WO2023082783A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023082783A1
WO2023082783A1 PCT/CN2022/115929 CN2022115929W WO2023082783A1 WO 2023082783 A1 WO2023082783 A1 WO 2023082783A1 CN 2022115929 W CN2022115929 W CN 2022115929W WO 2023082783 A1 WO2023082783 A1 WO 2023082783A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
cavity
electrically connected
opening
tube
Prior art date
Application number
PCT/CN2022/115929
Other languages
English (en)
French (fr)
Inventor
张晓磊
刘学儒
王扩
刘星
杨行勇
孙飞龙
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122765496.XU external-priority patent/CN216248434U/zh
Priority claimed from CN202221382207.6U external-priority patent/CN217360388U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023082783A1 publication Critical patent/WO2023082783A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, in particular to an optical module.
  • optical communication technology the optical module is a tool for realizing mutual conversion of photoelectric signals, and is one of the key components in optical communication equipment.
  • the transmission rate of optical modules continues to increase.
  • the optical module includes a housing, a circuit board and a light emitting component. Both the circuit board and the light emitting assembly are located in the housing; the light emitting assembly is electrically connected to the circuit board and is configured to convert electrical signals from the circuit board into optical signals, and convert the The optical signal is transmitted to the outside of the optical module.
  • the light emitting assembly includes a tube shell, a tube cap and a light emitter;
  • the tube shell has a first opening and a second opening oppositely arranged, and a first cavity communicating with the first opening and the second opening so that the circuit board or the first electrical connector electrically connected to the circuit board enters the first cavity through the second opening;
  • the tube cap is arranged on the tube shell with the On the surface of one side of the first opening, and has a second cavity, the second cavity communicates with the first cavity through the first opening;
  • the light emitter is arranged in the second cavity
  • the body is electrically connected to the circuit board protruding into the first cavity or the first electrical connector electrically connected to the circuit board through a wire bonding process, so as to emit the optical signal.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Fig. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments.
  • Fig. 4 is an exploded structure diagram of an optical module according to some embodiments.
  • Fig. 5A is a structural diagram of an optical module without a housing and an unlocking component according to some embodiments
  • Fig. 5B is a structural diagram of another optical module without the housing and unlocking components according to some embodiments.
  • Fig. 6A is a structural diagram of a light emitting component in an optical module according to some embodiments.
  • Fig. 6B is an exploded structural diagram of a light emitting component in an optical module according to some embodiments.
  • 6C is a cross-sectional view of a light emitting component in an optical module according to some embodiments.
  • Fig. 7A is a partial structural diagram of a light emitting component in an optical module according to some embodiments.
  • Figure 7B is a front view of Figure 7A
  • FIG. 8 is an electrical connection diagram of a light emitting component in an optical module according to some embodiments.
  • Fig. 9A is a structural diagram of a package in an optical module according to some embodiments.
  • 9B is a cross-sectional view of a package in an optical module according to some embodiments.
  • FIG. 10 is a partially assembled cross-sectional view of a light emitting component and a first electrical connector in an optical module according to some embodiments
  • Fig. 11 is an electrical connection diagram between a light emitting component and a first electrical connector in an optical module according to some embodiments
  • 12A is an assembly diagram of a light receiving component and a second electrical connector in an optical module of the related art
  • Fig. 12B is a cross-sectional view of the light receiving assembly shown in Fig. 12A;
  • Fig. 13A is an assembly diagram of a light receiving component and a second electrical connector in an optical module according to some embodiments
  • Fig. 13B is an assembly diagram of another angle between the light receiving component and the second electrical connector in an optical module according to some embodiments.
  • Fig. 14A is an exploded structure diagram of a light receiving component in an optical module according to some embodiments.
  • Fig. 14B is a cross-sectional view of a light-receiving component in an optical module according to some embodiments.
  • Fig. 14C is a cross-sectional view from another angle of a light receiving component in an optical module according to some embodiments.
  • Fig. 15A is an exploded structure diagram of a socket and a second electrical connector in an optical module according to some embodiments
  • Fig. 15B is an exploded structure diagram of another angle between the socket and the second electrical connector in an optical module according to some embodiments.
  • Fig. 16 is an electrical connection diagram of a socket and a second electrical connector in an optical module according to some embodiments
  • Fig. 17A is a return loss simulation curve diagram of an optical receiving component in an optical module according to some embodiments.
  • Fig. 17B is a simulation graph of differential loss of a light receiving component in an optical module according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • optical communication technology In optical communication technology, light is used to carry information to be transmitted, and the optical signal carrying information is transmitted to information processing equipment such as a computer through optical fiber or optical waveguide and other information transmission equipment to complete the information transmission. Because optical signals have passive transmission characteristics when they are transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (such as an optical modem) through the electrical port. It is mainly used to realize power supply, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission and grounding, etc.; optical network terminals transmit electrical signals to computers through network cables or wireless fidelity technology (Wi-Fi) and other information processing equipment.
  • I2C Inter-Integrated Circuit
  • Wi-Fi wireless fidelity technology
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • Optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long-distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach thousands of kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: routers, switches, computers, mobile phones, tablet computers, televisions, and so on.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing (housing), and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 A two-way electrical signal connection is established.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200, so the optical network terminal 100, as the host computer of the optical module 200, can monitor the optical module 200 jobs.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101; electrical signal connection.
  • the optical module 200 implements mutual conversion between optical signals and electrical signals, so that a connection is established between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input to the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input to the optical fiber 101 . Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the remote server 1000 establishes a two-way signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, a radiator 107 disposed on the cage 106, and an electrical circuit board disposed inside the cage 106.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has a protruding structure such as fins for increasing the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the heat generated by the optical module 200 is conducted to the cage 106 and then diffused through the radiator 107 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101 .
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a housing (shell), a circuit board 300 disposed in the housing, a light emitting component 400 and a light receiving component 500 .
  • the optical module 200 includes the light emitting component 400 but does not include the light receiving component 500
  • the optical module 200 includes the light receiving component 500 but does not include the light emitting component 400 .
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing is generally square.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 covers the lower case 202 on the two lower side panels 2022 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the two upper side plates perpendicular to the cover plate 2011 are combined with the two lower side plates 2022 to cover the upper case 201 on the lower case 202 .
  • the direction of the line connecting the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may not be consistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the left end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the right end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger of the circuit board 300 extends from the electrical port 204, and is inserted into the upper computer (for example, the optical network terminal 100); the opening 205 is an optical port, which is configured to be connected to an external optical fiber 101, so that The optical fiber 101 connects the light emitting component 400 and the light receiving component 500 inside the optical module 200 .
  • the combination of the upper housing 201 and the lower housing 202 is used to facilitate the installation of components such as the circuit board 300, the light emitting assembly 400, and the light receiving assembly 500 into the housing, and the upper housing 201 and the lower housing 202 support these Components form the package for protection.
  • components such as the circuit board 300 , the light emitting component 400 and the light receiving component 500 , it facilitates the deployment of positioning components, heat dissipation components, and electromagnetic shielding components of these components, and facilitates automatic production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking part 203 located on the outer wall of its housing, and the unlocking part 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer walls of the two lower side panels 2022 of the lower housing 202 , and includes an engaging component matching a cage of the upper computer (eg, the cage 106 of the optical network terminal 100 ).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, and then Change the connection relationship between the engaging component and the host computer to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission and grounding.
  • the electronic components may include, for example, capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip can include, for example, a Microcontroller Unit (MCU), a laser driver chip, a transimpedance amplifier (Transimpedance Amplifier, TIA), a limiting amplifier (Limiting amplifier), a clock data recovery chip (Clock and Data Recovery, CDR), a power supply Management chip (Power Management Chip), digital signal processing (Digital Signal Processing, DSP) chip.
  • MCU Microcontroller Unit
  • TIA Transimpedance Amplifier
  • Limiting amplifier a limiting amplifier
  • CDR clock and Data Recovery
  • Power Management Chip Digital Signal Processing, DSP
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function, such as the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the cage of the host computer in the electrical connector.
  • the circuit board 300 also includes a gold finger 301 formed on the surface of its end, and the gold finger 301 is composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106 , and is conductively connected with the electrical connector in the cage 106 by the gold finger 301 .
  • Gold fingers 301 can be set on only one side of the circuit board 300 (such as the upper surface shown in FIG. 4 ), or can be set on the upper and lower sides of the circuit board 300, so as to meet the occasions where the number of pins is large.
  • the golden finger 301 is configured to establish an electrical connection with a host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • Fig. 5A is a structural diagram of an optical module according to some embodiments without a casing and an unlocking component
  • Fig. 5B is a structural diagram of another optical module according to some embodiments without a casing and an unlocking component.
  • the light emitting component 400 is electrically connected with the circuit board 300 and configured to convert the electrical signal from the circuit board 300 into an optical signal and transmit the optical signal to the external optical fiber 101 .
  • the light receiving component 500 is connected with the circuit board 300 and is configured to convert the optical signal from the external optical fiber 101 into an electrical signal and transmit the electrical signal to the circuit board 300 .
  • the electrical connection between the light emitting assembly 400 and the circuit board 300 is not limited, and the light emitting assembly 400 and the circuit board 300 may be electrically connected directly or through an electrical connector.
  • the electrical connection method between the light receiving component 500 and the circuit board 300 the light receiving component 500 and the circuit board 300 may be electrically connected directly, or may be electrically connected through another electrical connector.
  • the above-mentioned electrical connectors are not limited to flexible circuit boards, and may also be mediums for transmitting signals such as ceramic circuit boards and aluminum substrates, as long as the communication between the light-emitting component 400 and the circuit board 300 and between the light-receiving component 500 and the circuit board 300 can be realized. electrical signal transmission.
  • the optical module 200 further includes a first electrical connector 601 and a second electrical connector 602 .
  • the first electrical connector 601 is arranged between the light emitting component 400 and the circuit board 300, one end of the first electrical connector 601 is connected to the light emitting component 400, and the other end is connected to the circuit board 300, that is, the light emitting component 400 is connected through the first electrical connection.
  • Component 601 is electrically connected to circuit board 300 .
  • the second electrical connector 602 is arranged between the light receiving component 500 and the circuit board 300, one end of the second electrical connector 602 is connected to the light receiving component 500, and the other end is connected to the circuit board 300, that is, the light receiving component 500 is connected through the second electrical connection.
  • Component 602 is electrically connected to circuit board 300 .
  • Fig. 6A is a structural diagram of a light emitting component in an optical module according to some embodiments
  • Fig. 6B is an exploded structural diagram of a light emitting component in an optical module according to some embodiments
  • Fig. 6C is a structural diagram of a light emitting component in an optical module according to some embodiments A cross-sectional view of a light emitting component in an optical module.
  • the light emitting assembly 400 includes a light emitter 430 and a first lens 440 .
  • the light emitter 430 includes at least one light outlet, and the light output direction of the light emitter 430 is parallel to the front of the circuit board 300; It should be noted that, the type of the light emitter 430 is not limited.
  • the optical transmitter 430 may be an electro-absorption modulated laser (Electro-absorption Modulated Laser, EML for short) chip.
  • EML Electro-absorption Modulated Laser
  • the EML chip 430 includes a distributed feedback (Distributed Feedback, DFB) laser 431 and an electro absorption (Electro Absorption, EA) modulator 432.
  • the light emitter 430 has a light outlet, and the light outlet is located on the side of the light emitter 430 facing the first lens 440 (ie, the side of the light emitter 430 away from the circuit board 300 ).
  • the first lens 440 is configured to converge the light beam emitted by the light emitter 430 towards the light outlet of the first lens 440 , so that the light beam emitted by the light emitter 430 is converging light, so as to facilitate coupling into the external optical fiber 101 .
  • the light emitting assembly 400 also includes a light detector.
  • the light detector and the first lens 440 are respectively located on opposite sides of the light emitter 430 along its light emitting direction.
  • the light emitter 430 has two oppositely arranged light outlets; one light outlet is located on the side of the light emitter 430 facing the first lens 440; the other light outlet is located on the side of the light emitter 430 away from the first lens 440 , that is, on the side of the light emitter 430 facing the light detector.
  • the light detector is configured to receive the light beam emitted from the light exit of the light emitter 430 away from the first lens 440 to detect the optical power of the light emitter.
  • the light emitted by the light emitter 430 enters the external optical fiber 101 after being converged by the first lens 440 , and at the same time, the light detector detects the luminous power of the light emitter 430 to ensure the consistency of the emitted light power of the light emitter 430 .
  • the type of the photodetector is not limited.
  • the light detectors are photodiodes.
  • the light emitting component 400 adopts a transistor outline (Transistor Outline, TO) package, also known as a coaxial package. But not limited thereto, the light emitting component 400 may also be packaged in a chip on board (Chip On Board, COB), box type (BOX) and other packaging forms.
  • TO Transistor Outline
  • COB Chip On Board
  • BOX box type
  • the light emitting component 400 further includes a tube shell 420 and a tube cap 410 covering the tube shell 420 .
  • the cap 410 includes a second cavity 411 inside the cap 410 .
  • the package 420 includes a first opening 4211 and a second opening 4212 oppositely arranged along the light emitting direction of the light emitter 430; the first opening 4211 is located on the side surface of the package 420 away from the circuit board 300; the second opening 4212 is located on the surface of the package 420 is on a side surface facing the circuit board 300 ; the first opening 4211 and the second opening 4212 are both recessed toward the inside of the tube case 420 .
  • the tube cap 410 is disposed on the surface of the tube shell 420 having the first opening 4211 , and is in contact with the surface of the tube shell 420 .
  • the second cavity 411 in the tube cap 410 is formed, and the optoelectronic components such as the first lens 440 and the light emitter 430 are disposed in the second cavity 411 .
  • the first lens 440 is embedded in the second cavity 411 of the tube cap 410 and is located on a side of the light emitter 430 away from the tube shell 420 .
  • the light emitting component 400 further includes a substrate 450 , such as a ceramic substrate 450 .
  • the ceramic substrate 450 is disposed in the second cavity 411 of the tube cap 410 and located on a side of the first lens 440 facing the first opening 4211 of the tube case 420 .
  • the light emitter 430 is fixed on the ceramic substrate 450 and is electrically connected to the circuit board 300 through the first opening 4211 and the second opening 4212 .
  • the tube case 420 further includes a fixing boss 422 .
  • the fixing boss 422 is located on the same side of the tube shell 420 as the first opening 4211 on the tube shell 420 .
  • the fixing boss 422 is configured to fix the ceramic substrate 450 .
  • the fixing boss 422 is disposed on the surface of the tube shell 420 facing the tube cap 410 and protrudes from the surface of the side along the light emitting direction of the light emitter 430 , and is located in the second cavity of the tube cap 410 411 , so that the cap 410 is set on the fixed boss 422 .
  • the ceramic substrate 450 is fixed on the fixing boss 422 .
  • the light emitting assembly 400 further includes a fixing plate 460 .
  • the fixing plate 460 is disposed between the fixing boss 422 and the ceramic substrate 450 .
  • the fixing boss 422 , the fixing plate 460 and the ceramic substrate 450 are arranged in sequence along a direction perpendicular to the front of the circuit board 300 .
  • the fixing plate 460 is configured to fix the ceramic substrate 450 on the fixing boss 422 .
  • the fixing plate 460 has a first surface and a second surface oppositely disposed along a direction parallel to the front of the circuit board 300 .
  • the first surface of the fixing plate 460 is fixed on the fixing boss 422
  • the ceramic substrate 450 is fixed on the second surface of the fixing plate 460 . In this way, the ceramic substrate 450 is fixed on the fixing boss 422 through the fixing plate 460 .
  • the casing 420 further includes a first cavity 4213 disposed between the first opening 4211 and the second opening 4212 , the first cavity 4213 is located in the casing 420 and communicates with both the first opening 4211 and the second opening 4212 .
  • one end of the first electrical connector 601 enters the first cavity 4213 of the casing 420 through the second opening 4212 , and the other end of the first electrical connector 601 is connected to the circuit board 300 electrical connection.
  • the second cavity 411 of the tube cap 410 communicates with the first cavity 4213 of the tube shell 420, and one end of the first electrical connector 601 is electrically connected to the light emitter 430 through a wire bonding process, thereby realizing the light emitter 430 is electrically connected to the circuit board 300 .
  • the circuit board 300 transmits the driving signal from itself to the light emitter 430 in the cap 410 through the first electrical connection 601 , so as to drive the light emitter 430 to emit light signals.
  • the packaging method of the light emitting component 400 is changed, and a tube shell 420 is added, the inside of the tube shell 420 has a first cavity 4213, and the tube cap 410 has a second cavity 411 , the second cavity 411 is provided with a light emitter 430, the first electrical connector 601 is inserted into the first cavity 4213, the light emitter 430 is directly electrically connected to the first electrical connector 601 through a wire bonding process, that is, the circuit board 300 transmits the driving signal for the light emitter 430 through the first electrical connector 601, instead of transmitting the driving signal through pins in the related art, so that the optical module 200 has good high-frequency transmission characteristics; and through the tube cap 410 and the tube shell 420 Packaging various optoelectronic components (for example, the light emitter 430 , the first lens 440 , and the ceramic substrate 450 ) enables the optical module 200 to have a better electromagnetic shielding effect.
  • various optoelectronic components for example, the light emitter 430 , the
  • the circuit board 300 can also be directly inserted into the first cavity 4213 of the tube case 420 through the second opening 4212 .
  • the second cavity 411 of the cap 410 communicates with the first cavity 4213 of the tube case 420 , and one end of the circuit board 300 protruding into the first cavity 4213 is electrically connected to the light emitter 430 through wire bonding.
  • the circuit board 300 directly transmits the driving signal from itself to the light emitter 430 in the cap 410 to drive the light emitter 430 to emit light signals.
  • the circuit board 300 can also be directly inserted into the first cavity 4213.
  • the optical transmitter 430 is directly electrically connected to the circuit board 300 through wire bonding, that is, the circuit board 300 directly transmits the driving signal for the optical transmitter 430, instead of transmitting the driving signal through pins in the related art, and can also make the optical module 200 have good high-frequency transmission characteristics; and through the cap 410 and the shell 420, various photoelectric Packaged components (for example, the light emitter 430 , the first lens 440 , and the ceramic substrate 450 ) can also make the optical module 200 have a better electromagnetic shielding effect.
  • optical module 200 including the first electrical connector 601 The following description will be made by taking the optical module 200 including the first electrical connector 601 as an example.
  • the light emitting assembly 400 further includes an interface circuit 470 .
  • the connection circuit 470 is disposed in the first cavity 4213 of the tube case 420 and is configured to electrically connect the light emitter 430 to the first electrical connector 601 .
  • one end of the connection circuit 470 is electrically connected to the light emitter 430 through the first opening 4211 of the package 420;
  • the other end of the connection circuit 470 is electrically connected to one end of the first circuit connection member 601 located in the first cavity 4213 .
  • the connecting circuit 470 includes a first signal pad 471 and a second signal pad 472 oppositely disposed along the light emitting direction of the light emitter 430 .
  • the first signal pad 471 is disposed at one end of the connection circuit 470 facing the first opening 4211 , and is configured to electrically connect the light emitter 430 to the connection circuit 470 through a wire bonding process.
  • the second signal pad 472 is disposed at one end of the connection circuit 470 facing the second opening 4212 and is configured to electrically connect the connection circuit 470 to the first electrical connector 601 through a wire bonding process.
  • the first electrical connector 601 includes a pad 6011 disposed at one end facing the second opening 4212 . In this way, the light emitter 430 is electrically connected to the first signal pad 471 through the first opening 4211; The electrical connection between the light emitter 430 and the first electrical connection member 601 is realized.
  • the first signal pad 471 includes a data pad and a ground pad.
  • the data pad in the first signal pad 471 is electrically connected to one end of the light emitter 430 through a wire bonding process
  • the ground pad in the first signal pad 471 is connected to the other end of the light emitter 430 through a wire bonding process. One end is electrically connected.
  • connection circuit 470 when the connection circuit 470 is disposed in the first cavity 4213 of the package 420 , the location of the connection circuit 470 is not limited.
  • the connecting circuit 470 can be completely set in the first cavity 4213; a part of the connecting circuit 470 can also be set in the first cavity 4213, and the other part can be set in the second cavity 411 of the cap 410, so by punching
  • the light emitter 430 is electrically connected to the connection circuit 470 by a wire process, the length of the bonding wire between the light emitter 430 and the connection circuit 470 can be reduced. For example, as shown in FIG.
  • connection circuit 470 one end of the connection circuit 470 is disposed in the first cavity 4213 of the tube shell 420, and the other end is disposed in the second cavity 411 of the tube cap 410 through the first opening 4211.
  • the second signal pad 472 of the connecting circuit 470 is located in the first cavity 4213
  • the first signal pad 471 is located in the second cavity 411 .
  • the interface circuit 470 further includes an interface body 473 and a protrusion 474 (eg, a ceramic protrusion 474 ).
  • the connecting body 473 is provided with a first signal pad 471 , a second signal pad 472 and a ceramic protrusion 474 .
  • the ceramic protrusion 473 is embedded in the first opening 4211 of the package 420 and located between the first signal pad 471 and the second signal pad 472 . For example, as shown in FIG.
  • the first signal pad 471 is located on the side of the ceramic bump 474 facing the ceramic substrate 450
  • the second signal pad 472 is located on the side of the ceramic bump 474 away from the ceramic substrate 450
  • the connecting body 473 A part of the ceramic protrusion 474 is filled in the first opening 4211, that is, the sum of the size of the part of the connecting body 473 filled in the first opening 4211 and the ceramic protrusion 474 in the direction perpendicular to the front surface of the circuit board 300 is less than Or equal to the size of the first opening 4211 in this direction.
  • the part of the connecting circuit 470 located in the second cavity 411 It is fixed on the fixed boss 422 .
  • one end of the connection circuit 470 provided with the first signal pad 471 is fixed on the fixing boss 422, and one end of the connection circuit 470 provided with the second signal pad 472 is inserted into the first opening 4211 of the tube case 420.
  • Fig. 7A is a partial structural diagram of a light emitting component in an optical module according to some embodiments
  • Fig. 7B is a front view of Fig. 7A
  • Fig. 8 is an electrical connection diagram of a light emitting component in an optical module according to some embodiments
  • the light emitting component 400 further includes a semiconductor cooler 480 , a thin film resistor 490 , a first capacitor 4100 and a thermistor 4110 .
  • the semiconductor cooler 480 is disposed on the fixing boss 422 and located between the fixing boss 422 and the fixing plate 460 .
  • the fixing plate 460 is disposed on the surface of the peltier cooler 480 away from the fixing boss 422 .
  • the peltier cooler 480 is configured to conduct the heat generated by the light emitter 430 to the fixed boss 422 of the tube shell 420 , and then export the heat to the outside of the light emitting assembly 400 through the tube shell 420 .
  • the heat generated by the operation of the light emitter 430 is transferred to the semiconductor cooler 480 through the ceramic substrate 450 and the fixed plate 460, and the heat transferred to the semiconductor cooler 480 and the heat generated by the operation of the semiconductor cooler 480 are transferred to the fixed boss 422 and then transferred to the package 420 , so that the heat dissipation efficiency of the light emitting component 400 can be improved.
  • the peltier cooler 480 includes a first heat exchange plate 4801 and a second heat exchange plate 4802 disposed opposite to each other, and a plurality of heat conduction columns located between the first heat exchange plate 4801 and the second heat exchange plate 4802 4803.
  • the first heat exchange plate 4801 and the second heat exchange plate 4802 are connected by a plurality of heat conduction columns 4803 .
  • a plurality of heat conducting columns 4803 may be arranged in an array, which may be made of semiconductor material.
  • the first heat exchange plate 4801 of the semiconductor cooler 480 is disposed on the fixing boss 422
  • the fixing plate 460 is disposed on the second heat exchange plate 4802 of the semiconductor cooler 480 .
  • the peltier 480 includes a cathode 481 and an anode 482 . Both the cathode 481 and the anode 482 are arranged on the second heat exchange plate 4802 of the semiconductor cooler 480, and are respectively electrically connected to corresponding pads in the first signal pad 471 through a wire bonding process, so as to drive the semiconductor cooler 480 to work and Refrigeration. But in some embodiments, the peltier cooler 480 can be omitted. It should be noted that when the connection circuit 470 is omitted, the cathode 481 and the anode 482 are configured to be electrically connected to the pad 6011 at one end of the first electrical connection member 601 through a wire bonding process.
  • the ceramic substrate 450 is covered with a gold-plated layer 453 .
  • the ceramic substrate 450 includes a first signal plating layer 451 .
  • the first signal plating layer 451 is disposed on the gold plating layer 453 of the ceramic substrate 450 and extends from a side away from the connection circuit 470 to a side close to the connection circuit 470 along the light emission direction of the light emitter 430 .
  • the first signal plating layer 451 is configured to electrically connect the end of the light emitter 430 away from the connecting circuit 470 to corresponding pads in the first signal pads 471 of the connecting circuit 470 through a wire bonding process. It should be noted that when the connection circuit 470 is omitted, the first signal plating layer 451 is configured to electrically connect the light emitter 430 to the pad 6011 at one end of the first electrical connection member 601 through a wire bonding process.
  • the optical transmitter 430 is monolithically integrated with a DFB laser 431 and an EA modulator.
  • the part of the optical transmitter 430 other than the DFB laser 431 is called the EA modulator 432 .
  • One end of the EA modulator 432 is electrically connected to the end of the first signal plating layer 451 away from the connection circuit 470 through a wire bonding process, and the end of the first signal plating layer 451 close to the connection circuit 470 is connected to the first signal pad of the connection circuit 470 through a wire bonding process.
  • the data pads in 471 are electrically connected.
  • the length of the wiring between the first signal plating layer 451 and the light emitter 430 can be reduced, but also high-frequency signals can be transmitted for the EA modulator 432 in the light emitter 430 .
  • the other end of the EA modulator 432 can be directly electrically connected to the ground pad in the first signal pad 471 by bonding to form a loop connection of the EA modulator 432 in the light transmitter 430 . But not limited to this.
  • the thin film resistor 490 is disposed on the ceramic substrate 450 and is configured to electrically connect the other end of the EA modulator 432 to the first signal pad 471 of the connecting circuit 470 through a wire bonding process.
  • one end of the thin film resistor 490 is electrically connected to the other end of the EA modulator 432 through a wire bonding process, and the other end is electrically connected to the ground pad in the first signal pad 471 through a wire bonding process.
  • the thin film resistor 490 on the ceramic substrate 450 and the first signal plating layer 451 are respectively located on both sides of the light emitter 430 along the direction perpendicular to the light emitting direction of the light emitter 430, so that the light emitter 430 is connected in a circuit The total length of the bonded connection is reduced.
  • the thin film resistor 490 is located on the side of the light emitter 430 away from the first signal plating layer 451 along the direction perpendicular to the light emitting direction of the light emitter 430, and the first signal plating layer 451 is along the direction perpendicular to the light emitting direction of the light emitter 430.
  • the thin film resistor 490 includes a first pad 491 and a second pad 492 . The first pad 491 is set at the end of the thin film resistor 490 away from the connecting circuit 470 , and the second pad 492 is set at the end of the thin film resistor 490 close to the connecting circuit 470 .
  • the other end of the EA modulator 432 is electrically connected to the first pad 491 through a wire bonding process, and the second pad 492 is electrically connected to the ground pad in the first signal pads 471 through a wire bonding process.
  • the EA modulator 432 in the light emitter 430 is electrically connected to the first signal pad 471 through the transition of the thin film resistor 490 to connect the thin film resistor 490 into the loop connection of the EA modulator 432 .
  • the thin film resistor 490 can be omitted.
  • the first capacitor 4100 is disposed on the fixed board 460 and is configured to electrically connect the thin film resistor 490 to the first signal pad 471 of the connecting circuit 470 through a wire bonding process.
  • one end of the first capacitor 4100 is electrically connected to the second pad 492 of the thin film resistor 490 through a wire bonding process, and the other end is electrically connected to the ground pad of the first signal pad 471 through a wire bonding process.
  • the other end of the EA modulator 432 is electrically connected to the first pad 491 of the thin film resistor 490 through a wire bonding process
  • the second pad 492 is electrically connected to one end of the first capacitor 4100 through a wire bonding process
  • the other end of the first capacitor 4100 One end is electrically connected to the ground pad in the first signal pad 471 through a wire bonding process.
  • the EA region in the light emitter 430 is electrically connected to the first signal pad 471 through the transition of the thin film resistor 490 and the first capacitor 4100, so as to connect the thin film resistor 490 and the first capacitor 4100 to the EA modulator 432 loop connection.
  • the first capacitor 4100 can also be omitted.
  • one end of the EA modulator 432 in the optical transmitter 430 is electrically connected to one end of the first signal coating 451 through a wire bonding process, and the other end of the first signal coating 451 is connected to the first signal at one end of the connection circuit 470 through a wire bonding process.
  • the data pads in the pads 471 are electrically connected to transmit high-frequency signals for the EA modulator 432; the other end of the EA modulator 432 is electrically connected to the first pad 491 at one end of the thin-film resistor 490 through a wire bonding process, and the thin-film resistor 490 is electrically connected to the other end of the thin-film resistor 490.
  • the second pad 492 at one end is electrically connected to one end of the first capacitor 4100 on the fixed board 460 through a wire bonding process, and the other end of the first capacitor 4100 is connected to the first signal pad 471 at one end of the connecting circuit 470 through a wire bonding process.
  • the ground pads are electrically connected to form a return connection for the EA modulator 432 in the light transmitter 430 .
  • one end of the light emitter 430 close to the connecting circuit 470 may be directly electrically connected to corresponding pads in the first signal pads 471 through a wire bonding process.
  • the DFB laser 431 on the optical transmitter 430 (that is, the end of the optical transmitter 430 close to the connection circuit 470) is directly electrically connected to the ground pad in the first signal pad 471 through a wire bonding process to form the DFB laser 431 electrical connection. But not limited to this.
  • the ceramic substrate 450 further includes a second signal plating layer 452 .
  • the second signal plating layer 452 is also disposed on the gold plating layer 453 of the ceramic substrate 450 and is located on a side of the light emitter 430 close to the connection circuit 470 .
  • the second signal plating layer 452 is configured to electrically connect the DFB laser 431 on the light transmitter 430 to the ground pad in the first signal pad 471 through a wire bonding process.
  • the part of the gold-plated layer 453 of the ceramic substrate 450 that is not provided with the first signal plating layer 451 and the second signal plating layer 452 is electrically connected to the corresponding ground pad in the first signal pad 471 through a wire bonding process, thereby realizing DFB The electrical connection between the laser 431 and the connecting circuit 470 .
  • the connection circuit 470 is omitted, the second signal plating layer 452 is configured to electrically connect the light emitter 430 to the pad 6011 at one end of the first electrical connection member 601 through a wire bonding process.
  • the thermistor 4110 is disposed on the fixing board 460 and located on a side of the first capacitor 4100 close to the connection circuit 470 .
  • One end of the thermistor 4110 is electrically connected to the gold-plated layer 453 of the ceramic substrate 450 through a wire bonding process, and the other end is electrically connected to a corresponding ground pad in the first signal pads 471 through a wire bonding process. That is, one end of the DFB laser 431 on the optical transmitter 430 is electrically connected to one end of the second signal coating 452 through a wire bonding process, and the other end of the second signal coating 452 is connected to the corresponding signal in the first signal pad 471 through a wire bonding process.
  • the disk is electrically connected; the other end of the DFB laser 431 is electrically connected to the gold-plated layer 453 on the ceramic substrate 450 through a wire-bonding process, and the gold-plated layer 453 is electrically connected to one end of the thermistor 4110 through a wire-bonding process, and the other end of the thermistor 4110 It is electrically connected to the corresponding ground pad in the first signal pad 471 through a wire bonding process, so as to transmit a driving signal for the DFB laser 431 on the light transmitter 430 through the connecting circuit 470 .
  • Fig. 9A is a structural diagram of a package in an optical module according to some embodiments.
  • the tube case 420 further includes a cover plate 423 and a window 4214 .
  • the window 4214 is disposed on the surface of the side of the casing 420 that is adjacent to the first opening 4211 and the second opening 4212 , and the surface of this side is parallel to the front surface of the circuit board 300 .
  • the window 4214 communicates with the first cavity 4213 of the tube case 420 , and the cover plate 423 is connected to the window 4214 by covering.
  • the window can be opened.
  • 4214 check the installation position of the connecting circuit 470 and the first electrical connector 601 , and then cover the cover plate 423 on the window 4214 of the package 420 to seal the first cavity 4213 of the package 420 .
  • the tube case 420 further includes a limiting boss 4215 .
  • the limiting boss 4215 is arranged in the first cavity 4213 of the tube case 420, and is arranged corresponding to the first opening 4211; Extend to the first opening 4211 of the tube case 420 .
  • the limiting boss 4215 has a surface perpendicular to the front surface of the circuit board 300 .
  • the side surface of the limiting boss 4215 is called the upper surface of the limiting boss 4215 .
  • connection circuit 470 when the connection circuit 470 is inserted into the first cavity 4213 through the first opening 4211, the surface of the connection circuit 470 away from the ceramic substrate 450 is not limited to abut against the upper surface of the limiting boss 4215, but also It may be located on the side of the upper surface of the limiting boss 4215 facing the first opening 4211 and spaced from the upper surface of the limiting boss 4215 by a certain distance.
  • the surface of the first electrical connector 601 facing the ceramic substrate 450 is flush with the upper surface of the limiting boss 4215 Alignment, so as to limit the connecting circuit 470 inserted into the first cavity 4213 of the package 420 and the first electrical connector 601 .
  • Fig. 10 is a partial assembly cross-sectional view of a light emitting component and a first electrical connector in an optical module according to some embodiments
  • Fig. 11 is a cross-sectional view of a light emitting component and a first electrical connector in an optical module according to some embodiments Electrical connection diagram. As shown in FIG. 10 and FIG.
  • connection circuit 470 into the first cavity 4213 through the first opening 4211 at one end of the tube case 420, and fix the connection circuit 470 in the first opening 4211; fix the semiconductor refrigerator 480 On the fixed boss 422, fix the fixing plate 460 on the semiconductor cooler 480, fix the ceramic substrate 450 on the surface of the fixing plate 460 away from the semiconductor cooler 480, and fix the light emitter 430 on the ceramic substrate 450 away from the fixing plate 460; then one end of the EA modulator 432 in the light transmitter 430 is electrically connected to one end of the first signal coating 451 on the ceramic substrate 450 through a wire bonding process, and the other end of the first signal coating 451 is connected to the ceramic substrate 450 through a wire bonding process.
  • the data pads in the first signal pads 471 on the connection circuit 470 are electrically connected; then the other end of the EA modulator 432 in the optical transmitter 430 is electrically connected to the first pad 491 at one end of the thin film resistor 490 through a wire bonding process,
  • the second pad 492 at the other end of the thin film resistor 490 is electrically connected to one end of the first capacitor 4100 on the fixed board 460 through a wire bonding process, and the other end of the first capacitor 4100 is connected to the ground in the first signal pad 471 through a wire bonding process.
  • the pads are electrically connected, thereby realizing the electrical connection between the light emitter 430 and the connecting circuit 470 .
  • one end of the DFB laser 431 of the light transmitter 430 is electrically connected to one end of the second signal coating layer 452 through a wire bonding process, and the other end of the second signal coating layer 452 is connected to the corresponding one of the first signal pads 471 through a wire bonding process.
  • the signal pad is electrically connected;
  • the other end of the DFB laser 431 is electrically connected to the gold-plated layer 453 on the ceramic substrate 450 through a wire-bonding process, and the gold-plated layer 453 is electrically connected to one end of the thermistor 4110 through a wire-bonding process.
  • the other end is electrically connected to the corresponding ground pad in the first signal pad 471 through a wire bonding process, so as to transmit a driving signal for the DFB laser 431 of the light transmitter 430 through the connecting circuit 470 .
  • first electrical connector 601 into the first cavity 4213 through the second opening 4212 at one end of the tube case 420, connect the second signal pad 472 at one end of the connecting circuit 470 with the pad 6011 at one end of the first electrical connector 601
  • the one-to-one correspondence connection is used to realize the electrical connection between the connecting circuit 470 and the first electrical connector 601 , thus realizing the electrical connection between the first electrical connector 601 and the light emitter 430 .
  • the cap 410 and the case 420 may also be assembled non-airtightly, so as to realize the non-hermetic packaging of the light emitting component 400 .
  • the structure of the shell 420 can be adjusted and changed, as long as it can place the connecting circuit 470, the pad 6011 at one end of the first electrical connector 601 and other optoelectronic components in the first cavity 4213 of the shell 420, It only needs to make the light emitting component 400 have a better electromagnetic shielding effect.
  • the light emitting component 400 further includes a connection circuit 470
  • the package 420 has a first opening 4211, a second opening 4212 and a first cavity 4213, and the first opening 4211 and the second opening 4212 are connected with the first cavity 4213, the second opening 4212 allows the first electrical connector 601 to be inserted into the first cavity 4213;
  • the cap 410 is set on the first opening 4211 to form the second cavity 411;
  • the transmitter 430 is disposed in the second cavity 411, and the connecting circuit 470 is disposed in the first cavity 4213.
  • One end of the connecting circuit 470 is electrically connected to the light emitter 430 through the first opening 4211, and the other end is connected to the first electrical connector. 601 electrical connection.
  • the circuit board 300 can also transmit the driving signal to the optical transmitter 430 through the first electrical connector 601 and the connecting circuit 470, instead of transmitting the driving signal through pins in the related art, so that the optical module 200 has good high-frequency transmission characteristics ; and the optoelectronic components are packaged through the cap 410 and the shell 420, so that the optical module 200 has a better electromagnetic shielding effect.
  • FIG. 12A is an assembly diagram of a light receiving component and a second electrical connector in an optical module of the related art
  • FIG. 12B is a cross-sectional view of the light receiving component shown in FIG. 12A .
  • the photoreceiving assembly 500 of related art includes TO socket 501, TO cap 502, pin 503, light receiving chip 530, tube body 506 and adapter assembly 520; TO socket 501 and TO
  • the tube cap 502 is packaged and connected to form a sealed cavity; the pin 503 is set on the TO tube base 501, and the light receiving chip 530 is set in the sealed cavity formed by the TO tube base 501 and the TO tube cap 502, and through the wire bonding process and the pin One end of 503 is connected.
  • the second electrical connector 602 is arranged on the side of the TO tube base 501 away from the TO tube cap 502, and is connected to the other end of the pin 503 through a soldering process; one end of the tube body 506 is connected to the adapter assembly 520, and the other end is connected to the TO tube
  • the cap 502 is connected, and the tube body 506 connects the adapter assembly 520 and the TO cap 502 together, so that the optical signal input from the outside is transmitted to the TO cap 502 through the adapter assembly 520 .
  • the light receiving chip 530 is mounted on the TO socket 501, the light receiving chip 530 is first connected to one end of the pin 503 through a wire bonding process, and the other end of the pin 503 is connected to one end of the second electrical connector 602 through a soldering process , the other end of the second electrical connector 602 is electrically connected to the circuit board 300, and then the signal transmission path from the light receiving chip 530 to the circuit board 300 is formed, which will enable high-frequency signal transmission between the light receiving chip 530 and the circuit board 300 There are more discontinuities.
  • Fig. 13A is an assembly diagram of a light-receiving component and a second electrical connector in an optical module according to some embodiments
  • Fig. 13B is another assembly diagram of a light-receiving component and a second electrical connector in an optical module according to some embodiments Assembly drawing from one angle.
  • the light receiving assembly 500 includes an outer housing 510 and an adapter assembly 520 .
  • One end of the outer casing 510 is electrically connected to the second electrical connector 602 , and the other end is electrically connected to the adapter assembly 520 .
  • the outer casing 510 includes a tube base 511 , a tube body 512 and a third opening 513 .
  • the socket 511 is arranged on the side of the second electrical connector 602 away from the circuit board 300, and the tube body 512 is arranged on the tube
  • the seat 511 is away from the side of the second electrical connector 602 . That is, the tube base 511 and the tube body 512 are sequentially arranged along the light emitting direction of the light emitter 430 .
  • the third opening 513 is disposed on the surface of the outer casing 510 parallel to the front side of the circuit board 300 , and is located at the junction of the tube base 511 and the tube body 512 .
  • An end of the second electrical connection member 602 close to the tube base 511 extends into the tube base 511 of the outer housing 510 through the third opening 513 .
  • one end of the second electrical connector 602 is electrically connected to the outer casing 510 of the light receiving component 500 , and the other end is connected to the circuit board 300 .
  • the outer contour of the outer housing 510 is not limited, and it may be a housing with a rectangular parallelepiped structure, or a housing with other structures such as a cylinder.
  • the outer casing 510 is formed by casting using metal materials such as stainless steel. But not limited to this.
  • the adapter assembly 520 is disposed on the side of the outer casing 510 away from the second circuit connector 602 , that is, one end of the adapter assembly 520 is connected to the outer casing 510 .
  • the adapter assembly 520 is configured to transmit the optical signal from the outside of the optical module 200 to the outer casing 510 of the light receiving assembly 500 .
  • the adapter assembly 520 is disposed at the position of the optical port 205 of the optical module 200 , and the side of the adapter assembly 520 is matched with the housing of the optical module 200 , so that the adapter assembly 520 is connected to the external optical fiber 101 .
  • Figure 14A is an exploded structural view of a light receiving component in an optical module according to some embodiments
  • Figure 14B is a cross-sectional view of a light receiving component in an optical module according to some embodiments
  • Figure 14C is a cross-sectional view of a light receiving component in an optical module according to some embodiments A cross-sectional view of another angle of the light-receiving component in the optical module.
  • the outer housing 510 further includes a third cavity 514 inside the outer housing 510 .
  • the interior of the tube body 512 is hollow, and one end of the tube body 512 facing the second electrical connector 602 is connected to the tube base 511 .
  • the tube base 511 covers the end of the tube body 512 facing the second electrical connector 602 to form the third cavity 514 .
  • the inside of the adapter assembly 520 is also communicated with the third cavity 514 .
  • the stem 511 includes a notch 5111 (see FIG. 15A ), and the notch 5111 is disposed on a surface of the stem 511 parallel to the side of the circuit board 300 .
  • the notch 5111 forms a third opening 513 on the surface of the side of the outer casing 510, and the third opening 513 is connected with the third cavity 514.
  • the three cavities 514 communicate with each other so as to assemble the end of the second electrical connector 602 away from the circuit board 300 in the outer casing 510 .
  • the notch 5111 is not limited to be disposed on the surface of the tube base 511 parallel to the side of the circuit board 300 , and may also be disposed on the surface of the tube body 512 near the end of the second electrical connector 602 .
  • the tube base 511 is fixedly connected to the second electrical connector 602 , so that one end of the second electrical connector 602 can be inserted into the third cavity 514 of the outer shell 510 and fixed on the tube base 511 superior.
  • one end of the second electrical connector 602 ie, the end of the second electrical connector 602 fixed to the socket 511
  • the third surface of the end of the second electrical connector 602 is located on the side of the second electrical connector 602 away from the socket 511; One side, and fixedly connected with the tube base 511.
  • the fourth surface of the end of the second electrical connection member 602 is bonded and fixed to the socket 511 .
  • the fourth surface of the end of the second electrical connector 602 is fixedly connected to the socket 511 through thermally conductive silver glue.
  • the light receiving component 500 also includes a light receiving chip 530 .
  • the light-receiving chip 530 is disposed in the third cavity 514 of the housing 510 and located on the third surface of one end of the second electrical connector 602 .
  • the light-receiving chip 530 is mounted on the third surface of one end of the second electrical connector 602 , and the fourth surface is bonded and fixed to the stem 511 .
  • Common light receiving chips are PIN photodiodes or avalanche photodiodes (Avalanche Photon Diode, APD).
  • the tube base 511 is formed by casting process using metal materials such as stainless steel, and the corresponding tube body 512 is also formed by casting process using metal materials such as stainless steel.
  • the outer contour of the tube base 511 is not limited to a rectangular parallelepiped structure, but may also be cylindrical or other structures; the outer contour of the tube body 512 is not limited to a rectangular parallelepiped structure, but may also be cylindrical or other structures.
  • the outer contour of the tube body 512 is a cuboid structure, and the outer contour of the tube base 511 is a cuboid structure. Since the second electrical connector 602 has a certain width, the tube base 511 and the tube body 512 are arranged in a cuboid structure, so that the second electrical connector 602 can be extended into and fixed in the third cavity 514 .
  • the light receiving chip 530 is directly arranged on the second electrical connector 602, and is directly connected to the circuit board 300 through the second electrical connector 602, without disposing the light receiving chip 530 on On the TO tube base 501, the light receiving chip 530 does not need to be connected to the pin 503 on the TO tube base 501 through a wire bonding process, and the pin 503 on the TO tube base 501 does not need to be connected to the second electrical connector 602 through a soldering process and then connected
  • the circuit board 300 avoids the above-mentioned discontinuous point phenomenon of high-frequency signal transmission, thereby greatly improving the performance of high-frequency signal transmission from the light receiving component 500 to the circuit board 300 .
  • the tube body 512 includes a first through hole 5121 and a second through hole 5122 oppositely disposed.
  • the first through hole 5121 is set at the end of the tube body 512 close to the adapter assembly 520
  • the second through hole 5122 is set at the end of the tube body 512 close to the tube base 511
  • both the first through hole 5121 and the second through hole 5122 are connected to the third chamber Body 514 communicates.
  • the first through hole 5121 is configured to enable the optical signal from the outside of the optical module 200 to enter the third cavity 514 of the tube body 512 through the adapter assembly 520 , so as to be transmitted to the light receiving chip 530 .
  • the light receiving assembly 500 also includes a second lens 540 .
  • the second lens 540 is disposed inside the tube body 512 and between the first through hole 5121 and the second through hole 5122 .
  • the second lens 540 is configured to converge the light beam entering the tube body 512 through the adapter assembly 520 to the photosensitive surface of the light receiving chip 530 so as to ensure coupling efficiency when receiving light signals.
  • the second lens 540 includes but is not limited to glass, resin and other fragile or easily scratched components. It should be noted that the structure and function of the second lens 540 are the same as those of the first lens 440 , and will not be repeated here.
  • the tube body 512 further includes a lens locking slot 5123 .
  • the lens locking groove 5123 is disposed inside the tube body 512 , between the first through hole 5121 and the second through hole 5122 , and communicates with the first through hole 5121 and the second through hole 5122 . In this way, the first through hole 5121 of the tube body 512 , the lens locking groove 5123 and the second through hole 5122 communicate with each other.
  • the lens locking slot 5123 is configured to install the second lens 540 inside the tube body 512 .
  • the second lens 540 is embedded in the lens locking groove 5123 , so as to realize the precise assembly of the second lens 540 .
  • the tube body 512 further includes a lens connector 5124 .
  • the lens connector 5124 is disposed in the lens slot 5123 of the tube body 512 and between the lens slot 5123 and the second lens 540 .
  • the lens connector 5124 is embedded in the lens slot 5123
  • the second lens 540 is embedded on the lens connector 5124 , that is, the lens connector 5124 wraps around the side of the second lens 540 .
  • components such as tweezers can be used to hold the lens connector 5124 , and the lens connector 5124 contacts and connects to the lens slot 5123 , and then the second lens 540 is assembled through the lens connector 5124 . But not limited to this.
  • the light receiving assembly 500 further includes an adjustment ring 550 , the adjustment ring 550 is disposed at an end of the tube body 512 close to the adapter assembly 520 and communicates with the first through hole 5121 of the tube body 512 . That is, one end of the adjustment ring 550 is connected to the adapter assembly 520 , and the other end is connected to an end of the tube body 512 close to the adapter assembly 520 , so that the adapter assembly 520 communicates with the first through hole 5121 of the tube body 512 .
  • Adjustment ring 550 is configured to assemble adapter assembly 520 with tube body 512 .
  • one end of the adjustment ring 550 is embedded and connected to the end of the adapter assembly 330 close to the tube body 512 .
  • one end of the adjustment ring 550 wraps the end of the adapter assembly 520 near the tube body 512 , that is, the end of the adapter assembly 520 near the tube body 512 is embedded in the ring of the adjustment ring 550 .
  • the other end of the adjustment ring 550 is connected to the end surface of the end of the tube body 512 away from the tube seat 511 .
  • the adjustment ring 550 is also configured to adjust the angle of the adapter assembly 520 relative to the light receiving chip 530 .
  • the adapter assembly since the optical fiber ferrule is arranged in the adapter assembly 520, in order to ensure the coupling efficiency when the optical signal is transmitted to the light receiving chip 530 and reduce the reflected optical signal to enter the optical fiber ferrule of the adapter assembly 520, the adapter assembly The end face of the fiber ferrule 520 close to the light-receiving chip 530 is usually set as an inclined surface, so the adjustment ring 550 facilitates adjustment of the relative angle between the adapter assembly 520 and the light-receiving chip 530 according to actual needs.
  • Fig. 15A is an exploded structure diagram of a tube base and a second electrical connector in an optical module according to some embodiments
  • Fig. 15B is another angle of a tube base and a second electrical connector in an optical module according to some embodiments
  • Fig. 16 is an exploded structure diagram of an optical module according to some embodiments, which is an electrical connection diagram between a socket and a second electrical connector.
  • the tube base 511 further includes a top surface 5112 , a limiting receiving groove 5113 and a positioning mechanism 5114 .
  • the top surface 5112 of the tube base 511 is the surface of the side of the tube base 511 close to the tube body 512 , and the surface of this side is perpendicular to the front surface of the circuit board 300 .
  • the limiting receiving groove 5113 is disposed on the top surface 5112 and is recessed from the top surface 5112 .
  • the limiting receiving groove 5113 has a bottom surface parallel to the top surface 5112 .
  • the limiting receiving groove 5113 is configured to accommodate an end of the second electrical connector 602 close to the outer casing 510 and limit the end of the second electrical connecting member 602 close to the outer casing 510 .
  • the end of the second electrical connector 602 close to the outer shell 510 is disposed in the socket 511, the end of the second electrical connector 602 close to the outer shell 510 is fixedly connected to the bottom surface of the limit receiving groove 5113 to protect the sticker.
  • the position-limiting receiving groove 5113 communicates with the notch 5111 , so as to facilitate the assembly of the second electrical connector 602 and the tube base 511 .
  • the positioning mechanism 5114 is disposed on the top surface 5112 of the tube base 511 , configured to assist in positioning the tube body 512 and the tube base 511 , so as to facilitate the assembly between the tube body 512 and the tube base 511 .
  • the positioning mechanism 5114 includes but is not limited to a positioning post mechanism arranged on the top surface 5112 of the tube base 511, and a corresponding auxiliary positioning mechanism is provided on the end surface of the tube body 512 close to the tube base 511.
  • the positioning mechanism 5114 cooperates with the auxiliary positioning mechanism on the tube body 512 to achieve the purpose of assisting the assembly of the tube body 512 and the tube base 511 , thereby ensuring the assembly accuracy of the tube body 512 and the tube base 511 .
  • the positioning mechanism 5114 is disposed on the top surface 5112 of the tube base 511 .
  • the positioning mechanism 5114 has an outer surface and an inner contour surface parallel to the front of the circuit board 300 , and the outer surface and the inner contour surface of the positioning mechanism 5114 are used for positioning when the tube body 512 and the tube base 511 are assembled.
  • the positioning mechanism 5114 is disposed around the limiting receiving groove 5113 .
  • the outer surface of the positioning mechanism 5114 is a cylindrical surface, so as to make the outer surface of the positioning mechanism 5114 cooperate with the third cavity 514 of the tube body 512 .
  • the inner contour surface of the positioning mechanism 5114 is flush with the inner surface of the limit receiving groove 5113, so as to facilitate the assembly of the second electrical connector 602 on the tube base 511, and deepen the depth of the limit receiving groove 5113, which also helps in the The light receiving chip 530 is protected during the assembly process of the tube body 512 and the tube base 511 .
  • the inner surface of the second through hole 5122 cooperates with the positioning mechanism 5114 on the tube base 511 to realize auxiliary positioning when the tube body 512 and the tube base 511 are assembled, and ensure the alignment between the tube body 512 and the tube base 511 Assembly positioning accuracy.
  • the side surface of the positioning mechanism 5114 is a straight cylindrical surface, and the straight cylindrical surface of the positioning mechanism 5114 is mated with the inner surface of the second through hole 5122 .
  • the second electrical connector 602 includes a die attach area 6021 and a connection pad 6022 .
  • the chip mounting area 6021 is arranged on the top surface (that is, the third surface) of the end of the second electrical connector 602 close to the outer shell 510, and is configured to mount the light receiving chip 530, and the second electrical connector 602 is close to the outer shell
  • the bottom surface (ie, the fourth surface) of one end of the body 510 is connected to the bottom surface of the position-limiting receiving groove 5113 , and the second electrical connector 602 passes through the notch 5111 .
  • the connection pads 6022 are arranged around the chip mounting area 6021, and the connection pads 6022 are electrically connected to the light receiving chip 530 through a wire bonding process.
  • the light receiving component 500 further includes a transimpedance amplifier 560 and a second capacitor 570 .
  • the light receiving chip 530, the transimpedance amplifier 560 and the second capacitor 570 are mounted on the chip mounting area 6021, and the light receiving chip 530, the transimpedance amplifier 560 and the second capacitor 570 are respectively electrically connected to the connection pad 6022 through a wire bonding process , and the light receiving chip 530 and the second capacitor 570 are respectively electrically connected to the transimpedance amplifier 560 through a wire bonding process.
  • the second capacitor 570 includes a plurality of capacitors configured to form a matching network.
  • Fig. 17A is a simulation graph of return loss of an optical receiving component in an optical module according to some embodiments
  • Fig. 17B is a simulation graph of differential loss of an optical receiving component in an optical module according to some embodiments.
  • the return loss (Return Loss) of the light receiving component 500 within 37.5 GHz is lower than -10 dB
  • the bandwidth at the insertion loss (Insertion Loss) -3 dB can reach 40 GHz above.
  • the light-receiving component 500 adopts a non-hermetic packaging structure, which reduces the discontinuity of high-frequency signal transmission between the optical chip 340 and the circuit board 300, and improves the optical receiving component. High-frequency signal transmission performance to the circuit board.
  • the production process of the above packaging structure is simple, which facilitates the assembly of the light receiving component 500 and has low production cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括壳体、电路板(300)和光发射组件(400)。光发射组件(400)包括管壳(420)、管帽(410)和光发射器(430);管壳(420)具有相对设置的第一开口(4211)和第二开口(4212)、以及与第一开口(4211)和第二开口(4212)连通的第一腔体(4213),以使电路板(300)或与电路板(300)电连接的第一电连接件(601)穿过第二开口(4212)进入第一腔体(4213)内;管帽(410)罩设于管壳(420)具有第一开口(4211)的一侧的表面上,且具有第二腔体(411),第二腔体(411)和第一腔体(4213)通过第一开口(4211)连通;光发射器(430)设置于第二腔体(411)内,且与伸入第一腔体(4213)内的电路板(300)或与电路板(300)电连接的第一电连接件(601)通过打线电连接,以发射光信号。

Description

光模块
本申请要求于2021年11月11日提交的、申请号为202122765496.X的中国专利申请的优先权和2022年6月2日提交的、申请号为202221382207.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频会议等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键组件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
本公开一些实施例提供一种光模块。所述光模块包括壳体、电路板和光发射组件。所述电路板和所述光发射组件均位于所述壳体内;所述光发射组件与所述电路板电连接,被配置为将来自所述电路板的电信号转换成光信号,并将所述光信号传输至所述光模块的外部。所述光发射组件包括管壳、管帽和光发射器;所述管壳具有相对设置的第一开口和第二开口、以及与所述第一开口和所述第二开口连通的第一腔体,以使所述电路板或与所述电路板电连接的第一电连接件穿过所述第二开口进入所述第一腔体内;所述管帽罩设于所述管壳具有所述第一开口的一侧的表面上,且具有第二腔体,所述第二腔体和所述第一腔体通过所述第一开口连通;所述光发射器设置于所述第二腔体内,且与伸入所述第一腔体内的所述电路板或与所述电路板电连接的第一电连接件通过打线工艺电连接,以发射所述光信号。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解结构图;
图5A为根据一些实施例的一种光模块去除壳体与解锁部件后的结构图;
图5B为根据一些实施例的另一种光模块去除壳体与解锁部件后的结构图;
图6A为根据一些实施例的一种光模块中光发射组件的结构图;
图6B为根据一些实施例的一种光模块中光发射组件的分解结构图;
图6C为根据一些实施例的一种光模块中光发射组件的剖视图;
图7A为根据一些实施例的一种光模块中光发射组件的局部结构图;
图7B为图7A的正视图;
图8为根据一些实施例的一种光模块中光发射组件的电连接图;
图9A为根据一些实施例的一种光模块中管壳的结构图;
图9B为根据一些实施例的一种光模块中管壳的剖视图;
图10为根据一些实施例的一种光模块中光发射组件与第一电连接件的局部装配剖视图;
图11为根据一些实施例的一种光模块中光发射组件与第一电连接件的电连接图;
图12A为相关技术的一种光模块中光接收组件与第二电连接件的装配图;
图12B为图12A所示的光接收组件的剖视图;
图13A为根据一些实施例的一种光模块中光接收组件与第二电连接件的装配图;
图13B为根据一些实施例的一种光模块中光接收组件与第二电连接件另一角度的装配图;
图14A为根据一些实施例的一种光模块中光接收组件的分解结构图;
图14B为根据一些实施例的一种光模块中光接收组件的剖视图;
图14C为根据一些实施例的一种光模块中光接收组件另一角度的剖视图;
图15A为根据一些实施例的一种光模块中管座与第二电连接件的分解结构图;
图15B为根据一些实施例的一种光模块中管座与第二电连接件另一角度的分解结构图;
图16为根据一些实施例的一种光模块中管座与第二电连接件的电连接图;
图17A为根据一些实施例的一种光模块中光接收组件的回损仿真曲线图;
图17B为根据一些实施例的一种光模块中光接收组件的差损仿真曲线图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所 阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、二线制同步串行(Inter-Integrated Circuit,I2C)信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图。为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105、设置于电路板105的表面的笼子106、设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有用于增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解结构图。如图3和图4所示,光模块200包括壳体(shell)、设置于壳体内的电路板300、光发射组件400以及光接收组件500。但并不局限于此,在一些实施例中,光模块200包括光发射组件400但不包括光接收组件500,或者,光模块200包括光接收组件500但不包括光发射组件400。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的左端),开口205也位于光模块200的端部(图3的右端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指从电口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部的光纤101,以使光纤101连接光模块200内部的光发射组件400和光接收组件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射组件400、光接收组件500等组件安装到壳体中,由上壳体201、下壳体202对这些组件形成封装保护。此外,在装配电路板300、光发射组件400和光接收组件500等组件时,便于这些组件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里时,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电 路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(Limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片(Power Management Chip)、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机的笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5A为根据一些实施例的一种光模块去除壳体与解锁部件后的结构图;图5B为根据一些实施例的另一种光模块去除壳体与解锁部件后的结构图。如图5A和图5B所示,光发射组件400与电路板300电连接,被配置为将来自电路板300的电信号转换成光信号,并将该光信号传输至外部光纤101中。光接收组件500与电路板300连接,被配置为将来自外部光纤101的光信号转换成电信号,并将该电信号传输至电路板300。需要说明的是,对光发射组件400与电路板300之间的电连接方式不做限定,光发射组件400与电路板300之间可以直接电连接,也可以通过一电连接件电连接。同理,对光接收组件500与电路板300之间的电连接方式也不做限定,光接收组件500与电路板300之间可以直接电连接,也可以通过另一电连接件电连接。上述电连接件不限于柔性电路板,也可以是陶瓷电路板、铝基板等传输信号的介质,只要能够实现光发射组件400与电路板300之间、以及光接收组件500与电路板300之间的电信号传输即可。
在一些实施例中,光模块200还包括第一电连接件601和第二电连接件602。第一电连接件601设置在光发射组件400与电路板300之间,第一电连接件601的一端连接光发射组件400、另一端连接电路板300,即光发射组件400通过第一电连接件601电连接电路板300。第二电连接件602设置在光接收组件500与电路板300之间,第二电连接件602的一端连接光接收组件500、另一端连接电路板300,即光接收组件500通过第二电连接件602电连接电路板300。
图6A为根据一些实施例的一种光模块中光发射组件的结构图,图6B为根据一些实施例的一种光模块中光发射组件的分解结构图,图6C为根据一些实施例的一种光模块中光发射组件的剖视图。如图6A、图6B和图6C所示,光发射组件400包括光发射器430和第一透镜440。光发射器430包括至少一个出光口,光发射器430的出光方向平行于电路板300的正面;电路板300与光发射组件400和光接收组件500连接的表面被称为电路板300的正面。需要说明的是,对光发射器430的类型不做限定。光发射器430可以为电吸收调制激光器(Electro-absorption Modulated Laser,简称EML)芯片。示例地,如图8所示,EML芯片430包括分布式反馈(Distributed Feedback,DFB)激光器431和电吸收(Electro Absorption,EA)调制器432。
在一些实施例中,光发射器430具有一个出光口,该出光口位于光发射器430朝向第一透镜440的一侧(即光发射器430远离电路板300的一侧)。第一透镜440被配置为会聚光发射器430的朝向第一透镜440的出光口发射的光束,使得光发射器430射出的光束为会聚光,以方便耦合至外部光纤101内。
在一些实施例中,光发射组件400还包括光探测器。光探测器和第一透镜440分别位于光发射器430沿其出光方向的相对两侧。此时,光发射器430具有两个相对设置的出光 口;一个出光口位于光发射器430朝向第一透镜440的一侧;另一个出光口位于光发射器430远离第一透镜440的一侧,即位于光发射器430朝向光探测器的一侧。光探测器被配置为接收光发射器430的远离第一透镜440的出光口发射的光束,以检测光发射器的光功率。示例地,光发射器430发出的光经第一透镜440会聚后进入外部光纤101中,同时光探测器检测光发射器430的发光功率,以保证光发射器430发射光功率的恒定性。需要说明的是,当光发射组件400包括光探测器时,对光探测器的类型不做限定。示例地,光探测器为光电二极管。
光发射组件400采用晶体管外形(Transistor Outline,TO)封装,又称为同轴封装。但不局限于此,光发射组件400还可以采用板上芯片(Chip On Board,COB)、盒型(BOX)等封装形式。
光发射组件400还包括管壳420及罩设管壳420的管帽410。管帽410包括位于管帽410内的第二腔体411。管壳420包括沿光发射器430的出光方向相对设置的第一开口4211和第二开口4212;第一开口4211位于管壳420远离电路板300的一侧表面上;第二开口4212位于管壳420朝向电路板300的一侧表面上;第一开口4211与第二开口4212均向管壳420的内部凹陷。管帽410罩设于管壳420具有第一开口4211的一侧的表面,并与管壳420的该侧的表面接触连接。如此,形成管帽410内的第二腔体411,第一透镜440、光发射器430等光电组件设置于该第二腔体411内。示例地,第一透镜440嵌设于管帽410的第二腔体411内,且位于光发射器430远离管壳420的一侧。
光发射组件400还包括基板450,该基板例如为陶瓷基板450。该陶瓷基板450设置在管帽410的第二腔体411内,且位于第一透镜440朝向管壳420的第一开口4211的一侧。光发射器430固定于陶瓷基板450上,且通过第一开口4211和第二开口4212与电路板300电连接。
在一些实施例中,管壳420还包括固定凸台422。该固定凸台422与管壳420上的第一开口4211位于管壳420的同一侧。固定凸台422被配置为固定陶瓷基板450。示例地,固定凸台422设置在管壳420朝向管帽410的一侧的表面上、并沿光发射器430的出光方向凸出于该侧的表面,且位于管帽410的第二腔体411内,使得管帽410罩设于固定凸台422上。陶瓷基板450固定于固定凸台422上。
在一些实施例中,光发射组件400还包括固定板460。该固定板460设置于固定凸台422与陶瓷基板450之间。固定凸台422、固定板460与陶瓷基板450沿垂直于电路板300的正面方向依次设置。固定板460被配置为将陶瓷基板450固定于固定凸台422上。示例地,固定板460具有沿平行于电路板300的正面方向相对设置的第一表面和第二表面。固定板460的第一表面固定于固定凸台422上,固定板460的第二表面上固定有陶瓷基板450。如此,陶瓷基板450通过固定板460固定于固定凸台422上。
管壳420还包括设置在第一开口4211与第二开口4212之间的第一腔体4213,第一腔体4213位于管壳420内,且与第一开口4211和第二开口4212均相连通。
在一些实施例中,如图6C所示,第一电连接件601的一端通过第二开口4212进入管壳420的第一腔体4213内,第一电连接件601的另一端与电路板300电连接。管帽410的第二腔体411与管壳420的第一腔体4213连通,第一电连接件601的一端通过打线工艺(wire bonding)与光发射器430电连接,进而实现光发射器430与电路板300之间的电连接。这样,电路板300将来自其自身的驱动信号通过第一电连接件601传输至管帽410内的光发射器430,以驱动光发射器430发射光信号。
基于此,本公开一些实施例的光模块200中,改变了光发射组件400的封装方式,增加了管壳420,管壳内420具有第一腔体4213,管帽410具有第二腔体411,第二腔体411内设置有光发射器430,第一电连接件601插入第一腔体4213内,光发射器430直接通过打线工艺与第一电连接件601电连接,即电路板300通过第一电连接件601为光发射器430传输驱动信号,取代了相关技术中通过管脚传输驱动信号,使得光模块200具有良好的高频传输特性;且通过管帽410和管壳420将各种光电组件(例如,光发射器430、第一透镜440、陶瓷基板450)封装起来,使得光模块200具有更好的电磁屏蔽效果。
在一些实施例中,电路板300还可以通过第二开口4212直接插入管壳420的第一腔体4213内。管帽410的第二腔体411与管壳420的第一腔体4213连通,电路板300伸入第一腔体4213内的一端通过打线工艺(wire bonding)与光发射器430电连接。这样,电路板300将来自其自身的驱动信号直接传输至管帽410内的光发射器430,以驱动光发射器430发射光信号。
基于此,在本公开一些实施例的光模块200中,电路板300还可以直接插入第一腔体4213内,此时,光发射器430直接通过打线与电路板300电连接,即电路板300直接为光发射器430传输驱动信号,取代了相关技术中通过管脚传输驱动信号,也可以使得光模块200具有良好的高频传输特性;且通过管帽410和管壳420将各种光电组件(例如,光发射器430、第一透镜440、陶瓷基板450)封装起来,也可以使得光模块200具有更好的电磁屏蔽效果。
以下以光模块200包括第一电连接件601为例进行说明。
在一些实施例中,光发射组件400还包括衔接电路470。该衔接电路470设置于管壳420的第一腔体4213内,被配置为将光发射器430与第一电连接件601电连接。示例地,衔接电路470的一端通过管壳420的第一开口4211与光发射器430电连接;且由于第一电路连接件601通过第二开口4212插入管壳420的第一腔体4213内,衔接电路470的另一端与第一电路连接件601的位于第一腔体4213内的一端电连接。
衔接电路470包括沿光发射器430的出光方向相对设置的第一信号焊盘471和第二信号焊盘472。第一信号焊盘471设置在衔接电路470朝向第一开口4211的一端,被配置为将光发射器430通过打线工艺与衔接电路470电连接。第二信号焊盘472设置在衔接电路470朝向第二开口4212的一端,被配置为将衔接电路470通过打线工艺与第一电连接件601电连接。在一些实施例中,第一电连接件601包括焊盘6011,该焊盘6011设置在朝向第二开口4212的一端。如此,光发射器430通过第一开口4211与第一信号焊盘471电连接;第二信号焊盘472通过打线工艺与第一电连接件601的焊盘6011电连接,以通过衔接电路470实现光发射器430与第一电连接件601的电连接。
在一些实施例中,第一信号焊盘471包括数据焊盘和接地焊盘。示例地,第一信号焊盘471中的数据焊盘通过打线工艺与光发射器430的一端电连接,第一信号焊盘471中的接地焊盘通过打线工艺与光发射器430的另一端电连接。
需要说明的是,当将衔接电路470设置在管壳420的第一腔体4213内时,对衔接电路470的设置位置不做限定。可以将衔接电路470完全设置于第一腔体4213内;还可以将衔接电路470的一部分设置于第一腔体4213内、另一部分设置于管帽410的第二腔体411内,如此通过打线工艺将光发射器430与衔接电路470电连接时,能够减小光发射器430与衔接电路470之间的打线长度。示例地,如图6C所示,衔接电路470的一端设置于管壳420的第一腔体4213内、另一端穿过第一开口4211设置于管帽410的第二腔体411内,此时,衔接电路470的第二信号焊盘472位于第一腔体4213内,且第一信号焊盘471位于第二腔体411内。
在一些实施例中,衔接电路470还包括衔接本体473和凸起474(例如,陶瓷凸起474)。衔接本体473上设置有第一信号焊盘471、第二信号焊盘472和陶瓷凸起474。陶瓷凸起473嵌设在管壳420的第一开口4211内,且位于第一信号焊盘471与第二信号焊盘472之间。示例地,如图6C所示,第一信号焊盘471位于陶瓷凸起474朝向陶瓷基板450的一侧,第二信号焊盘472位于陶瓷凸起474远离陶瓷基板450的一侧,衔接本体473的一部分和陶瓷凸起474填充在第一开口4211内,即衔接本体473中填充在第一开口4211内的部分和陶瓷凸起474在与电路板300的正面垂直的方向上的尺寸之和小于或等于第一开口4211在该方向上的尺寸。
在一些实施例中,当衔接电路470的一部分设置于第一腔体4213内、另一部分设置于管帽410的第二腔体411内时,衔接电路470中位于第二腔体411内的部分固定于固定凸台422上。示例地,衔接电路470上设置有第一信号焊盘471的一端固定于固定凸台422上,衔接电路470上设置有第二信号焊盘472的一端通过第一开口4211插入管壳420 的第一腔体4213。
图7A为根据一些实施例的一种光模块中光发射组件的局部结构图,图7B为图7A的正视图,图8为根据一些实施例的一种光模块中光发射组件的电连接图。如图7A、图7B和图8所示,光发射组件400还包括半导体制冷器480、薄膜电阻490、第一电容4100和热敏电阻4110。
半导体制冷器480设置在固定凸台422上,且位于固定凸台422与固定板460之间。固定板460设置在半导体制冷器480远离固定凸台422的表面上。半导体制冷器480被配置为将光发射器430产生的热量传导至管壳420的固定凸台422上,通过管壳420向光发射组件400外部导出。示例地,光发射器430工作产生的热量通过陶瓷基板450、固定板460传递至半导体制冷器480,传递至半导体制冷器480的热量及半导体制冷器480工作产生的热量被传递至固定凸台422上,再被传递至管壳420上,如此能够提高光发射组件400的散热效率。
在一些实施例中,半导体制冷器480包括相对设置的第一热交换板4801和第二热交换板4802,以及位于第一热交换板4801和第二热交换板4802之间的多个导热柱4803。第一热交换板4801和第二热交换板4802通过多个导热柱4803连接。在一些实施例中,多个导热柱4803可以呈阵列排布,其可以采用半导体材料制成。例如,半导体制冷器480的第一热交换板4801设置在固定凸台422上,固定板460设置在半导体制冷器480的第二热交换板4802上。在一些实施例中,半导体制冷器480包括阴极481和阳极482。阴极481和阳极482均设置在半导体制冷器480的第二热交换板4802上,并分别通过打线工艺与第一信号焊盘471中相应的焊盘电连接,以驱动半导体制冷器480工作并制冷。但在一些实施例中,半导体制冷器480是可以省略的。需要说明的是,当省略衔接电路470时,阴极481和阳极482被配置为通过打线工艺与第一电连接件601一端的焊盘6011电连接。
在一些实施例中,陶瓷基板450上覆盖有镀金层453。陶瓷基板450包括第一信号镀层451。第一信号镀层451设置在陶瓷基板450的镀金层453上,并沿光发射器430的出光方向由远离衔接电路470的一侧向靠近衔接电路470的一侧延伸。第一信号镀层451被配置为通过打线工艺将光发射器430远离衔接电路470的一端与衔接电路470的第一信号焊盘471中相应的焊盘电连接。需要说明的是,当省略衔接电路470时,第一信号镀层451被配置为通过打线工艺将光发射器430与第一电连接件601一端的焊盘6011电连接。
在一些实施例中,光发射器430由DFB激光器431和EA调制器单片集成。本文中,将光发射器430中DFB激光器431以外的部分称为EA调制器432。EA调制器432的一端通过打线工艺与第一信号镀层451远离衔接电路470的一端电连接,第一信号镀层451靠近衔接电路470的一端通过打线工艺与衔接电路470的第一信号焊盘471中的数据焊盘电连接。如此,不仅能够减少第一信号镀层451与光发射器430之间打线的长度,还能够为光发射器430中的EA调制器432传输高频信号。而EA调制器432的另一端可以通过打线直接与第一信号焊盘471中的接地焊盘电连接,以形成光发射器430中EA调制器432的回路连接。但不局限于此。
薄膜电阻490设置在陶瓷基板450上,被配置为通过打线工艺将EA调制器432的另一端与衔接电路470的第一信号焊盘471电连接。示例地,薄膜电阻490的一端通过打线工艺与EA调制器432的另一端电连接、另一端通过打线工艺与第一信号焊盘471中的接地焊盘电连接。在一些实施例中,陶瓷基板450上的薄膜电阻490与第一信号镀层451沿与光发射器430的出光方向垂直的方向分别位于光发射器430的两侧,使得光发射器430电路连接中打线的连接总长度减小。
示例地,薄膜电阻490沿与光发射器430的出光方向垂直的方向位于光发射器430远离第一信号镀层451的一侧,第一信号镀层451沿与光发射器430的出光方向垂直的方向位于光发射器430远离薄膜电阻490的一侧。在一些实施例中,薄膜电阻490包括第一焊盘491和第二焊盘492。第一焊盘491设置在薄膜电阻490远离衔接电路470的一端,第 二焊盘492设置在薄膜电阻490靠近衔接电路470的一端。示例地,EA调制器432的另一端通过打线工艺与第一焊盘491电连接,第二焊盘492通过打线工艺与第一信号焊盘471中的接地焊盘电连接。如此,光发射器430中的EA调制器432通过薄膜电阻490的过渡与第一信号焊盘471电连接,以将薄膜电阻490接入EA调制器432的回路连接中。但在一些实施例中,薄膜电阻490是可以省略的。
第一电容4100设置在固定板460上,被配置为通过打线工艺将薄膜电阻490与衔接电路470的第一信号焊盘471电连接。示例地,第一电容4100的一端通过打线工艺与薄膜电阻490的第二焊盘492电连接、另一端通过打线工艺与第一信号焊盘471中的接地焊盘电连接。即EA调制器432的另一端通过打线工艺与薄膜电阻490的第一焊盘491电连接,第二焊盘492通过打线工艺与第一电容4100的一端电连接,第一电容4100的另一端通过打线工艺与第一信号焊盘471中的接地焊盘电连接。如此,光发射器430中的EA区通过薄膜电阻490和第一电容4100的过渡与第一信号焊盘471电连接,以将薄膜电阻490和第一电容4100一并接入EA调制器432的回路连接中。但在一些实施例中,第一电容4100也是可以省略的。
基于此,光发射器430中EA调制器432的一端通过打线工艺与第一信号镀层451的一端电连接,第一信号镀层451的另一端通过打线工艺与衔接电路470一端的第一信号焊盘471中的数据焊盘电连接,以为EA调制器432传输高频信号;EA调制器432的另一端通过打线工艺与薄膜电阻490一端的第一焊盘491电连接,薄膜电阻490另一端的第二焊盘492通过打线工艺与固定板460上第一电容4100的一端电连接,第一电容4100的另一端通过打线工艺与衔接电路470一端的第一信号焊盘471中的接地焊盘电连接,以形成光发射器430中EA调制器432的回路连接。
在一些实施例中,光发射器430靠近衔接电路470的一端可以通过打线工艺直接与第一信号焊盘471中相应的焊盘电连接。示例地,光发射器430上的DFB激光器431(即光发射器430靠近衔接电路470的一端)通过打线工艺直接与第一信号焊盘471中的接地焊盘电连接,以形成DFB激光器431的电连接。但不局限于此。
在一些实施例中,陶瓷基板450还包括第二信号镀层452。第二信号镀层452也设置在陶瓷基板450的镀金层453上,且位于光发射器430靠近衔接电路470的一侧。第二信号镀层452被配置为通过打线工艺将光发射器430上的DFB激光器431与第一信号焊盘471中的接地焊盘电连接。同时,陶瓷基板450的镀金层453上未设置第一信号镀层451、第二信号镀层452的部分通过打线工艺与第一信号焊盘471中相应的接地焊盘电连接,由此实现了DFB激光器431与衔接电路470的电连接。需要说明的是,当省略衔接电路470时,第二信号镀层452被配置为通过打线工艺将光发射器430与第一电连接件601一端的焊盘6011电连接。
热敏电阻4110设置在固定板460上,且位于第一电容4100靠近衔接电路470的一侧。该热敏电阻4110的一端通过打线工艺与陶瓷基板450的镀金层453电连接、另一端通过打线工艺与第一信号焊盘471中相应的接地焊盘电连接。即光发射器430上DFB激光器431的一端通过打线工艺与第二信号镀层452的一端电连接,第二信号镀层452的另一端通过打线工艺与第一信号焊盘471中相应的信号焊盘电连接;DFB激光器431的另一端通过打线工艺与陶瓷基板450上的镀金层453电连接,镀金层453通过打线工艺与热敏电阻4110的一端电连接,热敏电阻4110的另一端通过打线工艺与第一信号焊盘471中相应的接地焊盘电连接,以通过衔接电路470为光发射器430上的DFB激光器431传输驱动信号。
图9A为根据一些实施例的一种光模块中管壳的结构图。如图6B和图9A所示,在一些实施例中,管壳420还包括盖板423和开窗4214。开窗4214设置在管壳420上与第一开口4211和第二开口4212均相邻的一侧的表面上,该侧的表面平行于电路板300的正面。开窗4214与管壳420的第一腔体4213相连通,盖板423与开窗4214盖合连接。如此,将衔接电路470通过第一开口4211插入管壳420的第一腔体4213,将第一电连接件601通过第二开口4212插入管壳420的第一腔体4213时,可通过开窗4214查看衔接电 路470与第一电连接件601的安装位置,然后将盖板423盖合于管壳420的开窗4214处,以密封管壳420的第一腔体4213。
图9B为根据一些实施例的一种光模块中管壳的剖视图。如图9B所示,管壳420还包括限位凸台4215。该限位凸台4215设置在管壳420的第一腔体4213内,且与第一开口4211对应设置;限位凸台4215沿光发射器430的出光方向由管壳420的第二开口4212向管壳420的第一开口4211延伸。该限位凸台4215具有垂直于电路板300的正面的表面。本文中,将限位凸台4215的该侧表面称为限位凸台4215的上表面。限位凸台4215的上表面与第一开口4211之间存在预设距离。
在一些实施例中,当衔接电路470通过第一开口4211插入第一腔体4213时,衔接电路470远离陶瓷基板450的一侧表面并不限于与限位凸台4215的上表面相抵接,还可以位于限位凸台4215的上表面朝向第一开口4211的一侧、并与限位凸台4215的上表面间隔一段距离。在一些实施例中,第一电连接件601通过第二开口4212插入第一腔体4213时,第一电连接件601朝向陶瓷基板450的一侧表面与限位凸台4215的上表面相平齐,以对插入管壳420的第一腔体4213内的衔接电路470与第一电连接件601进行限位。
图10为根据一些实施例的一种光模块中光发射组件与第一电连接件的局部装配剖视图,图11为根据一些实施例的一种光模块中光发射组件与第一电连接件的电连接图。如图10和图11所示,将衔接电路470通过管壳420一端的第一开口4211插入第一腔体4213内,并将衔接电路470固定于第一开口4211中;将半导体制冷器480固定于固定凸台422上,将固定板460固定于半导体制冷器480上,将陶瓷基板450固定于固定板460远离半导体制冷器480的表面上,将光发射器430固定于陶瓷基板450远离固定板460的表面上;然后将光发射器430中EA调制器432的一端通过打线工艺与陶瓷基板450上第一信号镀层451的一端电连接,第一信号镀层451的另一端通过打线工艺与衔接电路470上第一信号焊盘471中的数据焊盘电连接;然后将光发射器430中EA调制器432的另一端通过打线工艺与薄膜电阻490一端的第一焊盘491电连接,薄膜电阻490另一端的第二焊盘492通过打线工艺与固定板460上第一电容4100的一端电连接,第一电容4100的另一端通过打线工艺与第一信号焊盘471中的接地焊盘电连接,以此实现了光发射器430与衔接电路470的电连接。
此外,将光发射器430的DFB激光器431的一端通过打线工艺与第二信号镀层452的一端电连接,第二信号镀层452的另一端通过打线工艺与第一信号焊盘471中相应的信号焊盘电连接;DFB激光器431的另一端通过打线工艺与陶瓷基板450上的镀金层453电连接,镀金层453通过打线工艺与热敏电阻4110的一端电连接,热敏电阻4110的另一端通过打线工艺与第一信号焊盘471中相应的接地焊盘电连接,以通过衔接电路470为光发射器430的DFB激光器431传输驱动信号。
然后将第一电连接件601通过管壳420一端的第二开口4212插入第一腔体4213内,将衔接电路470一端的第二信号焊盘472与第一电连接件601一端的焊盘6011一一对应连接,以实现衔接电路470与第一电连接件601的电连接,如此实现了第一电连接件601与光发射器430的电连接。
最后将管帽410罩设于管壳420设有第一开口4211的一侧的表面上,将半导体制冷器480、固定板460、陶瓷基板450、光发射器430等光电组件罩设于管帽410内,如此管帽410与管壳420构成密闭空间,可保证光发射组件400的气密性封装。
在一些实施例中,管帽410与管壳420之间也可为非气密装配,以实现光发射组件400的非气密封装。
在一些实施例中,管壳420的结构可以调整变更,只要其能将衔接电路470、第一电连接件601一端的焊盘6011等光电组件置于管壳420的第一腔体4213内,使得光发射组件400具有更好的电磁屏蔽效果即可。
在本公开一些实施例的光模块200中,光发射组件400还包括衔接电路470,管壳420具有第一开口4211、第二开口4212和第一腔体4213,第一开口4211和第二开口4212均与第一腔体4213相连通,第二开口4212使得第一电连接件601插入第一腔体 4213内;管帽410罩设在第一开口4211上以形成第二腔体411;光发射器430设置于第二腔体411中,衔接电路470设置于第一腔体4213中,衔接电路470的一端通过第一开口4211与光发射器430电连接、另一端与第一电连接件601电连接。如此,电路板300还可以通过第一电连接件601、衔接电路470向光发射器430传输驱动信号,取代了相关技术中通过管脚传输驱动信号,使得光模块200具有良好的高频传输特性;且通过管帽410和管壳420将光电组件封装起来,使得光模块200具有更好的电磁屏蔽效果。
图12A为相关技术的一种光模块中光接收组件与第二电连接件的装配图,图12B为图12A所示的光接收组件的剖视图。如图12A和图12B所示,相关技术的光接收组件500包括TO管座501、TO管帽502、引脚503、光接收芯片530、管体506和适配器组件520;TO管座501和TO管帽502封装连接形成密封腔体;引脚503设置在TO管座501上,光接收芯片530设置在TO管座501与TO管帽502形成的密封腔体内、并通过打线工艺与引脚503的一端连接。第二电连接件602设置在TO管座501远离TO管帽502的一侧,并通过焊锡工艺与引脚503的另一端连接;管体506的一端与适配器组件520连接、另一端与TO管帽502连接,管体506将适配器组件520与TO管帽502连接在一起,使外部输入的光信号通过适配组件520传输至TO管帽502内。光接收芯片530贴装在TO管座501上,光接收芯片530先通过打线工艺与引脚503的一端连接,引脚503的另一端通过锡焊工艺与第二电连接件602的一端连接,第二电连接件602的另一端与电路板300电连接,进而才形成光接收芯片530到电路板300的信号传输路径,这样会使得光接收芯片530到电路板300之间高频信号传输的不连续点较多。
图13A为根据一些实施例的一种光模块中光接收组件与第二电连接件的装配图,图13B为根据一些实施例的一种光模块中光接收组件与第二电连接件的另一角度的装配图。如图13A和图13B所示,在一些实施例中,光接收组件500包括外壳体510和适配器组件520。外壳体510的一端与第二电连接件602电连接、另一端与适配器组件520电连接。
外壳体510包括管座511、管体512和第三开口513。在一些实施例中,当光接收组件500通过第二电连接件602电连接电路板300时,管座511设置在第二电连接件602远离电路板300的一侧,管体512设置在管座511远离第二电连接件602的一侧。即管座511、管体512沿光发射器430的出光方向依次设置。在一些实施例中,第三开口513设置在外壳体510平行于电路板300的正面的一侧的表面上,且位于管座511与管体512的连接处。第二电连接件602靠近管座511的一端通过第三开口513伸入到外壳体510的管座511上。如此,第二电连接件602的一端与光接收组件500的外壳体510电连接、另一端与电路板300连接。需要说明的是,对外壳体510的外轮廓不做限定,其可以为长方体结构的壳体,也可以为圆柱形等其他结构的壳体。在一些实施例中,外壳体510采用不锈钢等金属材料通过铸造工艺形成。但不局限于此。
适配器组件520设置在外壳体510远离第二电路连接件602的一侧,即适配器组件520的一端与外壳体510连接。适配器组件520被配置为将来自光模块200外部的光信号传输至光接收组件500的外壳体510。示例地,适配器组件520设置在光模块200的光口205位置处,适配器组件520的侧面与光模块200的壳体配合连接,使得适配器组件520与外部光纤101连接。
图14A为根据一些实施例的一种光模块中光接收组件的分解结构图,图14B为根据一些实施例的一种光模块中光接收组件的剖视图,图14C为根据一些实施例的一种光模块中光接收组件另一角度的剖视图。如图14A、图14B和图14C所示,在一些实施例中,外壳体510还包括位于外壳体510内的第三腔体514。管体512的内部中空,管体512朝向第二电连接件602的一端与管座511连接。如此,管座511盖合管体512朝向第二电连接件602的一端,以形成第三腔体514。在一些实施例中,当适配器组件520与外壳体510连接时,适配器组件520的内部还与第三腔体514连通。
在一些实施例中,管座511包括缺口5111(见图15A),该缺口5111设置在管座511平行于电路板300的一侧的表面上。在一些实施例中,当管座511与管体512盖合连 接形成第三腔体514时,缺口5111在外壳体510的该侧的表面上形成第三开口513,且第三开口513与第三腔体514连通,以便于将第二电连接件602远离电路板300的一端装配在外壳体510中。需要说明的是,缺口5111并不限于设置在管座511平行于电路板300的一侧的表面上,还可以设置在管体512靠近第二电连接件602的一端的表面上。
在一些实施例中,管座511与第二电连接件602固定连接,以便于将第二电连接件602的一端伸入到外壳体510的第三腔体514内、并固定在管座511上。示例地,第二电连接件602的一端(即第二电连接件602中固定于管座511的一端)包括相对设置的第三表面和第四表面。第二电连接件602的该端的第三表面位于第二电连接件602远离管座511的一侧;第二电连接件602的该端的第四表面位于第二电连接件602朝向管座511的一侧,且与管座511固定连接。在一些实施例中,第二电连接件602的该端的第四表面与管座511粘接固定。示例地,第二电连接件602的该端的第四表面与管座511通过导热银胶固定连接。
光接收组件500还包括光接收芯片530。光接收芯片530设置在外壳体510的第三腔体514内,且位于第二电连接件602一端的第三表面上。在一些实施例中,第二电连接件602一端的第三表面上贴装有光接收芯片530、第四表面与管座511粘接固定。常见的光接收芯片为PIN光电二极管或雪崩光电二极管(Avalanche Photon Diode,APD)。在一些实施例中,为便于光接收芯片530的散热,管座511采用不锈钢等金属材料通过铸造工艺形成,相应的管体512也采用不锈钢等金属材料通过铸造工艺形成。
在一些实施例中,管座511的外轮廓并不限于长方体结构,还可为圆柱形等其他结构;管体512的外轮廓也不限于长方体结构,也可为圆柱形等其他结构。示例地,如图14A所示,管体512的外轮廓为长方体结构,管座511的外轮廓为长方体结构。由于第二电连接件602具有一定的宽度,将管座511和管体512设置为长方体结构,便于将第二电连接件602伸入并固定在第三腔体514内。
基于此,在本公开一些实施例的光模块200中,光接收芯片530直接设置第二电连接件602上,通过第二电连接件602直接连接电路板300,无需将光接收芯片530设置在TO管座501上、光接收芯片530无需通过打线工艺连接TO管座501上的引脚503、以及TO管座501上的引脚503也无需通过焊锡工艺连接第二电连接件602进而连接电路板300,从而避免了前述的高频信号传输的不连续点现象,进而大幅度地提升从光接收组件500到电路板300的高频信号传输性能。
在一些实施例中,管体512包括相对设置的第一通孔5121和第二通孔5122。第一通孔5121设置在管体512靠近适配器组件520的一端,第二通孔5122设置管体512靠近管座511的一端,且第一通孔5121和第二通孔5122均与第三腔体514连通。第一通孔5121被配置为使来自光模块200外部的光信号通过适配器组件520进入管体512的第三腔体514中,从而被传输至光接收芯片530。
光接收组件500还包括第二透镜540。第二透镜540设置在管体512的内部,且位于第一通孔5121和第二通孔5122之间。第二透镜540被配置为将通过适配器组件520进入管体512内部的光束会聚至光接收芯片530的光敏面,以便于保证接收光信号时的耦合效率。在一些实施例中,第二透镜540包括但不限于玻璃、树脂等易碎或易划伤组件。需要说明的是,第二透镜540的结构和功能与第一透镜440的结构和功能相同,不再赘述。
在一些实施例中,管体512还包括透镜卡槽5123。透镜卡槽5123设置在管体512的内部、位于第一通孔5121和第二通孔5122之间、且与第一通孔5121和第二通孔5122连通。如此,管体512的第一通孔5121、透镜卡槽5123和第二通孔5122之间三者互通。透镜卡槽5123被配置为将第二透镜540安装在管体512的内部。示例地,第二透镜540嵌设在透镜卡槽5123内,进而实现第二透镜540的精准装配。
在一些实施例中,为保证第二透镜540的使用质量以及装配夹持,管体512还包括透镜连接件5124。透镜连接件5124设置在管体512的透镜卡槽5123内、且位于透镜卡槽5123和第二透镜540之间。透镜连接件5124嵌设在透镜卡槽5123内,第二透镜540嵌设在透镜连接件5124上,即透镜连接件5124包裹围绕在第二透镜540的侧边。示例地, 在装配第二透镜540时,可使用镊子等组件夹持透镜连接件5124,透镜连接件5124接触连接透镜卡槽5123,进而通过透镜连接件5124实现第二透镜540的装配。但不局限于此。
在一些实施例中,光接收组件500还包括调节环550,调节环550设置在管体512靠近适配器组件520的一端、且与管体512的第一通孔5121连通。即调节环550的一端连接适配器组件520、另一端连接管体512靠近适配器组件520的一端,且使适配器组件520与管体512的第一通孔5121连通。调节环550被配置为将适配器组件520与管体512进行装配。示例地,调节环550的一端与适配器组件330靠近管体512的端部嵌设连接。例如,调节环550的一端包裹适配器组件520靠近管体512的端部,即适配器组件520靠近管体512的端部嵌设在调节环550的环内。调节环550的另一端与管体512远离管座511的一端的端面连接。
在一些实施例中,调节环550还被配置为调整适配器组件520相对于光接收芯片530的角度。示例地,由于适配器组件520中设置有光纤插芯,而为了保证光信号被传输到光接收芯片530时的耦合效率以及减少被反射回的光信号再进入适配器组件520的光纤插芯,适配器组件520的光纤插芯靠近光接收芯片530方向的端面通常设置为倾斜面,因此通过调节环550便于根据实际需要调整适配器组件520与光接收芯片530之间的相对角度。
图15A为根据一些实施例的一种光模块中管座与第二电连接件的分解结构图,图15B为根据一些实施例的一种光模块中管座与第二电连接件另一角度的分解结构图,图16为根据一些实施例的一种光模块中管座与第二电连接件的电连接图。如图15A、图15B和图16所示,在一些实施例中,管座511还包括顶面5112、限位容纳槽5113和定位机构5114。
管座511的顶面5112为管座511靠近管体512的一侧的表面,该侧的表面垂直于电路板300的正面。限位容纳槽5113设置在顶面5112上,且凹陷于顶面5112设置。限位容纳槽5113具有平行于顶面5112的底面。限位容纳槽5113被配置为容纳第二电连接件602靠近外壳体510的一端,以及对第二电连接件602靠近外壳体510的一端进行限位。示例地,当第二电连接件602靠近外壳体510的一端设置在管座511中时,第二电连接件602靠近外壳体510的一端与限位容纳槽5113的底面固定连接,以保护贴装设置在第二电连接件602上的光接收芯片530。在一些实施例中,限位容纳槽5113与缺口5111连通,以便于将第二电连接件602与管座511进行装配。
定位机构5114设置在管座511的顶面5112上,被配置为对管体512与管座511进行辅助定位,以便于管体512与管座511之间的装配。在一些实施例中,定位机构5114包括但不限于设置在管座511的顶面5112上的定位柱机构,管体512靠近管座511的端面上设置相应的辅助定位机构,管座511上的定位机构5114与管体512上的辅助定位机构配合,以达到辅助管体512与管座511装配的目的,进而保证管体512与管座511的装配精度。
示例地,定位机构5114设置在管座511的顶面5112上。定位机构5114具有平行于电路板300的正面的外侧面和内轮廓面,定位机构5114的外侧面和内轮廓面用于进行管体512与管座511装配时的定位。在一些实施例中,定位机构5114围绕限位容纳槽5113设置。定位机构5114的外侧面为圆柱面,以便于使定位机构5114的外侧面与管体512的第三腔体514相配合。定位机构5114的内轮廓面与限位容纳槽5113的内侧面平齐,以便于将第二电连接件602装配在管座511上、并加深限位容纳槽5113的深度,还有助于在管体512与管座511的装配过程中保护光接收芯片530。
在一些实施例中,第二通孔5122的内侧面与管座511上的定位机构5114配合连接,以实现管体512与管座511装配时的辅助定位,保证管体512与管座511的装配定位精度。示例地,定位机构5114的侧面为直圆柱面,定位机构5114的直圆柱面与第二通孔5122的内侧面配合连接。
在一些实施例中,第二电连接件602包括芯片贴装装区6021和连接焊盘6022。芯片 贴装装区6021设置在第二电连接件602靠近外壳体510的一端的顶面(即,第三表面)上,被配置为贴装光接收芯片530,第二电连接件602靠近外壳体510的一端的底面(即,第四表面)与限位容纳槽5113的底面连接,第二电连接件602贯穿缺口5111。连接焊盘6022设置在芯片贴装装区6021的周围,连接焊盘6022与光接收芯片530通过打线工艺电连接。
在一些实施例中,光接收组件500还包括跨阻放大器560和第二电容570。光接收芯片530、跨阻放大器560和第二电容570贴装在芯片贴装装区6021,光接收芯片530、跨阻放大器560和第二电容570分别通过打线工艺与连接焊盘6022电连接,且光接收芯片530和第二电容570分别通过打线工艺与跨阻放大器560电连接。在一些实施例中,第二电容570包括多个电容,多个电容被配置为形成匹配网络。
图17A为根据一些实施例的一种光模块中光接收组件的回损仿真曲线图,图17B为根据一些实施例的一种光模块中光接收组件的差损仿真曲线图。在一些实施例中,如图17A和图17B所示,光接收组件500在37.5GHz以内的回损(Return Loss)低于-10dB,在差损(Insertion Loss)-3dB处的带宽可以达到40GHz以上。
基于此,在本公开一些实施例的光模块200中,光接收组件500采用非气密性封装结构,减少光芯片340与电路板300之间高频信号传输的不连续点,提升光接收组件到电路板的高频信号传输性能。此外,采用上述封装结构的生产工艺简单,便于光接收组件500的组装,且生产成本低。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光模块,包括:
    壳体;
    电路板,位于所述壳体内;
    光发射组件,位于所述壳体内,与所述电路板电连接,被配置为将来自所述电路板的电信号转换成光信号,并将所述光信号传输至所述光模块的外部;
    其中,所述光发射组件包括:
    管壳,具有相对设置的第一开口和第二开口、以及与所述第一开口和所述第二开口连通的第一腔体,以使所述电路板或与所述电路板电连接的第一电连接件穿过所述第二开口进入所述第一腔体内;
    管帽,罩设于所述管壳具有所述第一开口的一侧的表面上,且具有第二腔体,所述第二腔体和所述第一腔体通过所述第一开口连通;
    光发射器,设置于所述第二腔体内,且与伸入所述第一腔体内的所述电路板或与所述电路板电连接的第一电连接件通过打线电连接,以发射所述光信号。
  2. 根据权利要求1所述的光模块,其中,所述光发射组件还包括衔接电路;
    所述衔接电路设置于所述管壳的所述第一腔体内,被配置为将伸入所述第一腔体内的所述电路板或与所述电路板电连接的第一电连接件通过打线与所述光发射组件电连接。
  3. 根据权利要求2所述的光模块,其中,所述衔接电路包括相对设置的第一信号焊盘和第二信号焊盘;
    所述第一信号焊盘设置在所述衔接电路朝向所述第一开口的一端,被配置为将所述光发射器通过打线与所述衔接电路电连接;
    所述第二信号焊盘设置在所述衔接电路朝向所述第二开口的一端,被配置为将所述衔接电路通过打线与伸入所述第一腔体内的所述电路板或与所述电路板电连接的第一电连接件电连接。
  4. 根据权利要求3所述的光模块,其中,所述衔接电路还包括:
    衔接本体,其上设置有所述第一信号焊盘和所述第二信号焊盘;
    凸起,位于所述第一信号焊盘与所述第二信号焊盘之间,且嵌设在所述管壳的所述第一开口内,以使所述第一信号焊盘位于所述第二腔体内,所述第二信号焊盘位于所述第一腔体内。
  5. 根据权利要求3或4中任一项所述的光模块,其中,所述管壳还包括固定凸台,所述固定凸台与所述管壳的所述第一开口位于所述管壳的同一侧,所述固定凸台被配置为固定所述光发射器。
  6. 根据权利要求5所述的光模块,其中,所述光发射组件还包括基板,所述基板设置在所述管帽的第二腔体内,且固定在所述固定凸台上,所述光发射器位于所述基板上;
    其中,所述基板包括:
    第一信号镀层,所述第一信号镀层位于所述光发射器的一侧,被配置为通过打线将所述光发射器与所述衔接电路的所述第一信号焊盘电连接;
    第二信号镀层,所述第二信号镀层位于所述光发射器的另一侧,沿被配置为通过打线将所述光发射器与所述衔接电路的所述第一信号焊盘电连接。
  7. 根据权利要求6所述的光模块,其中,所述光发射器包括分布式反馈激光器和电吸收调制器;
    所述电吸收调制器的一端通过打线与所述第一信号镀层电连接;
    所述分布式反馈激光器的一端通过打线与所述第二信号镀层电连接。
  8. 根据权利要求7所述的光模块,其中,所述光发射组件还包括薄膜电阻,所述薄膜电阻设置在所述基板上,所述薄膜电阻与所述第一信号镀层沿与所述光发射器的出光方向垂直的方向分别位于所述光发射器的两侧;
    所述电吸收调制器的另一端通过打线与所述薄膜电阻电连接,所述薄膜电阻则通过 打线与所述衔接电路的所述第一信号焊盘电连接。
  9. 根据权利要求8所述的光模块,其中,所述光发射组件还包括:
    固定板,设置在所述固定凸台与所述基板之间;
    第一电容,设置在所述固定板上,被配置为通过打线将所述薄膜电阻与所述衔接电路的所述第一信号焊盘电连接。
  10. 根据权利要求7所述的光模块,其中,所述基板还包括镀金层,所述光发射组件还包括热敏电阻;
    所述分布式反馈激光器的另一端通过打线与所述镀金层电连接;
    所述热敏电阻的一端通过打线与所述镀金层电连接、另一端通过打线与所述衔接电路的所述第一信号焊盘电连接。
  11. 根据权利要求6所述的光模块,其中,所述光发射组件还包括半导体制冷器,所述半导体制冷器位于所述固定凸台与所述基板之间,被配置为将所述光发射器产生的热量传导至所述固定凸台上;
    所述半导体制冷器包括相对设置的第一热交换板和第二热交换板,以及位于第一热交换板和第二热交换板之间的多个导热柱,所述第一热交换板设置在所述固定凸台上,所述基板设置在所述第二热交换板上;
    所述半导体制冷器还包括阴极和阳极,所述阴极和所述阳极均设置在所述第二热交换板上,并分别通过打线与所述衔接电路的所述第一信号焊盘电连接,以驱动所述半导体制冷器工作。
  12. 根据权利要求2至4中任一项所述的光模块,其中,所述管壳还包括盖板和开窗;
    所述开窗设置在所述管壳上与所述第一开口和所述第二开口均相邻的一侧的表面上,且与所述管壳的第一腔体相连通;
    所述盖板与所述开窗盖合连接。
  13. 根据权利要求12所述的光模块,其中,所述管壳还包括限位凸台,所述限位凸台设置在所述管壳的所述第一腔体内;
    所述限位凸台沿所述光发射器的出光方向由所述管壳的所述第二开口向所述第一开口延伸;
    所述限位凸台被配置为对伸入所述第一腔体内的所述电路板或与所述电路板电连接的第一电连接件、以及对伸入所述第一腔体内的所述衔接电路进行限位。
  14. 根据权利要求1所述的光模块,还包括光接收组件,所述光接收组件包括:
    外壳体,所述外壳体包括管座和管体,所述管座具有第三开口,所述管体具有第三腔体,所述管体盖合在所述管座上,以使所述第三开口与所述第三腔体连通;
    光接收芯片,设置在所述第三腔体内;
    第二电连接件,具有第三表面和第四表面,所述第三表面位于所述第二电连接件远离所述管座的一侧,所述光接收芯片位于所述第三表面上,所述第四表面与所述管座固定连接。
  15. 根据权利要求14所述的光模块,其中,所述管体包括相对设置的第一通孔和第二通孔;所述光接收组件还包括适配器组件;
    所述第一通孔位于所述管体靠近所述适配器组件的一端,所述第二通孔位于所述管体靠近所述管座的一端,且所述第一通孔和所述第二通孔均与所述第三腔体连通。
  16. 根据权利要求15所述的光模块,其中,所述光接收组件还包括调节环,所述调节环设置在所述管体靠近所述适配器组件的一端;
    所述调节环的一端连接所述适配器组件、所述调节环的另一端连接所述管体,且所述调节环与所述管体的所述第一通孔连通。
  17. 根据权利要求14至16中任一项所述的光模块,其中,所述管座包括:
    顶面,所述顶面为所述管座靠近所述管体的一侧的表面;
    限位容纳槽,设置在所述顶面上,且相对于所述顶面向所述管座的内部凹陷,所述 限位容纳槽被配置为容纳所述第二电连接件靠近外壳体的一端,以及对所述第二电连接件靠近所述外壳体的一端进行限位。
  18. 根据权利要求17所述的光模块,其中,所述管座还包括定位机构,所述定位机构设置在所述管座的所述顶面上,被配置为对所述管体与所述管座进行辅助定位;
    所述定位机构围绕所述限位容纳槽设置,且具有外侧面和内轮廓面,所述外侧面与所述管体的所述第三腔体相配合,所述内轮廓面与所述限位容纳槽的内侧面平齐。
  19. 根据权利要求14至17中任一项所述的光模块,其中,所述第二电连接件包括:
    芯片贴装装区,设置在所述第二电连接件的所述第三表面上,并被配置为贴装所述光接收芯片;
    连接焊盘,设置在所述芯片贴装装区的周围,与所述光接收芯片通过打线电连接。
  20. 根据权利要求19所述的光模块,其中,所述光接收组件还包括跨阻放大器和第二电容,所述跨阻放大器和所述第二电容贴装在所述芯片贴装装区;
    所述跨阻放大器和所述第二电容分别通过打线与所述连接焊盘电连接,且所述光接收芯片和所述第二电容分别通过打线与所述跨阻放大器电连接。
PCT/CN2022/115929 2021-11-11 2022-08-30 光模块 WO2023082783A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122765496.X 2021-11-11
CN202122765496.XU CN216248434U (zh) 2021-11-11 2021-11-11 一种光发射次模块及光模块
CN202221382207.6 2022-06-02
CN202221382207.6U CN217360388U (zh) 2022-06-02 2022-06-02 一种光模块

Publications (1)

Publication Number Publication Date
WO2023082783A1 true WO2023082783A1 (zh) 2023-05-19

Family

ID=86335058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115929 WO2023082783A1 (zh) 2021-11-11 2022-08-30 光模块

Country Status (1)

Country Link
WO (1) WO2023082783A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040163836A1 (en) * 2002-02-14 2004-08-26 Kumar Dev E Multi-layer ceramic feedthrough structure in a transmitter optical subassembly
US20040179562A1 (en) * 2003-03-12 2004-09-16 Carroll Chris H. High speed optical transmission assembly
CN1657999A (zh) * 2004-01-26 2005-08-24 Jds尤尼弗思公司 具有集成柔性电路的小型光学分组件
CN1721899A (zh) * 2004-02-11 2006-01-18 Jds尤尼弗思公司 小型光学分组件
CN104115048A (zh) * 2011-12-14 2014-10-22 菲尼萨公司 柔性芯片光学组件
CN109031549A (zh) * 2018-08-31 2018-12-18 武汉联特科技有限公司 光发射组件以及光模块
CN212083733U (zh) * 2020-04-26 2020-12-04 青岛海信宽带多媒体技术有限公司 一种光模块
US20210013696A1 (en) * 2019-07-09 2021-01-14 Applied Optoelectronics, Inc. Techniques for attachment and alignment of optical components on a thermoelectric cooler (tec) and an optical subassembly implementing same
CN216248434U (zh) * 2021-11-11 2022-04-08 青岛海信宽带多媒体技术有限公司 一种光发射次模块及光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040163836A1 (en) * 2002-02-14 2004-08-26 Kumar Dev E Multi-layer ceramic feedthrough structure in a transmitter optical subassembly
US20040179562A1 (en) * 2003-03-12 2004-09-16 Carroll Chris H. High speed optical transmission assembly
CN1657999A (zh) * 2004-01-26 2005-08-24 Jds尤尼弗思公司 具有集成柔性电路的小型光学分组件
CN1721899A (zh) * 2004-02-11 2006-01-18 Jds尤尼弗思公司 小型光学分组件
CN104115048A (zh) * 2011-12-14 2014-10-22 菲尼萨公司 柔性芯片光学组件
CN109031549A (zh) * 2018-08-31 2018-12-18 武汉联特科技有限公司 光发射组件以及光模块
US20210013696A1 (en) * 2019-07-09 2021-01-14 Applied Optoelectronics, Inc. Techniques for attachment and alignment of optical components on a thermoelectric cooler (tec) and an optical subassembly implementing same
CN212083733U (zh) * 2020-04-26 2020-12-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN216248434U (zh) * 2021-11-11 2022-04-08 青岛海信宽带多媒体技术有限公司 一种光发射次模块及光模块

Similar Documents

Publication Publication Date Title
CN214278497U (zh) 一种光模块
US20220224073A1 (en) Optical module
CN111555811A (zh) 一种光模块
CN112965190A (zh) 一种光模块
WO2022127072A1 (zh) 一种光模块
CN114624829B (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN114675383B (zh) 一种光模块
CN216248434U (zh) 一种光发射次模块及光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
US11927817B2 (en) Optical module
WO2022111034A1 (zh) 一种光模块
WO2022052842A1 (zh) 一种光模块
WO2023109210A1 (zh) 光模块
WO2023030457A1 (zh) 光模块
WO2023185220A1 (zh) 一种光模块
WO2023035711A1 (zh) 光模块
US12025842B2 (en) Optical module
CN114660740B (zh) 一种光模块
CN216772052U (zh) 一种光模块
WO2023082783A1 (zh) 光模块
WO2022193933A1 (zh) 光模块
WO2023098071A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891588

Country of ref document: EP

Kind code of ref document: A1