circuit board 300, and the second mounting surface 4320 is in contact with the third mounting surface.
  • the surfaces 4330 are located on the front side of the circuit board 300 .
  • the laser chip 411 in the laser 410 is flush with the front side of the circuit board 300, so that the circuit board 300 is electrically connected to the laser chip 411 through the wiring process, thereby driving the laser chip 411 to emit light located on the front side of the circuit board 300 and parallel to the circuit board. A laser beam on the front of 300.
  • the second emission housing 403 also includes a notch 4032.
  • the notch 4032 is located on the side of the first mounting surface 4310 away from the second mounting surface 4320 and penetrates the second bottom surface. 4034. After the circuit board 300 is clamped between the clamping portion 4035 and the second bottom surface 4034 of the second emission housing 403, the portion of the circuit board 300 corresponding to the notch 4032 is electrically connected to the laser chip 411 through a wire bonding process. Since the laser chip 411 is flush with the front surface of the circuit board 300, the connection line between the laser chip 411 and the circuit board 300 is the shortest, thus ensuring excellent high-frequency signal transmission performance.
  • the second bottom surface 4034 of the second launch housing 403 is sealingly connected to the front surface of the circuit board 300 .
  • the switch equipped with the optical module 200 is immersed in the refrigerant liquid for heat dissipation, the refrigerant liquid will not enter the receiving cavity of the second transmitter case 403 from the gap between the second transmitter case 403 and the front of the circuit board 300 , to prevent the optical components in the light emitting assembly 400 from being corroded by the refrigerant liquid.
  • the second bottom surface 4034 is sealingly connected to the front surface of the circuit board 300 through glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the second emission housing 403 and the circuit board 300, and can work stably in fluorinated liquid for a long time.
  • the second launch cover 404 is sealingly installed on the second top surface 4031 of the second launch housing 403.
  • the second emission cover 404 covers the accommodation cavity of the second emission housing 403, so that the second emission cover 404 can cover the laser 410, the collimating lens 420, the second optical path translation prism 480 and other optical components.
  • the switch equipped with the optical module 200 is immersed in the refrigerant liquid for heat dissipation, the refrigerant liquid will not enter the second transmitter case 403 from the gap between the second transmitter cover 404 and the second transmitter housing 403 In the cavity, the optical components in the light emitting assembly 400 are prevented from being corroded by the refrigerant liquid.
  • the second launch cover 404 and the second top surface 4031 of the second launch housing 403 are sealingly connected by glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the second launch cover 404 and the second launch housing 403, and can work stably in fluorinated liquid for a long time.
  • the second launch cover 404 includes a second launch vent 4041 extending toward the second bottom surface 4034 of the second launch housing 403 .
  • the function of the second emission vent hole 4041 is the same as that of the first emission vent hole 4013, and will not be described again here.
  • the structure and function of the light-receiving component in this modification are the same as those of the aforementioned light-receiving component, and will not be described again here.
  • Figure 25A is a structural diagram of a light emitting component in an optical module according to other modifications.
  • Figure 25B is a structural diagram of a first emitting housing in the light emitting component shown in Figure 25A.
  • Figure 25C is a diagram of the light emitting component shown in Figure 25A.
  • the light emitting assembly 400 includes a first emitting housing 401, a first emitting cover 402, a laser 410, a collimating lens 420, and a first emitting cover plate 402.
  • the optical path translation prism 430 , the optical isolator 450 , the emitting optical fiber array component 490 and the semiconductor refrigerator 470 , and the light emitting component 400 is flipped on the front of the circuit board 300 .
  • the light transmitting assembly 400 omits the optical combiner 440, the optical fiber coupler 460 and the first internal optical fiber 601, and the four optical signals are transmitted to the outside of the optical module 200 through the four internal transmitting optical fibers 810.
  • the mounting surface of the first launch housing 401 includes a first mounting surface 4110, a second mounting surface 4120, and a third mounting surface 4130 that are connected in sequence.
  • the first mounting surface 4110 , the second mounting surface 4120 and the third mounting surface 4130 are provided in the receiving cavity of the first launch housing 401 , and are all parallel to the first bottom surface 4014 .
  • the second mounting surface 4120 is recessed from the first mounting surface 4110 toward the first bottom surface 4014, and the third mounting surface 4130 is flush with the second mounting surface 4120 (but is not limited to this, the third mounting surface 4130 can also be formed from the second mounting surface 4120).
  • surface 4120 is recessed toward the first bottom surface 4014).
  • the distance between the third mounting surface 4130 and the first bottom surface 4014 is equal to (or may be smaller than) the distance between the second mounting surface 4120 and the first bottom surface 4014 .
  • the distance between the second mounting surface 4120 and the first bottom surface 4014 is smaller than the distance between the first mounting surface 4110 and the first mounting surface 4114 .
  • the size of the first bottom surface 4014 is such that the first mounting surface 4110, the second mounting surface 4120, and the third mounting surface 4130 form a step surface.
  • the laser 410 and the collimating lens 420 are fixed on the first mounting surface 4110.
  • the first optical path translation prism 430 is fixed on the second mounting surface 4120.
  • the optical isolator 450 and the transmitting fiber array assembly 490 are fixed on the third mounting surface 4130.
  • the first launch housing 401 also includes a second fixing hole 4150.
  • the second fixing hole 4150 is located on the side of the third mounting surface 4130 away from the second mounting surface 4120 .
  • the transmitting optical fiber array assembly 490 is located at the second fixing hole 4150 and blocks the second fixing hole 4150. In this way, after the emitting optical fiber array assembly 490 is fixed on the third mounting surface 4130, the four internal emitting optical fibers 810 connected to the emitting optical fiber array assembly 490 pass through the second fixing hole 4150 and are connected to the corresponding optical fiber adapter.
  • the size of the second mounting surface 4120 in a direction perpendicular to the light emitting direction of the laser 410 is larger than the size of the third mounting surface 4130 in this direction.
  • the third mounting surface 4130 is perpendicular to the light emitting direction of the laser 410 .
  • the size in the direction is the same as the size of the second fixing hole 4150 in the direction.
  • the refrigerant liquid such as fluorinated liquid, FC-40
  • FC-40 fluorinated liquid
  • the refrigerant liquid will not enter the receiving cavity of the first launch housing 401 from the second fixing hole 4150 , to prevent the optical components in the light emitting assembly 400 from being corroded by the refrigerant liquid.
  • the emitting optical fiber array assembly 490 and the second fixing hole 4150 are sealed with glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the emitting optical fiber array assembly 490 and the second fixing hole 4150, and can work stably in fluorinated liquid for a long time.
  • FIG. 26A is a schematic assembly diagram of the emitting fiber array component and the optical isolator in the optical module according to some modifications.
  • FIG. 26B is an exploded schematic diagram of the emitting fiber array component and the optical isolator in the optical module according to some modifications.
  • the launch fiber array assembly 490 includes a first substrate 4901, a second substrate 4902, and a support plate 4903.
  • the first substrate 4901 is fixed on the mounting surface of the first launch housing 401, and the first substrate 4901 is fixed on the mounting surface of the first launch housing 401.
  • 4901 has multiple rows of grooves (eg, V-shaped grooves) 4904 arranged in parallel, and each internal emitting fiber 810 of the emitting fiber array assembly 490 is embedded in the corresponding groove 4904.
  • the second substrate 4902 is covered on the first substrate 4901, and the support plate 4903 is covered on the second substrate 4902.
  • the contact surfaces between the second substrate 4902 and the first substrate 4901, and the support plate 4903 and the second substrate 4902 can be fixed together by glue.
  • the glue will naturally fill every groove of the first substrate 4901, which greatly strengthens the relationship between the second substrate 4902 and the first substrate 4901 after they are glued together. The sealing effect between them.
  • the support plate 4903 is flush with the first top surface 4011.
  • the support plate 4903 is also sealingly connected to the front surface of the circuit board 300 .
  • the orthographic projection area of the support plate 4903 on the first bottom surface 4014 of the first emission housing 401 is smaller than the orthographic projection area of the second substrate 4902 on the first bottom surface 4014.
  • the manufacturing process of the support plate 4903 It is simpler and therefore reduces costs. But it is not limited to this.
  • the emitting fiber array assembly 490 does not include the support plate 4903.
  • the second substrate 4902 is sealingly connected to the front side of the circuit board 300, so that the light emitting assembly 400 can be exposed to the fluorinated liquid for a long time. Medium and stable job.
  • Figure 27A is a structural diagram of a light receiving component in an optical module according to other modifications.
  • Figure 27B is a structural diagram of a receiving housing in the light receiving component shown in Figure 27A.
  • Figure 27C is a diagram of the light receiving component shown in Figure 27A. Local light path diagram.
  • the light receiving assembly 500 includes a receiving housing 501 and a receiving optical fiber array assembly 560 disposed in the receiving housing 501.
  • the optical receiving component 500 omits the optical splitter 520, the lens array 530, the reflective prism 540 and the optical collimator 550, and the four optical signals are transmitted to the inside of the optical module 200 through the four internal receiving optical fibers 820.
  • the receiving housing 501 includes a second jack 5160.
  • the receiving optical fiber array assembly 560 is located at the second jack 5160 and blocks the second jack 5160.
  • the outer wall of the receiving optical fiber array assembly 560 is sealingly connected to the inner wall of the second jack 5160 .
  • a switch equipped with an optical module is immersed in a refrigerant liquid (such as fluorinated liquid, FC-40) for heat dissipation, the refrigerant liquid will not enter the installation groove of the receiving housing 501 from the second jack 5160 to avoid The optical components in the light receiving assembly 500 are corroded by the refrigerant liquid.
  • the receiving optical fiber array assembly 560 and the second jack 5160 are sealed with glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue.
  • This type of glue has good fluidity and high reliability, is easy to bond the receiving optical fiber array assembly 560 and the second jack 5160, and can work stably in fluorinated liquid for a long time.
  • the receiving optical fiber array assembly 560 includes a third substrate 5601, a fourth substrate 5602 and a support block 5603.
  • the support block 5603 is fixed in the receiving housing 501
  • the third substrate 5601 is fixed on the support block 5603
  • the third substrate 5601 has a parallel arrangement.
  • the fourth substrate 5602 is covered on the third substrate 5601.
  • the contact surfaces between the support block 5603 and the third substrate 5601 and the fourth substrate 5602 and the third substrate 5601 can be fixed together by glue.
  • the glue will naturally fill every groove of the third substrate 5601, which greatly strengthens the relationship between the fourth substrate 5602 and the third substrate 5601 after they are glued together. The sealing effect between them.
  • connection surface 5110 is sealingly connected to the front surface of the circuit board 300 .
  • the connection surface 5110 is sealingly connected to the front side of the circuit board 300 through glue.
  • the glue is, for example, epoxy resin glue, such as ultraviolet light curing glue or structural curing glue. This type of glue has good fluidity and high reliability, is easy to bond the receiving housing 501 and the circuit board 300, and can work stably in fluorinated liquid for a long time.
  • the fourth substrate 5602 is flush with the connection surface 5110 .
  • the fourth substrate 5602 is also sealingly connected to the front surface of the circuit board 300 .
  • the orthographic projection area of the support block 5603 on the contact surface 5140 of the receiving housing 501 is smaller than the orthographic projection area of the third substrate 5601 on the contact surface 5140.
  • the manufacturing process of the support block 5603 is simpler, so Can reduce costs. But it is not limited to this.
  • the receiving optical fiber array assembly 560 does not include the support block 5603, and at this time, the third substrate 5601 is hermetically connected to the front side of the circuit board 300.
  • FIG. 28A is a partial structural diagram of an optical module according to some embodiments
  • FIG. 28B is a partial structural diagram of another optical module according to some embodiments.
  • the optical module 200 further includes an optical fiber protector 610
  • the optical fiber protector 610 includes a first optical fiber protector 611 and a second optical fiber protector 612 .
  • the first inner optical fiber 601 is embedded in the first optical fiber protector 611.
  • the housing of the optical module 200 has a first through hole, and the first optical fiber protector 611 is located in the first through hole, which can reduce the cooling liquid from passing through the first through hole when the first internal optical fiber 601 passes through the first through hole.
  • the hole enters the inside of the housing of the optical module 200, thereby contaminating the internal components of the optical module 200 and ensuring the long-term stable operation of the optical module 200.
  • the second inner optical fiber 602 is embedded in the second optical fiber protector 612 .
  • the housing of the optical module 200 has a second through hole, and the second optical fiber protector 612 is located in the second through hole, which can reduce the flow of refrigerant liquid through the second through hole when the second internal optical fiber 602 passes through the second through hole.
  • the hole enters the inside of the housing of the optical module 200, thereby contaminating the internal components of the optical module 200 and ensuring the long-term stable operation of the optical module 200.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块。所述光模块包括壳体、电路板、以及光发射组件或光接收组件中的至少一个,所述壳体包括上壳体和下壳体。所述电路板具有朝向所述上壳体的正面和朝向所述下壳体的背面。所述光发射组件或所述光接收组件安装于所述电路板上,且与所述电路板密封连接。所述光发射组件被配置为将来自所述电路板的第一电信号转换为第一光信号,并将所述第一光信号传输至所述光模块的外部。所述光接收组件被配置为将来自所述光模块外部的第二光信号转换为第二电信号,并将所述第二电信号传输至所述电路板。

Description

光模块
本申请要求2022年3月30日提交申请号为202220735904.9的中国专利申请的优先权、2022年3月30日提交申请号为202210331564.8的中国专利申请的优先权、2022年3月30日提交申请号为202220740523.X的中国专利申请的优先权、2022年3月30日提交申请号为202220776501.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
本公开一些实施例提供一种光模块。所述光模块包括壳体、电路板、以及光发射组件。所述壳体包括上壳体和下壳体。所述电路板位于所述上壳体和所述下壳体之间,具有朝向所述上壳体的正面和朝向所述下壳体的背面;所述电路板包括第一安装通孔,所述第一安装通孔贯通所述电路板的正面和背面。所述光发射组件安装于所述电路板上,且被配置为将来自所述电路板的电信号转换为光信号,并将所述光信号传输至所述光模块的外部。所述光发射组件包括第一发射壳体和第一发射盖板。所述第一发射壳体位于所述电路板的正面侧,覆盖所述第一安装通孔,且与所述电路板的正面密封连接;所述第一发射盖板位于所述电路板的背面侧,覆盖所述第一安装通孔,且与所述电路板的背面密封连接。
本公开一些实施例提供另一种光模块。所述光模块包括壳体、电路板、以及光发射组件。所述壳体包括上壳体和下壳体。所述电路板位于所述上壳体和所述下壳体之间,具有朝向所述上壳体的正面和朝向所述下壳体的背面;所述电路板包括第一安装通孔,所述第一安装通孔贯通所述电路板的正面和背面。所述光发射组件安装于所述电路板上,且被配置为将来自所述电路板的电信号转换为光信号,并将所述光信号传输至所述光模块的外部。所述光发射组件包括第二发射壳体和第二发射盖板。所述第二发射壳体的一部分位于所述电路板的正面侧、且与所述电路板的正面密封连接,所述第二发射壳体的另一部分位于所述电路板的背面侧、且与所述下壳体导热连接;所述第二发射盖板位于所述第二发射壳体上,且与所述第二发射壳体密封连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光模块中光发射组件、光接收组件、电路板与内部光纤的装配示意图;
图6为根据一些实施例的一种光模块中光发射组件结构图;
图7为根据一些实施例的一种光模块中电路板的结构图;
图8为根据一些实施例的一种光模块中光发射组件与电路板的局部装配示意图;
图9为根据一些实施例的一种光模块中光发射组件与电路板的另一角度的局部装配示意图;
图10为根据一些实施例的一种光模块中光发射组件的局部光路图;
图11为根据一些实施例的一种光模块中光发射组件与电路板的局部装配剖视图;
图12A和图12B为根据一些实施例的一种光模块中电路板和光发射组件的电连接图;
图13A为根据一些实施例的一种光模块中第一发射壳体的结构图;
图13B为根据一些实施例的一种光模块中第一发射壳体的另一角度结构图;
图14为根据一些实施例的一种光模块的散热通道图;
图15为根据一些实施例的一种光模块的监控光路剖视图;
图16为根据一些实施例的一种光模块中光接收组件的结构图;
图17为根据一些实施例的一种光模块中光接收组件的另一角度结构图;
图18为根据一些实施例的一种光模块中光接收组件与电路板的局部装配剖视图;
图19为根据一些变形例的一种光模块中光发射组件、光接收组件、电路板与内部光纤的装配示意图;
图20为根据一些变形例的一种光模块中光发射组件的局部结构图;
图21A为根据一些变形例的一种光模块中光发射组件的剖视图;
图21B为根据一些变形例的一种光模块中光发射组件与电路板的局部装配剖视图;
图22为根据一些变形例的一种光模块中电路板的结构图;
图23A为根据一些变形例的一种光模块中光发射组件的装配结构图;
图23B为根据一些变形例的一种光模块中光发射组件的分解结构图;
图24A至图24C为根据一些变形例的一种光模块中发射壳体的结构图;
图25A为根据另一些变形例的一种光模块中光发射组件的结构图;
图25B为图25A所示光发射组件中第一发射壳体的结构图;
图25C为图25A所示光发射组件的局部光路图;
图26A为根据另一些变形例的一种光模块中发射光纤阵列组件与光隔离器的装配示意图;
图26B为根据另一些变形例的一种光模块中发射光纤阵列组件与光隔离器的分解示意图;
图27A为根据另一些变形例的一种光模块中光接收组件的结构图;
图27B为图27A所示光接收组件中接收壳体的结构图;
图27C为图27A所示光接收组件的局部光路图;
图28A为根据一些实施例的一种光模块的局部结构图;
图28B为根据一些实施例的另一种光模块的局部结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电 接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
光通信系统中,使用光信号携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光通过光纤或光波导传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于供电、I2C信号传输、数据信息传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000之间的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口,光口被配置为接入光纤101,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立信息连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由 光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105表面的笼子106,设置在笼子106上的散热器,以及设置在笼子106内部的电连接器。电连接被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解结构图。如图3和图4所示,光模块200包括壳体、设置于壳体内的电路板300、光发射组件400和光接收组件500。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011、以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板2012,由两个上侧板2012与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从电口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光发射组件400和光接收组件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射组件400、光接收组件500等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、光发射组件400和光接收组件500等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203,被配置为实现 光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外侧,具有与上位机笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、跨阻放大器(Transimpedance Amplifier,TIA)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机笼子106中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
光模块200通常在室内使用,室内温度、湿度适宜、洁净度高、灰尘少。例如,大部分用作数据中心的建筑物都具有密闭的室内空间以避免灰尘进入,并使用空调控制该室内空间的温度和湿度。因此光模块200的使用环境通常对其气密性的要求不高。基于这一点,以及出于成本的考虑,在本公开一些实施例的光模块中,对光发射组件400和光接收组件500采用非气密的方式封装。
另外,随着光模块的传输速率不断提高,空气制冷的散热能力已无法满足高速光模块的散热需求。为此,人们提出一种液体制冷的方法,例如,将配置有光模块的交换机沉浸在制冷液(如,氟化液,FC-40)中进行散热。当光模块随交换机进入制冷液中时,由于光发射组件和光接收组件采用非气密的方式封装,因此光发射组件和光接收组件中的部件也会浸入制冷液中,从而造成这些部件的污染及其光学机制的改变,严重影响光模块的正常工作。
为了解决上述问题,本公开一些实施例提供了一种光模块,该光模块采用密闭封装,进而实现了光模块在液冷环境中长期、可靠的工作,极大改善了光模块中光发射组件400与光接收组件500的散热效果。
图5为根据本公开一些实施例的一种光模块中电路板、光发射组件、光接收组件与内部光纤的装配示意图。如图5所示,光模块200包括光发射组件400、光接收组件500与内部光纤600。光发射组件400和光接收组件500均设于电路板300靠近上壳体201的表面(下文中,将该表面称为正面,并将电路板300靠近下壳体202的表面称为背面)上。内部光纤600包括第一内部光纤601和第二内部光纤602。第一内部光纤601与光发射组件400连接,光发射组件400发射的光信号通过第一内部光纤601传输出去,以实现光信号的发射。第二内部光纤602与光接收组件500连接,外部光信号通过第二内部光纤602传输至光接收组件500,并通过光接收组件500进行光电转换,以实现光信号的接收。
如图3、图4和图5所示,光模块200还包括光纤适配器700,光纤适配器700包括第一光纤适配器701和第二光纤适配器702。第一光纤适配器701通过第一内部光纤601与光发射组件400连接,第二光纤适配器702通过第二内部光纤602与光接收组件500连 接。
图6为根据本公开一些实施例的一种光模块中光发射组件的结构图,图7为根据本公开一些实施例的一种光模块中电路板的结构图,图8为根据本公开一些实施例的一种光模块中电路板与光发射组件的局部装配示意图,图9为根据本公开一些实施例的一种光模块中电路板与光发射组件的另一角度局部装配示意图。如图6、图8和图9所示,光发射组件400包括第一发射壳体401、第一发射盖板402、以及设置在第一发射壳体401内的激光器410、准直透镜420、第一光路平移棱镜430、光合波器440、光隔离器450、光纤耦合器460和半导体制冷器(Thermo Electric Cooler,TEC)470(参见图11)。
第一发射壳体401位于电路板300的正面侧,与电路板300的正面连接(例如,密封连接)。第一发射壳体401包括容纳腔和位于容纳腔中的安装面。激光器410、准直透镜420、第一光路平移棱镜430、光合波器440、光隔离器450与光纤耦合器460均安装在第一发射壳体401的安装面上。第一发射盖板402位于电路板300的背面侧,与电路板300的背面连接(例如,密封连接)。如此,电路板300位于第一发射壳体401和第一发射盖板402之间,第一发射壳体401、电路板300与第一发射盖板402形成三明治结构。
激光器410包括激光芯片411和垫片412。激光芯片411具有阴极和阳极,垫片412包括绝缘导热层和金属层,金属层包括地线和信号线。激光芯片411的阴极与地线电连接。激光芯片411的阳极与信号线电连接。通过地线和信号线分别为激光芯片411的阴极和阳极施加电压,激光芯片411可以发出平行于电路板300的正面的一路激光光束。
半导体制冷器470设置在第一发射壳体401的安装面上,激光器410设置在半导体制冷器470远离第一发射壳体401安装面的表面。半导体制冷器470被配置为将激光芯片411产生的热量传导至第一发射壳体401,通过第一发射壳体401和光模块200的上壳体201向光模块200外部导出。但在一些实施例中,半导体制冷器470是可以省略的。
准直透镜420能够将激光芯片411产生的、发散的激光光束调整为平行的激光光束,即,准直光束。在一些实施例中,准直透镜420也是可以省略的。
第一光路平移棱镜430是一种斜方棱镜,具有第一反射面431和第二反射面432(参见图11)。第一反射面431和第二反射面432均能够使激光光束的传播方向发生改变,例如使激光光束的传播方向转折90°。在一些实施例中,第一反射面431位于电路板300的背面侧,用来反射激光芯片411发出的平行于电路板300背面的一路激光光束,使该路激光光束沿与电路板300的背面垂直的方向继续传播至电路板300的正面并垂直于电路板300的正面传播;第二反射面432位于电路板300的正面侧,用于反射垂直于电路板300的正面传播的该路激光光束,使该路激光光束沿与电路板300的正面平行的方向传播。
激光器410发射的平行于电路板300背面的一路激光光束经由准直透镜420转换为准直光束。准直光束经由第一光路平移棱镜430进行反射后平移至电路板300的正面侧,并依次经过光合波器440和光隔离器450而进入光纤耦合器460中,经由光纤耦合器460将激光光束经过内部光纤600耦合至光纤适配器700中,实现一路光信号的发射。
当光模块200为高传输速率的光模块,如400G(信号传输速率为400Gbit/s)光模块时,为实现400G光模块的传输速率,需要在光模块200的壳体中封装4路光信号传输通道,每路光信号传输通道的信号传输速率为100Gbit/s。因此光发射组件400包括4个光发射器(例如,光发射器为激光器410),以实现4路光信号的发射;光接收组件500包括4个光接收器(例如,光接收器为PIN二极管或雪崩二极管),以实现4路光信号的接收。
基于此,光发射组件400包括4个激光器410、4个准直透镜420和1个第一光路平移棱镜430。4个激光器410和4个准直透镜420一一对应。每个激光器410发射一路激光光束,每个准直透镜420将该路激光光束转换为准直光束,每个准直透镜420射出的准直光束传输至第一光路平移棱镜430,第一光路平移棱镜430对准直光束进行反射以改变激光光束的传输方向及位置。需要说明的是,光发射组件400不限于包括1个第一光路平移棱镜430,也可以包括多个第一光路平移棱镜430,每个第一光路平移棱镜430对应一个或多个准直透镜420。光发射组件400也不限于包括4个准直透镜420,也可以包括2个(每2个激光器410共用1个准直透镜420)或1个准直透镜420(全部激光器410共 用1个准直透镜420)。
当光发射组件400包括4个激光器410时,光合波器440包括4个用于接收多种波长的光的入光口,每一入光口用于接收一种波长的光。光合波器440还包括1个用于出射光的出光口。
如图10所示,以光合波器440接收λ1、λ2、λ3和λ4这4种波长的光为例,波长为λ1的光通过第一入光口进入光合波器440,经过光合波器440内多个(例如6个)不同位置进行了多次(例如6次)反射到达出光口;波长为λ2的光通过第二入光口进入光合波器440,经过光合波器440内多个(例如4个)不同位置进行了多次(例如4次)反射到达出光口;波长为λ3的光通过第三入光口进入光合波器440,经过光合波器440内多个(例如2个)不同位置进行了多次(例如2次)反射到达出光口;波长为λ4的光通过第四入光口进入光合波器440,未经过反射直接到达出光口。如此,通过光合波器440实现不同波长的信号光经不同入光口输入、经同一出光口输出,进而将不同波长的光复合成一束复合光束。
图10示出了λ1、λ2、λ3和λ4这4种波长的光在光合波器440内的反射位置和反射次数。
光纤耦合器460的入光口与光合波器440的出光口光耦合,光纤耦合器460的出光口通过第一内部光纤601与光纤适配器700相连接。如此,光合波器440输出的一束复合光束通过光纤耦合器460耦合至第一内部光纤601,再通过第一内部光纤601传输至光纤适配器700,以实现一束复合光束的发射。
光合波器440的出光口与光纤耦合器460的入光口之间存在间隙,光合波器440输出的复合光束传输至光纤耦合器460的入光口时,复合光束在光纤耦合器460的入光口处发生反射,反射光束可能会按照原路返回至激光器410,影响激光器410的性能。为了避免这一问题,将光隔离器450设置在光合波器440与光纤耦合器460之间,光合波器440射出的复合光束在光纤耦合器460的入光口发生反射时,光隔离器450用于吸收反射光束,防止反射光束沿原路返回激光器410。
如图10所示,在一些实施例中,光纤耦合器460包括套管461、聚焦透镜462与单模光纤法兰463。套管461套在聚焦透镜462与单模光纤法兰463的外侧,第一内部光纤601插在单模光纤法兰463内,聚焦透镜462的入光口朝向光隔离器450、出光口朝向单模光纤法兰463,光合波器440输出的复合光束经过光隔离器450传输至聚焦透镜462,聚焦透镜462将复合光束会聚至单模光纤法兰463内的第一内部光纤601。
聚焦透镜462为圆柱形透镜,圆柱形透镜与单模光纤法兰463的外径尺寸均略小于套管461的内径尺寸,以保证聚焦透镜462与单模光纤法兰463的耦合度。将聚焦透镜462与单模光纤法兰463插在套管461内时,为提高聚焦透镜462与单模光纤法兰463的耦合度,可只轴向移动聚焦透镜462与单模光纤法兰463。
为方便使透过光隔离器450的复合光束射入聚焦透镜462内,聚焦透镜462突出于套管461外,减小了聚焦透镜462的入光口与光隔离器450的出光口之间的距离,使得结构更紧凑。
如图7、图8和图9所示,电路板300包括贯穿该电路板300的正面和背面的第一安装通孔320,光发射组件400的第一发射壳体401安装在电路板300的正面,第一发射壳体401的安装面朝向电路板300的正面,光发射组件400中的激光器410、准直透镜420和第一光路平移棱镜430嵌入在该第一安装通孔320内。这使得电路板300与光发射组件400安装后,激光器410和准直透镜420位于电路板300的背面侧,光合波器440、光隔离器450、光纤耦合器460位于电路板300的正面侧,而平移棱镜430则是一部分位于电路板300的背面侧、另一部分位于电路板300的正面侧。
图11为根据一些实施例的一种光模块中光发射组件与电路板的局部装配剖视图。如图11所示,多个激光器410分别发射激光光束,这些激光光束平行于电路板300的背面;多个准直透镜420将多个激光器410发射的多个激光光束转换为多个准直光束,多个准直光束传输至第一光路平移棱镜430,第一光路平移棱镜430的第一反射面431和第二反射 面432对多个准直光束进行反射,从而将位于电路板300背面侧的多个激光光束反射至电路板300的正面侧。之后,光合波器440将4路准直光束合成为一束复合光束。
通过第一光路平移棱镜430对多个准直光束的平移作用,多个准直透镜420后面的光学元器件(光合波器440、光隔离器450、光纤耦合器460等)均位于电路板300的正面侧,并与电路板300的正面保持适当间隙。这样就避免了这些光学元器件与电路板300之间的位置冲突,从而可以尽可能地减小电路板300中第一安装通孔320的面积,增加了电路板300上电子元器件的排布面积,使得电路板300的布线更加容易。
将第一发射壳体401的安装面朝向电路板300的正面,并使多个激光器410位于电路板300的背面侧的安装方式被称为光发射组件400的倒装方式。将光发射组件400倒装在电路板300的正面上时,激光器410与电路板300的背面平齐,从而使激光器410中的地线和信号线与电路板300背面上的电路走线之间的连接线最短,以保证优良的高频信号传输性能。
图12A和图12B为根据一些实施例的一种光模块中电路板和光发射组件的电连接图。如图12A和图12B所示,数字信号处理芯片310位于电路板300的正面,被配置为将高频信号传输至光发射组件400的激光器410,为激光器410发射的激光光束提供信号,从而将该激光光束调制为光信号。为此目的,电路板300包括高频信号线330和过孔340。过孔340位于数字信号处理芯片310的输出焊盘处,该过孔340贯穿电路板300的正面与背面。高频信号线330位于过孔340内,该高频信号线330穿过过孔340与数字信号处理芯片310的输出焊盘电连接,以传输高频信号。
由于激光器410中的垫片412与电路板300的背面平齐,因此高频信号线330穿过过孔340后沿电路板300的背面布线,再通过打线工艺(wire bonding)与激光器410电连接。即,该高频信号线330的一端与数字信号处理芯片310的输出焊盘电连接、另一端位于电路板300的背面上,并通过打线工艺与激光器410电连接。从电路板300的金手指301传输过来的高频信号经过数字信号处理芯片310后,再经由高频信号线330传输至激光器410,使得激光器410发射光信号。
电路板300包括多个过孔340,多个过孔340设置在第一安装通孔320靠近金手指301的一侧,每个过孔340对应一个激光器410,使得穿过每个过孔340的高频信号线330与对应的激光器410连接。
电路板300还包括直流信号线302,直流信号线302位于电路板300的背面。直流信号线302与激光器410电连接,传输偏置电流以驱动激光器410发光。直流信号线302可从电路板300上第一安装通孔320的远离金手指301的一侧通过打线工艺与激光器410电连接,激光器410接收到直流信号线302传输的偏置电流后发光。而经高频信号线330传输的高频信号被传输到激光器410后,激光器410将高频信号调制至光束中,使得激光器410产生光信号。
直流信号线302还可从第一安装通孔320的其它侧连接至激光器410,即连接激光器410的直流信号线302与高频信号线330位于第一安装通孔320的不同侧。这样既避免了高频信号与直流信号之间的干扰,也使直流信号的传输路径更短,避免电路板300中布线过度拥挤。
图13A为根据一些实施例的一种光模块中第一发射壳体的结构图,图13B为根据一些实施例的一种光模块中第一发射壳体的另一角度结构示意图。如图13A和图13B所示,第一发射壳体401包括相对的第一顶面4011和第一底面4014,第一顶面4011具有与第一发射壳体401的容纳腔连通的开口。第一发射壳体401的安装面包括依次连接的第一安装面4110、第二安装面4120与第三安装面4130,以便承载激光器410、准直透镜420、第一光路平移棱镜430、光合波器440、光隔离器450、光纤耦合器460、以及半导体制冷器470。第一安装面4110、第二安装面4120与第三安装面4130设置在第一发射壳体401的容纳腔内,且均平行于第一底面4014。第二安装面4120从第一安装面4110朝向第一底面4014凹陷,第三安装面4130从第二安装面4120朝向第一底面4014凹陷。第三安装面4130距离第一底面4014的尺寸小于第二安装面4120距离第一底面4014的尺寸,第二安装面4120 距离第一底面4014的尺寸小于第一安装面4110距离第一底面4014的尺寸,使得第一安装面4110、第二安装面4120、第三安装面4130形成台阶面。
在将光发射组件400安装在电路板300上时,第一发射壳体401的第一顶面4011与电路板300的正面相抵接,第一底面4014与上壳体201导热连接。由于上壳体201与光网络终端100中的散热器107导热连接,因此将光发射组件400倒装在电路板300上时,光模块200的散热效果更好。激光器410和准直透镜420固定在第一安装面4110上。第一光路平移棱镜430固定在第二安装面4120上。光合波器440、光隔离器450、光纤耦合器460固定在第三安装面4130上。
如此,在第一发射壳体401中,激光器410和准直透镜420的安装高度大于第一光路平移棱镜430的安装高度,第一光路平移棱镜430的安装高度大于光合波器440、光隔离器450、以及光纤耦合器460的安装高度。在将激光器410、准直透镜420和第一光路平移棱镜430嵌入在电路板300的第一安装通孔320内后,使得激光器410和准直透镜420位于电路板300的背面侧,光合波器440、光隔离器450、光纤耦合器460位于电路板300的正面侧,而第一光路平移棱镜430的一部分位于电路板300的背面侧、另一部分位于电路板300的正面侧。如此,可减小光发射组件400与电路板300在空间上的重叠区域。
半导体制冷器470放置在第一安装面4110上,多个激光器410设置在半导体制冷器470上。激光器410包括激光芯片411和垫片412,激光芯片411位于垫片412上,垫片412设置在半导体制冷器470上。与每个激光器410对应的准直透镜420也设置在半导体制冷器470上,且准直透镜420设置在激光器410的出光方向上。第二安装面4120上设置有第一光路平移棱镜430。该第一光路平移棱镜430垂直固定于第二安装面4120上,且第一光路平移棱镜430的第一反射面431远离第二安装面4120,并靠近激光器410;第一光路平移棱镜430的第二反射面432靠近第二安装面4120。如此,通过第一光路平移棱镜430将位于电路板300背面侧的激光光束反射至电路板300正面侧。光合波器440、光隔离器450与光纤耦合器460沿着激光器410的出光方向排布。
第一发射壳体401还包括第一固定孔4140。第一固定孔4140位于第三安装面4130远离第二安装面4120的一侧。光纤耦合器460穿过该第一固定孔4140,并通过第一内部光纤601与第一光纤适配器701相连接。如此,透过光隔离器450的复合光束射入光纤耦合器460内,经由光纤耦合器460耦合至第一内部光纤601内。
光纤耦合器460的外侧壁与第一固定孔4140的内侧壁密封连接。当将配置有光模块的交换机沉浸在制冷液(如,氟化液,FC-40)中进行散热时,制冷液不会从第一固定孔4140进入到第一发射壳体401的容纳腔中,避免了光发射组件400中的光学元器件被制冷液腐蚀。在一些实施例中,光纤耦合器460与第一固定孔4140采用胶水进行密封。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对光纤耦合器460与第一固定孔4140进行粘接,且能够长期在氟化液中稳定工作。
在装配光发射组件400时,首先将半导体制冷器470安装在第一安装面4110上,并将激光器410固定在半导体制冷器470上;然后将第一光路平移棱镜430固定在第二安装面4120上;之后将光合波器440、光隔离器450、光纤耦合器460按照激光器410的出光方向独立地固定在第三安装面4130上;最后将准直透镜420沿激光器410的出光方向以有源耦合的方式固定在第一安装面4110上。有源耦合指的是在激光芯片411通电且发光的状态下,对准直透镜420进行贴装,同时检测内部光纤601和602中的耦合效率,优化准直透镜420的位置。
在将半导体制冷器470、激光器410、准直透镜420、第一光路平移棱镜430、光合波器440、光隔离器450、以及光纤耦合器460固定在第一发射壳体401中后,将第一发射壳体401反向安装在电路板300的正面上。即,第一发射壳体401的第一底面4014朝向上壳体201,第一发射壳体401的第一安装面4110、第二安装面4120与第三安装面4130朝向电路板300的正面。
在一些实施例中,将第一顶面4011与电路板300的正面密封连接。当将配置有光模 块的交换机沉浸在制冷液中进行散热时,制冷液不会从第一发射壳体401与电路板300正面之间的缝隙进入到第一发射壳体401的容纳腔中,避免了光发射组件400中的光学元器件被制冷液腐蚀。在一些实施例中,第一顶面4011与电路板300的正面通过胶水密封连接。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对第一发射壳体401与电路板300进行粘接,且能够长期在氟化液中稳定工作。
在将第一发射壳体401反向安装在电路板300的正面后,将第一发射盖板402密封安装在电路板300背面。第一发射盖板402覆盖在第一安装通孔320上,从而第一发射盖板402可以覆盖从第一安装通孔320伸出的激光器410、准直透镜420以及第一光路平移棱镜430。当将配置有光模块200的交换机沉浸在制冷液中进行散热时,制冷液不会从第一发射盖板402与电路板300背面之间的缝隙进入到第一发射壳体401的容纳腔中,避免了光发射组件400中的光学元器件被制冷液腐蚀。在一些实施例中,第一发射盖板402与电路板300的背面通过胶水密封连接。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对第一发射盖板402与电路板300进行粘接,且能够长期在氟化液中稳定工作。
如此,将第一发射壳体401密封连接于电路板300的正面,将第一发射盖板402密封连接于电路板300的背面,实现了第一发射壳体401、电路板300与第一发射盖板402的密封装配。
在一些实施例中,第一发射壳体401的第一底面4014包括向第一顶面4011延伸的第一发射放气孔4013。第一发射放气孔4013与第一发射壳体401的容纳腔相连通。在一些实施例中,该第一发射放气孔4013为锥形孔,在由第一底面4014朝向第一顶面4011的方向上,该锥形孔的直径尺寸逐渐减小,如此第一发射壳体401可通过该第一发射放气孔4013与外界连通。以保证在第一发射壳体401、电路板300、第一发射盖板402的密封装配过程中需要密封的各个位置不会由于空气膨胀而导致出现漏气孔。在将第一发射壳体401、电路板300与第一发射盖板402密封装配后,将第一发射壳体401中的第一发射放气孔4013进行封闭。
图14为根据一些实施例的一种光模块的散热通道图。如图14所示,将光发射组件400反向安装至电路板300的正面后,光发射组件400中第一发射壳体401的第一底面4014朝向上壳体201,并与上壳体201导热连接。将光发射组件400中的激光器410通过高频信号线330与电路板300正面的数字信号处理芯片310连接后,激光器410在偏置电流和高频信号的驱动下产生光信号,如此激光器410会产生热量。但是,激光器410的发光性能容易受到温度的影响,因此激光器410需在某一固定温度范围内工作。将激光器410放置在半导体制冷器470上,可以保证激光器410的工作温度,但这样的话热量会从激光器410转移至半导体制冷器470,因此需要将这些热量传导出去,以保证半导体制冷器470的制冷效率。
如图14所示,激光器410产生的热量会通过半导体制冷器470传导至第一发射壳体401,以保持激光器410的温度位于固定温度范围内。为提高光模块的散热性能,第一发射壳体401可采用钨铜或其他具有良好导热性的金属材料制成,并适当增加第一发射壳体401的质量以及其第一底面4014的面积,如此激光器410工作产生的热量可通过第一发射壳体401传导至上壳体201,并通过上壳体201散发出去,从而有效改善激光器410的散热效果。
光模块200还包括第一导热垫片。为方便将第一发射壳体401的热量传导至上壳体201,将第一导热垫片设置在第一发射壳体401的第一底面4014与上壳体201的内侧面之间。如此,第一发射壳体401的热量可以传导至第一导热垫片,第一导热垫片将热量传导至上壳体201,以有效改善散热效果。在一些实施例中,第一导热垫片为导热胶。通过导热胶,既能将第一发射壳体401粘贴于上壳体201的内侧面,又能将第一发射壳体401的热量传导至所述上壳体201。
在一些实施例中,光模块的主要热源除了激光器410外,还有数字信号处理芯片310。 该数字信号处理芯片310背向电路板300的侧面与上壳体201相接触。如此,数字信号处理芯片310工作产生的热量可被传导至上壳体201,以将数字信号处理芯片310产生的热量传导至光模块200的外部。
光模块200还包括第二导热垫片。为方便将数字信号处理芯片310的热量传导至上壳体201,第二导热垫片设置在数字信号处理芯片310与上壳体201的内侧面之间。如此,数字信号处理芯片310产生的热量被传导至第二导热垫片,第二导热垫片将热量传导至上壳体201,以有效改善散热效果。
图15为根据一些实施例的一种光模块的监控光路剖视图。如图15所示,激光器410在电路板300传输的偏置电流、高频信号的驱动下发射激光光束,为监测激光器410的发射光功率,电路板300还包括光探测器350,光探测器350设置在电路板300的背面。光探测器350位于第一安装通孔320远离金手指301的一侧,且该光探测器350的光敏面朝向激光器410的出光方向。光探测器350被配置为采集激光器410发射的前向光,并将采集到的数据发送至电路板300,来实现对激光器410前向出光功率的监控。
将光探测器350贴装在第一安装通孔320远离金手指301的一侧时,可使光探测器350的光敏面与第一安装通孔320的内侧壁相平齐,以方便对光探测器350进行定位;也可使光探测器350的光敏面突出于第一安装通孔320的内侧壁,以减小光探测器350的光敏面与第一反射面431之间的距离,使得光探测器350能够尽可能多地采集透过第一反射面431的激光光束。
在一些实施例中,利用第一光路平移棱镜430的第一反射面431的透光特性,使少部分准直光束漏过第一反射面431,并射向光探测器350的光敏面,使得光探测器350能够接收到部分光束,从而得到激光器410的发射光功率。
例如,第一光路平移棱镜430的第一反射面431朝向激光器410的出光方向,被配置为将激光器410产生的一路激光光束分裂为两束光,一束光(通常占激光器总功率的95%)被第一反射面431反射至第二反射面432,以将激光光束由电路板300的背面侧反射至电路板300的正面侧,另一束光透过第一反射面431射入光探测器350的光敏面,通过该光敏面接收激光器410发射的激光光束。
光探测器350设置在电路板300的背面上时,可使光探测器350中光敏面的中心轴线与激光器410的中心轴线相重合,并将光探测器350通过表面组装技术(Surface Mounted Technology,SMT)安装于电路板300的背面,使得透过第一反射面431的光束尽可能地射入光探测器350内。
在一些实施例中,电路板300包括4个光探测器350,每个光探测器350与一个激光器410对应设置。如此,每个光探测器350采集一个激光器410发射的激光光束中透过第一反射面431的部分光束,并测得相应激光器410的前向出光功率。
光探测器350接收的是有一定面积的平行光,因此光探测器350的装配位置精度要求低,装配更加容易。将第一光路平移棱镜430中第一反射面431的透光区域与光探测器350的光敏面对齐后,即可使得光探测器350能够采集到透过第一反射面431的激光光束。
光探测器350具有阴极和阳极。将光探测器350固定在电路板300的背面上时,阴极可以通过焊接或者导电胶粘接等方式固定在电路板300的接地金属层上。光探测器350的阳极与阴极相对设置,阳极通过打线工艺与电路板300电连接,进而实现光探测器350与电路板300的电连接。
图16为根据一些实施例的一种光模块中光接收组件的结构图,图17为根据一些实施例的一种光模块中光接收组件的另一角度结构图;图18为根据一些实施例的一种光模块中光接收组件与电路板的局部装配剖视图。如图16、图17和图5所示,光接收组件500与第二光纤适配器702通过第二内部光纤602相连接,第二光纤适配器702接收的来自光模块200外部的光信号通过第二内部光纤602传输至光接收组件500,以实现一束复合光束的接收。
如图16、图17和图18所示,光接收组件500包括接收壳体501以及设置在接收壳体501中的光分波器520、透镜阵列530、反射棱镜540与光准直器550。与第二光纤适配器 702连接的第二内部光纤602插入光准直器550内,通过光准直器550将来自光模块200外部的光信号传输至光分波器520,再通过光分波器520将一束复合光束解复用为4路激光光束;4路激光光束通过透镜阵列530分别会聚至反射棱镜540;4路激光光束在反射棱镜540的反射面处发生反射,将平行于电路板300正面的激光光束反射为垂直于电路板300正面的激光光束,并使得反射后的激光光束射入电路板300上的光接收器380(例如,光接收器为PIN二极管或雪崩二极管),以实现光的接收。
接收壳体501包括接触面5140以及与接触面5140对应设置的连接面5110。接触面5140朝向上壳体201,且与上壳体201导热连接。由于上壳体201与光网络终端100中的散热器107导热连接,因此将光接收组件500倒装在电路板300上时,光模块200的散热效果更好。
光准直器550包括套管551、单模光纤法兰552与准直透镜553,单模光纤法兰552和准直透镜553插入在套管551内。第二内部光纤602插入在单模光纤法兰552内,并与准直透镜553相对设置。准直透镜553被配置为将第二内部光纤602传输的来自光模块200外部的光束转换为准直光束。
接收壳体501包括第一插孔5150。光准直器550穿过该第一插孔5150,并通过第二内部光纤602与第二光纤适配器702相连接。如此,透过光准直器550的复合光束射入光分波器520内,经由反射棱镜540反射至光接收器380。
光准直器550的外侧壁与第一插孔5150的内侧壁密封连接。当将配置有光模块的交换机沉浸在制冷液(如,氟化液,FC-40)中进行散热时,制冷液不会从第一插孔5150进入到接收壳体501的安装槽中,避免了光接收组件500中的光学元器件被制冷液腐蚀。在一些实施例中,光准直器550与第一插孔5150采用胶水进行密封。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对光准直器550与第一插孔5150进行粘接,且能够长期在氟化液中稳定工作。
光分波器520的入光面朝向准直透镜553的出光面,被配置为将准直透镜553输出的一路准直光束解复用为4路激光光束,从而将包含多个不同波长的光束分开。光分波器520输出4路不同波长的光束,该4路不同波长的光束分别射入透镜阵列530中的相应透镜内,以将4路不同波长的光束会聚至反射棱镜540的反射面上。反射棱镜540设置在电路板300的光接收器380的正上方,反射棱镜540将4路不同波长的光束分别反射至相应的光接收器380内,通过光接收器380将光信号转换为电信号。
电路板300的跨阻放大器通过电路走线与光接收器380相连接,光接收器380首先将接收到的光信号转换为高频电流信号,然后将该高频电流信号传输给跨阻放大器;跨阻放大器将该高频电流信号转换为高频电压信号,并对高频电压信号进行放大,再经由高频信号线330将高频电压信号传输给数字信号处理芯片310。数字信号处理芯片310提取高频电压信号中的数据,再将该数据经由金手指301传送至光网络终端100。
在本公开一些实施例中,所述跨阻放大器的一端通过电路走线与光接收器380连接、另一端通过高频信号线330与数字信号处理芯片310连接。由光接收器380转换得到的高频电流信号经跨阻放大器转化为高频电压信号并放大后,经由高频信号线330传输给数字信号处理芯片310进行处理。
在一些实施例中,光接收组件也可采用基于阵列波导光栅(Arrayed Waveguide Grating,AWG)技术的光分波器件以实现相同的光分波效果。
在一些实施例中,将光准直器550、光分波器520、透镜阵列530与反射棱镜540依次固定在接收壳体501中,组装成一个预装配件。然后将该预装配件以有源耦合的方式反向安装在电路板300上。即,接收壳体501的接触面5140朝向上壳体201,接收壳体501的连接面5110朝向电路板300的正面。
在一些实施例中,将连接面5110与电路板300的正面密封连接。当将配置有光模块的交换机沉浸在制冷液中进行散热时,制冷液不会从接收壳体501与电路板300正面之间的缝隙进入到接收壳体501的安装槽中,避免了光接收组件500中的光学元器件被制冷液腐蚀。在一些实施例中,连接面5110与电路板300的正面通过胶水密封连接。该胶水例 如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对接收壳体501与电路板300进行粘接,且能够长期在氟化液中稳定工作。
在一些实施例中,接收壳体501的接触面5140包括向连接面5110延伸的接收放气孔5130。该接收放气孔5130与接收壳体501的安装槽相连通。在一些实施例中,该接收放气孔5130为锥形孔,在由接触面5140朝向连接面5110的方向上,该锥形孔的直径尺寸逐渐减小,如此接收壳体501可通过该接收放气孔5130与外界连通。以保证在接收壳体501与电路板300的密封装配过程中需要密封的各个位置不会由于空气膨胀而导致出现漏气孔。在将接收壳体501与电路板300密封装配后,将接收壳体501中的接收放气孔5130进行封闭。
需要说明的是,本公开并不限于上文所记载的示例。即,也可以对上文中的示例进行适当改变。下面将对代表性的变形例进行说明。在以下的变形例的说明中,仅对与上述示例不同的部分进行说明。另外,在上述示例和变形例中,对彼此相同或等同的部件标注相同的附图标记。因此,在以下对变形例的说明中,关于具有与上述示例相同的附图标记的构成要素,只要不存在技术上的矛盾或特别的追加说明,均可相应援引上述示例中的说明。
图19为根据一些变形例的一种光模块中光发射组件、光接收组件、电路板与内部光纤的装配示意图,图20为根据一些变形例的一种光模块中光发射组件的局部结构图,图21A为根据一些变形例的一种光模块中光发射组件的剖视图;图21B为根据一些变形例的一种光模块中光发射组件与电路板的局部装配剖视图。如图19、图20、图21A和图21B所示,光发射组件400包括第二发射壳体403和第二发射盖板404,第二发射壳体403包括容纳腔和位于容纳腔中的安装面。将第二发射壳体403的安装面背向电路板300的正面,并使多个激光器410位于电路板300的正面侧的安装方式被称为光发射组件400的正装方式。将光发射组件400正装在电路板300的正面上时,激光器410、准直透镜420、光合波器440、第二光路平移棱镜480、光隔离器450、光纤耦合器460和半导体制冷器470设置在第二发射壳体403的安装面上。第二发射盖板404位于电路板300的正面侧,并覆盖在第二发射壳体403上。
将光发射组件400正装在电路板300上时,半导体制冷器470设置在第二发射壳体403的安装面上,激光器410设置在半导体制冷器470远离第二发射壳体403安装面的表面。半导体制冷器470被配置为将激光芯片411产生的热量传导至第二发射壳体403,通过第二发射壳体403和光模块200的下壳体202向光模块200外部导出。
此外,将光发射组件400正装在电路板300上时,第二光路平移棱镜480设置在激光器410的出光方向上,用来反射激光芯片411发出的位于电路板300的正面侧且平行于电路板300正面的一路激光光束,并将该路激光光束向与电路板300的正面远离的方向平移一定距离,使得第二光路平移棱镜480后面的光学元器件(光隔离器450、光纤耦合器460等)均位于电路板300的正面侧,并与电路板300的正面保持适当间隙。这样就避免了这些光学元器件与电路板300之间的位置冲突,从而可以尽量减小电路板300中第二安装通孔360的面积,增加了电路板300上电子元器件的排布面积,使得电路板300的布线更加容易。
图22为根据一些变形例的一种光模块中电路板的结构图,图23A为根据一些变形例的一种光模块中光发射组件的装配结构图,图23B为根据一些变形例的一种光模块中光发射组件的分解结构图,图24A至图24C为根据一些变形例的一种光模块中发射壳体的结构图。如图22至图24C所示,电路板300包括贯穿该电路板300的正面和背面的第二安装通孔360;第二安装通孔360位于电路板300一侧的边缘处,与光发射组件400在电路板300上所处的位置相对应。第二发射壳体403包括卡接部4035以及位于卡接部4035和第二发射壳体403的第二底面4034之间的卡槽4033。光发射组件400的卡槽4033与电路板300的第二安装通孔360配合,以使得电路板300卡接在卡接部4035和第二发射壳体403的第二底面4034之间。
卡接部4035包括三个子卡接部,分别为第一子卡接部40351、第二子卡接部40352和第三子卡接部40353接,第二子卡接部40352与第三子卡接部40353相对设置,且第一子 卡接部40351的一端与第二子卡接部40352连接、另一端与第三子卡接部40353连接。卡槽4033包括三个子卡槽,分别为第一子卡槽40331、第二子卡槽40332和第三子卡槽40333,第二子卡槽40332与第三子卡槽40333相对设置,且第一子卡槽40331的一端与第二子卡槽40332连通、另一端与第三子卡槽40333相连通。
将电路板300卡接在卡接部4035和第二发射壳体403的第二底面4034之间后,电路板300位于第二安装通孔360周围的部分分别伸入第一子卡槽40331、第二子卡槽40332与第三子卡槽40333中,电路板300的正面与第二发射壳体403的第二底面4034固定,电路板300的背面与第一子卡接部40351、第二子卡接部40352和第三子卡接部40353固定。
如图21B和图24A所示,第二发射壳体403包括相对的第二顶面4031和第二底面4034,第二顶面4031具有与第二发射壳体403的容纳腔连通的开口。第二发射壳体403的安装面包括依次连接的第一安装面4310、第二安装面4320与第三安装面4330,以便承载激光器410、准直透镜420、光合波器440、第二光路平移棱镜480、光隔离器450、光纤耦合器460、以及半导体制冷器470。第一安装面4310、第二安装面4320与第三安装面4330设置在第二发射壳体403的容纳腔内,且均平行于第二底面4034。第二安装面4320从第三安装面4330朝向第二底面4034凹陷,第一安装面4310从第二安装面4320朝向第二底面4034凹陷。第一安装面4310距离第二底面4034的尺寸小于第二安装面4320距离第二底面4034的尺寸,第二安装面4320距离第二底面4034的尺寸小于第三安装面4310距离第二底面4034的尺寸,使得第一安装面4310、第二安装面4320、第三安装面4330形成台阶面。
在将光发射组件400安装在电路板300上时,第二发射壳体403的第二底面4034与电路板300的正面相抵接,第二顶面4031比第二底面4034更远离电路板300。激光器410和准直透镜420固定在第一安装面4310上,半导体制冷器470固定在第一安装面4310上,激光器410和准直透镜420固定在半导体制冷器470上。光合波器440和第二光路平移棱镜480固定在第二安装面4320上。光隔离器450和光纤耦合器460固定在第三安装面4330上。这样使得第二光路平移棱镜480位于光合波器440和光隔离器450之间。但并不局限于此,也可以使第二光路平移棱镜480位于准直透镜420和光合波器440之间,此时激光器410和准直透镜420固定在第一安装面4310上、第二光路平移棱镜480固定在第二安装面4320上、光合波器440、光隔离器450和光纤耦合器460固定在第三安装面4330上。
在将电路板300卡接在卡接部4035和第二发射壳体403的第二底面4034之间后,第一安装面4310位于电路板300的背面侧,第二安装面4320与第三安装面4330均位于电路板300的正面侧。激光器410中的激光芯片411与电路板300的正面平齐,以便使电路板300通过打线工艺与激光芯片411电连接,从而驱动激光芯片411发出位于电路板300的正面侧且平行于电路板300正面的一路激光光束。
为使电路板300通过打线工艺与激光芯片411电连接,第二发射壳体403还包括缺口4032,缺口4032位于第一安装面4310远离第二安装面4320的一侧,并贯通第二底面4034。在将电路板300卡接在卡接部4035和第二发射壳体403的第二底面4034之间后,电路板300与缺口4032对应的部分与激光芯片411通过打线工艺电连接。由于激光芯片411与电路板300的正面平齐,因此激光芯片411与电路板300之间的连接线最短,从而保证了优良的高频信号传输性能。
在一些实施例中,将第二发射壳体403的第二底面4034与电路板300的正面密封连接。当将配置有光模块200的交换机沉浸在制冷液中进行散热时,制冷液不会从第二发射壳体403与电路板300正面之间的缝隙进入到第二发射壳体403的容纳腔中,避免了光发射组件400中的光学元器件被制冷液腐蚀。在一些实施例中,第二底面4034与电路板300的正面通过胶水密封连接。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对第二发射壳体403与电路板300进行粘接,且能够长期在氟化液中稳定工作。
在将第二发射壳体403正向安装在电路板300的正面后,将第二发射盖板404密封安 装在第二发射壳体403的第二顶面4031处。第二发射盖板404覆盖在第二发射壳体403的容纳腔上,从而第二发射盖板404可以覆盖激光器410、准直透镜420以及第二光路平移棱镜480等光学元器件。当将配置有光模块200的交换机沉浸在制冷液中进行散热时,制冷液不会从第二发射盖板404与第二发射壳体403之间的缝隙进入到第二发射壳体403的容纳腔中,避免了光发射组件400中的光学元器件被制冷液腐蚀。在一些实施例中,第二发射盖板404与第二发射壳体403的第二顶面4031通过胶水密封连接。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对第二发射盖板404与第二发射壳体403进行粘接,且能够长期在氟化液中稳定工作。
在一些实施例中,第二发射盖板404包括向第二发射壳体403的第二底面4034延伸的第二发射放气孔4041。第二发射放气孔4041的作用与第一发射放气孔4013相同,此处不做赘述。此外,本变形例中的光接收组件的结构和作用与前述的光接收组件的结构和作用相同,此处也不做赘述。
图25A为根据另一些变形例的一种光模块中光发射组件的结构图,图25B为图25A所示光发射组件中第一发射壳体的结构图,图25C为图25A所示光发射组件的局部光路图。如图25A、25B和25C所示,光发射组件400包括第一发射壳体401、第一发射盖板402、以及设置在第一发射壳体401内的激光器410、准直透镜420、第一光路平移棱镜430、光隔离器450、发射光纤阵列组件490与半导体制冷器470,光发射组件400倒装在电路板300的正面上。光发射组件400省略了光合波器440、光纤耦合器460和第一内部光纤601,4路光信号通过4根内部发射光纤810传输至光模块200的外部。
第一发射壳体401的安装面包括依次连接的第一安装面4110、第二安装面4120与第三安装面4130。第一安装面4110、第二安装面4120与第三安装面4130设置在第一发射壳体401的容纳腔内,且均平行于第一底面4014。第二安装面4120从第一安装面4110朝向第一底面4014凹陷,第三安装面4130与第二安装面4120平齐(但并不局限于此,第三安装面4130也可以从第二安装面4120朝向第一底面4014凹陷)。第三安装面4130距离第一底面4014的尺寸等于(也可以小于)第二安装面4120距离第一底面4014的尺寸,第二安装面4120距离第一底面4014的尺寸小于第一安装面4110距离第一底面4014的尺寸,使得第一安装面4110、第二安装面4120、第三安装面4130形成台阶面。激光器410和准直透镜420固定在第一安装面4110上。第一光路平移棱镜430固定在第二安装面4120上。光隔离器450和发射光纤阵列组件490固定在第三安装面4130上。
第一发射壳体401还包括第二固定孔4150。第二固定孔4150位于第三安装面4130远离第二安装面4120的一侧。发射光纤阵列组件490位于该第二固定孔4150处,并封堵该第二固定孔4150。如此,将发射光纤阵列组件490固定在第三安装面4130后,与发射光纤阵列组件490连接的4根内部发射光纤810穿过该第二固定孔4150与相应的光纤适配器相连接。
在一些实施例中,第二安装面4120在与激光器410的出光方向垂直的方向上的尺寸大于第三安装面4130在该方向上的尺寸,第三安装面4130在与激光器410的出光方向垂直的方向上的尺寸与第二固定孔4150在该方向上的尺寸相同。将发射光纤阵列组件490固定在第三安装面4130时,发射光纤阵列组件490的外侧壁与第二固定孔4150的内侧壁密封连接。
当将配置有光模块的交换机沉浸在制冷液(如,氟化液,FC-40)中进行散热时,制冷液不会从第二固定孔4150进入到第一发射壳体401的容纳腔中,避免了光发射组件400中的光学元器件被制冷液腐蚀。在一些实施例中,发射光纤阵列组件490与第二固定孔4150采用胶水进行密封。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对发射光纤阵列组件490与第二固定孔4150进行粘接,且能够长期在氟化液中稳定工作。
图26A为根据另一些变形例的光模块中发射光纤阵列组件与光隔离器的装配示意图,图26B为根据一些变形例的光模块中发射光纤阵列组件与光隔离器的分解示意图。如图26A和图26B所示,发射光纤阵列组件490包括第一基板4901、第二基板4902与支撑板 4903,第一基板4901固定在第一发射壳体401的安装面上,且第一基板4901具有并行设置有多排凹槽(例如,V型槽)4904,发射光纤阵列组件490的每一根内部发射光纤810均嵌在相应的凹槽4904内。
将每一根内部发射光纤810与凹槽4904通过胶水连接后,将第二基板4902覆盖在第一基板4901上,并将支撑板4903覆盖在第二基板4902上。第二基板4902与第一基板4901、以及支撑板4903与第二基板4902之间的接触面均可以通过胶水固定在一起。在第二基板4902与第一基板4901通过胶水固定的过程中,胶水会自然充满第一基板4901的每一个凹槽中,这大大强化了第二基板4902与第一基板4901胶合后二者之间的密封效果。
在一些实施例中,支撑板4903与第一顶面4011平齐。当将第一顶面4011与电路板300的正面密封连接时,支撑板4903也与电路板300的正面密封连接。支撑板4903在第一发射壳体401的第一底面4014上的正投影面积小于第二基板4902在第一底面4014上的正投影面积,与第二基板4902相比,支撑板4903的制作工艺较为简单,因此可以降低成本。但并不局限于此,在一些实施例中,发射光纤阵列组件490不包括支撑板4903,此时第二基板4902与电路板300的正面密封连接,使光发射组件400能够长期在氟化液中稳定工作。
图27A为根据另一些变形例的一种光模块中光接收组件的结构图,图27B为图27A所示光接收组件中接收壳体的结构图,图27C为图27A所示光接收组件的局部光路图。如图27A、图27B和图27C所示,光接收组件500包括接收壳体501以及设置在接收壳体501中的接收光纤阵列组件560。光接收组件500省略了光分波器520、透镜阵列530、反射棱镜540与光准直器550,4路光信号通过4根内部接收光纤820传输至光模块200的内部。
接收壳体501包括第二插孔5160。接收光纤阵列组件560位于该第二插孔5160处,并封堵该第二插孔5160。接收光纤阵列组件560的外侧壁与第二插孔5160的内侧壁密封连接。当将配置有光模块的交换机沉浸在制冷液(如,氟化液,FC-40)中进行散热时,制冷液不会从第二插孔5160进入到接收壳体501的安装槽中,避免了光接收组件500中的光学元器件被制冷液腐蚀。在一些实施例中,接收光纤阵列组件560与第二插孔5160采用胶水进行密封。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对接收光纤阵列组件560与第二插孔5160进行粘接,且能够长期在氟化液中稳定工作。
接收光纤阵列组件560包括第三基板5601、第四基板5602与支撑块5603,支撑块5603固定在接收壳体501中,第三基板5601固定在支撑块5603上,且第三基板5601具有并行设置有多排凹槽(例如,V型槽),接收光纤阵列组件560的每一根内部接收光纤820均嵌在相应的凹槽内。
将每一根内部接收光纤820与凹槽通过胶水连接后,将第四基板5602覆盖在第三基板5601上。支撑块5603与第三基板5601、以及第四基板5602与第三基板5601之间的接触面均可以通过胶水固定在一起。在第四基板5602与第三基板5601通过胶水固定的过程中,胶水会自然充满第三基板5601的每一个凹槽中,这大大强化了第四基板5602与第三基板5601胶合后二者之间的密封效果。
将连接面5110与电路板300的正面密封连接。当将配置有光模块的交换机沉浸在制冷液中进行散热时,制冷液不会从接收壳体501与电路板300正面之间的缝隙进入到接收壳体501的安装槽中,避免了光接收组件500中的光学元器件被制冷液腐蚀。在一些实施例中,连接面5110与电路板300的正面通过胶水密封连接。该胶水例如为环氧树脂类胶水,例如紫外光固化胶或结构固化胶。此类胶水流动性好、可靠性高,易于对接收壳体501与电路板300进行粘接,且能够长期在氟化液中稳定工作。
在一些实施例中,第四基板5602与连接面5110平齐。当将连接面5110与电路板300的正面密封连接时,第四基板5602也与电路板300的正面密封连接。支撑块5603在接收壳体501的接触面5140上的正投影面积小于第三基板5601在接触面5140上的正投影面积,与第三基板5601相比,支撑块5603的制作工艺较为简单,因此可以降低成本。但并 不局限于此,在一些实施例中,接收光纤阵列组件560不包括支撑块5603,此时第三基板5601与电路板300的正面密封连接。
图28A为根据一些实施例的一种光模块的局部结构图;图28B为根据一些实施例的另一种光模块的局部结构图。如图28A和图28B所示,在一些实施例中,光模块200还包括光纤保护器610,光纤保护器610包括第一光纤保护器611和第二光纤保护器612。第一内部光纤601嵌入在第一光纤保护器611中。光模块200的壳体具有第一通孔,第一光纤保护器611位于该第一通孔中,能够降低第一内部光纤601从该第一通孔中穿出时制冷液通过该第一通孔进入到光模块200的壳体内部,从而污染光模块200内部的部件的风险,保证光模块200长期稳定工作。第二内部光纤602嵌入在第二光纤保护器612中。光模块200的壳体具有第二通孔,第二光纤保护器612位于该第二通孔中,能够降低第二内部光纤602从该第二通孔中穿出时制冷液通过该第二通孔进入到光模块200的壳体内部,从而污染光模块200内部的部件的风险,保证光模块200长期稳定工作。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本公开的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权利要求的限制。

Claims (24)

  1. 一种光模块,包括:
    壳体,所述壳体包括上壳体和下壳体;
    电路板,位于所述上壳体和所述下壳体之间,所述电路板具有朝向所述上壳体的正面和朝向所述下壳体的背面,所述电路板包括第一安装通孔,所述第一安装通孔贯通所述电路板的正面和背面;
    光发射组件,安装于所述电路板上,且被配置为将来自所述电路板的电信号转换成光信号,并将所述光信号传输至所述光模块的外部;其中,所述光发射组件包括:
    第一发射壳体,位于所述电路板的正面侧,覆盖所述第一安装通孔,且与所述电路板的正面密封连接;
    第一发射盖板,位于所述电路板的背面侧,覆盖所述第一安装通孔,且与所述电路板的背面密封连接。
  2. 根据权利要求1所述的光模块,其中,所述第一发射壳体包括容纳腔,位于所述容纳腔中的安装面、以及位于所述容纳腔两侧的相对的第一顶面和第一底面,所述第一顶面具有与所述第一发射壳体的容纳腔连通的开口;
    所述安装面位于所述第一顶面与所述第一底面之间,所述第一顶面与所述电路板的正面密封连接,所述第一底面与所述上壳体导热连接。
  3. 根据权利要求2所述的光模块,其中,所述光发射组件还包括:
    激光器,安装在所述安装面上,穿过所述第一安装通孔并位于所述电路板的背面侧;
    第一光路平移棱镜,安装在所述安装面上,所述第一光路平移棱镜穿过所述第一安装通孔使其一部分位于所述电路板的背面侧、另一部分位于所述电路板的正面侧,所述第一光路平移棱镜被配置为将所述激光器发出的位于所述电路板的背面侧的激光光束平移至所述电路板的正面侧;
    光纤耦合器,安装在所述安装面上,被配置为将所述第一光路平移棱镜平移至所述电路板的正面侧的激光光束传输至所述光模块的外部;
    所述第一发射壳体还包括第一固定孔,所述光纤耦合器的外侧壁与所述第一固定孔的内侧壁密封连接。
  4. 根据权利要求3所述的光模块,其中,所述第一发射壳体的安装面包括:
    第一安装面,所述激光器安装在所述第一安装面上;
    第二安装面,自所述第一安装面朝向所述第一底面凹陷,所述第一光路平移棱镜安装在所述第二安装面上;
    第三安装面,自所述第二安装面朝向所述第一底面凹陷,所述光纤耦合器安装在所述第三安装面上。
  5. 根据权利要求3或4所述的光模块,所述光发射组件包括多个激光器,每个激光器发出一路激光光束,所述多个激光器沿与所述多个激光器的出光方向垂直的方向并排设置;
    所述光发射组件还包括至少一个光合波器,所述至少一个光合波器安装在所述第一发射壳体的安装面上且位于所述第一光路平移棱镜和所述光纤耦合器之间,被配置为将所述第一光路平移棱镜反射的多路激光光束复合成至少一束复合光束,并将所述至少一束复合光束传输至所述光纤耦合器。
  6. 根据权利要求1至5任一项所述的光模块,其中,所述第一发射壳体的第一底面包括朝向所述第一顶面延伸的第一发射放气孔,所述第一发射放气孔与所述第一发射壳体的容纳腔相连通。
  7. 根据权利要求2所述的光模块,其中,所述光发射组件还包括:
    激光器,安装在所述安装面上,穿过所述第一安装通孔并位于所述电路板的背面侧;
    第一光路平移棱镜,安装在所述安装面上,所述第一光路平移棱镜穿过所述第一安装通孔使其一部分位于所述电路板的背面侧、另一部分位于所述电路板的正面侧,所述第一光路平移棱镜被配置为将所述激光器发出的位于所述电路板的背面侧的激光光束平移至所述电路板的正面侧;
    发射光纤阵列组件,安装在所述安装面上,被配置为将所述第一光路平移棱镜平移至所述电路板的正面侧的激光光束传输至所述光模块的外部;
    所述第一发射壳体还包括第二固定孔,所述发射光纤阵列组件位于所述第二固定孔处并封堵所述第二固定孔,所述发射光纤阵列组件的外侧壁与所述第二固定孔的内侧壁密封连接。
  8. 根据权利要求7所述的光模块,其中,所述第一发射壳体的安装面包括:
    第一安装面,所述激光器安装在所述第一安装面上;
    第二安装面,自所述第一安装面朝向所述第一底面凹陷,所述第一光路平移棱镜安装在所述第二安装面上;
    第三安装面,与所述第二安装面平齐,所述发射光纤阵列组件安装在所述第三安装面上。
  9. 根据权利要求7或8所述的光模块,其中,所述发射光纤阵列组件包括:
    第一基板,固定在所述第一发射壳体的安装面上,所述第一基板具有并行设置有多排凹槽,所述发射光纤阵列组件的多根内部发射光纤分别位于所述多排凹槽内;
    第二基板,固定在所述第一基板上,且与所述第一基板密封连接,并且在所述第一发射壳体的所述第一顶面与所述电路板的正面密封连接时,所述第二基板也与所述电路板的正面密封连接。
  10. 根据权利要求1所述的光模块,还包括光接收组件,所述光接收组件被配置为将来自所述光模块外部的光信号转换为电信号,并将所述电信号传输至所述电路板;
    其中,所述光接收组件包括接收壳体,所述接收壳体包括安装槽,以及位于所述安装槽两侧的相对的接触面和连接面,所述连接面具有与所述接收壳体的安装槽连通的开口;
    所述连接面与所述电路板的正面密封连接,所述接触面与所述上壳体导热连接。
  11. 根据权利要求10所述的光模块,其中,所述光接收组件还包括:
    光准直器,位于所述安装槽内,被配置为接收来自所述光模块外部的激光光束;
    反射棱镜,位于所述安装槽内,被配置为将所述激光光束反射至所述电路板上;
    光接收器,位于所述安装槽内并位于所述电路板上,被配置为将所述激光光束转换为电流信号
    所述光接收壳体还包括第一插孔,所述光准直器的外侧壁与所述第一插孔的内侧壁密封连接。
  12. 根据权利要求10所述的光模块,其中,所述光接收组件还包括接收光纤阵列组件,所述接收光纤阵列组件位于所述安装槽内,被配置为接收来自所述光模块外部的激光光束并将所述激光光束反射至所述电路板上;
    所述接收壳体还包括第二插孔,所述接收光纤阵列组件位于所述第二插孔处并封堵所述第二插孔,所述接收光纤阵列组件的外侧壁与所述第二插孔的内侧壁密封连接。
  13. 根据权利要求12所述的光模块,其中,所述接收光纤阵列组件包括:
    第三基板,固定在所述安装槽内,所述第三基板具有并行设置有多排凹槽,所述接收光纤阵列组件的多根内部接收光纤分别位于所述多排凹槽内;
    第四基板,固定在所述第三基板上,且与所述第三基板密封连接,并且在所述接收壳体的所述连接面与所述电路板的正面密封连接时,所述第四基板也与所述电路板的正面密封连接。
  14. 一种光模块,包括:
    壳体,所述壳体包括上壳体和下壳体;
    电路板,位于所述上壳体和所述下壳体之间,所述电路板具有朝向所述上壳体的正面和朝向所述下壳体的背面,所述电路板包括第二安装通孔,所述第二安装通孔贯通所述电路板的正面和背面;
    光发射组件,安装于所述电路板上,且被配置为将来自所述电路板的电信号转换成光信号,并将所述光信号传输至所述光模块的外部;
    其中,所述光发射组件包括:
    第二发射壳体,所述第二发射壳体的一部分位于所述电路板的正面侧、且与所述电路板的正面密封连接,所述第二发射壳体的另一部分位于所述电路板的背面侧、且与所述下壳体导热连接;
    第二发射盖板,位于所述第二发射壳体上,且与所述第二发射壳体密封连接。
  15. 根据权利要求14所述的光模块,其中,所述第二发射壳体包括容纳腔,位于所述容纳腔中的安装面、以及位于所述容纳腔两侧的相对的第二顶面和第二底面,所述第二顶面具有与所述第二发射壳体的容纳腔连通的开口;
    所述安装面位于所述第二顶面与所述第二底面之间,所述第二底面与所述电路板的正面密封连接,所述第二顶面与所述第二发射盖板密封连接。
  16. 根据权利要求15所述的光模块,其中,所述第二发射壳体还包括卡接部以及位于所述卡接部和所述第二底面之间的卡槽,所述卡槽与所述第二安装通孔配合,以使得所述电路板卡接在所述卡接部和所述第二底面之间。
  17. 根据权利要求16所述的光模块,其中,所述光发射组件还包括:
    激光器,安装在所述安装面上,并位于所述电路板的背面侧;
    第二光路平移棱镜,安装在所述安装面上,并位于所述电路板的正面侧,所述第二光路平移棱镜被配置为将所述激光器发出的位于所述电路板的正面侧的激光光束向远离所述电路板的正面的方向平移;
    光纤耦合器,安装在所述安装面上,被配置为将所述第二光路平移棱镜平移后的激光光束传输至所述光模块的外部;
    所述第二发射壳体还包括第一固定孔,所述光纤耦合器的外侧壁与所述第一固定孔的内侧壁密封连接。
  18. 根据权利要求17所述的光模块,其中,所述第二发射壳体的安装面包括:
    第一安装面,所述激光器安装在所述第一安装面上;
    第二安装面,自所述第一安装面朝向所述第二顶面凸起,所述第二光路平移棱镜安装在所述第二安装面上;
    第三安装面,自所述第二安装面朝向所述第二顶面凸起,所述光纤耦合器安装在所述第三安装面上。
  19. 根据权利要求17所述的光模块,其中,所述第二发射壳体还包括缺口,所述缺口贯通所述第二底面,在将所述电路板卡接在所述卡接部和所述第二底面之间后,所述电路板与所述缺口对应的部分与所述激光器电连接。
  20. 根据权利要求14至19任一项所述的光模块,其中,所述第二发射盖板包括朝向所述第二发射壳体的所述第二底面延伸的第二发射放气孔,所述第二发射放气孔与所述第二发射壳体的容纳腔相连通。
  21. 根据权利要求14所述的光模块,还包括光接收组件,所述光接收组件被配置为将来自所述光模块外部的光信号转换为电信号,并将所述电信号传输至所述电路板;
    其中,所述光接收组件包括接收壳体,所述接收壳体包括安装槽,以及位于所述安装槽两侧的相对的接触面和连接面,所述连接面具有与所述接收壳体的安装槽连通的开口;
    所述连接面与所述电路板的正面密封连接,所述接触面与所述上壳体导热连接。
  22. 根据权利要求21所述的光模块,其中,所述光接收组件还包括:
    光准直器,位于所述安装槽内,被配置为接收来自所述光模块外部的激光光束;
    反射棱镜,位于所述安装槽内,被配置为将所述激光光束反射至所述电路板上;
    光接收器,位于所述安装槽内并位于所述电路板上,被配置为将所述激光光束转换为电流信号;
    所述接收壳体还包括第一插孔,所述光准直器的外侧壁与所述第一插孔的内侧壁密封连接。
  23. 根据权利要求21所述的光模块,其中,所述光接收组件还包括接收光纤阵列组件,所述接收光纤阵列组件位于所述安装槽内,被配置为接收来自所述光模块外部的激光光束并将所述激光光束反射至所述电路板上;
    所述接收壳体还包括第二插孔,所述接收光纤阵列组件位于所述第二插孔处并封堵所述第二插孔,所述接收光纤阵列组件的外侧壁与所述第二插孔的内侧壁密封连接。
  24. 根据权利要求23所述的光模块,其中,所述接收光纤阵列组件包括:
    第三基板,固定在所述安装槽内,所述第三基板具有并行设置有多排凹槽,所述接收光纤阵列组件的多根内部接收光纤分别位于所述多排凹槽内;
    第四基板,固定在所述第三基板上,且与所述第三基板密封连接,并且在所述接收壳体的所述连接面与所述电路板的正面密封连接时,所述第四基板也与所述电路板的正面密封连接。
PCT/CN2022/121888 2022-03-30 2022-09-27 光模块 WO2023184906A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210331564.8 2022-03-30
CN202220776501.9U CN217085337U (zh) 2022-03-30 2022-03-30 一种光模块
CN202210331564.8A CN114675383A (zh) 2022-03-30 2022-03-30 一种光模块
CN202220740523.X 2022-03-30
CN202220776501.9 2022-03-30
CN202220740523.XU CN217543461U (zh) 2022-03-30 2022-03-30 一种光模块
CN202220735904.9U CN220543163U (zh) 2022-03-30 2022-03-30 一种光模块
CN202220735904.9 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023184906A1 true WO2023184906A1 (zh) 2023-10-05

Family

ID=88198952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121888 WO2023184906A1 (zh) 2022-03-30 2022-09-27 光模块

Country Status (1)

Country Link
WO (1) WO2023184906A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301763A (ja) * 1994-05-02 1995-11-14 Matsushita Electric Ind Co Ltd 光結合器及び光ファイバ増幅器
CN112965190A (zh) * 2021-04-12 2021-06-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN215813458U (zh) * 2021-08-31 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895035U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895036U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN216013740U (zh) * 2021-08-31 2022-03-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN114675383A (zh) * 2022-03-30 2022-06-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN217085337U (zh) * 2022-03-30 2022-07-29 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301763A (ja) * 1994-05-02 1995-11-14 Matsushita Electric Ind Co Ltd 光結合器及び光ファイバ増幅器
CN112965190A (zh) * 2021-04-12 2021-06-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN215813458U (zh) * 2021-08-31 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895035U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895036U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN216013740U (zh) * 2021-08-31 2022-03-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN114675383A (zh) * 2022-03-30 2022-06-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN217085337U (zh) * 2022-03-30 2022-07-29 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN217085337U (zh) 一种光模块
CN215895036U (zh) 一种光模块
CN113721331B (zh) 一种光模块
US20230258883A1 (en) Optical module
CN117693697A (zh) 光模块
CN114675383A (zh) 一种光模块
CN216013740U (zh) 一种光模块
WO2023185220A1 (zh) 一种光模块
WO2023035711A1 (zh) 光模块
WO2023184906A1 (zh) 光模块
WO2022193733A1 (zh) 一种光模块
CN115016074B (zh) 一种光模块
CN114779412A (zh) 一种光模块
CN220543163U (zh) 一种光模块
CN217543461U (zh) 一种光模块
WO2023184922A1 (zh) 光模块
WO2023029707A1 (zh) 光模块
WO2023045423A1 (zh) 光模块
CN219936149U (zh) 光模块
WO2022206169A1 (zh) 光模块
WO2023093130A1 (zh) 光模块
WO2023082783A1 (zh) 光模块
CN115453694B (zh) 一种光模块
CN115032749B (zh) 一种光模块
WO2024093070A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934724

Country of ref document: EP

Kind code of ref document: A1