WO2023045423A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023045423A1
WO2023045423A1 PCT/CN2022/098900 CN2022098900W WO2023045423A1 WO 2023045423 A1 WO2023045423 A1 WO 2023045423A1 CN 2022098900 W CN2022098900 W CN 2022098900W WO 2023045423 A1 WO2023045423 A1 WO 2023045423A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
substrate body
chip
upper case
optical
Prior art date
Application number
PCT/CN2022/098900
Other languages
English (en)
French (fr)
Inventor
吴涛
慕建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111121659.9A external-priority patent/CN113885143B/zh
Priority claimed from CN202122324284.8U external-priority patent/CN215678864U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to CN202280051619.8A priority Critical patent/CN117693697A/zh
Publication of WO2023045423A1 publication Critical patent/WO2023045423A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, in particular to an optical module.
  • optical communication technology the optical module is a tool to realize the mutual conversion of optical signals, and with the development of optical communication technology, the transmission rate of the optical module continues to increase.
  • the optical module includes a lower case, an upper case, a circuit board, a substrate and a light emitting device.
  • the upper case is covered on the lower case to form a cavity; the circuit board is disposed in the cavity, and the circuit board includes a relief hole; the substrate is disposed in the relief hole , the substrate includes a substrate body, a carrying platform and a heat conducting component.
  • the carrying platform is arranged on one side of the substrate body close to the upper casing, one end of the heat conducting component is connected to the carrying platform, and the other end of the heat conducting component is connected to the upper casing to conduct heat.
  • the light-emitting device includes a light-emitting component and a silicon photonic chip, and the light-emitting component and the silicon photonic chip are arranged on the same side of the substrate.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Figure 2 is a block diagram of an optical network terminal according to some embodiments.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments.
  • Fig. 4 is a structural diagram of another optical module according to some embodiments.
  • Figure 5 is an exploded view of an optical module according to some embodiments.
  • Fig. 6 is a partial structural diagram of an optical module according to some embodiments.
  • Fig. 7 is the structure diagram after turning over Fig. 6;
  • FIG. 8 is an exploded view of a light emitting device and a circuit board according to some embodiments.
  • FIG. 9 is a structural diagram of a light emitting device according to some embodiments.
  • Figure 10 is an exploded view of a light emitting device according to some embodiments.
  • Figure 11 is a structural diagram of a substrate body according to some embodiments.
  • Fig. 12 is a structural diagram of a mounting part according to some embodiments.
  • Fig. 13 is a structural diagram of another viewing angle of the installation part shown in Fig. 12;
  • Fig. 14 is a structural diagram of another perspective of the installation part shown in Fig. 12;
  • Figure 15 is a cross-sectional view of an optical module according to some embodiments.
  • Fig. 16 is a partial enlarged view at box Q in Fig. 15;
  • Figure 17 is a partial structural diagram of a light emitting device according to some embodiments.
  • Fig. 18 is a top view of the light emitting device in Fig. 17;
  • Fig. 19 is an optical path diagram of the light emitting device in Fig. 17;
  • Figure 20 is a schematic diagram of a single light path of a light emitting device according to some embodiments.
  • Figure 21 is a structural diagram of a light receiving device according to some embodiments.
  • 22 is another structural diagram of a light receiving device according to some embodiments.
  • Fig. 23 is a cross-sectional view of the optical module shown in Fig. 22 (the receiving optical path is shown in the figure);
  • Figure 24 is an exploded view of another optical module according to some embodiments.
  • Fig. 25 is a partial structural diagram of another optical module according to some embodiments.
  • Fig. 26 is a structural diagram after turning over Fig. 25;
  • Figure 27 is an exploded view of another light emitting device and circuit board according to some embodiments.
  • Figure 28 is a structural diagram of another substrate body according to some embodiments.
  • Fig. 29 is a structural diagram of another viewing angle of the substrate body shown in Fig. 28;
  • Figure 30 is a cross-sectional view of another light module according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B, and C has the same meaning as "at least one of A, B, or C" and both include the following combinations of A, B, and C: A only, B only, C only, A and B's A combination, a combination of A and C, a combination of B and C, and a combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The acceptable deviation ranges are as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • optical communication technology In optical communication technology, light is used to carry information to be transmitted, and the optical signal carrying information is transmitted to information processing equipment such as a computer through optical fiber or optical waveguide and other information transmission equipment to complete the information transmission. Because optical signals have passive transmission characteristics when they are transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (such as an optical modem) through the electrical port. It is mainly used to realize power supply, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission and grounding, etc.; the optical network terminal connects the power The signal is transmitted to information processing equipment such as a computer.
  • I2C Inter-Integrated Circuit
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • Optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long-distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach thousands of kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: routers, switches, computers, mobile phones, tablet computers, televisions, and so on.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101; electrical signal connection.
  • the optical module 200 implements mutual conversion between optical signals and electrical signals, so that a connection is established between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input to the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input to the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing (housing), and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 A two-way electrical signal connection is established.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200, so the optical network terminal 100, as the host computer of the optical module 200, can monitor the optical module 200 work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • the remote server 1000 establishes a two-way signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • Fig. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 (for example, a printed circuit board (Printed Circuit Board, PCB)) disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, disposed on the cage The heat sink 107 on the cage 106, and the electrical connector arranged inside the cage 106.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has raised parts such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the heat generated by the optical module 200 is conducted to the cage 106 and then diffused through the radiator 107 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101 .
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is a structural diagram of another optical module according to some embodiments
  • Fig. 5 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 includes a shell, a circuit board 300 disposed in the shell, a light emitting device 400 and a light receiving device 500 .
  • the housing includes an upper housing 201 and a lower housing 202 , and the upper housing 201 covers the lower housing 202 to form a cavity 206 .
  • the circuit board 300 is disposed in the cavity 206 .
  • the casing includes two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 covers the lower case 202 on the two lower side panels 2022 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the two upper side plates perpendicular to the cover plate 2011 are combined with the two lower side plates 2022 to cover the upper case 201 on the lower case 202 .
  • the direction of the line connecting the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may not be consistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the gold finger 310 (see FIG.
  • the circuit board 300 protrudes from the electrical port 204, and is inserted into a host computer (such as the optical network terminal 100); the opening 205 is an optical port, configured to connect to an external
  • the optical fiber 101 is used to connect the optical fiber 101 to the light emitting device 400 and the light receiving device 500 inside the optical module 200 .
  • the optoelectronic devices such as the circuit board 300 , the light emitting device 400 and the light receiving device 500 are located in the housing.
  • the combination of the upper housing 201 and the lower housing 202 is used to facilitate the installation of optoelectronic devices such as the circuit board 300, the light emitting device 400 and the light receiving device 500 into the housing, and the upper housing 201 and the lower housing 202 are paired. These optoelectronic devices form an encapsulation protection.
  • the casing with a split structure facilitates the deployment of positioning components, heat dissipation components, and electromagnetic shielding components of these devices when assembling optoelectronic devices such as the circuit board 300, the light emitting device 400, and the light receiving device 500, and is conducive to automation. Implement production.
  • the upper housing 201 and the lower housing 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking part 203 located on the outer wall of its housing, and the unlocking part 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer wall of the two lower side plates 2022 of the lower housing 202 , or, as shown in FIG. 4 , the unlocking component 203 is located on the outer wall of the cover plate 2011 of the upper housing 201 .
  • the unlocking part 203 includes an engaging part matching with a cage of the host computer (for example, the cage 106 of the optical network terminal 100 ).
  • the optical module 200 When the optical module 200 is inserted into the cage of the host computer, the optical module 200 is fixed in the cage of the host computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, and then Change the connection relationship between the engaging component and the host computer to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, etc.
  • the electronic components and chips are connected together according to the circuit design through the circuit traces, so as to realize functions such as power supply, electrical signal transmission and grounding.
  • Electronic components include, for example, capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • Chips include, for example, microprocessors (Microcontroller Unit, MCU), laser driver chips, limiting amplifiers (Limiting Amplifier), clock data recovery chips (Clock and Data Recovery, CDR), power management chips (Power Management Chip), digital signal processing (Digital Signal Processing, DSP) chip.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function, such as the rigid circuit board can stably carry the above-mentioned electronic components and chips; when the light emitting device 400 and the light receiving device 500 When located on the circuit board 300 , the rigid circuit board can also stably carry the light emitting device 400 and the light receiving device 500 .
  • the rigid circuit board also plugs into electrical connectors in the host computer cage.
  • the circuit board 300 further includes a gold finger 310 formed on the surface of the end thereof, and the gold finger 310 includes a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106 , and is conductively connected with the electrical connector in the cage 106 by the golden finger 310 .
  • Gold fingers 310 can be set on only one side of the circuit board 300 (for example, the upper surface of the circuit board 300 in FIG. 5 ), or can be set on the upper and lower sides of the circuit board 300, so as to meet the occasions where the number of pins is large.
  • the golden finger 310 is configured to establish an electrical connection with a host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • the rigid circuit board 300 may be connected to the light emitting device 400 and the light receiving device 500 by using a flexible circuit board instead of connecting through circuit traces.
  • FIG. 6 is a partial structural diagram of an optical module according to some embodiments.
  • FIG. 7 is a structural diagram of FIG. 6 turned over.
  • the light-emitting device 400 and the light-receiving device 500 are located on the circuit board 300, and the light-emitting device 400 and the light-receiving device 500 can be arranged on the same side of the circuit board 300, and can also be arranged on different sides of the circuit board 300. side.
  • the light-emitting device 400 and the light-receiving device 500 may also be indirectly connected to the circuit board 300 , for example, connected to the circuit board 300 through a flexible circuit board or an electrical connector.
  • the light emitting device 400 is configured to convert an electrical signal into an optical signal.
  • the light emitting device 400 receives an electrical signal from the circuit board 300 and converts the electrical signal into an optical signal.
  • the light emitting device 400 is connected to the external optical fiber through the first optical fiber adapter 600 , and transmits the optical signal to the external optical fiber through the first optical fiber adapter 600 .
  • the light receiving device 500 is configured to convert an optical signal into an electrical signal.
  • the light receiving device 500 is connected with the second fiber adapter 700 to receive the light signal from the external fiber.
  • the optical signal is converted into an electrical signal by the light receiving device 500 , and then transmitted to the circuit board 300 by the light receiving device 500 , and then transmitted to the host computer through the golden finger 310 on the circuit board 300 .
  • the light emitting device 400 and the light receiving device 500 are both disposed on the same side of the circuit board 300 .
  • both the light emitting device 400 and the light receiving device 500 are disposed on a side of the circuit board 300 close to the upper case 201 .
  • Fig. 8 is an exploded view of a light emitting device and a circuit board according to some embodiments
  • Fig. 9 is a structural diagram of a light emitting device according to some embodiments.
  • the light-emitting device 400 includes a silicon photonics chip 420 and a light-emitting component 410 to achieve high-speed communication and reduce loss.
  • the silicon photonics chip 420 is disposed on the circuit board 300 and is electrically connected to the circuit board 300 .
  • the silicon photonics chip 420 is connected to the circuit board 300 through a metal connection wire (for example, a gold wire), and the silicon photonics chip 420 is flush with the surface of the side of the circuit board 300 close to the upper casing 201;
  • the silicon photonics chip can also be arranged on the surface of the substrate, and the substrate and the circuit board are connected by wires.
  • the photoelectric devices are mainly described in the orientations shown in Fig. 5.
  • the orientation of the upper housing 201 is upper, the orientation of the lower housing 202 is lower, the orientation of the optical port 205 is the left, and the orientation of the electrical port 204 is right, the orientation of the lower side plate 2022 close to the light receiving device 500 is the front, and the orientation of the lower side plate 2022 close to the light emitting device is the rear.
  • the optical module 200 further includes a digital signal processing chip 301 .
  • the digital signal processing chip 301 is arranged on the circuit board 300 , and the silicon photonics chip 420 (see FIG. 9 ) is connected to the digital signal processing chip 301 through the lines on the circuit board 300 .
  • the host computer transmits the electrical signal to the digital signal processing chip 301 through the golden finger 310 (see FIG. 5 ), and the digital signal processing chip 301 performs data processing on the received electrical signal to generate an electrical modulation signal of light. Then transmit the electrical modulation signal of the light to the silicon photonics chip 420 .
  • the light emitting component 410 emits light without a signal
  • the silicon photonic chip 420 receives the light from the light emitting component 410 and modulates the light, that is, loads an electrical modulation signal of the light onto the light to form an optical signal.
  • the optical module 200 further includes a first optical fiber adapter 600 .
  • the optical connection between the silicon photonics chip 420 and the first optical fiber adapter 600 is realized through the internal optical fiber 800, and the first optical fiber adapter 600 is also optically connected with the external optical fiber.
  • the silicon photonic chip 420 transmits the optical signal carrying data information to the first optical fiber adapter 600 through the internal optical fiber 800 , and then transmits the optical signal to the external optical fiber through the first optical fiber adapter 600 .
  • a silicon photonics chip 420 includes a multiplexer 425 , a plurality of modulators 426 and an optical waveguide 427 .
  • the multiplexer 425 is configured to multiplex light of different wavelengths to form one optical waveguide signal, which is beneficial to realize single-mode optical fiber multi-channel signal transmission and improve optical communication efficiency.
  • the input terminals of the plurality of modulators 426 receive the outgoing light of the light emitting component 410 and modulate the outgoing light into modulated light.
  • the multiplexer 425 is connected to a plurality of modulators 426 through an optical waveguide 427 .
  • Figure 10 is an exploded view of a light emitting device according to some embodiments.
  • the light emitting component 410 includes a laser group 411 , a collimating lens group 412 and a converging lens group 413 .
  • the laser group 411 is configured to emit laser beams, which do not carry data information.
  • the laser group 411 is a distributed feedback (Distributed Feed Back, DFB) laser group 411, and the side of the DFB laser group 411 has a light outlet, and the laser emitted by it is a laser with a large divergence angle.
  • DFB Distributed Feed Back
  • the light emitting device 400 uses a silicon photonics chip 420 to realize modulation and multiplexing of multiple laser beams, which has higher integration and simple assembly.
  • a high-power DFB laser group 411 is used to provide sufficient optical power for the light emitting device 400 .
  • the DFB laser group 411 can work normally in a relatively large temperature range without temperature control, which reduces the use of optoelectronic devices, thereby reducing the cost of the optical module 200 .
  • the collimator lens group 412 is arranged on the light output optical path of the laser group 411 .
  • the collimating lens group 412 is configured to collimate the laser beam emitted by the laser group 411 into a parallel laser beam.
  • the converging lens group 413 is disposed on the light-emitting optical path of the collimating lens group 412 .
  • the converging lens group 413 is configured to converge the parallel laser beams to form a light spot.
  • the input end of the silicon photonics chip 420 is disposed at the focal point of the light spot of the converging lens group 413 and is configured to receive the converging light of the converging lens group 413 .
  • the converging light enters the silicon photonic chip 420 through the input end of the silicon photonic chip 420, and after being modulated by the modulator, a laser signal carrying data information is formed, and then the modulated multiple laser signals are combined into a beam of laser signals by the combiner 425 .
  • the laser signal is transmitted to an external optical fiber through the output end of the silicon photonics chip 420 .
  • the light emitting assembly 410 also includes a set of optical isolators 414 (see FIG. 17 ).
  • the optical isolator group 414 is located between the collimating lens group 412 and the converging lens group 413, and is configured to allow the outgoing light of the collimating lens group 412 to pass through in one direction, so as to prevent the light from being reflected by the interface of different media and returning by the original path Laser group 411 .
  • the input end of the silicon photonics chip 420 is an optical waveguide 427 , and the end face of the input end of the silicon photonics chip 420 is inclined.
  • the light emitting device 400 further includes a wedge prism 422 .
  • the wedge prism 422 is disposed at the input end of the silicon photonics chip 420 .
  • the slope of the wedge prism 422 is connected to the input end of the silicon photonics chip 420 , and the surface of the wedge prism 422 away from the slope is perpendicular to the laser beam.
  • the slope of the wedge-shaped prism and the input end of the silicon photonics chip 420 can be connected by optical glue, and the refractive index of the optical glue is between the refractive index of the wedge-shaped prism 422 and the refractive index of the silicon photonics chip 420, so as to realize the refractive index of the three. In this way, it is beneficial to improve the coupling efficiency of light at the input end of the silicon photonics chip 420 .
  • the one side surface of the wedge prism 422 is provided with (such as coated with) an optical anti-reflection coating; the optical anti-reflection coating can prevent the reflected light generated at the output end of the silicon photonic chip 420 from passing through the wedge prism 422, This is to prevent a part of the light emitted by the light emitting component 410 from being reflected by the input end of the silicon photonics chip 420 and returning along the original path, thereby affecting light efficiency.
  • the transmission path of the laser or laser signal in the light emitting device 400 is as follows: the laser group 411 emits a laser beam that does not carry data information, the laser beam is collimated by the collimator lens group 412 to form a parallel laser beam, and the parallel laser beam passes through the optical After the isolator group 414, it reaches the converging lens group 413, and after being converged into a light spot by the converging lens group 413, it enters the silicon photonics chip 420; the light spot is modulated by the modulator 426 to form a modulated laser signal, and the modulated laser signal then enters the wave combiner 425 , and finally transmitted to the first optical fiber adapter 600 through the first internal optical fiber 800 connected by the first optical fiber connector 423 .
  • the circuit board 300 includes an escape hole 320 .
  • the light emitting device 400 further includes a substrate 430 . A part of the substrate 430 is connected to the upper case 201 , and another part of the substrate 430 is embedded in the relief hole 320 .
  • Materials for the substrate 430 include but are not limited to tungsten copper, Kovar alloy (for example, iron-nickel alloy or iron-nickel-cobalt alloy), cold-rolled carbon steel (Steel Plate Cold rolled Commercial, SPCC), copper, etc., to facilitate the production of optoelectronic devices The heat is transferred to the substrate 430.
  • Figure 11 is a structural diagram of a substrate body according to some embodiments.
  • the substrate 430 includes a substrate body 435 .
  • the substrate body 435 includes an emission sub-substrate body 431 and a chip sub-substrate body 432 .
  • Both the emitter sub-substrate body 431 and the chip sub-substrate body 432 have a cuboid structure, and the emitter sub-substrate body 431 and the chip sub-substrate body 432 are connected to one side close to each other, and a preset angle ⁇ is set at the connection (as shown in FIG.
  • the emitting sub-substrate body 431 and the chip sub-substrate body 432 are located in the same plane, they are not located on the same straight line; for example, in FIG. 18, the emitting sub-substrate body 431 is located on the straight line O, And the sub-substrate body of the chip is located on the straight line O'.
  • the preset included angle ⁇ facilitates coupling of the light emitted by the light emitting component 410 into the input end of the silicon photonics chip 420 .
  • the sides of the junction of the emission sub-substrate body 431 and the chip sub-substrate body 432 are flush, which facilitates the installation and positioning of the light emission component 410 and the silicon photonics chip 420 .
  • the chip sub-substrate body 432 and the emitter sub-substrate body 431 may be an integral piece or a separate piece.
  • the substrate body 435 includes a first limiting portion 433 .
  • the first limiting portion 433 is disposed on the edge of the emitting sub-substrate body 431 .
  • the side surface (such as the upper surface) of the first limiting portion 433 close to the upper case 201 is lower than the side surface (such as the upper surface) of the emitting sub-substrate body 431 close to the upper case 201, and the first limiting portion 433
  • the upper surface is connected to the surface of the circuit board 300 away from the upper case 201 (the lower surface), so as to realize the connection between the substrate body 435 and the circuit board 300 .
  • the first limiting portion 433 is arranged around the edge of the emission sub-substrate body 431, and the first limiting portion 433 includes a first emission limiting portion 4331, a second emission limiting portion 4332 and a third emission limiting portion 4333 .
  • the first emission sub-limiting portion 4331 is disposed on one side (such as the front side) of the emission sub-substrate body 431 .
  • a side surface (such as an upper surface) of the first sub-radiation limiting portion 4331 close to the upper housing 201 is connected to the lower surface of the circuit board 300 .
  • the second emission sub-limiting portion 4332 is disposed on a side (such as the left side) of the emission sub-substrate body 431 away from the chip sub-substrate body 432 .
  • a side surface (such as the upper surface) of the second sub-radiation limiting portion 4332 close to the upper housing 201 is connected to the lower surface of the circuit board.
  • the third emission sub-limiting portion 4333 is disposed on a side (such as the rear side) of the emission sub-substrate body 431 away from the first sub-emission limiting portion.
  • a side surface (such as an upper surface) of the third sub-radiation limiting portion 4333 close to the upper housing 201 is connected to the lower surface of the circuit board 300 .
  • the substrate body 435 can support the circuit board 300 through the first sub-radiation limiting portion 4331 , the second sub-radiation limiting portion 4332 , and the third sub-radiation limiting portion 4333 .
  • the heights of the first emission limiting portion 4331 , the second emission limiting portion 4332 and the third emission limiting portion 4333 are the same.
  • first sub-radiation limiting part 4331, the second sub-radiation limiting part 4332, and the third sub-radiation limiting part 4333 are located at the same side surface close to the upper housing 201. in plane.
  • the same height may also include: in the thickness direction of the emitting sub-substrate body 431, the first sub-emitting limiting portion 4331, the second sub-emitting limiting portion 4332, and the third sub-emitting limiting portion 4333 of equal thickness.
  • the first sub-radiation limiting part 4331, the second sub-radiation limiting part 4332, and the third sub-radiation limiting part 4333 are connected to each other.
  • the emitting sub-substrate body 431 includes avoidance holes 4311 .
  • the escape hole 4311 is configured to avoid the photoelectric device.
  • the substrate body 435 also includes a second limiting portion 434 .
  • the second limiting portion 434 is disposed on the edge of the chip sub-substrate body 432 and is configured to connect the substrate body 435 with the circuit board 300 .
  • the side surface (such as the upper surface) of the second limiting portion 434 close to the upper case 201 is lower than the side surface (such as the upper surface) of the chip substrate body 432 close to the upper case 201 , and the second limiting portion 434
  • the upper surface of the circuit board 300 is connected to the lower surface.
  • the second limiting portion 434 is disposed around the edge of the chip sub-substrate body 432, and the second limiting portion 434 includes a first sub-chip limiting portion 4341, a second sub-chip limiting portion 4342, and a third sub-chip limiting portion 4343 .
  • the first sub-chip limiting portion 4341 is disposed on one side (such as the front side) of the chip sub-substrate body 432 .
  • a side surface (such as an upper surface) of the first sub-chip limiting portion 4341 close to the upper housing 201 is connected to the lower surface of the circuit board 300 .
  • the second sub-chip limiting portion 4342 is disposed on a side (such as the right side) of the chip sub-substrate body 432 away from the emitter sub-substrate body 431 .
  • a side surface (such as an upper surface) of the second sub-chip limiting portion 4342 close to the upper housing 201 is connected to the lower surface of the circuit board 300 .
  • the third sub-chip limiting portion 4343 is disposed on a side (such as the rear side) of the sub-substrate body 432 away from the first sub-chip limiting portion 4341 .
  • a side surface (such as an upper surface) of the third sub-chip limiting portion 4343 close to the upper housing 201 is connected to the lower surface of the circuit board 300 .
  • the substrate body 435 can support the circuit board 300 through the first sub-chip limiting portion 4341 , the second sub-chip limiting portion 4342 and the third sub-chip limiting portion 4343 .
  • the first sub-chip limiting portion 4341 , the second sub-chip limiting portion 4342 and the third sub-chip limiting portion 4343 have the same height.
  • the same height means that the first sub-chip limiting portion 4341 , the second sub-chip limiting portion 4342 , and the third sub-chip limiting portion 4343 are located on the same side surface near the upper case 201 . in plane.
  • the same height may also include: in the thickness direction of the chip sub-substrate body 432, the first sub-chip limiting portion 4341, the second sub-chip limiting portion 4342, and the third sub-chip limiting portion 4343 of equal thickness.
  • the first sub-chip limiting portion 4341 , the second sub-chip limiting portion 4342 , and the third sub-chip limiting portion 4343 are connected to each other.
  • the heights of the first limiting portion 433 and the second limiting portion 434 are the same, that is, the upper surface of the first limiting portion 433 and the upper surface of the second limiting portion 434 are also located in the same plane.
  • the same height may also include: in the thickness direction of the substrate body 435 , the thicknesses of the first limiting portion 433 and the second limiting portion 434 are equal.
  • Each corner of the substrate body 435 is provided with rounded corners.
  • a side wall (such as a left side wall) of the emitter sub-substrate body 431 away from the chip sub-substrate body 432 is disposed close to the optical port 205 and abuts against one side of the relief hole 320 of the circuit board 300 .
  • the substrate 430 further includes a mounting portion 440 .
  • the mounting portion 440 is disposed on a side (such as the upper side) of the emitting sub-substrate body 431 close to the upper housing 201 and is configured to carry the light emitting component 410 .
  • the substrate body 435 and the installation part 440 may be an integral piece or a separate piece.
  • the substrate body 435 and the mounting portion 440 can be connected by bonding (such as heat conduction glue) or welding, so as to increase the contact area between the substrate body 435 and the mounting portion 440 and improve the quality of the substrate body 435 and the mounting portion. 440 heat transfer efficiency and connection stability.
  • the material of the mounting part includes, but is not limited to, tungsten copper, Kovar (for example, iron-nickel alloy or iron-nickel-cobalt alloy), cold-rolled carbon steel, copper, and the like.
  • Fig. 12 is a structural diagram of a mounting part according to some embodiments
  • Fig. 13 is a structural diagram of another viewing angle of the mounting part shown in Fig. 12
  • Fig. 14 is a structural diagram of another viewing angle of the mounting part shown in Fig. 12 .
  • the installation part 440 includes a carrying platform 441 and a heat conducting component 446 .
  • the carrying platform 441 is disposed on the upper side of the emitting sub-substrate body 431 and is configured to carry the laser group 411 and the collimating lens group 412 .
  • the heat conducting part 446 is arranged on the side (such as the upper side) of the carrying platform 441 close to the upper case 201, and one end of the heat conducting part 446 is connected with the upper case 201, so that the heat generated by the light emitting assembly 410 can be conducted to the upper case 201.
  • the heat conduction member 446 includes a first support plate 442 and a second support plate 443 .
  • the first support plate 442 and the second support plate 443 are perpendicular to the plane where the carrying platform 441 is located, and the carrying platform 441 is located between the first support plate 442 and the second support plate 443 .
  • the laser group 411 and the collimating lens group 412 are disposed on the carrying platform 441 .
  • the second support plate 443 is arranged symmetrically with the first support plate 442 , so that the laser group 411 and the collimator lens group 412 are arranged on the carrying platform 441 conveniently.
  • the heat conduction member 446 also includes a heat conduction plate 444 .
  • the heat conducting plate 444 is disposed on top of the first supporting plate 442 and the second supporting plate 443 .
  • a side surface (such as an upper surface) of the heat conducting plate 444 close to the upper casing 201 is connected to the inner wall of the upper casing 201 to facilitate heat transfer.
  • a side surface (lower surface) of the heat conducting plate 444 away from the upper casing 201 is connected with the optical isolator group 414 and the converging lens group 413 .
  • the laser group 411 in the light emitting device 400 is the main source of heat generation.
  • the laser group 411 is connected to the mounting part 440, so that a small part of the heat generated by the laser group 411 is conducted to the substrate body 435 through the mounting part 440, and then conducted to the outside of the optical module 200 through the lower housing 202; the laser group 411 generates Most of the heat in the heat is conducted to the first supporting plate 442 and the second supporting plate 443 connected to the carrying platform 441 through the carrying platform 441, and then conducted to the heat conducting plate on the top through the first supporting plate 442 and the second supporting plate 443 444 ; the heat from the heat conducting plate 444 is conducted to the upper casing 201 ; since the upper casing 201 is externally connected to the cage 106 , the heat can be dissipated through the radiator 107 .
  • the upper housing 201 further includes a heat conduction protrusion 2012 (see FIG. 15 ).
  • the heat conduction protrusion 2012 is disposed on the inner wall of the cover plate 2011 and connected to the heat conduction plate 444 , which is beneficial to improve heat dissipation efficiency.
  • the material of the heat conduction protrusion 2012 includes but not limited to tungsten copper, Kovar alloy (for example, iron-nickel alloy or iron-nickel-cobalt alloy), cold-rolled carbon steel, copper and so on.
  • the heat conduction protrusion 2012 and the cover plate 2011 can be an integral part or a separate part.
  • the optical module in some embodiments of the present disclosure uses the installation part 440 instead of a semiconductor cooler (Thermo Electric Cooler, TEC) to dissipate heat, thus omitting the setting of a semiconductor cooler, reducing the number of optoelectronic devices used, which is beneficial to reduce cost.
  • TEC Thermo Electric Cooler
  • the installation part 440 further includes a first extension board 4412 and a second extension board 4413 .
  • the first extension plate 4412 is disposed on a side of the first support plate 442 close to the sub-substrate body 432
  • the second extension plate 4413 is disposed on a side of the second support plate 443 close to the sub-substrate body 432 .
  • Both the first extension plate 4412 and the second extension plate 4413 are connected to the emitting sub-substrate body 431 .
  • Both the first extension plate 4412 and the second extension plate 4413 are parallel to the upper surface of the emitter substrate body 431 , which is beneficial to increase the contact area between the substrate body 435 and the mounting portion 440 and improve the stability of the structure.
  • first extension plate 4412 and the emitter sub-substrate body 431, and the second extension plate 4413 and the emitter sub-substrate body 431 are bonded (such as by heat conduction adhesive) or welded. connected.
  • the mounting part 440 includes a mounting hole 445 .
  • the installation hole 445 is located in the orthographic projection of the heat conducting plate 444 on the carrying platform 441 .
  • the installation hole 445 corresponds to the avoidance hole 4311 (see FIG. 11 ), which facilitates the installation of the light emitting component 410 .
  • the bottom surface of the wedge prism 422 is a plane, and the wedge prism 422 is arranged on the side (such as the upper side) of the first extension plate 4412 and the second extension plate 4413 close to the upper housing 201 to realize the setting of the light emission path.
  • the installation part 440 also includes a third extension plate 4411 .
  • the third extension plate 4411 is disposed on a side of the second support plate 443 away from the first support plate 442 .
  • the third extension plate 4411 is configured to carry the first optical fiber connector 423 , one end of the first optical fiber connector 423 is connected to the first internal optical fiber 800 , and the other end of the first optical fiber connector 423 is connected to the silicon photonic chip 420 .
  • the first support plate 442 and the second support plate 443 are rectangular plate structures.
  • the second supporting plate 443 includes a trapezoidal plate 4431 and a rectangular plate 4432 .
  • the inclined end surface of the trapezoidal plate 4431 is arranged close to the upper housing 201, and the inclined end surface increases linearly from the emitting sub-substrate body 431 to the chip sub-substrate body 432.
  • the side of the trapezoidal plate 4431 close to the chip sub-substrate body 432 Connect with the rectangular plate 4432 respectively.
  • a side of the rectangular plate 4432 close to the upper case 201 is connected to the heat conducting plate 444 .
  • Fig. 15 is a cross-sectional view of an optical module according to some embodiments
  • Fig. 16 is a partially enlarged view at box Q in Fig. 15 .
  • the laser group 411 is disposed on a carrying platform 441
  • the left side of the carrying platform 441 is adjacent to the circuit board 300 .
  • the above-mentioned adjacent means that there is a gap or contact between the left side of the carrying platform 441 and the circuit board 300 .
  • the light-emitting component 410 further includes a ceramic substrate 415, the ceramic substrate 415 is arranged between the laser group 411 and the carrying platform 441, the surface of the ceramic substrate 415 is provided with (such as etched) a circuit, and the circuit is configured as The laser group 411 is powered.
  • One end of the circuit is provided with a gold wire, and the gold wire is connected to the circuit board 300 , and the other end of the circuit is connected to the laser group 411 to realize the electrical connection between the laser group 411 and the circuit board 300 .
  • the light emitting component 410 is first installed on the installation part 440 . That is, the laser group 411 and the collimating lens group 412 are installed on the carrying platform 441, and the optical isolator group 414 and the converging lens group 413 are installed on the side surface of the heat conducting plate 444 away from the upper casing 201 through the installation hole 445 (the following surface ), and then connect the mounting part 440 to the emitter sub-substrate body 431 .
  • the wedge prism 422 is arranged on the side of the first extension plate 4412 and the second extension plate 4413 close to the upper housing 201, the slope of the wedge prism 422 is connected to the input end of the silicon photonics chip 420, and then the first optical fiber connector 423 is connected to the The output end of the silicon photonics chip 420 is connected.
  • a silicon photonics chip 420 is arranged on the upper side of the chip subsubstrate body 432 , the input end of the silicon photonics chip 420 is set toward the optical port 205 , and each edge of the chip subsubstrate body 432 is flush with each edge of the silicon photonics chip 420 .
  • a silicon photonics driver chip 428 is disposed on a side (such as the upper side) of the silicon photonics chip 420 close to the upper case 201 .
  • the silicon photonics chip 420 and the silicon photonics driver chip 428 can be packaged into one chip; or, the silicon photonics chip 420 and the silicon photonics driver chip are two separate chips.
  • FIG. 17 is a partial structural diagram of a light emitting device according to some embodiments
  • FIG. 18 is a top view of the light emitting device in FIG. 17
  • FIG. 19 is an optical path diagram of the light emitting device in FIG. 17 .
  • the light emitting component 410 can be provided with multiple laser signal channels.
  • the number of channels of the laser group 411 , the collimating lens group 412 , the optical isolator group 414 , and the converging lens group 413 corresponds to each other, and the number of channels can be set as required, for example, the number of channels is 1, 2, 3 or 4, etc.
  • the light emitting component 410 in FIGS. 17 to 19 includes four laser channels, and each laser channel includes a laser, and a corresponding collimating lens, an isolator, and a converging lens.
  • the laser group 411 includes a first laser 4111 , a second laser 4112 , a third laser 4113 and a fourth laser 4114 .
  • the outgoing light of different lasers has different wavelengths.
  • the collimating lens group 412 includes a first collimating lens 4121 , a second collimating lens 4122 , a third collimating lens 4123 and a fourth collimating lens 4124 .
  • the optical isolator group 414 includes a first optical isolator 4141 , a second optical isolator 4142 , a third optical isolator 4143 and a fourth optical isolator 4144 .
  • the converging lens group 413 includes a first converging lens 4131 , a second converging lens 4132 , a third converging lens 4133 and a fourth converging lens 4134 .
  • the silicon photonics chip 420 includes four input ports, namely a first input port 4211 , a second input port 4212 , a third input port 4213 and a fourth input port 4214 .
  • the light outlet of the first laser 4111 emits a first laser with a wavelength of ⁇ 1.
  • the first laser light is converted into a parallel beam through the first collimating lens 4121, and forms a first light spot after passing through the first optical isolator 4141, the first converging lens 4131, and the wedge prism 422, and the first light spot enters through the first input port 4211
  • the silicon photonic chip 420 is then modulated by the first modulator 4261 into a first optical signal, and enters the multiplexer 425 through the optical waveguide 427 .
  • the light outlet of the second laser 4112 emits a second laser with a wavelength of ⁇ 2.
  • the second laser light is converted into a parallel light beam through the second collimating lens 4122, and forms a second light spot after passing through the second optical isolator 4142, the second converging lens 4132, and the wedge prism 422, and the second light spot enters through the second input port 4212
  • the silicon photonics chip 420 is then modulated by the second modulator 4262 into a second optical signal, and enters the multiplexer 425 through the optical waveguide 427 .
  • the light outlet of the third laser 4113 emits a third laser with a wavelength of ⁇ 3.
  • the third laser light is converted into a parallel light beam through the third collimating lens 4123, and forms a third light spot after passing through the third optical isolator 4143, the third converging lens 4133, and the wedge prism 422, and the third light spot enters through the third input port 4213
  • the silicon photonic chip 420 is then modulated by the third modulator 4263 into a third optical signal, and enters the multiplexer 425 through the optical waveguide 427 .
  • the light outlet of the fourth laser 4114 emits fourth laser light with a wavelength of ⁇ 4.
  • the fourth laser light is converted into a parallel beam through the fourth collimating lens 4124, and forms a fourth light spot after passing through the fourth optical isolator 4144, the fourth converging lens 4134, and the wedge prism 422, and the fourth light spot enters through the fourth input port 4214
  • the silicon photonic chip 420 is then modulated by the fourth modulator 4264 into a fourth optical signal, and enters the multiplexer 425 through the optical waveguide 427 .
  • the multiplexer 425 combines the received first optical signal, second optical signal, third optical signal and fourth optical signal with different wavelengths into a beam of light, and the beam of light is transmitted to the first internal optical signal through the first optical fiber connector 423 The optical fiber 800 is then transmitted to the first optical fiber adapter 600 .
  • FIG. 20 is a schematic diagram of a single light path of a light emitting device according to some embodiments.
  • the first converging lens 4131 transmits the light beam, there is a gap D between the light exit surface of the wedge prism 422 and the light entrance surface of the silicon photonics chip 420, and the light beam passes through the light entrance surface of the wedge prism 422 and the light entrance surface of the wedge prism 422 in sequence. Only the light exit surface, the gap D, and the light entrance surface of the silicon photonics chip 420 can enter the silicon photonics chip 420 , and the light beam is refracted on the light exit surface of the wedge prism 422 and the light entrance surface of the silicon photonics chip 420 .
  • the light emitting direction of the laser group 411 is parallel to the propagation direction of the light entering the silicon photonics chip 420 .
  • the input port of the silicon photonics chip 420 is always located at the focal point of the light spot of the first converging lens 4131 .
  • the light receiving device 500 employs discrete components.
  • FIG. 21 is a structural diagram of a light receiving device according to some embodiments. As shown in FIG. 21 , the light receiving device 500 includes an arrayed waveguide grating (Arrayed Waveguide Grating, AWG) demultiplexer 510, a laser detector 520 and a transimpedance amplifier (Trans-Impedance Amplifier, TIA) 530.
  • AWG arrayed Waveguide Grating
  • AWG Arrayed Waveguide Grating
  • TIA Trans-Impedance Amplifier
  • One end of the AWG splitter 510 is connected to the second optical fiber adapter 700 through the second optical fiber connector 523 and the second internal optical fiber 900 , receives optical signals from the outside of the optical module 200 , and splits light beams containing multiple different wavelengths.
  • the AWG splitter 510 outputs four beams of different wavelengths.
  • the output port of the AWG wave splitter 510 faces the lower housing 202 , and the output beams of four different wavelengths are transmitted to the corresponding laser detectors 520 , and the optical signals are converted into electrical signals by the laser detectors 520 .
  • the DSP chip on the circuit board 300 is connected with the laser detector 520 provided on the circuit board 300 through a signal line, and the current signal received by the laser detector 520 is first transmitted to the transimpedance amplifier 530 to be converted into a voltage signal, and then amplified.
  • the data information is transmitted to the DSP chip 301 through the signal line for processing to extract the data information from the optical signal outside the optical module 200 , and finally the data information is transmitted to the optical network terminal 100 through the golden finger 310 .
  • the installation, coupling and circuit connection of optoelectronic devices required for the light receiving device 500 to receive signals are facilitated.
  • Fig. 22 is another structural diagram of an optical receiving device according to some embodiments
  • Fig. 23 is a cross-sectional view of the optical module shown in Fig. 22 (the receiving optical path is shown in the figure).
  • the light receiving device 500 includes a support plate 560 and a light collimator 540 , a light splitter 550 , a lens array 570 and a reflective prism 580 disposed on the support plate 560 .
  • the second internal optical fiber 900 connected with the second optical fiber adapter 700 is inserted into the optical collimator 540, and the external optical signal is transmitted to the optical wave splitter 550 through the optical collimator 540, and then a composite light beam is passed through the optical wave splitter 550
  • Demultiplexing is four beams, and each beam is converged to the corresponding reflective prism 580 through the lens array 570, and the beam is reflected at the reflective surface of the reflective prism 580, so that it will be parallel to one side surface of the circuit board 300 (such as the front surface) ) is reflected as a beam perpendicular to the surface of the circuit board 300, and the reflected beam enters the laser detector 520 on the circuit board 300 to achieve light reception.
  • the optical collimator 540 includes a single-mode fiber flange 541 and a collimator 542, and the second internal optical fiber 900 is inserted into the optical collimator 540 through the single-mode optical fiber flange 541, and the collimator 542 is arranged on the second internal optical fiber 900.
  • the light output surface is configured to convert the external light beam transmitted by the second inner optical fiber 900 into a collimated light beam.
  • the light incident surface of the optical splitter 550 faces the light exit surface of the collimator 542, and is configured to demultiplex one collimated beam output by the optical collimator 540 into multiple beams (such as four beams), which will include Multiple beams of different wavelengths are separated.
  • the optical splitter 550 outputs multiple beams of different wavelengths, and the multiple beams of different wavelengths are injected into corresponding lenses of the lens array 570 to converge the beams onto the reflective surface of the reflective prism 580 .
  • the reflective prism 580 is arranged directly above the laser detector 520 on the circuit board 300, so as to reflect the multi-path light beams transmitted to the reflective prism 580 into the corresponding laser detectors 520, and convert the optical signal into an electrical signal through the laser detector 520. Signal.
  • Figure 24 is an exploded view of another optical module according to some embodiments.
  • Fig. 25 is a partial structural diagram of another optical module according to some embodiments.
  • FIG. 26 is a reversed structural diagram of FIG. 25 .
  • Figure 24 is compared with Figure 5 and Figure 9
  • Figure 25 is compared with Figure 6 and Figure 9
  • Figure 26 is compared with Figure 7 and Figure 9
  • the main difference is that for the optical modules in Figure 24, Figure 25 and Figure 26
  • the light-emitting component 410 and the silicon photonics chip 420 are located on one side surface of the circuit board 300, and the mounting part 440 is omitted, and the light-receiving device 500 is located on the surface of the other opposite side of the circuit board 300;
  • the light emitting component 410 , the silicon photonics chip 420 and the light receiving device 500 are all located on the surface of the same side of the circuit board 300 .
  • Figure 27 is an exploded view of another light emitting device and circuit board according to some embodiments.
  • the light-emitting component 410 and the silicon photonics chip 420 are arranged on the surface of the substrate body 435 away from the upper case 201 (the lower surface), and the side of the substrate body 435 close to the upper case 201 One side surface (such as the upper surface) is connected with the upper casing 201 .
  • the digital signal processing chip 301 is disposed on the upper surface of the circuit board 300 . At this time, the digital signal processing chip 301 is located on a different surface from the light emitting component 410 and the silicon photonics chip 420 .
  • the digital signal processing chip 301 can also be arranged on the lower surface of the circuit board 300 , and in this case, the digital signal processing chip 301 is located on the same surface as the light emitting component 410 and the silicon photonics chip 420 .
  • FIG. 28 is a structural diagram of another substrate body according to some embodiments
  • FIG. 29 is a structural diagram of another viewing angle of the substrate body shown in FIG. 28 .
  • the difference between FIG. 28 and FIG. 29 is that the lower surface of the first limiting portion 433 in FIG. 28 and FIG. 29 is not coplanar with the lower surface of the emitting sub-substrate body 431 .
  • the lower surface of the first limiting portion 433 is higher than the lower surface of the emitting sub-substrate body 431 relative to the horizontal plane, and the lower surface of the first limiting portion 433 is connected to the upper surface of the circuit board 300 .
  • the first limiting portion 433 is connected to the circuit board 300 through solid glue.
  • the lower surface of the first sub-radiation limiting portion 4331 is connected to the upper surface of the circuit board 300 .
  • the lower surface of the second sub-radiation limiting portion 4332 is connected to the upper surface of the circuit board.
  • the lower surface of the third sub-radiation limiting portion 4333 is connected to the upper surface of the circuit board 300 .
  • the lower surface of the second limiting portion 434 is not coplanar with the lower surface of the sub-substrate body 432 .
  • the lower surface of the second limiting portion 434 is higher than the upper surface of the sub-substrate body 432 relative to the horizontal plane, and the lower surface of the second limiting portion 434 is connected to the upper surface of the circuit board 300 .
  • the lower surface of the first sub-chip limiting portion 4341′ is connected to the upper surface of the circuit board 300 .
  • the lower surface of the second sub-chip limiting portion 4342 is connected to the upper surface of the circuit board 300 .
  • the lower surface of the third sub-chip limiting portion 4343 is connected to the upper surface of the circuit board 300 , so as to realize the fixed connection between the substrate body 435 and the circuit board 300 .
  • the height of the first limiting portion 433 and the second limiting portion 434 are the same, that is, the lower surfaces of the first limiting portion 433 and the second limiting portion 434 are located in the same plane, which facilitates the connection between the substrate body 435 and the circuit board 300 connect.
  • the same height may also include: in the thickness direction of the emitter sub-substrate body 431 , the thicknesses of the first limiting portion 433 and the second limiting portion 434 are equal.
  • Figure 30 is a cross-sectional view of another light module according to some embodiments. As shown in FIG. 30 , the laser group 411 is disposed on the lower surface of the substrate body 435 , and the left side of the laser group 411 is adjacent to the circuit board 300 .
  • a metal-ceramic substrate 415 is arranged between the laser group 411 and the carrying platform 441.
  • the surface of the metal-ceramic substrate 415 away from the upper housing 201 (the following surface) is flush with the lower surface of the circuit board 300.
  • the left end of the metal-ceramic substrate 415 As close to the circuit board 300 as possible, it is beneficial to improve the stability of the circuit connection between the circuit board 300 and the laser group 411 and shorten the length of the gold wire.
  • the collimating lens group 412 , the optical isolator group 414 , the converging lens group 413 and the wedge prism 422 are all disposed on the lower surface of the substrate body 435 .
  • the light emitting component 410 is first installed on the emitting sub-substrate body 431 .
  • the silicon photonic chip 420 is disposed on the lower surface of the chip sub-substrate body 432 , and each edge of the chip sub-substrate body 432 is flush with each edge of the silicon photonic chip 420 .
  • the laser group 411 , the collimating lens group 412 , the optical isolator group 414 and the converging lens group 413 are mounted on the emitting sub-substrate body 431 . Then, after the slope of the wedge prism 422 is connected to the input end of the silicon photonics chip 420 , the wedge prism 422 and the silicon photonics chip 420 are mounted on the chip sub-substrate body 432 .
  • the laser set 411 is disposed on the substrate body 435 so as to conduct the heat generated by the laser set 411 from the substrate body 435 to the upper casing 201 .
  • the outside of the upper shell 201 is connected to the cage 106, which is beneficial to improve the heat conduction efficiency.
  • the inner wall of the cover plate 2011 of the upper housing 201 is provided with a heat conduction protrusion 2012 (see FIG. 15 ), and the heat conduction protrusion 2012 is connected to the upper surface of the substrate body 435, which is beneficial to improve heat dissipation efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括下壳体、上壳体、电路板、衬底和光发射器件。所述上壳体盖合在所述下壳体上以形成腔体;所述电路板设置于所述腔体内,所述电路板包括让位孔;所述衬底设置于所述让位孔处,所述衬底包括衬底本体、承载平台和导热部件。所述承载平台设置于所述衬底本体的靠近所述上壳体的一侧,所述导热部件的一端与所述承载平台连接,且所述导热部件的另一端与所述上壳体连接以传导热量。所述光发射器件包括光发射组件和硅光芯片,所述光发射组件和所述硅光芯片设置于所述衬底的同一侧。

Description

光模块
本申请要求于2021年09月24日提交的、申请号为202111121659.9的中国专利申请;以及于2021年09月24日提交的、申请号为202122324284.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频会议等新型业务和应用模式的发展,光通信技术的发展进步变的愈加重要。在光通信技术中,光模块是实现光电信号相互转换的工具,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
提供一种光模块。所述光模块包括下壳体、上壳体、电路板、衬底和光发射器件。所述上壳体盖合在所述下壳体上以形成腔体;所述电路板设置于所述腔体内,所述电路板包括让位孔;所述衬底设置于所述让位孔处,所述衬底包括衬底本体、承载平台和导热部件。所述承载平台设置于所述衬底本体的靠近所述上壳体的一侧,所述导热部件的一端与所述承载平台连接,且所述导热部件的另一端与所述上壳体连接以传导热量。所述光发射器件包括光发射组件和硅光芯片,所述光发射组件和所述硅光芯片设置于所述衬底的同一侧。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的光通信系统的连接图;
图2为根据一些实施例的光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的另一种光模块的结构图;
图5为根据一些实施例的一种光模块的分解图;
图6为根据一些实施例的一种光模块的局部结构图;
图7为图6翻转后的结构图;
图8为根据一些实施例的一种光发射器件与电路板的分解图;
图9为根据一些实施例的一种光发射器件的结构图;
图10为根据一些实施例的一种光发射器件的分解图;
图11为根据一些实施例的一种衬底本体的结构图;
图12为根据一些实施例的一种安装部的结构图;
图13为图12所示安装部的另一视角的结构图;
图14为图12所示安装部的又一视角的结构图;
图15为根据一些实施例的一种光模块的剖面图;
图16为图15中框Q处的局部放大图;
图17为根据一些实施例的一种光发射器件的局部结构图;
图18为图17中光发射器件的俯视图;
图19为图17中光发射器件的光路图;
图20为根据一些实施例的一种光发射器件的单光路示意图;
图21为根据一些实施例的一种光接收器件的结构图;
图22为根据一些实施例的光接收器件的另一种结构图;
图23为图22所示光模块的剖视图(图中示出了接收光路);
图24为根据一些实施例的另一种光模块的分解图;
图25为根据一些实施例的另一种光模块的局部结构图;
图26为图25翻转后的结构图;
图27为根据一些实施例的另一种光发射器件与电路板的分解图;
图28为根据一些实施例的另一种衬底本体的结构图;
图29为图28所示衬底本体的另一视角的结构图;
图30为根据一些实施例的另一种光模块的剖视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其 中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术中使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、二线制同步串行(Inter-Integrated Circuit,I2C)信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wireless-Fidelity,Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的光通信系统的连接图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。例如,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。例如,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的电路板105(例如,印刷电路板(Printed Circuit Board,PCB)),设置在电路板105的表面的笼子106,设置于笼子106上的散热器107,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的另一种光模块的结构图;图5为根据一些实施例的一种光模块的分解图。如图3、图4和图5所示,光模块200包括壳体(shell)、设置于壳体中的电路板300、光发射器件400及光接收器件500。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成腔体206。电路板300设置于腔体206内。壳体包括两个开口204和205;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指310(参见图5)从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,被配置为接入外部的光纤101,以使光纤101连接光模块200内部的光发射器件400及光接收器件500。电路板300、光发射器件400及光接收器件500等光电器件位于上述壳体中。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射器件400及光接收器件500等光电器件安装到壳体中,由上壳体201、下壳体202对这些光电器件形成封装保护。此外,采用分体结构的壳体,在装配电路板300、光发射器件400及光接收器件500等光电器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,有利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
例如,如图3所示,解锁部件203位于下壳体202的两个下侧板2022的外壁,或者,如图4所示,解锁部件203位于上壳体201的盖板2011的外壁。解锁部件203包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里时,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动, 进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片等,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如包括微处理器(Microcontroller Unit,MCU)、激光驱动芯片、限幅放大器(Limiting Amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片(Power Management Chip)、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述的电子元件和芯片;当光发射器件400及光接收器件500位于电路板300上时,硬性电路板也可以平稳地承载光发射器件400及光接收器件500。硬性电路板还可以插入上位机笼子中的电连接器中。
在一些实施例中,电路板300还包括形成在其端部表面的金手指310,金手指310包括相互独立的多个引脚。电路板300插入笼子106中,由金手指310与笼子106内的电连接器导通连接。金手指310可以仅设置在电路板300一侧的表面(例如图5中电路板300的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指310被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。例如,硬性电路板300与光发射器件400和光接收器件500之间可以采用柔性电路板连接,而不是通过电路走线连接。
图6为根据一些实施例的一种光模块的局部结构图。图7为图6翻转后的结构图。如图6所示,光发射器件400及光接收器件500位于电路板300上,且光发射器件400及光接收器件500可设置于电路板300的同一侧,也可设置于电路板300的不同侧。
当然,光发射器件400及光接收器件500也可以与电路板300间接连接,例如通过柔性电路板或电连接器连接电路板300。
光发射器件400被配置为将电信号转化为光信号。光发射器件400接收来自电路板300的电信号并将该电信号转换为光信号。光发射器件400通过第一光纤适配器600与外部光纤连接,并将光信号经第一光纤适配器600传输至外部光纤。光接收器件500被配置为将光信号转换为电信号。光接收器件500与第二光纤适配器700连接,接收来自外部光纤的光信号。该光信号经光接收器件500转化为电信号,再由光接收器件500传输至电路板300,经电路板300上的金手指310传输至上位机。
如图6和图7所示,在一些实施例中,光发射器件400与光接收器件500均设置于电路板300的同一侧。例如,光发射器件400与光接收器件500均设置于电路板300的靠近上壳体201的一侧。
图8为根据一些实施例的一种光发射器件与电路板的分解图,图9为根据一些实施例的一种光发射器件的结构图。
在一些实施例中,如图8和图9所示,光发射器件400包括硅光芯片420和光发射组件410,以实现高速通信,减少损耗。
硅光芯片420设置在电路板300上,且与电路板300电连接。例如,硅光芯片420与电路板300通过金属材质的连接线(例如,金线)连接,硅光芯片420与电路板300的靠近上壳体201的一侧表面平齐;在光发射器件400还包括衬底时,硅光芯片也可设置于衬底表面,衬底与电路板之间通过导线连接。
为了便于叙述,以下主要以图5展现的方位对各光电器件进行说明,上壳体201所在方位为上,下壳体202所在方位为下,光口205所在方位为左,电口204所在方位为右,靠近光接收器件500的下侧板2022所在方位为前,靠近光发射器件的 下侧板2022所在的方位为后。
在一些实施例中,如图8所示,光模块200还包括数字信号处理芯片301。数字信号处理芯片301设置在电路板300上,硅光芯片420(参见图9)与数字信号处理芯片301通过电路板300上的线路连接。上位机经金手指310(参见图5)将电信号传输至数字信号处理芯片301,数字信号处理芯片301对接收到的电信号进行数据处理,生成光的电调制信号。再将光的电调制信号传输至硅光芯片420。
光发射组件410发射不携带信号的光,硅光芯片420接收来自光发射组件410的光,并对该光进行调制,即将光的电调制信号加载到该光上,形成光信号。
如图8和图9所示,光模块200还包括第一光纤适配器600。硅光芯片420与第一光纤适配器600之间通过内部光纤800实现光连接,第一光纤适配器600还与外部光纤光连接。硅光芯片420将携带数据信息的光信号通过内部光纤800传输至第一光纤适配器600,再经第一光纤适配器600传输至外部光纤。
参照图19,硅光芯片420包括合波器425、多个调制器426和光波导427。合波器425被配置为将不同波长的光合波,形成一路光波导信号,有利于实现单模光纤多通道信号传输,提高光通信效率。多个调制器426的输入端接收光发射组件410的出射光,并将该出射光调制为调制光。合波器425与多个调制器426通过光波导427连接。
图10为根据一些实施例的一种光发射器件的分解图。如图10和图17所示,在一些实施例中,光发射组件410包括激光器组411、准直透镜组412和会聚透镜组413。
激光器组411被配置为发射激光光束,该激光光束不携带数据信息。例如,激光器组411为分布反馈(Distributed Feed Back,DFB)激光器组411,DFB激光器组411的侧面具有出光口,其发射的激光为发散角较大的激光。
光发射器件400采用硅光芯片420实现多路激光的调制和合波,集成度更高,装配简单。采用大功率的DFB激光器组411,为光发射器件400提供足够的光功率。并且,DFB激光器组411可在较大温度范围内正常工作,无需对其进行温度控制,减少了光电器件的使用,从而降低了光模块200成本。
准直透镜组412设置于激光器组411的出光光路上。准直透镜组412被配置为将激光器组411发射的激光光束准直为平行激光光束。
会聚透镜组413设置于准直透镜组412的出光光路上。会聚透镜组413被配置为将平行激光光束会聚以形成光斑。硅光芯片420的输入端设置于会聚透镜组413的光斑的焦点处,且被配置为接收会聚透镜组413的会聚光。会聚光经硅光芯片420的输入端进入硅光芯片420,经调制器调制后,形成携带数据信息的激光信号,再经过合波器425将调制后的多路激光信号合并为一束激光信号。该束激光信号经硅光芯片420的输出端传输至外部光纤。
在一些实施例中,光发射组件410还包括光隔离器组414(参见图17)。光隔离器组414位于准直透镜组412与会聚透镜组413之间,并被配置为允许准直透镜组412的出射光单向通过,以避免光经不同介质的界面反射后由原路返回激光器组411。
硅光芯片420的输入端为光波导427,硅光芯片420的输入端端面倾斜设置,硅光芯片420的输入端端面与光发射组件410的输出端端面存在预设角度的夹角。
如图10所示,光发射器件400还包括楔形棱镜422。楔形棱镜422设置于硅光芯片420的输入端。楔形棱镜422的斜面与硅光芯片420的输入端连接,楔形棱镜422的远离所述斜面的一侧表面与激光光束垂直设置。楔形棱镜的斜面与硅光芯片420的输入端之间可以通过光学胶连接,光学胶的折射率介于楔形棱镜422的折射率与硅光芯片420的折射率之间,以实现三者折射率的匹配;这样,有利于提高硅光芯片420的输入端光的耦合效率。
在一些实施例中,楔形棱镜422的所述一侧表面设置有(如镀有)光学增透膜; 光学增透膜能够防止硅光芯片420的输出端产生的反射光透过楔形棱镜422,以避免光发射组件410发出的一部分光经过硅光芯片420的输入端反射后沿原路返回,影响光效率。
光发射器件400中激光或激光信号的传输路径如下:激光器组411发射不携带数据信息的激光光束,该激光光束经准直透镜组412准直后形成平行激光光束,该平行激光光束再经过光隔离器组414后到达会聚透镜组413,经会聚透镜组413会聚为光斑后进入硅光芯片420;所述光斑经调制器426调制后形成调制激光信号,该调制激光信号再进入合波器425中,最后通过由第一光纤接头423连接的第一内部光纤800传输至第一光纤适配器600。
如图8所示,电路板300包括让位孔320。如图10所示,光发射器件400还包括衬底430。衬底430的一部分与上壳体201连接,衬底430的另一部分嵌入让位孔320中。
衬底430的材料包括但不限于钨铜、可伐合金(例如,铁镍合金或铁镍钴合金)、冷轧碳钢(Steel Plate Cold rolled Commercial,SPCC)、铜等,便于将光电器件产生的热量传递至衬底430。
图11为根据一些实施例的一种衬底本体的结构图。
如图10和图11所示,衬底430包括衬底本体435。衬底本体435包括发射子衬底本体431和芯片子衬底本体432。发射子衬底本体431和芯片子衬底本体432均为长方体结构,发射子衬底本体431与芯片子衬底本体432靠近彼此的一侧连接,连接处设置预设夹角θ(如图18所示),即发射子衬底本体431与芯片子衬底本体432虽然位于同一平面内,但并不位于同一条直线上;例如,图18中,发射子衬底本体431位于直线O上,而芯片子衬底本体位于直线O’上。所述预设夹角θ有利于光发射组件410发出的光耦合进入硅光芯片420的输入端。
发射子衬底本体431和芯片子衬底本体432的连接处的侧面平齐,方便光发射组件410与硅光芯片420的安装定位。
芯片子衬底本体432和发射子衬底本体431可以是一体件或分体件。
如图11所示,衬底本体435包括第一限位部433。第一限位部433设置于发射子衬底本体431的边缘。第一限位部433的靠近上壳体201的一侧表面(如上表面)低于发射子衬底本体431靠近上壳体201的一侧表面(如上表面),且第一限位部433的上表面与电路板300的远离上壳体201的一侧表面(如下表面)连接,以实现衬底本体435与电路板300之间的连接。
第一限位部433围绕发射子衬底本体431的边缘设置,第一限位部433包括第一子发射限位部4331、第二子发射限位部4332和第三子发射限位部4333。
第一子发射限位部4331设置于发射子衬底本体431的一侧(如前侧)。第一子发射限位部4331的靠近上壳体201的一侧表面(如上表面)与电路板300的下表面连接。
第二子发射限位部4332设置于发射子衬底本体431的远离芯片子衬底本体432的一侧(如左侧)。第二子发射限位部4332的靠近上壳体201的一侧表面(如上表面)与电路板的下表面连接。
第三子发射限位部4333设置于发射子衬底本体431的远离第一子发射限位部的一侧(如后侧)。第三子发射限位部4333的靠近上壳体201的一侧表面(如上表面)与电路板300的下表面连接。
这样,通过第一子发射限位部4331、第二子发射限位部4332、第三子发射限位部4333可以实现衬底本体435对电路板300的支撑。
在一些实施例中,第一子发射限位部4331、第二子发射限位部4332以及第三子发射限位部4333的高度相同。
需要说明的是,上述高度相同指的是第一子发射限位部4331、第二子发射限位部4332、第三子发射限位部4333的靠近上壳体201的一侧表面均位于同一平面内。
在一些实施例中,高度相同还可以包括:在发射子衬底本体431的厚度方向上,第一子发射限位部4331、第二子发射限位部4332以及第三子发射限位部4333的厚度相等。
第一子发射限位部4331、第二子发射限位部4332、第三子发射限位部4333相互连接。当然,第一子发射限位部4331、第二子发射限位部4332和第三子发射限位部4333之间也可以存在一定的间隙。
发射子衬底本体431包括避让孔4311。避让孔4311被配置为避让光电器件。
衬底本体435还包括第二限位部434。第二限位部434设置于芯片子衬底本体432的边缘,且被配置为将衬底本体435与电路板300相连。第二限位部434的靠近上壳体201的一侧表面(如上表面)低于芯片子衬底本体432的靠近上壳体201的一侧表面(如上表面),且第二限位部434的上表面与电路板300的下表面连接。
第二限位部434围绕芯片子衬底本体432的边缘设置,第二限位部434包括第一子芯片限位部4341、第二子芯片限位部4342和第三子芯片限位部4343。
第一子芯片限位部4341设置于芯片子衬底本体432的一侧(如前侧)。第一子芯片限位部4341的靠近上壳体201的一侧表面(如上表面)与电路板300的下表面连接。
第二子芯片限位部4342设置于芯片子衬底本体432的远离发射子衬底本体431的一侧(如右侧)。第二子芯片限位部4342的靠近上壳体201的一侧表面(如上表面)与电路板300的下表面连接。
第三子芯片限位部4343设置于芯片子衬底本体432的远离第一子芯片限位部4341的一侧(如后侧)。第三子芯片限位部4343的靠近上壳体201的一侧表面(如上表面)与电路板300的下表面连接。
这样,通过第一子芯片限位部4341、第二子芯片限位部4342和第三子芯片限位部4343可以实现衬底本体435对电路板300的支撑。
在一些实施例中,第一子芯片限位部4341、第二子芯片限位部4342以及第三子芯片限位部4343的高度相同。
需要说明的是,上述高度相同指的是第一子芯片限位部4341、第二子芯片限位部4342、第三子芯片限位部4343的靠近上壳体201的一侧表面均位于同一平面内。
在一些实施例中,高度相同还可以包括:在芯片子衬底本体432的厚度方向上,第一子芯片限位部4341、第二子芯片限位部4342、第三子芯片限位部4343的厚度相等。
在一些实施例中,第一子芯片限位部4341、第二子芯片限位部4342、第三子芯片限位部4343相互连接。当然,第一子芯片限位部4341、第二子芯片限位部4342、第三子芯片限位部4343之间也可以存在一定的间隙。
第一限位部433与第二限位部434的高度相同,即第一限位部433的上表面与第二限位部434上表面也位于同一平面内。
在一些实施例中,高度相同还可以包括:在衬底本体435的厚度方向上,第一限位部433与第二限位部434的厚度相等。
衬底本体435的各个角设置有圆角。发射子衬底本体431的远离芯片子衬底本体432的一侧壁(如左侧壁)靠近光口205设置,且抵靠于电路板300的让位孔320的一侧。
如图10所示,衬底430还包括安装部440,安装部440设置于发射子衬底本体431的靠近上壳体201的一侧(如上侧),且被配置为承载光发射组件410。
衬底本体435与安装部440可以是一体件或分体件。衬底本体435与安装部440之间可通过粘接(如热传导胶),或焊接的方式相连,以增加衬底本体435与安装部440之间的接触面积,提高衬底本体435与安装部440之间的热传递效率和连接稳定性。
在一些实施例中,安装部的材料包括但不限于钨铜、可伐合金(例如,铁镍合 金或铁镍钴合金)、冷轧碳钢、铜等。
图12为根据一些实施例的一种安装部的结构图,图13为图12所示安装部的另一视角的结构图,图14为图12所示安装部的又一视角的结构图。
在一些实施例中,如图12至图14所示,安装部440包括承载平台441和导热部件446。
承载平台441设置于发射子衬底本体431的上侧,且被配置为承载激光器组411和准直透镜组412。
导热部件446设置于承载平台441的靠近上壳体201的一侧(如上侧),导热部件446的一端与上壳体201连接,从而可以将光发射组件410产生的热量传导至上壳体201。
导热部件446包括第一支撑板442和第二支撑板443。
在一些实施例中,第一支撑板442和第二支撑板443垂直于承载平台441所在的平面,承载平台441位于第一支撑板442和第二支撑板443之间。激光器组411和准直透镜组412设置于承载平台441上。
例如,第二支撑板443与第一支撑板442对称设置,方便激光器组411和准直透镜组412设置于承载平台441上。
导热部件446还包括导热板444。导热板444设置于第一支撑板442和第二支撑板443的顶部。导热板444的靠近上壳体201的一侧表面(如上表面)与上壳体201的内壁连接,方便热量的传递。导热板444的远离上壳体201的一侧表面(如下表面)与光隔离器组414和会聚透镜组413相连。
光发射器件400中的激光器组411是主要的产热源。将激光器组411与安装部440相连,使得激光器组411产生的热量中的小部分热量经安装部440传导至衬底本体435,再经过下壳体202传导至光模块200外部;激光器组411产生的热量中的大部分热量经过承载平台441传导至与承载平台441连接的第一支撑板442和第二支撑板443,再经过第一支撑板442和第二支撑板443传导至顶部的导热板444;导热板444的热量传导至上壳体201;由于上壳体201外部与笼子106连接,使得热量可以经由散热器107散发出去。
上壳体201还包括导热凸起2012(参见图15),导热凸起2012设置于盖板2011的内壁,且与导热板444连接,有利于提高散热效率。
导热凸起2012的材料包括但不限于钨铜、可伐合金(例如,铁镍合金或铁镍钴合金)、冷轧碳钢、铜等。导热凸起2012与盖板2011可以是一体件或分体件。
本公开一些实施例中的光模块,借助于安装部440而不是半导体制冷器(Thermo Electric Cooler,TEC)进行散热,因此省略了半导体制冷器的设置,减少了光电器件的使用数量,有利于降低成本。
如图12至图14所示,安装部440还包括第一延展板4412和第二延展板4413。第一延展板4412设置于第一支撑板442的靠近芯片子衬底本体432的一侧,第二延展板4413设置于第二支撑板443的靠近芯片子衬底本体432的一侧。第一延展板4412和第二延展板4413均与发射子衬底本体431连接。第一延展板4412和第二延展板4413均与发射子衬底本体431的上表面平行,有利于增加衬底本体435与安装部440之间的接触面积,提高结构的稳定性。
在一些实施例中,第一延展板4412与发射子衬底本体431之间、第二延展板4413与发射子衬底本体431之间通过粘接(如通过热传导胶粘接)或焊接的方式相连。
如图13所示,安装部440包括安装孔445。安装孔445位于导热板444在承载平台441上的正投影内。安装孔445与避让孔4311(参见图11)的位置对应,方便光发射组件410的安装。
楔形棱镜422的底面为一平面,楔形棱镜422设置于第一延展板4412和第二延展板4413的靠近上壳体201的一侧(如上侧),以实现光发射光路的设置。
安装部440还包括第三延展板4411。第三延展板4411设置于第二支撑板443的远离第一支撑板442的一侧。第三延展板4411被配置为承载第一光纤接头423,第一光纤接头423的一端与第一内部光纤800连接,且第一光纤接头423的另一端与硅光芯片420连接。
在一些实施例中,第一支撑板442与第二支撑板443为矩形板结构。或者,如图13所示,第二支撑板443包括梯形板4431和矩形板4432。梯形板4431的斜端面靠近上壳体201设置,该斜端面从发射子衬底本体431向芯片子衬底本体432延伸的方向线性增高,梯形板4431的靠近芯片子衬底本体432的一侧与矩形板4432分别连接。矩形板4432的靠近上壳体201的一侧与导热板444连接。图15为根据一些实施例的一种光模块的剖面图,图16为图15中框Q处的局部放大图。如图15和图16所示,激光器组411设置于承载平台441上,承载平台441的左侧与电路板300相邻。
需要说明的是,上述相邻指的是承载平台441的左侧与电路板300有间隙或抵接。
在一些实施例中,光发射组件410还包括陶瓷基板415,陶瓷基板415设置于激光器组411与承载平台441之间,陶瓷基板415的表面设置(如蚀刻)有电路,所述电路被配置为给激光器组411供电。该电路的一端设有金线,所述金线与电路板300连接,且该电路的另一端与激光器组411连接,以实现激光器组411与电路板300之间的电连接。
安装过程中,先将光发射组件410安装于安装部440。即,将激光器组411、准直透镜组412安装于承载平台441,光隔离器组414和会聚透镜组413通过安装孔445安装于导热板444的远离上壳体201的一侧表面(如下表面),然后将安装部440与发射子衬底本体431连接。将楔形棱镜422设置于第一延展板4412和第二延展板4413的靠近上壳体201的一侧,楔形棱镜422的斜面与硅光芯片420的输入端连接,然后将第一光纤接头423与硅光芯片420的输出端连接。
芯片子衬底本体432上侧设置有硅光芯片420,硅光芯片420的输入端朝向光口205设置,芯片子衬底本体432的各边缘与硅光芯片420的各边缘平齐设置。
在一些实施例中,如图9所示,硅光芯片420的靠近上壳体201的一侧(如上侧)设置有硅光驱动芯片428。硅光芯片420可以与硅光驱动芯片428封装为一个芯片;或者,硅光芯片420与硅光驱动芯片为分体的两个芯片。
图17为根据一些实施例的一种光发射器件的局部结构图,图18为为图17中的光发射器件的俯视图,图19为图17中的光发射器件的光路图。
如图17至图19所示,光发射组件410可设置多个激光信号通道。激光器组411、准直透镜组412、光隔离器组414、会聚透镜组413的通道数量相对应,所述通道数量可根据需要进行设置,例如,通道数量为1、2、3或4等。
图17至图19中的光发射组件410包括四个激光通道,且每个激光通道均包括一个激光器,及对应的一个准直透镜、一个隔离器和一个会聚透镜。
激光器组411包括第一激光器4111、第二激光器4112、第三激光器4113和第四激光器4114。不同的激光器的出射光具有不同的波长。
对应地,准直透镜组412包括第一准直透镜4121、第二准直透镜4122、第三准直透镜4123和第四准直透镜4124。
光隔离器组414包括第一光隔离器4141、第二光隔离器4142、第三光隔离器4143和第四光隔离器4144。
会聚透镜组413包括第一会聚透镜4131、第二会聚透镜4132、第三会聚透镜4133和第四会聚透镜4134。
硅光芯片420包括四个输入端口,分别为第一输入端口4211、第二输入端口4212、第三输入端口4213和第四输入端口4214。
第一激光器4111的出光口发出波长为λ1的第一激光。第一激光经过第一准直 透镜4121转换为平行光束,经第一光隔离器4141、第一会聚透镜4131、楔形棱镜422后形成第一光斑,所述第一光斑经第一输入端口4211进入硅光芯片420,再经第一调制器4261调制为第一光信号,通过光波导427进入合波器425。
第二激光器4112的出光口发出波长为λ2的第二激光。第二激光经过第二准直透镜4122转换为平行光束,经第二光隔离器4142、第二会聚透镜4132、楔形棱镜422后形成第二光斑,所述第二光斑经第二输入端口4212进入硅光芯片420,再经第二调制器4262调制为第二光信号,通过光波导427进入合波器425。
第三激光器4113的出光口发出波长为λ3的第三激光。第三激光经过第三准直透镜4123转换为平行光束,经第三光隔离器4143、第三会聚透镜4133、楔形棱镜422后形成第三光斑,所述第三光斑经第三输入端口4213进入硅光芯片420,再经第三调制器4263调制为第三光信号,通过光波导427进入合波器425。
第四激光器4114的出光口发出波长为λ4的第四激光。第四激光经过第四准直透镜4124转换为平行光束,经第四光隔离器4144、第四会聚透镜4134、楔形棱镜422后形成第四光斑,所述第四光斑经第四输入端口4214进入硅光芯片420,再经第四调制器4264调制为第四光信号,通过光波导427进入合波器425。
合波器425将接收的具有不同波长的第一光信号、第二光信号、第三光信号和第四光信号合并为一束光,该束光通过第一光纤接头423传送至第一内部光纤800,并进而传送至第一光纤适配器600。
图20为根据一些实施例的一种光发射器件的单光路示意图。
如图20所示,第一会聚透镜4131传输光束,楔形棱镜422的出光面与硅光芯片420的入光面之间具有间隙D,光束依次通过楔形棱镜422的入光面、楔形棱镜422的出光面、间隙D、硅光芯片420的入光面才能进入硅光芯片420中,光束在楔形棱镜422的出光面以及硅光芯片420的入光面发生折射。激光器组411的出光方向与光进入硅光芯片420后的传播方向平行。硅光芯片420的输入端口始终位于第一会聚透镜4131的光斑的焦点处。
在一些实施例中,光接收器件500采用分立部件。图21为根据一些实施例的一种光接收器件的结构图。如图21所示,光接收器件500包括阵列波导光栅(Arrayed Waveguide Grating,AWG)分波器510、激光探测器520及跨阻放大器(Trans-Impedance Amplifier,TIA)530。
AWG分波器510的一端通过第二光纤接头523和第二内部光纤900与第二光纤适配器700连接,接收来自光模块200外部的光信号,并将包含多个不同波长的光束分开。
例如,AWG分波器510输出的是四路不同波长的光束。AWG分波器510的输出端口朝向下壳体202,输出的四路不同波长的光束传输至对应的激光探测器520,通过激光探测器520将光信号转换为电信号。电路板300上的DSP芯片通过信号线与电路板300上设置的激光探测器520相连接,激光探测器520接收到的电流信号首先传输给跨阻放大器530转换为电压信号,并进行放大,再经由信号线传输给DSP芯片301进行处理以提取来自光模块200外部的光信号中的数据信息,最后经由金手指310将该数据信息传输至光网络终端100。如此,有利于光接收器件500接收信号所需的光电器件的安装、耦合和电路连接。
除图21所示的光接收器件的结构外,本公开一些实施例中的光接收器件也可以使用其他的结构。图22为根据一些实施例的光接收器件的另一种结构图,图23为图22所示光模块的剖视图(图中示出了接收光路)。
如图22和图23所示,光接收器件500包括支撑板560及设置在支撑板560上的光准直器540、光分波器550、透镜阵列570与反射棱镜580。
与第二光纤适配器700连接的第二内部光纤900插入光准直器540内,通过光准直器540将外部光信号传输至光分波器550,再通过光分波器550将一路复合光束解复用为四路光束,每路光束均通过透镜阵列570会聚至对应的反射棱镜580, 光束在反射棱镜580的反射面处发生反射,从而将平行于电路板300的一侧表面(如正面)的光束反射为垂直于电路板300的所述表面的光束,并使得反射后的光束射入电路板300上的激光探测器520,以实现光的接收。
光准直器540包括单模光纤法兰541与准直器542,第二内部光纤900通过单模光纤法兰541插入光准直器540内,准直器542设于第二内部光纤900的出光面,且被配置为将第二内部光纤900传输的外部光束转换为准直光束。光分波器550的入光面朝向准直器542的出光面,且被配置为将光准直器540输出的一路准直光束解复用为多路光束(如四路光束),将包含多个不同波长的光束分开。光分波器550输出多路不同波长的光束,多路不同波长的光束分别射入透镜阵列570的相应透镜内,以将光束会聚至反射棱镜580的反射面上。反射棱镜580设置在电路板300上激光探测器520的正上方,以将传输至反射棱镜580的多路光束分别反射至相应的激光探测器520内,通过激光探测器520将光信号转换为电信号。
图24为根据一些实施例的另一种光模块的分解结构图。图25为根据一些实施例的另一种光模块的局部结构图。图26为图25翻转后的结构图。
图24与图5、图9相比,图25与图6、图9相比,图26与图7、图9相比,区别主要在于,对于图24、图25和图26中的光模块而言,光发射组件410和硅光芯片420位于电路板300的一侧表面,且省略安装部440,光接收器件500位于电路板300的另一相对侧的表面;而图5、图6、图7和图9中的光模块而言,光发射组件410、硅光芯片420与光接收器件500均位于电路板300的同一侧的表面。
图27为根据一些实施例的另一种光发射器件与电路板的分解图。
如图26和图27所示,光发射组件410和硅光芯片420设置于衬底本体435的远离上壳体201的一侧表面(如下表面),衬底本体435的靠近上壳体201的一侧表面(如上表面)与上壳体201连接。数字信号处理芯片301设置于电路板300的上表面,此时,数字信号处理芯片301与光发射组件410和硅光芯片420位于不同的表面。
当然,根据实际需要,数字信号处理芯片301也可以设置于电路板300的下表面,此时,数字信号处理芯片301与光发射组件410和硅光芯片420位于同一表面内。
图28为根据一些实施例的另一种衬底本体的结构图,图29为图28所示衬底本体的另一视角的结构图。图28和图29与图11相比,区别主要在于,图28和图29中第一限位部433的下表面与发射子衬底本体431的下表面不共面。例如,第一限位部433的下表面相对于水平面高于发射子衬底本体431的下表面,且第一限位部433的下表面与电路板300的上表面连接。例如,第一限位部433与电路板300通过固体胶连接。
第一子发射限位部4331的下表面与电路板300的上表面连接。
第二子发射限位部4332的下表面与电路板的上表面连接。
第三子发射限位部4333的下表面与电路板300的上表面连接。
第二限位部434的下表面与芯片子衬底本体432的下表面不共面。例如,第二限位部434的下表面相对于水平面高于芯片子衬底本体432的上表面,且第二限位部434的下表面与电路板300的上表面连接。
第一子芯片限位部4341,的下表面与电路板300的上表面连接。
第二子芯片限位部4342的下表面与电路板300的上表面连接。
第三子芯片限位部4343的下表面与电路板300的上表面连接,从而实现衬底本体435与电路板300的固定连接。
第一限位部433与第二限位部434的高度相同,即第一限位部433与第二限位部434下表面位于同一平面内,方便衬底本体435与电路板300之间的连接。
在一些实施例中,高度相同还可以包括:在发射子衬底本体431的厚度方向上,第一限位部433与第二限位部434的厚度相等。
图30为根据一些实施例的另一种光模块的剖视图。如图30所示,激光器组411设置于衬底本体435的下表面上,激光器组411的左侧与电路板300相邻。
激光器组411与承载平台441之间设有金属陶瓷基板415,金属陶瓷基板415的远离上壳体201的一侧表面(如下表面)与电路板300的下表面平齐,金属陶瓷基板415的左端尽量靠近电路板300,这样,有利于提高电路板300与激光器组411之间的电路连接的稳定性,缩短金线的长度。
准直透镜组412、光隔离器组414、会聚透镜组413和楔形棱镜422均设置于衬底本体435的下表面。
安装过程中,先将光发射组件410安装于发射子衬底本体431。芯片子衬底本体432的下表面设置有硅光芯片420,芯片子衬底本体432的各边缘与硅光芯片420的各边缘平齐。
将激光器组411、准直透镜组412、光隔离器组414和会聚透镜组413安装于发射子衬底本体431。然后将楔形棱镜422的斜面与硅光芯片420的输入端连接后,再将楔形棱镜422与硅光芯片420安装于芯片子衬底本体432。在本公开的一些实施例中,激光器组411设置于衬底本体435,便于将激光器组411产生的热量由衬底本体435传导至上壳体201。上壳体201的外部与笼子106连接,这样,有利于提高热传导效率。上壳体201的盖板2011的内壁设置有导热凸起2012(参见图15),导热凸起2012与衬底本体435的上表面连接,有利于提高散热效率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光模块,包括:
    下壳体;
    上壳体,盖合在所述下壳体上以在所述上壳体和所述下壳体之间形成腔体;
    电路板,设置于所述腔体内,所述电路板包括让位孔;
    衬底,设置于所述让位孔处,所述衬底包括:
    衬底本体;
    承载平台,所述承载平台设置于所述衬底本体的靠近所述上壳体的一侧;和
    导热部件,所述导热部件的一端与所述承载平台连接,且所述导热部件的另一端与所述上壳体连接以传导热量;和
    光发射器件,所述光发射器件包括:
    光发射组件,设置于所述衬底的一侧;和
    硅光芯片,与所述光发射组件设置于所述衬底的同一侧。
  2. 根据权利要求1所述的光模块,其中,所述导热部件包括:
    第一支撑板,所述第一支撑板的一侧与所述承载平台连接;
    第二支撑板,所述第二支撑板的一侧与所述承载平台连接;和
    导热板,所述导热板的一侧与所述第一支撑板的另一侧、所述第二支撑板的另一侧连接,所述导热板的另一侧与所述上壳体导热连接。
  3. 根据权利要求2所述的光模块,其中,所述第一支撑板或所述第二支撑板为矩形板。
  4. 根据权利要求2所述的光模块,其中,所述第一支撑板或所述第二支撑板包括:
    梯形板,所述梯形板的靠近所述上壳体的一侧端面为斜端面;和
    矩形板,所述矩形板与所述梯形板靠近彼此的端面连接,所述矩形板的靠近所述上壳体的一侧端面与所述导热板连接。
  5. 根据权利要求2所述的光模块,其中,所述光发射组件包括:
    激光器组,设置于所述承载平台的靠近所述上壳体的一侧,且被配置为发射多个激光光束;
    准直透镜组,设置于所述承载平台的靠近所述上壳体的一侧,所述准直透镜组位于所述激光器组的出光光路上,且被配置为将所述多个激光光束分别准直为多个平行激光光束;
    会聚透镜组,设置于所述导热板的远离所述上壳体的一侧,所述聚透镜组位于所述准直透镜组的出光光路上,且被配置为将所述多个平行激光光束分别会聚为多个光斑;和
    光隔离器组,设置于所述导热板的远离所述上壳体的一侧,所述光隔离器组位于所述准直透镜组和所述会聚透镜组之间,且被配置为使所述多个平行激光光束单向通过。
  6. 根据权利要求5所述的光模块,其中,所述承载平台包括安装孔,所述安装孔位于所述导热板在所述承载平台的正投影内,所述光隔离器组和所述会聚透镜组位于所述安装孔内。
  7. 根据权利要求6所述的光模块,其中,所述衬底本体包括避让孔,所述避让孔的位置与所述安装孔的位置相对应。
  8. 根据权利要求2所述的光模块,其中,所述衬底还包括:
    第一延展板,设置于所述第一支撑板的远离所述上壳体的一侧,且与所述衬底本体连接;和
    第二延展板,设置于所述第二支撑板的远离所述上壳体的一侧,且与所述衬底本体连接。
  9. 根据权利要求2所述的光模块,其中,所述衬底还包括第三延展板,所述第三延展板设置于所述第二支撑板的远离所述第一支撑板的一侧;
    所述光模块还包括:
    第一光纤适配器,设置于所述第三延展板的靠近所述上壳体的一侧;
    第一内部光纤,所述第一内部光纤的一端与所述第一光纤适配器连接,且所述第一内 部光纤的另一端与所述硅光芯片连接。
  10. 根据权利要求1所述的光模块,其中,所述衬底本体包括:
    发射子衬底本体,所述承载平台和所述导热部件设置于所述发射子衬底本体的靠近所述上壳体的一侧;和
    芯片子衬底本体,所述芯片子衬底本体的一侧与所述发射子衬底本体的一侧连接,所述硅光芯片设置于所述芯片子衬底本体的靠近所述上壳体的一侧,其中,
    所述芯片子衬底本体和所述发射子衬底本体的连接处具有预设夹角,以使所述硅光芯片的输入端与所述光发射组件的光路。
  11. 根据权利要求10所述的光模块,其中,所述衬底还包括:
    第一限位部,所述第一限位部设置于所述发射子衬底本体的侧壁,所述第一限位部的靠近所述上壳体的一侧表面低于所述发射子衬底的靠近所述上壳体的一侧表面,且所述第一限位部的靠近所述上壳体的一侧表面与所述电路板的远离所述上壳体的一侧表面连接;和/或,
    第二限位部,所述第二限位部设置于所述芯片子衬底本体的侧壁,所述第二限位部的靠近所述上壳体的一侧表面低于所述芯片子衬底的靠近所述上壳体的一侧表面,且所述第二限位部的靠近所述上壳体的一侧表面与所述电路板的远离所述上壳体的一侧表面连接。
  12. 根据权利要求1至11任一项所述的光模块,还包括光接收器件;
    所述光发射器件和所述光接收器件均位于所述衬底的靠近所述上壳体的一侧;或者,
    所述光发射器件位于所述衬底的远离所述上壳体的一侧、所述光接收器件位于所述衬底的靠近所述上壳体的一侧。
  13. 一种光模块,包括:
    下壳体;
    上壳体,盖合在所述下壳体上以在所述上壳体和所述下壳体之间形成腔体;
    电路板,设置于所述腔体内,所述电路板包括让位孔;
    衬底,设置于所述让位孔处,所述衬底包括衬底本体,所述衬底本体与所述上壳体导热连接,且所述光发射组件设置于所述衬底本体的远离所述上壳体的一侧;和
    光发射器件,所述光发射器件包括:
    光发射组件,设置于所述衬底的一侧;和
    硅光芯片,与所述光发射组件设置于所述衬底的同一侧。
  14. 根据权利要求13所述的光模块,其中,所述衬底本体包括:
    发射子衬底本体,所述光发射组件设置于所述发射子衬底本体的远离所述上壳体的一侧;和
    芯片子衬底本体,所述芯片子衬底本体的一侧与所述发射子衬底本体的一侧连接,所述硅光芯片设置于所述芯片子衬底本体的远离所述上壳体的一侧,其中,
    所述芯片子衬底本体和所述发射子衬底本体的连接处具有预设夹角,以使所述硅光芯片的输入端与所述光发射组件的光路耦合。
  15. 根据权利要求14所述的光模块,其中,所述衬底还包括:
    第一限位部,所述第一限位部设置于所述发射子衬底本体的侧壁,所述第一限位部的远离所述上壳体的一侧表面相对于水平面高于所述发射子衬底本体的远离所述上壳体的一侧表面,且所述第一限位部的所述表面与所述电路板的靠近所述上壳体的一侧表面连接;和/或,
    第二限位部,所述第二限位部设置于所述芯片子衬底本体的侧壁,所述第二限位部的远离所述上壳体的一侧表面相对于水平面高于所述芯片子衬底本体的远离所述上壳体的一侧表面,且所述第二限位部的所述表面与所述电路板的靠近所述上壳体的一侧表面连接。
  16. 根据权利要求15所述的光模块,其中,所述第一限位部和所述第二限位部的远离所述上壳体的一侧表面位于同一平面内。
  17. 根据权利要求15所述的光模块,其中,
    所述第一限位部包括:
    第一子发射限位部,设置于所述发射子衬底本体的一侧;
    第二子发射限位部,设置于所述发射子衬底本体的远离所述芯片子衬底本体的一侧;和
    第三子发射限位部,设置于所述发射子衬底本体的远离所述第一子发射限位部的一侧;
    所述第二限位部包括:
    第一子芯片限位部,设置于所述芯片子衬底本体的一侧;
    第二子芯片限位部,设置于所述芯片子衬底本体的远离所述发射子衬底本体的一侧;和
    第三子芯片限位部,设置于所述芯片子衬底本体的远离所述第一子芯片限位部的一侧。
  18. 根据权利要求17所述的光模块,其中,
    所述第一子发射限位部、所述第二子发射限位部和所述第三子发射限位部的远离所述上壳体的一侧表面均位于同一平面内;
    所述第一子芯片限位部、所述第二子芯片限位部和所述第三子芯片限位部的远离所述上壳体的一侧表面均位于同一平面内。
  19. 根据权利要求14至18任一项所述的光模块,其中,所述发射子衬底本体和所述芯片子衬底本体为一体结构。
  20. 根据权利要求14所述的光模块,其中,所述光模块还包括:
    楔形棱镜,设置于所述芯片子衬底本体的远离所述上壳体的一侧,且位于所述光发射组件和所述硅光芯片之间,所述楔形棱镜的斜面与所述硅光芯片的输入端连接,所述楔形棱镜的远离所述斜面的一侧表面与所述光发射组件的出光方向垂直。
PCT/CN2022/098900 2021-09-24 2022-06-15 光模块 WO2023045423A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280051619.8A CN117693697A (zh) 2021-09-24 2022-06-15 光模块

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111121659.9 2021-09-24
CN202111121659.9A CN113885143B (zh) 2021-09-24 2021-09-24 一种光模块
CN202122324284.8U CN215678864U (zh) 2021-09-24 2021-09-24 一种光模块
CN202122324284.8 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045423A1 true WO2023045423A1 (zh) 2023-03-30

Family

ID=85719992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098900 WO2023045423A1 (zh) 2021-09-24 2022-06-15 光模块

Country Status (1)

Country Link
WO (1) WO2023045423A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051268A1 (en) * 2000-10-30 2002-05-02 Koichiro Tonehira Optical module and optical transceiver
CN111694113A (zh) * 2019-03-15 2020-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN111694112A (zh) * 2019-03-15 2020-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN112965190A (zh) * 2021-04-12 2021-06-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN113885143A (zh) * 2021-09-24 2022-01-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN215678864U (zh) * 2021-09-24 2022-01-28 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051268A1 (en) * 2000-10-30 2002-05-02 Koichiro Tonehira Optical module and optical transceiver
CN111694113A (zh) * 2019-03-15 2020-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN111694112A (zh) * 2019-03-15 2020-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN112965190A (zh) * 2021-04-12 2021-06-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN113885143A (zh) * 2021-09-24 2022-01-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN215678864U (zh) * 2021-09-24 2022-01-28 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN117693697A (zh) 光模块
CN114035285B (zh) 一种光模块
US20230258883A1 (en) Optical module
US11994726B2 (en) Optical module
CN215678864U (zh) 一种光模块
CN114624829B (zh) 一种光模块
WO2023035711A1 (zh) 光模块
WO2023185220A1 (zh) 一种光模块
US20230194802A1 (en) Optical module
WO2023045423A1 (zh) 光模块
CN113759479B (zh) 一种光模块
CN113805290B (zh) 一种光模块
WO2022100278A1 (zh) 一种光模块
US11927817B2 (en) Optical module
CN115016074B (zh) 一种光模块
CN114779412A (zh) 一种光模块
WO2023184906A1 (zh) 光模块
WO2023093130A1 (zh) 光模块
WO2023029707A1 (zh) 光模块
WO2023184922A1 (zh) 光模块
WO2024093070A1 (zh) 光模块
WO2022247426A1 (zh) 光模块
CN115032749B (zh) 一种光模块
WO2023082783A1 (zh) 光模块
WO2022206169A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280051619.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE