WO2023184922A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023184922A1
WO2023184922A1 PCT/CN2022/123636 CN2022123636W WO2023184922A1 WO 2023184922 A1 WO2023184922 A1 WO 2023184922A1 CN 2022123636 W CN2022123636 W CN 2022123636W WO 2023184922 A1 WO2023184922 A1 WO 2023184922A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
housing
sub
optical fiber
Prior art date
Application number
PCT/CN2022/123636
Other languages
English (en)
French (fr)
Inventor
王斌
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220699448.7U external-priority patent/CN217484546U/zh
Priority claimed from CN202220699450.4U external-priority patent/CN217484547U/zh
Priority claimed from CN202210314271.9A external-priority patent/CN114779412B/zh
Priority claimed from CN202220699449.1U external-priority patent/CN216901053U/zh
Priority claimed from CN202210316221.4A external-priority patent/CN114660740B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023184922A1 publication Critical patent/WO2023184922A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an optical module.
  • optical communication technology optical modules are tools for realizing mutual conversion of optical and electrical signals. They are one of the key components in optical communication equipment. With the development of optical communication technology, the transmission rate of optical modules continues to increase.
  • the optical module includes a housing, a circuit board, a light receiving component, a first sub-fiber adapter and a first sub-internal optical fiber.
  • the circuit board is located in the housing.
  • the light receiving component is located in the housing and electrically connected to the circuit board, and is configured to convert optical signals from outside the optical module into electrical signals and transmit the electrical signals to the circuit board.
  • the light receiving component includes an optical fiber holder.
  • the first sub-fiber adapter is fixedly connected to the housing and is disposed opposite an end of the light receiving component configured to receive optical signals from outside the optical module.
  • One end of the first sub-internal optical fiber is connected to the first sub-optical fiber adapter, and the other end of the first sub-internal optical fiber is connected to the light receiving component after one revolution around the optical fiber holder.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Figure 3 is a structural diagram of an optical module according to some embodiments.
  • Figure 4 is an exploded view of an optical module according to some embodiments.
  • Figure 5 is a partial structural diagram of an optical module according to some embodiments.
  • Figure 6 is an exploded structural view of the optical module shown in Figure 5;
  • Figure 7 is a structural diagram of a light receiving component in an optical module according to some embodiments.
  • Figure 8 is a structural diagram of an optical fiber holder in an optical module according to some embodiments.
  • Figure 9 is another angle structural view of an optical fiber holder in an optical module according to some embodiments.
  • Figure 10 is a structural diagram of the installation structure of the first sub-internal optical fiber on the optical fiber holder in an optical module according to some embodiments;
  • Figure 11 is a cross-sectional view of the structure of a light receiving component in an optical module according to some embodiments.
  • Figure 12 is a structural diagram of a light emitting component in an optical module according to some embodiments.
  • Figure 13 is a structural diagram of a transmitting housing in an optical module according to some embodiments.
  • Figure 14 is another angle structural view of the emitting housing in an optical module according to some embodiments.
  • Figure 15 is an exploded structural view of a light emitting component in an optical module according to some embodiments.
  • Figure 16A is a cross-sectional view of a light emitting component in an optical module according to some embodiments.
  • Figure 16B is an installation structural diagram of the light emitting component and the second sub-internal optical fiber in an optical module according to some embodiments;
  • Figure 17 is a structural diagram of an optically tight housing in an optical module according to some embodiments.
  • Figure 18 is another angle structural view of an optically tight housing in an optical module according to some embodiments.
  • Figure 19 is a partial structural diagram of an optical module according to some embodiments.
  • Figure 20 is another partial structural diagram of an optical module according to some embodiments.
  • Figure 21 is a structural diagram of a carrier board in an optical module according to some embodiments.
  • Figure 22 is a structural diagram of the lower housing of an optical module according to some embodiments.
  • Figure 23 is a cross-sectional view of an optical module according to some embodiments.
  • 200-Optical module 201-Upper housing; 202-Lower housing; 2021-Bottom plate; 20211-First bottom plate protrusion; 20212-Second bottom plate protrusion; 202121-First baffle arm; 202122-Second baffle arm ; 202123-First buckle avoidance part; 20213-Third bottom plate protrusion; 2022-Lower side plate; 202201-First lower side plate; 20221-First limit groove; 20222-Second limit groove; 202202- The second lower side plate; 20223-the third limit slot; 20224-the fourth limit slot; 20214-the clamping plate installation slot; 202141-the first clamping plate limiting part; 202142-the second clamping plate limiting part; 203 -Unlocking parts; 204-opening (electrical port); 205-opening (optical port);
  • 300-Optical module circuit board 301-Golden finger; 310-First circuit board; 320-Second circuit board; 330-First flexible circuit board; 340-Second flexible circuit board; 350-Third flexible circuit board ;
  • 500-light receiving component 510-receiving housing; 511-fiber holder; 5110-receiving bottom plate; 51101-receiving groove; 51102-receiving substrate; 51106-fiber avoidance part; 51116-first sub-fiber avoidance part; 51126- The second sub-fiber avoidance part; 5111-the first receiving side plate; 51111-the first buckle; 51112-the second buckle; 51113-the third buckle; 51114-the first connection part; 51115-the first limiting part ; 51117-first notch; 51118-side plate groove; 5112-second receiving side plate; 51121-fourth buckle; 51122-fifth buckle; 51123-sixth buckle; 51124-second connection part; 51125-Second limiting part; 51127-Second notch; 51128-Side plate opening; 5113-Interface avoidance part; 5114-First boss; 5115-Second boss; 512-Receiver cover; 520-Light alignment Straightener;
  • 601-First sub-internal optical fiber 602-Second sub-internal optical fiber;
  • 700-Fiber optic adapter 701-First fiber optic adapter; 702-Second fiber optic adapter;
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated. Thus, example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. The regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • optical signals are used to carry information to be transmitted, and the optical signals carrying information are transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since light has passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by computers and other information processing equipment are electrical signals. Therefore, in order to distinguish between information transmission equipment such as optical fibers or optical waveguides and computers and other information processing equipment To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • Optical modules realize the mutual conversion function of the above-mentioned optical signals and electrical signals in the field of optical fiber communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection Mainly used for power supply, I2C signal transmission, data information transmission and grounding; optical network terminals transmit electrical signals to computers and other information processing equipment through network cables or wireless fidelity technology (Wi-Fi).
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103.
  • the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of thousands of meters (6 kilometers to 8 kilometers). On this basis, if a repeater is used, unlimited distance transmission can be theoretically achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers, or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: router, switch, computer, mobile phone, tablet computer, television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to access the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port is configured to access the optical network terminal 100, so that The optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical module 200 realizes mutual conversion between optical signals and electrical signals, thereby establishing an information connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101. Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 provided on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 Establish a two-way electrical signal connection.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100 serves as the host computer of the optical module 200 and can monitor the optical module. 200 job.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT), etc.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101, the optical module 200, the optical network terminal 100 and the network cable 103.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments. In order to clearly show the connection relationship between the optical module 200 and the optical network terminal 100, Figure 2 only shows the parts of the optical network terminal 100 related to the optical module 200. structure. As shown in Figure 2, the optical network terminal 100 also includes a circuit board 105 provided in the housing, a cage 106 provided on the surface of the circuit board 105, a heat sink provided on the cage 106, and an electrical connector provided inside the cage 106 . The electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has fins and other protruding structures that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the optical module 200 is fixed by the cage 106.
  • the heat generated by the optical module 200 is conducted to the cage 106, and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a housing, a circuit board 300 disposed in the housing, a light emitting component 400 and a light receiving component 500 .
  • the housing includes an upper housing 201 and a lower housing 202.
  • the upper housing 201 is covered on the lower housing 202 to form the above-mentioned housing with two openings; the outer contour of the housing generally presents a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 is closed underneath. on the two lower side plates 2022 of the housing 202 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the upper case 201 includes a cover plate 2011, and two lower side plates 2022 located on both sides of the cover plate 2011.
  • the two upper side plates 2012 arranged perpendicularly to the cover plate 2011 are combined with the two lower side plates 2022 to realize that the upper housing 201 is covered on the lower housing 202 .
  • the direction of the connection line between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at an end of the optical module 200 and the opening 205 is located at a side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger 301 of the circuit board 300 extends from the electrical port 204 and is inserted into the host computer (for example, the optical network terminal 100); the opening 205 is an optical port, configured to access the external optical fiber 101, so that The external optical fiber 101 connects the light emitting component 400 and the light receiving component 500 inside the optical module 200 .
  • the assembly method of combining the upper housing 201 and the lower housing 202 is used to facilitate the installation of the circuit board 300, the light emitting component 400, the light receiving component 500 and other components into the housing.
  • the upper housing 201 and the lower housing 202 control these components. Form package protection.
  • the deployment of positioning components, heat dissipation components, and electromagnetic shielding components of these components is facilitated, which is conducive to automated production.
  • the upper housing 201 and the lower housing 202 are generally made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the optical module 200 also includes an unlocking component 203 located outside its housing, configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer. .
  • the unlocking component 203 is located outside the two lower side plates 2022 of the lower housing 202 and has a snapping component that matches the host computer cage (for example, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the host computer, the optical module 200 is fixed in the cage of the host computer by the engaging parts of the unlocking part 203; when the unlocking part 203 is pulled, the engaging parts of the unlocking part 203 move accordingly, thereby changing
  • the connection relationship between the engaging component and the host computer is to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit wiring, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit wiring to realize functions such as power supply, electrical signal transmission, and grounding.
  • Electronic components may include, for example, capacitors, resistors, transistors, and Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • the chip may include, for example, a microcontroller unit (Microcontroller Unit, MCU), a limiting amplifier (limiting amplifier), a transimpedance amplifier (Transimpedance Amplifier, TIA), a clock data recovery chip (Clock and Data Recovery, CDR), a power management chip, a digital Signal processing (Digital Signal Processing, DSP) chip.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also perform a load-bearing function. For example, the rigid circuit board can smoothly carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the host computer cage 106 in electrical connectors.
  • the circuit board 300 also includes a gold finger 301 formed on an end surface thereof, and the gold finger 301 is composed of a plurality of mutually independent pins.
  • the circuit board 300 is inserted into the cage 106 and is electrically connected to the electrical connector in the cage 106 by the gold finger 301 .
  • the gold finger 301 can be disposed only on one side of the circuit board 300 (for example, the upper surface shown in FIG. 4 ), or can be disposed on the upper and lower surfaces of the circuit board 300 to adapt to situations where a large number of pins are required.
  • the golden finger 301 is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • FIG. 5 is a partial structural diagram of an optical module according to some embodiments
  • FIG. 6 is an exploded structural diagram of the optical module shown in FIG. 5
  • the circuit board 300 includes a first circuit board 310 and a second circuit board 320 .
  • the first circuit board 310 and the second circuit board 320 are on different horizontal planes.
  • the first circuit board 310 is arranged above the second circuit board 320 in a stacked manner.
  • the light emitting component 400 is electrically connected to both the first circuit board 310 and the second circuit board 320
  • the light receiving component 500 is electrically connected to the second circuit board 320 .
  • the first circuit board 310 is used to transmit low-speed signals
  • the second circuit board 320 is used to transmit high-speed signals.
  • the circuit board 300 also includes a first flexible circuit board 330, a second flexible circuit board 340 and a third flexible circuit board 350.
  • One end of the first flexible circuit board 330 is electrically connected to the light emitting component 400, and the other end is electrically connected to the first circuit board 310. connect.
  • One end of the second flexible circuit board 340 is electrically connected to the light emitting component 400, and the other end is electrically connected to the second circuit board 320.
  • One end of the third flexible circuit board 350 is electrically connected to the light receiving component 500, and the other end is electrically connected to the second circuit board 320.
  • high-speed signals include modulation signals sent to light-emitting chips (such as laser chips), and current signals generated by light-receiving chips (such as PIN diodes, avalanche diodes), etc.; low-speed signals include driving the The driving signal of the light-emitting chip to emit light, the driving signal of driving TEC (Thermoelectric Cooler, Semiconductor Refrigerator) cooling, etc.
  • light-emitting chips such as laser chips
  • current signals generated by light-receiving chips such as PIN diodes, avalanche diodes
  • low-speed signals include driving the The driving signal of the light-emitting chip to emit light, the driving signal of driving TEC (Thermoelectric Cooler, Semiconductor Refrigerator) cooling, etc.
  • driving TEC Thermoelectric Cooler, Semiconductor Refrigerator
  • the optical module 200 also includes a fiber optic adapter 700, which includes a first sub-fiber adapter 701 and a second sub-fiber adapter 702.
  • the first sub-optical fiber adapter 701 is connected to the light receiving component 500 through the first sub-internal optical fiber 601
  • the second sub-optical fiber adapter 702 is connected to the light-emitting component 400 through the second sub-internal optical fiber 602 .
  • the optical module 200 also includes a card plate 800, and the card plate 800 includes a first notch and a second notch.
  • the openings of the first notch and the second notch are arranged toward the upper housing 201 .
  • the first notch is used to carry the first sub-fiber adapter 701
  • the second notch is used to carry the second sub-fiber adapter 702 .
  • the card plate 800 is configured to secure the fiber optic adapter 700 .
  • the optical module 200 also includes a thermal conductive plate 900.
  • the thermal conductive plate 900 includes a first thermal conductive sub-plate 901, a second thermal conductive sub-plate 902 and a third thermal conductive sub-plate 903.
  • the first thermally conductive sub-plate 901 is disposed between the light emitting component 400 and the light receiving component 500 as a buffer between the light emitting component 400 and the light receiving component 500 and is configured to transmit the heat generated by the light emitting component 400 and the light receiving component 500 .
  • the second thermal conductive plate 902 is disposed between the light emitting component 400 and the inner surface of the upper housing 201 and is configured to conduct the heat generated by the light emitting component 400 to the upper housing 201 and then diffuse it through the upper housing 201 .
  • the third sub-heat-conducting plate 903 is disposed between the light-receiving component 500 and the inner surface of the lower housing 202 and is configured to conduct the heat generated by the light-receiving component 500 to the lower housing 202 and then diffuse it through the lower housing 202 . This greatly improves the heat dissipation effect of the light emitting component 400 and the light receiving component 500 in the optical module, thereby achieving long-term and reliable operation of the optical module 200.
  • Figure 7 is a structural diagram of a light receiving component in an optical module according to some embodiments.
  • Figure 8 is a structural diagram of an optical fiber holder in an optical module according to some embodiments.
  • Figure 9 is a structural diagram of an optical fiber holder in an optical module according to some embodiments. Another angle structural view of the optical fiber holder in the optical module.
  • Figure 10 is a structural diagram of the installation of the first sub-internal optical fiber on the optical fiber holder in an optical module according to some embodiments.
  • Figure 11 is a cross-sectional view of a light receiving component in an optical module according to some embodiments.
  • the light receiving assembly 500 includes a receiving housing 510 and optical components such as an optical collimator 520 , an optical splitter 530 , a lens array, and a reflective prism that are disposed in the receiving housing 510 .
  • the receiving housing 510 includes an optical fiber fixing frame 511 and a receiving cover 512.
  • the optical fiber fixing frame 511 includes a receiving bottom plate 5110, a first receiving side plate 5111 and a second receiving side plate 5112 provided on both sides of the receiving base plate 5110, and a receiving end plate 5110.
  • the first boss 5114 and the second boss 5115 at one end of the bottom plate 5110.
  • the first receiving side plate 5111 and the second receiving side plate 5112 are arranged opposite to each other.
  • the first receiving side plate 5111 and the second receiving side plate 5112 are combined with the receiving cover 512 to realize that the receiving cover 512 is covered with the optical fiber fixing frame 511 superior.
  • the first boss 5114 and the second boss 5115 are arranged side by side at the same end of the fiber holder 511.
  • the first boss 5114 and the second boss 5115 are arranged side by side at an end of the fiber holder 511 away from the circuit board 300 (for example, , the left end shown in FIG. 9 ), the first boss 5114 and the second boss 5115 are raised relative to the receiving bottom plate 5110 toward the receiving cover plate 512 .
  • Optical components such as the optical collimator 520 , the optical splitter 530 , the lens array, and the reflective prism are installed on the receiving bottom plate 5110 of the receiving housing 510 .
  • the outer side walls of the first receiving side plate 5111 and the outer side walls of the second receiving side plate 5112 each include a plurality of buckles, and the plurality of buckles are configured to fix the first sub-inner optical fiber 601 .
  • the first receiving side plate 5111 includes three buckles, namely the first buckle 51111, the second buckle 51112 and the third buckle 51113 located on the outer wall of the first receiving side plate 5111.
  • the second receiving side plate 5112 includes The fourth buckle 51121, the fifth buckle 51122 and the sixth buckle 51123 are located on the outer wall of the second receiving side plate 5112.
  • the openings of two adjacent buckles face opposite directions.
  • the opening of the first buckle 51111 faces away from the receiving cover 512
  • the opening of the second buckle 51112 faces toward the receiving cover 512
  • the opening of the third buckle 51113 faces away from the receiving cover 512 .
  • the staggered arrangement of the opening directions of multiple bayonet openings can prevent the optical fiber from moving in a direction parallel to the first receiving side plate 5111 or the outer wall of the first receiving side plate 5111 , thereby improving the stability of the optical fiber position.
  • Each of the plurality of buckles includes a connecting part and a buckling part.
  • the first buckle 51111 includes a connecting part and a buckling part.
  • One end of the connecting part is connected to the first receiving side plate 5111, the other end of the connecting part is connected to one end of the clamping part, and the connecting part is arranged perpendicularly to the outer wall of the first receiving side plate 5111.
  • the other end of the clamping portion is a free end, and the clamping portion is arranged parallel to the outer wall of the first receiving side plate 5111.
  • the first sub-internal optical fiber 601 is embedded in the first buckle 51111, it contacts the connecting part and the buckling part of the first buckle 51111 at the same time.
  • Other buckle structures are the same as the first buckle 51111.
  • the optical fiber fixing frame 511 also includes an interface avoidance part 5113.
  • the interface avoidance part 5113 is provided between the first boss 5114 and the second boss 5115 and is configured to install the optical collimator 520.
  • One end of the optical collimator 520 is optically coupled to the first sub-internal optical fiber 601, and the other end is optically coupled to the optical splitter 530.
  • the optical collimator 520 is made of a brittle material, the optical collimator 520 is easily damaged due to force.
  • the distance between the surfaces (eg, upper surface) of the first boss 5114 and the second boss 5115 close to the receiving cover 512 and the surface (eg, upper surface) of the receiving bottom plate 5110 close to the receiving cover 512 is greater than that of the optical collimator. 520 in the direction perpendicular to the receiving bottom plate 5110 to effectively prevent the receiving cover 512 from touching the light collimator 520 during operation.
  • the light receiving component and the corresponding optical fiber adapter are not at the same level. If the internal optical fiber is used to directly connect the light receiving component to the corresponding optical fiber adapter, it is easy to cause the internal optical fiber to bend, thereby causing optical damage. To this end, in the optical module of some embodiments of the present disclosure, the connection between the light receiving component and the corresponding optical fiber adapter is improved.
  • one end of the first sub-inner optical fiber 601 is connected to the first sub-fiber adapter 701, and the other end passes through the gap between the second boss 5115 and the receiving cover 512.
  • the fourth buckle 51121, the fifth buckle 51122 and the sixth buckle 51123 are fixed, go over the third flexible circuit board 350 and wind to the third buckle 51113, the second buckle 51112 and the first buckle 51111, and then wind to the third buckle 51113.
  • the middle between the first boss 5114 and the second boss 5115 is finally connected to the optical collimator 520 . In this way, the fixation of the first sub-internal optical fiber 601 is achieved.
  • the first sub-internal optical fiber 601 is connected to the optical collimator 520 after going around the receiving housing 510, which eases the problem of the first sub-optical fiber adapter 701 and the optical collimator.
  • the fact that the detectors 520 are not on the same horizontal plane can easily lead to defects in optical fiber bending, which reduces the loss of light transmitted in the optical fiber and improves communication quality.
  • the first receiving side plate 5111 includes a first connecting portion 51114, and the first connecting portion 51114 is located on the first receiving side plate 5111 close to the receiving plate.
  • the surface of the cover plate 512 protrudes from the surface of the first receiving side plate 5111 .
  • the first connecting portion 51114 is configured to have a limiting effect on the receiving cover 512 .
  • the second receiving side plate 5112 includes a second connecting portion 51124.
  • the second connecting portion 51124 is located on a surface of the second receiving side plate 5112 close to the receiving cover plate 512 and protrudes from the surface of the second receiving side plate 5112.
  • the shape, structure and function of the second connecting part 51124 are the same as the shape, structure and function of the first connecting part 51114.
  • the receiving cover 512 is disposed between the inner wall of the first connecting part 51114 and the inner wall of the second connecting part 51124, and is in contact with the inner wall of the first connecting part 51114 and the inner wall of the second connecting part 51124 respectively, and receives
  • the surface (for example, the lower surface) of the cover plate 512 close to the receiving bottom plate 5110 is fixed to the first receiving side plate 5111 and the second receiving side plate 5112 (for example, fixed by solid glue), thereby realizing the connection between the receiving cover plate 512 and the optical fiber fixing frame 511 fixed assembly.
  • the first receiving side plate 5111 also includes a first limiting portion 51115 and a first notch 51117.
  • the first limiting portion 51115 protrudes from the surface of the first receiving side plate 5111 and is close to the receiving cover 512.
  • the first notch 51117 is provided on between the first limiting part 51115 and the first connecting part 51114.
  • the first limiting portion 51115 is a portion of the first buckle 51111 protruding from the surface of the first receiving side plate 5111 close to the receiving cover plate 512 .
  • the second receiving side plate 5112 also includes a second limiting portion 51125 and a second notch 51127. The second limiting portion 51125 protrudes from the surface of the second receiving side plate 5112 and is close to the receiving cover 512.
  • the second notch 51127 is provided on between the second limiting part 51125 and the second connecting part 51124.
  • the second limiting portion 51125 is a portion of the fourth buckle 51121 protruding from the surface of the second receiving side plate 5112 close to the receiving cover plate 512 .
  • the receiving cover 512 includes a cover convex portion, and the cover convex portion is embedded in the first notch 51117 and the second notch 51127 at the same time, thereby realizing the fixed assembly of the receiving cover 512 and the fiber holder 511 .
  • the receiving bottom plate 5110 includes an optical fiber escape portion 51106.
  • the optical fiber escape portion 51106 is located at one end of the receiving bottom plate 5110 with the first boss 5114 and the second boss 5115, and is disposed close to the first boss 5114 and the second boss 5115.
  • the optical fiber avoidance part 51106 includes a first sub-fiber avoidance part 51116 and a second sub-fiber avoidance part 51126.
  • the first sub-fiber escape portion 51116 is located on the side of the first boss 5114 away from the interface escape portion 5113
  • the second sub-fiber escape portion 51126 is located on the side of the second boss 5115 away from the interface escape portion 5113.
  • the optical fiber avoidance part 51106 is configured to alleviate the problem that when the internal optical fiber led out from the optical fiber adapter 700 passes above the second boss 5115 and reaches the fourth buckle 51121, there is a perpendicular angle between the second boss 5115 and the fourth buckle 51121. A large bend occurs due to the height difference in the direction of the receiving bottom plate 5110, thereby reducing the optical loss caused by the bending of the internal optical fiber.
  • the receiving bottom plate 5110 includes a receiving groove 51101.
  • the receiving groove 51101 is located on the surface of the receiving bottom plate 5110 close to the receiving cover 512, and faces away from the receiving plate 512 from this surface.
  • the direction of the cover 512 is recessed.
  • the receiving bottom plate 5110 also includes a receiving base plate 51102, which is located on a side of the receiving groove 51101 close to the receiving cover plate 512.
  • the optical collimator 520 is disposed on the receiving base plate 5110 and is configured to convert the light beam from outside the optical module 200 transmitted by the first sub-inner optical fiber 601 into a collimated light beam.
  • the optical splitter 530 is provided on the receiving chassis 5110.
  • the light incident surface of the optical splitter 530 faces the light output surface of the optical collimator 520.
  • the optical splitter 530 is configured to demultiplex one collimated beam output from the optical collimator 520 into four laser beams, thereby Separate beams containing multiple different wavelengths.
  • the optical splitter 530 outputs four laser beams with different wavelengths, which are respectively injected into corresponding lenses in the lens array, so as to converge the four laser beams with different wavelengths onto the reflective surface of the reflective prism. But it is not limited thereto.
  • the optical splitter 530 is configured to demultiplex one collimated beam output from the optical collimator 520 into two or eight laser beams.
  • the reflecting prism is disposed at the receiving substrate 51102 of the receiving base plate 5110, the light receiving chip is disposed at the receiving groove 51101 of the receiving base plate 5110, and the reflecting prism is located above the light receiving chip.
  • the reflective prism is configured to reflect four beams of different wavelengths into corresponding light receiving chips, and convert the optical signals into electrical signals through the light receiving chips.
  • the transimpedance amplifier is also arranged at the receiving groove 51101 of the receiving base plate 5110.
  • the transimpedance amplifier is connected to the light receiving chip through circuit wiring.
  • the light receiving chip first converts the received optical signal into a high-frequency current signal, and then converts the received optical signal into a high-frequency current signal.
  • the high-frequency current signal is transmitted to the transimpedance amplifier; the transimpedance amplifier converts the high-frequency current signal into a high-frequency voltage signal, amplifies the high-frequency voltage signal, and then transmits the high-frequency voltage signal to the third through the high-frequency signal line.
  • Three flexible circuit boards 350 the high-frequency voltage signal is transmitted to the digital signal processing chip of the second circuit board 320 through the third flexible circuit board 350 .
  • the digital signal processing chip extracts the data in the high-frequency voltage signal, and then transmits the data to the optical network terminal 100 via the golden finger 301 .
  • the high-frequency signal line electrically connected to the transimpedance amplifier on the receiving groove 51101 is connected to the third flexible circuit board 350 .
  • the first sub-internal optical fiber 601 connected to the first sub-fiber adapter 701 is inserted into the optical collimator 520, and the optical signal from outside the optical module 200 is transmitted to the optical collimator 520 through the optical collimator 520.
  • the splitter 530 demultiplexes a composite beam into 4 laser beams through the optical splitter 530; the 4 laser beams are respectively converged to the reflective surface of the reflective prism through the lens array and reflected at the reflective surface.
  • the final laser beam is injected into the light receiving chip (for example, PIN diode or avalanche diode) to achieve light reception.
  • the light receiving chip for example, PIN diode or avalanche diode
  • the first receiving side plate 5111 includes a side plate groove 51118.
  • the side plate groove 51118 is located on the inner wall of the first receiving side plate 5111. It is used to increase the operating space when assembling the light receiving assembly 500 and avoid clamping tools and the first receiving side plate. Collision of plate 5111.
  • the side plate opening 51128 is included in the inner wall of the second receiving side plate 5112 to increase the operating space when assembling the light receiving assembly 500 and avoid collision between the clamping tool and the second receiving side plate 5112 .
  • the side plate groove 51118 and the side plate opening 51128 can also facilitate observation of the positions of the optical collimator 520 and the optical splitter 530 during the assembly process of the light receiving assembly 500.
  • Figure 12 is a structural diagram of a light emitting component in an optical module according to some embodiments.
  • Figure 13 is a structural diagram of a transmitting housing in an optical module according to some embodiments.
  • Figure 14 is a structural diagram of a light emitting component in an optical module according to some embodiments. Another angle structural view of the emitting housing in the optical module.
  • Figure 15 is an exploded structural view of the light emitting component in an optical module according to some embodiments.
  • Figure 16A is a light emitting component in an optical module according to some embodiments.
  • 16B is a cross-sectional view of the installation structure of the light emitting component and the second sub-internal optical fiber in an optical module according to some embodiments. As shown in FIGS.
  • the light emitting assembly 400 includes a transmitting housing 410 , a transmitting cover 411 , a laser 420 disposed in the transmitting housing 410 , a collimating lens 430 , a condensing lens 440 , an optical isolator 450 , and a photo-synthesizer.
  • wave device 460, optical fiber coupler 470 and semiconductor refrigerator 480 includes a transmitting housing 410 , a transmitting cover 411 , a laser 420 disposed in the transmitting housing 410 , a collimating lens 430 , a condensing lens 440 , an optical isolator 450 , and a photo-synthesizer.
  • wave device 460, optical fiber coupler 470 and semiconductor refrigerator 480 includes a photo-synthesizer.
  • the launch housing 410 includes a launch bottom plate 4102, a first launch side plate 4103, a second launch side plate 4104, an optical port baffle 4105, and an avoidance side plate 4106.
  • the first emission side plate 4103 and the second emission side plate 4104 are arranged opposite to each other.
  • the optical port baffle 4105 and the avoidance side plate 4106 are arranged on the same side of the emission bottom plate 4102, and the avoidance side plate 4106 is arranged between the optical port baffle 4105 and the emission bottom plate 4102, avoiding the sandwich between the side plate 4106 and the emission bottom plate 4102.
  • the angle is an obtuse angle, and the optical port baffle 4105 is set perpendicular to the plane where the emission bottom plate 4102 is located.
  • the avoidance side plate 4106 of the light emitting assembly 400 and the receiving cover 512 of the light receiving assembly 500 form an avoidance area 4107, and the avoidance area 4107 is configured as an installation avoidance for the first sub-internal optical fiber 601 and the second sub-internal optical fiber 602.
  • the first sub-internal optical fiber 601 and the second sub-internal optical fiber 602 are arranged at the avoidance point 4107.
  • the launch housing 410 also includes a launch opening 4101 , which is opposite to the optical port baffle 4105 and the avoidance side plate 4106 , and is configured to connect the second sub-inner optical fiber 602 with the optical components in the launch housing 410 .
  • the second sub-fiber adapter 702 is opposite to the end of the light emitting assembly 400 that emits optical signals, but the light outlet of the optical fiber coupler 470 in the light emitting assembly 400 is away from the second sub-fiber adapter 702.
  • Fiber Optic Adapter 702. In order to avoid excessive bending of the second sub-internal optical fiber 602 and reduce optical loss, the second sub-internal optical fiber 602 goes around the receiving housing 510 for half a turn, then extends from the transmitting opening 4101 into the interior of the transmitting housing 410 and is connected to the optical fiber coupler 470 .
  • the first emission side plate 4103 includes a first limiting protrusion 41031 and a second limiting protrusion 41032.
  • the limiting protrusion 41032 is provided on the outer wall of the first launch side plate 4103 and protrudes toward the outside of the launch housing 410 .
  • the extending direction of the first limiting protrusion 41031 is perpendicular to the extending direction of the second limiting protrusion 41032.
  • the extending direction of the first limiting protrusion 41031 is perpendicular to the launching bottom plate 4102
  • the extending direction of the second limiting protrusion 41032 is parallel to the launching bottom plate 4102.
  • the first limiting protrusion 41031 and the second limiting protrusion 41032 may be in contact with each other, or may have a certain distance from each other.
  • the second emission side plate 4104 includes a third limiting protrusion 41041 and a fourth limiting protrusion 41042.
  • the third limiting protrusion 41041 and the fourth limiting protrusion 41042 are provided on the outer side wall of the second emission side plate 4104 , and protrudes toward the outside of the launch housing 410 .
  • the extending direction of the third limiting protrusion 41041 is perpendicular to the extending direction of the fourth limiting protrusion 41042.
  • the extending direction of the third limiting protrusion 41041 is perpendicular to the launching bottom plate 4102
  • the extending direction of the fourth limiting protrusion 41042 is parallel to the launching bottom plate 4102.
  • FIG. 17 is a structural diagram of an optically tight housing in an optical module according to some embodiments
  • FIG. 18 is a structural diagram of an optically tight housing in an optical module according to some embodiments from another angle.
  • the emission housing 410 also includes an optically tight housing 4108, an optically tight cover 4109 and a carrier plate 4110.
  • the laser 420 and the collimating lens 430 are arranged in the optically tight housing 4108, and the condensing lens 440, the optical isolator 450 and the optical multiplexer 460 are arranged on the carrier plate 4110.
  • the optically tight housing 4108 is connected to the emission cover 411
  • the optically tight cover 4109 covers the optically tight housing 4108 and is connected to the emission housing 410 .
  • the light-tight housing 4108 includes a first light-tight opening 41081 and a second light-tight opening 41082.
  • the first light-tight opening 41081 and the second light-tight opening 41082 are arranged oppositely.
  • 41081 is connected to the emission cover 411
  • the second light-tight opening 41082 is connected to the light-tight cover 4109 to achieve sealing of the light-tight housing 4108 in the direction perpendicular to the emission bottom plate 4102.
  • the light-tight housing 4108 also includes a light window opening 41083 and a light window bearing platform 41084.
  • the light window opening 41083 and the light window bearing platform 41084 are located on the same side of the light-tight housing 4108.
  • the light window bearing platform 41084 includes a light window bottom plate 410841 and a first light window side plate 410842 and a second light window side plate 410843 arranged vertically on both sides of the light window bottom plate 410841.
  • the surface on one side of the light window 4135 is in contact with the surface of the light window bottom plate 410841 close to the light window opening 41083.
  • the surfaces on the other two sides of the light window 4135 are in contact with the first light window side plate 410842 and the second light window side plate 410843.
  • the light window 4135 and the light window bearing platform 41084 can be connected through optical glue.
  • the optically tight housing 4108 also includes an adapter port 41085 , which is arranged opposite to the light window opening 41083 .
  • the adapter port 41085 is configured to facilitate the installation of the adapter block 490 .
  • the adapter block 490 is, for example, a ceramic adapter block.
  • the first end of the adapter block 490 is embedded inside the optically tight housing 4108 through the adapter interface 41085, and a pin is provided on the surface of the first end of the adapter block 490 close to the emission base plate 4102, and the pin is wired and connected to the laser 420 .
  • the second end of the adapter block 490 is provided outside the optically tight housing 4108, and a first connection area is provided on the surface of the second end of the adapter block 490 close to the emission cover 411.
  • the first connection area and the first flexible circuit The board 330 is electrically connected, and a second connection area is provided on the surface of the second end of the adapter block 490 close to the emission base plate 4102, and the second connection area is electrically connected to the second flexible circuit board 340.
  • the transfer block 490 is configured to transfer electrical signals on the first flexible circuit board 330 and the second flexible circuit board 340 .
  • the laser 420 disposed inside the optically tight housing 4108 is electrically connected to the adapter block 490 and optically coupled with the collimating lens 430 disposed within the optically tight housing 4108 .
  • the second circuit board 320 receives the electrical signal from the host computer and divides the electrical signal into a high-speed signal and a low-speed signal.
  • the high-speed signal is transmitted to the transfer block 490 through the second circuit board 320 and the second flexible circuit board 340, and is transferred
  • the transfer of block 490 is transmitted to the laser 420, thereby modulating the light emitted by the laser 420 to obtain an optical signal; the low-speed signal is transmitted to the laser via the second circuit board 320, the first circuit board 310 and the first flexible circuit board 330.
  • the transfer block 490 is transmitted to the laser through the transfer of the transfer block 490 to realize the driving of the laser chip, the driving of the TEC, etc., so that the laser chip emits light.
  • the laser 420 and the adapter block 490 arranged inside the optically tight housing 4108 are both connected to the emission cover 411.
  • the emission cover 411 is in contact with the upper housing 201.
  • the heat generated by the laser 420 and the adapter block 490 can pass through the emission cover.
  • the plate 411 is transferred to the upper housing 201, and the upper housing 201 conducts the heat away to ensure efficient heat dissipation of the optical module 200.
  • the light-tight cover plate 4109 includes an light-tight connection part 41091.
  • the light-tight connection part 41091 is located in the central area of the light-tight cover plate 4109 and protrudes from the light-tight cover plate 4109.
  • the tight connection portion 41091 is engaged with the second light-tight opening 41082 of the light-tight housing 4108 to seal the second light-tight opening 41082.
  • the first light-tight opening 41081 of the light-tight housing 4108 and the emission cover 411 can be connected through solid glue, and the emission cover 411 achieves sealing of the first light-tight opening 41081.
  • An adapter block 490 is provided at the adapter port 41085 of the optically tight housing 4108 to achieve sealing of the adapter port 41085 of the optically tight housing 4108. In this way, the influence of the external environment on the laser 420 and the collimating lens 430 provided inside the optically tight housing 4108 can be reduced, and the communication quality can be improved.
  • the laser 420 includes a laser chip 421 and a spacer 422.
  • the laser chip 421 is disposed on the spacer 422.
  • the spacer 422 includes Insulating thermal conductive layer and metal layer.
  • the metal layer includes ground wires and signal wires.
  • the cathode of the laser chip 421 is electrically connected to the ground line, and the anode of the laser chip 421 is electrically connected to the signal line. Voltage is applied to the cathode and anode of the laser chip 421 through the ground wire and the signal wire respectively, so that the laser chip 421 can emit light.
  • the laser 420 is disposed on the surface of the semiconductor refrigerator 480 away from the emission cover 411 .
  • the semiconductor refrigerator 480 is configured to conduct the heat generated by the laser chip 421 to the emission cover 411 and conduct the heat to the outside of the optical module 200 through the emission cover 411 and the upper housing 201 of the optical module 200 .
  • the semiconductor refrigerator 480 can be omitted.
  • Figure 20 is another partial structural diagram of an optical module according to some embodiments
  • Figure 21 is a structural diagram of a carrier board in an optical module according to some embodiments.
  • the light emitting component 400 also includes a carrier plate 4110 , on which the condensing lens 440 , the optical isolator 450 , and the optical multiplexer 460 are disposed.
  • the load-bearing plate 4110 includes a first mounting surface 41101, a second mounting surface 41102 and a third mounting surface 41103 connected in sequence.
  • the first mounting surface 41101, the second mounting surface 41102 and the third mounting surface 41103 are all parallel to the launch cover 411.
  • the second mounting surface 41102 is recessed from the first mounting surface 41101 towards the launch cover 411, and the third mounting surface 41103 is recessed from the first mounting surface 41101 towards the launch cover 411.
  • the second mounting surface 41102 protrudes away from the emission cover 411 , and the distance between the third mounting surface 41103 and the emission cover 411 is smaller than the distance between the first installation surface 41101 and the emission cover 411 .
  • the converging lens 440 is fixed on the first mounting surface 41101
  • the optical isolator 450 is fixed on the second mounting surface 41102
  • the optical combiner 460 is fixed on the third mounting surface 41103.
  • the carrying plate 4110 further includes a first escape groove 41104, a second escape groove 41105, a first clamping plate 41106 and a second clamping plate 41107.
  • the first escape groove 41104 is disposed on the side of the third mounting surface 41103 away from the second mounting surface 41102
  • the first clamping plate 41106 is disposed on the side of the first escape groove 41104 away from the third mounting surface 41103.
  • the distance between the surface of the first clamping plate 41106 away from the launch cover 411 and the launch cover 411 is greater than the distance between the surface of the third mounting surface 41103 away from the launch cover 411 and the launch cover 411 .
  • the first clamping plate 41106 is configured to limit the position of the optical multiplexer 460 in the light emitting direction of the laser 420 .
  • the second escape groove 41105 is disposed on the adjacent side of the first escape groove 41104, and the second clamping plate 41107 is disposed on the adjacent side of the first clamping plate 41106.
  • the second avoidance groove 41105 is provided between the third mounting surface 41103 and the second clamping plate 41107, and is configured to avoid the installation of the optical multiplexer 460.
  • the second clamping plate 41107 is configured to limit the position of the optical multiplexer 460 in a direction perpendicular to the light emitting direction of the laser 420 . In this way, the positioning and installation of the optical multiplexer 460 is achieved.
  • the carrier plate 4110 also includes an escape opening 41108.
  • the escape opening 41108 is provided between the first clamping plate 41106 and the second clamping plate 41107 and is configured to facilitate the installation of the optical multiplexer 460 and the optical multiplexer 460 and the third mounting surface 41103. Connection.
  • the carrier plate 4110 further includes an avoidance gap 41109.
  • the avoidance gap 41109 is provided on a side of the carrier plate 4110 close to the second emission side plate 4104 and is configured to avoid the installation of the light collimator 520.
  • the light input port of the optical fiber coupler 470 is optically coupled to the light output port of the optical multiplexer 460
  • the light output port of the optical fiber coupler 470 is optically coupled to the second sub-internal optical fiber 602 .
  • a laser beam emitted by the laser 420 is converted into a collimated beam through the collimating lens 430 .
  • the collimated beam is converged by the converging lens 440 to obtain a converged beam.
  • the converged beam passes through the optical isolator 450 and the optical multiplexer 460 in sequence and enters the fiber coupler 470.
  • the laser beam is coupled to the second sub-fiber adapter through the second sub-internal optical fiber 602. In 702, the transmission of one optical signal is realized.
  • the light emitting component and the corresponding optical fiber adapter are not at the same level. If the light emitting component is directly connected to the corresponding optical fiber adapter using an internal optical fiber, it is easy to cause the internal optical fiber to bend, thereby causing optical damage. To this end, in the optical module of some embodiments of the present disclosure, the connection between the light emitting component and the corresponding optical fiber adapter is improved.
  • one end of the second sub-inner optical fiber 602 is connected to the second sub-fiber adapter 702 . Similar to the first sub-internal optical fiber 601, the other end of the second sub-internal optical fiber 602 passes through the first sub-fiber avoidance part 51116, the first buckle 51111, the second buckle 51112 and the third buckle 51113 in sequence, and passes through the first flexible
  • the middle of the circuit board 330 and the second flexible circuit board 340 is wound to the emission opening 4101 of the emission housing 410, and finally extends into the light emission assembly 400 through the emission opening 4101, and is connected to the optical fiber coupler 470 in the light emission assembly 400. This avoids the defect that the second sub-fiber adapter 702 and the fiber coupler 470 are not on the same level, which may easily lead to bending of the optical fiber, thereby reducing the loss of light transmitted in the optical fiber and improving the communication quality.
  • the condensing lens 440, the optical isolator 450 and the optical multiplexer 460 on the mounting surface of the carrier plate 4110, and then install the laser 420, the collimating lens 430 and the optically dense housing 4108 in sequence. to the emission cover 411, then connect the adapter block 490 to the light-tight housing 4108, then connect the light-tight cover 4109 to the light-tight housing 4108, and finally connect the emission cover 411 to the emission housing 410.
  • the laser 420 emits two laser beams in opposite directions.
  • One laser beam is converted into a collimated beam by the collimating lens 430 , and the other laser beam is directed towards the light detection 4010.
  • the photodetector 4010 receives the other laser beam, thereby monitoring the forward light power of the laser 420.
  • Figure 22 is a structural diagram of an optical module housing according to some embodiments
  • Figure 23 is a cross-sectional view of an optical module according to some embodiments.
  • the lower housing 202 of the optical module 200 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021 .
  • the first lower side plate 202201 of the two lower side plates 2022 includes a first limiting groove 20221 and a second limiting groove 20222.
  • the first limiting groove 20221 and the second limiting groove 20222 are located on the inner wall of the lower side plate.
  • the second lower side plate 202202 of the two lower side plates 2022 includes a third limiting groove 20223 and a fourth limiting groove 20224.
  • the third limiting groove 20223 and the fourth limiting groove 20224 are located on the inner wall of the lower side plate. superior.
  • the four limiting grooves are all recessed toward the outside of the housing of the optical module 200 .
  • the first limiting protrusion 41031, the second limiting protrusion 41032, the third limiting protrusion 41041 and the fourth limiting protrusion 41042 of the launch housing 410 are embedded respectively.
  • the four limiting grooves limit the light emitting component 400.
  • the lower housing 202 also includes a first load-bearing column and a second load-bearing column.
  • the first bearing pillar is disposed on the inner wall of the first lower side plate 202201 and protrudes toward the inside of the housing of the optical module 200 .
  • the second bearing pillar is disposed on the inner wall of the second lower side plate 202202 and protrudes toward the inside of the housing of the optical module 200 .
  • the first limiting protrusion 41031 is disposed close to the optical port baffle 4105, but is not limited to this.
  • the second limiting protrusion 41032 may also be disposed close to the optical port baffle 4105.
  • the light-receiving component 500 is disposed below the light-emitting component 400 , and a third heat-conducting sub-plate 903 is disposed between the receiving bottom plate 5110 of the light-receiving component 500 and the lower housing 202 .
  • the third sub-heat-conducting plate 903 has a rectangular parallelepiped structure.
  • the bottom plate 2021 of the lower housing 202 also includes a first bottom plate protrusion 20211 and a second bottom plate protrusion 20212.
  • the first bottom plate protrusion 20211 and the second bottom plate protrusion 20212 are both relative to the bottom plate 2021.
  • the surface close to the upper housing 201 is convex toward the upper housing 201 .
  • the third sub-thermal conductive plate 903 is disposed between the first bottom plate protrusion 20211 and the second bottom plate protrusion 20212, and the surface of the third sub-thermal conductive plate 903 close to the upper shell 201 and the surface of the first bottom plate protrusion 20211 close to the upper shell
  • the surface of the body 201 and the surface of the second bottom plate protrusion 20212 close to the upper housing 201 are located in the same plane.
  • the first bottom plate protrusion 20211 can be configured to have one end connected to the first lower side plate 202201 and the other end connected to the second lower side plate 202202; it can also be configured to have a certain distance between the first lower side plate 202201 and the second lower side plate 202202. interval.
  • the shape and structure of the second bottom plate protrusion 20212 are the same as the shape and structure of the first bottom plate protrusion 20211.
  • the first bottom plate protrusion 20211 is vertically disposed between the first lower side plate 202201 and the second lower side plate 202202
  • the second bottom plate protrusion 20212 is vertically disposed between the first lower side plate 202201 and the second lower side plate 202201. Between the two lower side panels 202202.
  • the bottom plate 2021 of the lower housing 202 further includes a third bottom plate protrusion 20213, and one side of the third bottom plate protrusion 20213 abuts the first sub-fiber avoidance portion 51116 of the fiber holder 511 On the side wall, the adjacent side of one side of the third bottom plate protrusion 20213 is against the first boss 5114 of the fiber holder 511 to prevent the receiving bottom plate 5110 from moving toward the optical port 205 .
  • the second bottom plate protrusion 20212 includes a first blocking arm 202121 and a second blocking arm 202122.
  • the first blocking arm 202121 and the second blocking arm 202122 are used to prevent the receiving bottom plate 5110 from moving toward the electrical port 204 direction.
  • the first retaining arm 202121 is disposed close to the first lower side plate 202201
  • the second retaining arm 202122 is disposed close to the second lower side plate 202202.
  • first buckle avoidance part between the first blocking arm 202121 and the first lower side plate 202201.
  • the first buckle avoiding part is used to avoid the buckle on the first receiving side plate 5111.
  • the second blocking arm 202122 and the second A second buckle avoidance part is provided between the lower side plates 202202, and the second buckle avoidance part is used to avoid the buckle on the second receiving side plate 5112.
  • the first blocking arm 202121 and the second blocking arm 202122 are L-shaped and have corners, and the corners face the direction of receiving the bottom plate 5110 .
  • the first blocking arm 202121 includes a first sub-blocking arm and a second sub-blocking arm.
  • the first sub-blocking arm is arranged perpendicularly to the second sub-blocking arm, and the first sub-blocking arm is connected to the first sub-blocking arm.
  • the second blocking arm 202122 includes a third sub-blocking arm and a fourth sub-blocking arm.
  • the third sub-blocking arm is arranged perpendicularly to the fourth sub-blocking arm, and there is a second sub-blocking arm between the third sub-blocking arm and the second lower side plate 202202.
  • the buckle avoidance part is used to avoid the installation of the buckle on the second receiving side plate 5112.
  • the receiving base plate 5110 is against the second sub-blocking arm and the fourth sub-blocking arm.
  • the second sub-blocking arm and the fourth sub-blocking arm limit the movement of the receiving base plate 5110 toward the electrical port 204 direction.
  • the second sub-blocking arm and the fourth sub-blocking arm combined with the third bottom plate protrusion 20213 define the position of the receiving bottom plate 5110 in the length direction of the optical module 200 .
  • the receiving bottom plate 5110 is also disposed between the first sub-blocking arm and the third sub-blocking arm to avoid movement of the receiving bottom plate 5110 in the width direction of the optical module 200 .
  • the distance between the optical collimator 520 and the second lower side plate 202202 of the lower housing 202 is smaller than the distance between the optical collimator 520 and the lower housing.
  • the distance between the first lower side plate 202 and 202 is 201.
  • the lower housing 202 also includes a card plate installation groove 20214.
  • the card plate 800 is embedded in the card plate installation groove 20214.
  • the card plate installation groove is configured to limit the card plate 800.
  • the card plate installation slot 20214 includes a first card plate limiting part 202141 and a second card plate limiting part 202142.
  • the first clamping plate limiting part 202141 and the second clamping plate limiting part 202142 are both provided with installation avoidance parts on the surfaces close to the upper housing 201 for avoiding the optical fiber adapter 700 .
  • the first optical fiber adapter 701 includes a first optical fiber ring, and the first optical fiber ring protrudes from the surface of the first optical fiber adapter 701 .
  • One side of the first optical fiber ring abuts the first clamping plate limiting part 202141, and the other side of the first optical fiber ring abuts the clamping plate 800.
  • the second sub-fiber adapter 702 includes a second fiber optic ring, and the second fiber optic ring has the same purpose as the first fiber optic ring.
  • the light-receiving component 500 when assembling the optical module 200, the light-receiving component 500 is first fixed inside the lower housing 202, and then the light-emitting component 400 is disposed above the light-receiving component 500, and then the light is emitted.
  • the component 400 and the light receiving component 500 are electrically connected to the first circuit board 310 and the second circuit board 320 through the first flexible circuit board 330 , the second flexible circuit board 340 and the third flexible circuit board 350 . Finally, the upper housing 201 and the lower housing 202 are closed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开一些实施例提供一种光模块。所述光模块包括壳体、电路板、光接收组件、第一子光纤适配器和第一子内部光纤。所述电路板位于所述壳体中。所述光接收组件位于所述壳体中且与所述电路板电连接,被配置为将来自所述光模块外部的光信号转换成电信号,并将所述电信号传输至所述电路板,所述光接收组件包括光纤固定架。所述第一子光纤适配器与所述壳体固定连接,并与所述光接收组件的被配置为接收来自所述光模块外部的光信号的一端相对设置。所述第一子内部光纤的一端与所述第一子光纤适配器连接,所述第一子内部光纤的另一端绕所述光纤固定架一周后与所述光接收组件连接。

Description

光模块
本申请要求申请号为202210314271.9、2022年3月28日提交的中国专利申请的优先权、申请号为202210316221.4、2022年3月28日提交的中国专利申请的优先权、申请号为202220699448.7、2022年3月28日提交的中国专利申请的优先权、申请号为202220699449.1、2022年3月28日提交的中国专利申请的优先权、申请号为202220699450.4、2022年3月28日提交的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
本公开一些实施例提供一种光模块。所述光模块包括壳体、电路板、光接收组件、第一子光纤适配器和第一子内部光纤。所述电路板位于所述壳体中。所述光接收组件位于所述壳体中且与所述电路板电连接,被配置为将来自所述光模块外部的光信号转换成电信号,并将所述电信号传输至所述电路板,所述光接收组件包括光纤固定架。所述第一子光纤适配器与所述壳体固定连接,并与所述光接收组件的被配置为接收来自所述光模块外部的光信号的一端相对设置。所述第一子内部光纤的一端与所述第一子光纤适配器连接,所述第一子内部光纤的另一端绕所述光纤固定架一周后与所述光接收组件连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光模块的局部结构图;
图6为图5所示光模块的分解结构图;
图7为根据一些实施例的一种光模块中光接收组件的结构图;
图8为根据一些实施例的一种光模块中光纤固定架的结构图;
图9为根据一些实施例的一种光模块中光纤固定架的另一角度结构图;
图10为根据一些实施例的一种光模块中第一子内部光纤在光纤固定架上的安装结构图;
图11为根据一些实施例的一种光模块中光接收组件结构剖视图;
图12为根据一些实施例的一种光模块中光发射组件的结构图;
图13为根据一些实施例的一种光模块中发射壳体的结构图;
图14为根据一些实施例的一种光模块中发射壳体的另一角度结构图;
图15为根据一些实施例的一种光模块中光发射组件的分解结构图;
图16A为根据一些实施例的一种光模块中光发射组件的剖视图;
图16B为根据一些实施例的一种光模块中光发射组件与第二子内部光纤的安装结构图;
图17为根据一些实施例的一种光模块中光密壳体的结构图;
图18为根据一些实施例的一种光模块中光密壳体的另一角度结构图;
图19为根据一些实施例的一种光模块的局部结构图;
图20为根据一些实施例的一种光模块的另一局部结构图;
图21为根据一些实施例的一种光模块中承载板的结构图;
图22为根据一些实施例的一种光模块中下壳体的结构图;
图23为根据一些实施例的一种光模块的剖视图。
在附图中:
1000-远端服务器;2000-本地信息处理设备;101-光纤;103-网线;
100-光网络终端;102-光模块接口;104-网线接口;105-光网络终端的电路板;106-笼子;107-散热器;
200-光模块;201-上壳体;202-下壳体;2021-底板;20211-第一底板凸起;20212-第二底板凸起;202121-第一挡臂;202122-第二挡臂;202123-第一卡扣避让部;20213-第三底板凸起;2022-下侧板;202201-第一下侧板;20221-第一限位槽;20222-第二限位槽;202202-第二下侧板;20223-第三限位槽;20224-第四限位槽;20214-卡板安装槽;202141-第一卡板限位部;202142-第二卡板限位部;203-解锁部件;204-开口(电口);205-开口(光口);
300-光模块的电路板;301-金手指;310-第一电路板;320-第二电路板;330-第一柔性电路板;340-第二柔性电路板;350-第三柔性电路板;
400-光发射组件;410-发射壳体;4101-发射开口;4102-发射底板;4103-第一发射侧板;41031-第一限位凸起;41032-第二限位凸起;4104-第二发射侧板;41041-第三限位凸起;41042-第四限位凸起;4105-光口挡板;4106-避让侧板;4108-光密壳体;41081-第一光密开口;41082-第二光密开口;41083-光窗开口;41084-光窗承载台;410841-光窗底板;410842-第一光窗侧板;410843-第二光窗侧板;41085-转接口;4109-光密盖板;41091-光密连接部;4110-承载板;41101-第一安装面;41102-第二安装面;41103-第三安装面;41104-第一避让槽;41105-第二避让槽;41106-第一卡板;41107-第二卡板;41108-避让开口;41109-避让缺口;411-发射盖板;4135-光窗;420-激光器;430-准直透镜;440-会聚透镜;450-光隔离器;460-光合波器;470-光纤耦合器;480-半导体制冷器;490-转接块;4010-光探测器;
500-光接收组件;510-接收壳体;511-光纤支架;5110-接收底板;51101-接收凹槽;51102-接收基板;51106-光纤避让部;51116-第一子光纤避让部;51126-第二子光纤避让部;5111-第一接收侧板;51111-第一卡扣;51112-第二卡扣;51113-第三卡扣;51114-第一连接部;51115-第一限位部;51117-第一缺口;51118-侧板凹槽;5112-第二接收侧板;51121-第四卡扣;51122-第五卡扣;51123-第六卡扣;51124-第二连接部;51125-第二限位部;51127-第二缺口;51128-侧板开口;5113-接口避让部;5114-第一凸台;5115-第二凸台;512-接收盖板;520-光准直器;530-光分波器;
601-第一子内部光纤;602-第二子内部光纤;
700-光纤适配器;701-第一子光纤适配器;702-第二子光纤适配器;
800-卡板;
900-导热板;901-第一子导热板;902-第二子导热板;903-第三子导热板。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、 “示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
光通信系统中,使用光信号携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光通过光纤或光波导传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于供电、I2C信号传输、数据信息传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平 板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000之间的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口,光口被配置为接入光纤101,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立信息连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105表面的笼子106,设置在笼子106上的散热器,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解结构图。如图3和图4所示,光模块200包括壳体、设置于壳体内的电路板300、光发射组件400和光接收组件500。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011、以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板2012,由两个上侧板2012与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从 电口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光发射组件400和光接收组件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射组件400和光接收组件500等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、光发射组件400和光接收组件500等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203,被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外侧,具有与上位机笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、跨阻放大器(Transimpedance Amplifier,TIA)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机笼子106中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5为根据一些实施例的一种光模块的局部结构图,图6为图5所示光模块的分解结构图。结合图4、图5和图6所示,在本公开一些实施例中,电路板300包括第一电路板310和第二电路板320,第一电路板310与第二电路板320在不同水平面上堆叠排布且第一电路板310设置于第二电路板320的上方。光发射组件400与第一电路板310和第二电路板320均电连接,光接收组件500与第二电路板320电连接。第一电路板310用于传递低速信号,第二电路板320用于传输高速信号。电路板300还包括第一柔性电路板330、第二柔性电路板340和第三柔性电路板350,第一柔性电路板330一端与光发射组件400电连接、另一端与第一电路板310电连接。第二柔性电路板340一端与光发射组件400电连接、另一端与第二电路板320电连接。第三柔性电路板350一端与光接收组件500电连接、另一端与第二电路板320电连接。
在本公开一些实施例中,高速信号包括发送给光发射芯片(例如激光芯片)的调制信号,以及由光接收芯片(例如PIN二极管、雪崩二极管)产生的电流信号等;低速信号包括驱动所述光发射芯片发光的驱动信号、驱动TEC(Thermoelectric cooler,半导体制冷器)制冷的驱动信号等。
光模块200还包括光纤适配器700,光纤适配器700包括第一子光纤适配器701和第 二子光纤适配器702。第一子光纤适配器701通过第一子内部光纤601与光接收组件500连接,第二子光纤适配器702通过第二子内部光纤602与光发射组件400连接。
光模块200还包括卡板800,卡板800包括第一缺口和第二缺口。第一缺口与第二缺口的开口朝向上壳体201设置,第一缺口用于承载第一子光纤适配器701,第二缺口用于承载第二子光纤适配器702。卡板800被配置为实现对光纤适配器700的固定。
光模块200还包括导热板900,在一些实施例中,导热板900包括第一子导热板901、第二子导热板902和第三子导热板903。第一子导热板901设置在光发射组件400与光接收组件500之间,作为光发射组件400与光接收组件500之间的缓冲并被配置为传递光发射组件400与光接收组件500产生的热量。第二子导热板902设置在光发射组件400与上壳体201的内侧面之间,被配置为将光发射组件400产生的热量传导给上壳体201,然后通过上壳体201进行扩散。第三子导热板903设置在光接收组件500与下壳体202的内侧面之间,被配置为将光接收组件500产生的热量传导给下壳体202,然后通过下壳体202进行扩散。如此极大改善了光模块中光发射组件400与光接收组件500的散热效果,进而实现了光模块200长期、可靠的工作。
图7为根据一些实施例的一种光模块中光接收组件的结构图,图8为根据一些实施例的一种光模块中光纤固定架的结构图,图9为根据一些实施例的一种光模块中光纤固定架的另一角度结构图,图10为根据一些实施例的一种光模块中第一子内部光纤在光纤固定架上的安装结构图。图11为根据一些实施例的一种光模块中光接收组件的剖视图。
如图7至图11所示,光接收组件500包括接收壳体510以及设置在接收壳体510内的光准直器520、光分波器530、透镜阵列与反射棱镜等光学元器件。接收壳体510包括光纤固定架511与接收盖板512,光纤固定架511包括接收底板5110、设置于接收底板5110两侧的第一接收侧板5111和第二接收侧板5112、以及设置于接收底板5110一端的第一凸台5114和第二凸台5115。第一接收侧板5111与第二接收侧板5112相对设置,由第一接收侧板5111、第二接收侧板5112与接收盖板512结合,以实现接收盖板512盖合在光纤固定架511上。第一凸台5114与第二凸台5115并列设置在光纤固定架511的同一端,例如,第一凸台5114与第二凸台5115并列设置在光纤固定架511远离电路板300的一端(例如,图9所示的左端),第一凸台5114与第二凸台5115相对于接收底板5110朝向接收盖板512凸起。光准直器520、光分波器530、透镜阵列与反射棱镜等光学元器件安装在接收壳体510的接收底板5110上。
如图8和图9所示,第一接收侧板5111的外侧壁和第二接收侧板5112的外侧壁均包括多个卡扣,多个卡扣被配置为固定第一子内部光纤601。第一接收侧板5111包括3个卡扣,分别为位于第一接收侧板5111的外侧壁的第一卡扣51111、第二卡扣51112和第三卡扣51113,第二接收侧板5112包括位于第二接收侧板5112的外侧壁的第四卡扣51121、第五卡扣51122和第六卡扣51123。相邻2个卡扣的开口朝向相反。示例地,第一卡扣51111的开口背向接收盖板512,第二卡扣51112的开口朝向接收盖板512,第三卡扣51113的开口背向接收盖板512。固定第一子内部光纤601时,将第一子内部光纤601由各个卡扣的开口嵌入,使第一子内部光纤601抵靠于各个卡扣的内部。多个卡口的开口方向的交错设置,能够防止光纤在平行于第一接收侧板5111或第一接收侧板5111的外侧壁的方向上移动,从而提高光纤位置的稳定性。
多个卡扣均包括连接部和卡接部,示例地,第一卡扣51111包括连接部和卡接部。连接部的一端与第一接收侧板5111连接、连接部的另一端与卡接部的一端连接,且连接部垂直于第一接收侧板5111的外侧壁设置。卡接部的另一端为自由端,且卡接部平行于第一接收侧板5111的外侧壁设置。第一子内部光纤601嵌入第一卡扣51111内后,与第一卡扣51111的连接部与卡接部同时接触。其他卡扣结构与第一卡扣51111结构相同。
光纤固定架511还包括接口避让部5113,接口避让部5113设置在第一凸台5114与第二凸台5115之间,被配置为安装光准直器520。光准直器520的一端与第一子内部光纤601光耦合、另一端与光分波器530光耦合。
因为光准直器520的制作材料为脆性材料,因此光准直器520受力容易发生破损。第 一凸台5114和第二凸台5115的靠近接收盖板512的表面(例如,上表面)与接收底板5110的靠近接收盖板512的表面(例如,上表面)的距离大于光准直器520在垂直于接收底板5110方向上的高度,以有效避免操作过程中接收盖板512对光准直器520的触碰。
在有的光模块中,光接收组件与相应的光纤适配器不在同一水平高度,如果利用内部光纤直接将光接收组件与相应的光纤适配器连接,则容易造成内部光纤弯折,从而产生光损伤。为此,本公开一些实施例的光模块中,对光接收组件与相应的光纤适配器的连接进行了改进。
如图10所示,在本公开一些实施例中,第一子内部光纤601的一端与第一子光纤适配器701连接、另一端经第二凸台5115与接收盖板512之间的缝隙、第四卡扣51121、第五卡扣51122和第六卡扣51123固定后,越过第三柔性电路板350绕至第三卡扣51113、第二卡扣51112和第一卡扣51111,再绕至第一凸台5114与第二凸台5115的中间,最终与光准直器520连接。这样实现了第一子内部光纤601的固定,此外,将第一子内部光纤601经过绕接收壳体510一周后再与光准直器520连接,缓解了第一子光纤适配器701与光准直器520不在同一个水平面上容易导致光纤弯折的缺陷,减少了光纤中传输的光的损耗,提高了通信质量。
如图8和图10所示,为实现光纤固定架511与接收盖板512的固定,第一接收侧板5111包括第一连接部51114,第一连接部51114位于第一接收侧板5111靠近接收盖板512的表面,并凸出于第一接收侧板5111的该表面。第一连接部51114被配置为对接收盖板512具有限位作用。第二接收侧板5112包括第二连接部51124,第二连接部51124位于第二接收侧板5112靠近接收盖板512的表面,并凸出于第二接收侧板5112的该表面。第二连接部51124的形状、结构和功能与第一连接部51114的形状、结构和功能相同。接收盖板512设置于第一连接部51114的内侧壁与第二连接部51124的内侧壁之间,且分别于第一连接部51114的内侧壁与第二连接部51124的内侧壁接触连接,接收盖板512靠近接收底板5110的表面(例如,下表面)与第一接收侧板5111和第二接收侧板5112固定(例如,通过固体胶固定),实现了接收盖板512与光纤固定架511的固定装配。
第一接收侧板5111还包括第一限位部51115和第一缺口51117,第一限位部51115凸出于第一接收侧板5111靠近接收盖板512的表面设置,第一缺口51117设置于第一限位部51115与第一连接部51114之间。在一些实施例中,第一限位部51115为第一卡扣51111凸出于第一接收侧板5111靠近接收盖板512的表面的部分。第二接收侧板5112还包括第二限位部51125与第二缺口51127,第二限位部51125凸出于第二接收侧板5112靠近接收盖板512的表面设置,第二缺口51127设置于第二限位部51125与第二连接部51124之间。在一些实施例中,第二限位部51125为第四卡扣51121凸出于第二接收侧板5112靠近接收盖板512的表面的部分。接收盖板512包括盖板凸起部,盖板凸起部同时嵌入第一缺口51117与第二缺口51127中,实现了接收盖板512与光纤固定架511的固定装配。
接收底板5110包括光纤避让部51106,光纤避让部51106位于接收底板5110的具有第一凸台5114与第二凸台5115的一端,且靠近第一凸台5114与第二凸台5115设置。光纤避让部51106包括第一子光纤避让部51116和第二子光纤避让部51126。第一子光纤避让部51116位于第一凸台5114远离接口避让部5113的一侧,第二子光纤避让部51126位于第二凸台5115远离接口避让部5113的一侧。光纤避让部51106被配置为缓解从光纤适配器700引出的内部光纤经过第二凸台5115的上方缠绕至第四卡扣51121时,因第二凸台5115与第四卡扣51121之间存在垂直于接收底板5110的方向上的高度差而出现较大折弯,减少由于内部光纤出现折弯造成的光损耗。
为了方便光接收组件500的安装,在本公开一些实施例中,接收底板5110包括接收凹槽51101,接收凹槽51101位于接收底板5110靠近接收盖板512的表面上,且由该表面朝向远离接收盖板512的方向凹陷。接收底板5110还包括接收基板51102,接收基板51102位于接收凹槽51101靠近接收盖板512的一侧。
光准直器520设置在接收底板5110上,被配置为将第一子内部光纤601传输的来自光模块200外部的光束转换为准直光束。
光分波器530设置在接收底板5110上。光分波器530的入光面朝向光准直器520的出光面,光分波器530被配置为将光准直器520输出的一路准直光束解复用为4路激光光束,从而将包含多个不同波长的光束分开。光分波器530输出4路不同波长的激光光束,该4路不同波长的激光光束分别射入透镜阵列中的相应透镜内,以将4路不同波长的光束会聚至反射棱镜的反射面上。但并不局限于此,在一些实施例中,光分波器530被配置为将光准直器520输出的一路准直光束解复用为2路或8路激光光束。
反射棱镜设置在接收底板5110的接收基板51102处,光接收芯片设置在接收底板5110的接收凹槽51101处,反射棱镜位于光接收芯片的上方。反射棱镜被配置为将4路不同波长的光束分别反射至相应的光接收芯片内,通过光接收芯片将光信号转换为电信号。
跨阻放大器也设置在接收底板5110的接收凹槽51101处,跨阻放大器通过电路走线与光接收芯片相连接,光接收芯片首先将接收到的光信号转换为高频电流信号,然后将该高频电流信号传输给跨阻放大器;跨阻放大器将该高频电流信号转换为高频电压信号,并对高频电压信号进行放大,再经由高频信号线将该高频电压信号传输至第三柔性电路板350,该高频电压信号经由第三柔性电路板350传输给第二电路板320的数字信号处理芯片。数字信号处理芯片提取高频电压信号中的数据,再将该数据经由金手指301传送至光网络终端100。
在本公开一些实施例中,接收凹槽51101上的与跨阻放大器电连接的高频信号线与第三柔性电路板350连接。
如图8和图11所示,与第一子光纤适配器701连接的第一子内部光纤601插入光准直器520内,通过光准直器520将来自光模块200外部的光信号传输至光分波器530,再通过光分波器530将一束复合光束解复用为4路激光光束;4路激光光束通过透镜阵列分别会聚至反射棱镜的反射面并在反射面处发生反射,反射后的激光光束射入光接收芯片(例如,PIN二极管或雪崩二极管),以实现光的接收。
第一接收侧板5111包括侧板凹槽51118,侧板凹槽51118位于第一接收侧板5111的内壁,用于在组装光接收组件500时增加操作空间,避免夹持工具与第一接收侧板5111的碰撞。包括侧板开口51128,侧板开口51128位于第二接收侧板5112的内壁,用于在组装光接收组件500时增加操作空间,避免夹持工具与第二接收侧板5112的碰撞。此外,侧板凹槽51118与侧板开口51128还可方便在光接收组件500的组装过程中对光准直器520与光分波器530的位置的观察。
图12为根据一些实施例的一种光模块中光发射组件的结构图,图13为根据一些实施例的一种光模块中发射壳体的结构图,图14为根据一些实施例的一种光模块中发射壳体的另一角度结构图,图15为根据一些实施例的一种光模块中光发射组件的分解结构图,图16A为根据一些实施例的一种光模块中光发射组件的剖视图,图16B为根据一些实施例的一种光模块中光发射组件与第二子内部光纤的安装结构图。如图12至图16B所示,光发射组件400包括发射壳体410、发射盖板411以及设置在发射壳体410中的激光器420、准直透镜430、会聚透镜440、光隔离器450、光合波器460、光纤耦合器470和半导体制冷器480。
如图12、图13与图14所示,发射壳体410包括发射底板4102、第一发射侧板4103、第二发射侧板4104、光口挡板4105、以及避让侧板4106。第一发射侧板4103与第二发射侧板4104相对设置。光口挡板4105和避让侧板4106设置在发射底板4102的同一侧,且避让侧板4106设置于光口挡板4105与发射底板4102之间,避让侧板4106与发射底板4102之间的夹角为钝角,光口挡板4105垂直于发射底板4102所在的平面设置。
光发射组件400的避让侧板4106与光接收组件500的接收盖板512形成避让处4107,避让处4107被配置为第一子内部光纤601和第二子内部光纤602的安装避让。第一子内部光纤601与第二子内部光纤602设置于避让处4107。
发射壳体410还包括发射开口4101,发射开口4101与光口挡板4105和避让侧板4106相对设置,被配置为连接第二子内部光纤602与发射壳体410内的光学元器件。
在本公开一些实施例中,如图16B所示,第二子光纤适配器702与光发射组件400发 射光信号的一端相对,但光发射组件400中的光纤耦合器470的出光口背离第二子光纤适配器702。为避免第二子内部光纤602过度弯折,减少光损耗,第二子内部光纤602绕接收壳体510半圈后,由发射开口4101延伸进入发射壳体410内部,与光纤耦合器470连接。
如图13和图14所示,在本公开一些实施例中,第一发射侧板4103包括第一限位凸起41031和第二限位凸起41032,第一限位凸起41031和第二限位凸起41032设置在第一发射侧板4103的外侧壁上,并朝向发射壳体410的外侧凸起。第一限位凸起41031的延伸方向与第二限位凸起41032的延伸方向垂直。例如,第一限位凸起41031的延伸方向垂直于发射底板4102,第二限位凸起41032的延伸方向平行于发射底板4102。第一限位凸起41031和第二限位凸起41032可相互接触连接,也可彼此之间具有一定的距离。
第二发射侧板4104包括第三限位凸起41041和第四限位凸起41042,第三限位凸起41041和第四限位凸起41042设置在第二发射侧板4104的外侧壁上,且朝向发射壳体410的外侧凸起。第三限位凸起41041的延伸方向与第四限位凸起41042的延伸方向垂直。例如,第三限位凸起41041的延伸方向垂直于发射底板4102,第四限位凸起41042的延伸方向平行于发射底板4102。
图17为根据一些实施例的一种光模块中光密壳体的结构图,图18为根据一些实施例的一种光模块中光密壳体的另一角度结构图。如图15和图16A所示,发射壳体410还包括光密壳体4108、光密盖板4109和承载板4110。激光器420和准直透镜430设置在光密壳体4108内,会聚透镜440、光隔离器450与光合波器460设置在承载板4110上。光密壳体4108与发射盖板411连接,光密盖板4109覆盖在光密壳体4108上,并与发射壳体410连接。
如图17和图18所示,光密壳体4108包括第一光密开口41081和第二光密开口41082,第一光密开口41081和第二光密开口41082相对设置,第一光密开口41081与发射盖板411连接,第二光密开口41082与光密盖板4109连接,实现光密壳体4108在垂直于发射底板4102的方向上的密封。光密壳体4108还包括光窗开口41083和光窗承载台41084,光窗开口41083与光窗承载台41084位于光密壳体4108的同一侧。
光窗承载台41084包括光窗底板410841和垂直设置于光窗底板410841两侧的第一光窗侧板410842和第二光窗侧板410843,安装光窗(optical window,light window)4135时,光窗4135一侧的表面与光窗底板410841靠近光窗开口41083的表面接触连接,光窗4135另外两侧的表面与第一光窗侧板410842和第二光窗侧板410843接触连接。为避免黏合剂对光路的影响,光窗4135与光窗承载台41084可通过光学胶连接。
如图16A、图17和图18所示,光密壳体4108还包括转接口41085,转接口41085与光窗开口41083相对设置,转接口41085被配置为方便转接块490的安装。转接块490例如为陶瓷转接块。转接块490的第一端经转接口41085嵌入光密壳体4108内部,且在转接块490的第一端的靠近发射底板4102的表面设置引脚,该引脚与激光器420打线连接。转接块490的第二端设置于光密壳体4108的外部,且在转接块490的第二端的靠近发射盖板411的表面设置第一连接区,第一连接区与第一柔性电路板330电连接,在转接块490的第二端的靠近发射底板4102的表面设置第二连接区,第二连接区与第二柔性电路板340电连接。转接块490被配置为对第一柔性电路板330与第二柔性电路板340上的电信号进行转接。
在本公开一些实施例中,设置在光密壳体4108内部的激光器420与转接块490电连接,并与设置在光密壳体4108内的准直透镜430光耦合。第二电路板320接收上位机的电信号,将电信号划分为高速信号与低速信号,高速信号经第二电路板320与第二柔性电路板340被传输至转接块490,并经转接块490的转接被传输至激光器420,从而对激光器420发出的光进行调制,以获得光信号;低速信号经第二电路板320、第一电路板310与第一柔性电路板330被传输至转接块490,并经转接块490的转接被传输至激光器,实现对激光芯片的驱动、TEC的驱动等,使激光芯片发光。
设置在光密壳体4108内部的激光器420和转接块490均与发射盖板411连接,发射 盖板411与上壳体201接触连接,激光器420与转接块490产生的热量可经过发射盖板411传递至上壳体201,由上壳体201将热量传导出去,以保证光模块200的高效散热。
如图15、图17和图18所示,光密盖板4109包括光密连接部41091,光密连接部41091位于光密盖板4109的中心区域且凸出于光密盖板4109设置,光密连接部41091卡接在光密壳体4108的第二光密开口41082处,对第二光密开口41082进行密封。
在本公开一些实施例中,光密壳体4108的第一光密开口41081与发射盖板411可通过固体胶连接,发射盖板411实现对第一光密开口41081的密封。在光密壳体4108的光窗开口41083处安装光窗4135,实现对光密壳体4108的光窗开口41083的密封。在光密壳体4108的转接口41085处设置转接块490,实现对光密壳体4108的转接口41085的密封。如此,可以减少外部环境对设置在光密壳体4108内部的激光器420和准直透镜430的影响,提高通信质量。
图19为根据一些实施例的一种光模块的局部结构图,在本公开一些实施例中,激光器420包括激光芯片421和垫片422,激光芯片421设置在垫片422上,垫片422包括绝缘导热层和金属层,金属层包括地线和信号线。激光芯片421的阴极与地线电连接,激光芯片421的阳极与信号线电连接。通过地线和信号线分别为激光芯片421的阴极和阳极施加电压,激光芯片421可以发光。
激光器420设置在半导体制冷器480上远离发射盖板411的表面。半导体制冷器480被配置为将激光芯片421产生的热量传导至发射盖板411,并通过发射盖板411和光模块200的上壳体201将热量向光模块200的外部导出。但在一些实施例中,半导体制冷器480是可以省略的。
图20为根据一些实施例的一种光模块的另一局部结构图;图21为根据一些实施例的一种光模块中承载板的结构图。如图20和图21所示,光发射组件400还包括承载板4110,会聚透镜440、光隔离器450、光合波器460设置于承载板4110上。承载板4110包括依次连接的第一安装面41101,第二安装面41102和第三安装面41103。第一安装面41101、第二安装面41102与第三安装面41103均平行于发射盖板411,第二安装面41102从第一安装面41101朝向发射盖板411凹陷,第三安装面41103从第二安装面41102向远离发射盖板411凸起,第三安装面41103与发射盖板411之间的距离小于第一安装面41101与发射盖板411之间的距离。会聚透镜440固定在第一安装面41101上,光隔离器450固定在第二安装面41102上,光合波器460固定在第三安装面41103上。
在本公开一些实施例中,承载板4110还包括第一避让槽41104、第二避让槽41105、第一卡板41106和第二卡板41107。第一避让槽41104设置于第三安装面41103远离第二安装面41102的一侧,第一卡板41106设置于第一避让槽41104远离第三安装面41103的一侧。第一卡板41106远离发射盖板411的表面与发射盖板411的距离,大于第三安装面41103远离发射盖板411的表面与发射盖板411的距离。第一卡板41106被配置为对光合波器460在激光器420出光方向上的限位。第二避让槽41105设置于第一避让槽41104的相邻侧,第二卡板41107设置于第一卡板41106的相邻侧。第二避让槽41105设置于第三安装面41103与第二卡板41107之间,被配置为对光合波器460的安装进行避让。第二卡板41107被配置为实现对光合波器460在与激光器420出光方向垂直的方向上的限位。如此,实现了对光合波器460的定位安装。
承载板4110还包括避让开口41108,避让开口41108设置于第一卡板41106与第二卡板41107之间,被配置为方便光合波器460的安装以及便于光合波器460与第三安装面41103的连接。
在本公开一些实施例中,承载板4110还包括避让缺口41109,避让缺口41109设置于承载板4110靠近第二发射侧板4104的一侧,被配置为对光准直器520的安装进行避让。
如图16A、图16B和图20所示,光纤耦合器470的入光口与光合波器460的出光口光耦合,光纤耦合器470的出光口与第二子内部光纤602光耦合。激光器420发射的一路激光光束经由准直透镜430转换为准直光束。准直光束经由会聚透镜440会聚得到会聚光束,会聚光束依次经过光隔离器450和光合波器460而进入光纤耦合器470中,之后激光 光束经过第二子内部光纤602耦合至第二子光纤适配器702中,实现一路光信号的发射。
在有的光模块中,光发射组件与相应的光纤适配器不在同一水平高度,如果利用内部光纤直接将光发射组件与相应的光纤适配器连接,则容易造成内部光纤弯折,从而产生光损伤。为此,本公开一些实施例的光模块中,对光发射组件与相应的光纤适配器的连接进行了改进。
如图6和图16B所示,在本公开一些实施例中,第二子内部光纤602的一端与第二子光纤适配器702连接。与第一子内部光纤601类似,第二子内部光纤602的另一端依次经过第一子光纤避让部51116、第一卡扣51111、第二卡扣51112和第三卡扣51113,经由第一柔性电路板330和第二柔性电路板340的中间绕至发射壳体410的发射开口4101处,最终经由发射开口4101伸入光发射组件400内部,与光发射组件400中的光纤耦合器470连接,避免了因第二子光纤适配器702与光纤耦合器470不在同一个水平面上容易导致光纤弯折的缺陷,减少了光纤中传输的光的损耗,提高了通信质量。
组装光发射组件400时,首先分别将会聚透镜440、光隔离器450和光合波器460安装于承载板4110的安装面上,然后将激光器420、准直透镜430与光密壳体4108依次安装到发射盖板411上,接着将转接块490与光密壳体4108连接,然后将光密盖板4109与光密壳体4108连接,最后将发射盖板411与发射壳体410连接。
在本公开一些实施例中,如图16A所示,激光器420发射出两束方向相反的激光光束,一束激光光束经准直透镜430转换为准直光束,另一束激光光束射向光探测器4010。光探测器4010接收该另一束激光光束,从而实现对激光器420前向出光功率的监控。
图22为根据一些实施例的一种光模块种下壳体的结构图,图23为根据一些实施例的一种光模块剖视图。如图22和图23所示,光模块200的下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022。两个下侧板2022中的第一下侧板202201包括第一限位槽20221和第二限位槽20222,第一限位槽20221和第二限位槽20222位于该下侧板的内壁上;两个下侧板2022中的第二下侧板202202包括第三限位槽20223和第四限位槽20224,第三限位槽20223和第四限位槽20224位于该下侧板的内壁上。四个限位槽均朝向光模块200的壳体的外部凹陷。
如图13、图14和图22所示,发射壳体410的第一限位凸起41031、第二限位凸起41032、第三限位凸起41041和第四限位凸起41042分别嵌入下壳体202的第一限位槽20221、第二限位槽20222、第三限位槽20223和第四限位槽20224内,四个限位槽对光发射组件400进行限定。
下壳体202还包括第一承载柱和第二承载柱。在本公开一些实施例中,第一承载柱设置于第一下侧板202201的内壁,向光模块200的壳体的内部凸起。第二承载柱设置于第二下侧板202202的内壁,向光模块200的壳体的内部凸起。第一限位凸起41031靠近光口挡板4105设置,但并不局限于此,也可以是第二限位凸起41032靠近光口挡板4105设置。在本公开一些实施例中,光接收组件500设置于光发射组件400的下方,光接收组件500的接收底板5110与下壳体202之间设有第三子导热板903。在本公开一些实施例中,第三子导热板903为长方体结构。
如图22和图23所示,下壳体202的底板2021还包括第一底板凸起20211和第二底板凸起20212,第一底板凸起20211和第二底板凸起20212均相对于底板2021靠近上壳体201的表面朝向上壳体201凸起。第三子导热板903设置于第一底板凸起20211与第二底板凸起20212之间,且第三子导热板903的靠近上壳体201的表面与第一底板凸起20211的靠近上壳体201的表面、第二底板凸起20212的靠近上壳体201的表面位于同一平面内。
第一底板凸起20211可设置为一端与第一下侧板202201连接,另一端与第二下侧板202202连接;也可设置与第一下侧板202201和第二下侧板202202具有一定的间隔。第二底板凸起20212的形状和构造与第一底板凸起20211的形状和构造相同。
在本公开一些实施例中,第一底板凸起20211垂直设置于第一下侧板202201与第二下侧板202202之间、第二底板凸起20212垂直设置于第一下侧板202201与第二下侧板202202之间。
在本公开一些的一些实施例中,下壳体202的底板2021还包括第三底板凸起20213,第三底板凸起20213的一侧抵靠于光纤固定架511的第一子光纤避让部51116的侧壁,第三底板凸起20213的一侧的邻侧抵靠于光纤固定架511的第一凸台5114上,用于避免接收底板5110向光口205方向的移动。
第二底板凸起20212包括第一挡臂202121和第二挡臂202122,第一挡臂202121和第二挡臂202122用于避免接收底板5110向电口204方向的移动。在本公开一些实施例中,第一挡臂202121靠近第一下侧板202201设置,第二挡臂202122靠近第二下侧板202202设置。
第一挡臂202121与第一下侧板202201之间具有第一卡扣避让部,第一卡扣避让部用于第一接收侧板5111上卡扣的避让,第二挡臂202122与第二下侧板202202之间设置第二卡扣避让部,第二卡扣避让部用于第二接收侧板5112上卡扣的避让。
示例地,第一挡臂202121与第二挡臂202122呈L形,具有拐角,且拐角朝向接收底板5110的方向。如图22和图23所示,第一挡臂202121包括第一子挡臂和第二子挡臂,第一子挡臂垂直于第二子挡臂设置,且第一子挡臂与第一下侧板202201之间具有第一卡扣避让部202123。第二挡臂202122包括第三子挡臂和第四子挡臂,第三子挡臂垂直于第四子挡臂设置,且第三子挡臂与第二下侧板202202之间具有第二卡扣避让部,用于第二接收侧板5112上卡扣的安装避让。
接收底板5110抵靠于第二子挡臂、第四子挡臂,第二子挡臂、第四子挡臂限定了接收底板5110向电口204方向的移动。第二子挡臂、第四子挡臂结合第三底板凸起20213,限定了接收底板5110在光模块200的长度方向的位置。接收底板5110还设置于第一子挡臂与第三子挡臂之间,避免了接收底板5110在光模块200的宽度方向的移动。
在本公开一些实施例中,为方便第一子内部光纤601缠绕光纤支架511,光准直器520距离下壳体202的第二下侧板202202的距离小于光准直器520距离下壳体202的第一下侧板202201的距离。
下壳体202还包括卡板安装槽20214,卡板800嵌入卡板安装槽20214内部,卡板安装槽被配置为对卡板800进行限位。卡板安装槽20214包括第一卡板限位部202141和第二卡板限位部202142。第一卡板限位部202141与第二卡板限位部202142靠近上壳体201的表面均设置安装避让部,用于光纤适配器700的避让。
在本公开一些实施例中,第一子光纤适配器701包括第一光纤环,第一光纤环凸出于第一子光纤适配器701的表面设置。第一光纤环的一侧抵靠于第一卡板限位部202141,第一光纤环的另一侧抵靠于卡板800。第二子光纤适配器702包括第二光纤环,第二光纤环与第一光纤环的用处一致。
在本公开一些实施例中,在组装光模块200时,首先将光接收组件500固定于下壳体202的内部,然后再将光发射组件400设置于光接收组件500的上方,之后使光发射组件400和光接收组件500通过第一柔性电路板330、第二柔性电路板340和第三柔性电路板350与第一电路板310、第二电路板320实现电连接。最后,将上壳体201与下壳体202盖合。
由于以上实施方式均是在其他方式之上引用结合进行说明,不同实施例之间均具有相同的部分,本说明书中各个实施例之间相同、相似的部分互相参见即可。在此不再详细阐述。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本公开的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权利要求的限制。

Claims (21)

  1. 一种光模块,包括:
    壳体;
    电路板,位于所述壳体中;
    光接收组件,位于所述壳体中且与所述电路板电连接,被配置为将来自所述光模块外部的光信号转换成电信号,并将所述电信号传输至所述电路板,所述光接收组件包括光纤固定架;
    第一子光纤适配器,与所述壳体固定连接,并与所述光接收组件的被配置为接收来自所述光模块外部的光信号的一端相对设置;
    第一子内部光纤,所述第一子内部光纤的一端与所述第一子光纤适配器连接,所述第一子内部光纤的另一端绕所述光纤固定架一周后与所述光接收组件连接。
  2. 根据权利要求1所述的光模块,其中,所述壳体包括下壳体和上壳体;
    所述第一子光纤适配器与所述光接收组件位于不同的水平高度,以使得所述第一子光纤适配器与所述下壳体之间的距离不同于所述光接收组件与所述下壳体之间的距离。
  3. 根据权利要求1或2所述的光模块,其中,所述光纤固定架包括接收底板和设置于所述接收底板两相对侧的第一接收侧板和第二接收侧板;
    所述第一接收侧板和所述第二接收侧板均包括多个卡扣,所述第一子内部光纤的另一端穿过所述多个卡扣,并绕所述光纤固定架一周。
  4. 根据权利要求3所述的光模块,其中,所述多个卡扣中相邻两个卡扣的开口的朝向相反,以使得所述相邻两个卡扣中一个卡扣的开口朝向所述接收底板、另一个卡扣的开口背离所述接收底板。
  5. 根据权利要求3所述的光模块,其中,所述光纤固定架还包括第一凸台和第二凸台,所述第一凸台和所述第二凸台位于所述光纤固定架与所述第一子光纤适配器相对的一端;
    所述第一子内部光纤的另一端从所述第一凸台和所述第二凸台之间进入所述光接收组件。
  6. 根据权利要求5所述的光模块,其中,所述接收底板还包括第一子光纤避让部和第二子光纤避让部;
    所述第一子光纤避让部位于所述第一凸台远离所述第二凸台的一侧,所述第二子光纤避让部位于所述第二凸台远离所述第一凸台的一侧;
    所述第一子光纤避让部或所述第二子光纤避让部被配置为减小所述第一子内部光纤缠绕所述光纤固定架一周时产生的折弯。
  7. 根据权利要求3所述的光模块,其中,所述光纤固定架还包括接收盖板;
    所述第一接收侧板包括第一连接部,所述第一连接部位于所述第一接收侧板靠近所述接收盖板的表面并凸出于该表面;
    所述第二接收侧板包括第二连接部,所述第二连接部位于所述第二接收侧板靠近所述接收盖板的表面并凸出于该表面;
    所述接收盖板设置于所述第一连接部与所述第二连接部之间。
  8. 根据权利要求1至7任一项所述的光模块,还包括:
    光发射组件,位于所述壳体中且与所述电路板电连接,被配置为将来自所述电路板的电信号转换成光信号,并向所述光模块的外部发射所述光信号;
    第二子光纤适配器,与所述壳体固定连接,并与所述光发射组件的被配置为向所述光模块的外部发射光信号的一端相对设置;
    第二子内部光纤,所述第二子内部光纤的一端与所述第二子光纤适配器连接,所述第二子内部光纤的另一端绕所述光纤固定架半周后与所述光发射组件连接。
  9. 根据权利要求8所述的光模块,其中,所述光发射组件包括:
    发射壳体,所述发射壳体具有发射开口,所述发射开口背离所述光发射组件的被配置为向所述光模块的外部发射光信号的一端;
    光纤耦合器,位于所述发射壳体内,所述光纤耦合器的入光口靠近所述光发射组件的 被配置为向所述光模块的外部发射光信号的一端,所述光纤耦合器的出光口靠近所述发射开口;
    其中,所述第二子内部光纤的另一端绕所述光纤固定架半周后由所述发射开口进入所述发射壳体,并与所述光纤耦合器的出光口光耦合。
  10. 根据权利要求8所述的光模块,其中,所述壳体包括下壳体和上壳体;
    所述第二子光纤适配器与所述光发射组件位于不同的水平高度,以使得所述第二子光纤适配器与所述上壳体之间的距离不同于所述光发射组件与所述上壳体之间的距离。
  11. 根据权利要求8所述的光模块,其中,所述第一子内部光纤的另一端绕所述光纤固定架一周时的方向与所述第二子内部光纤的另一端绕所述光纤固定架一周时的方向相反。
  12. 根据权利要求8所述的光模块,其中,所述光发射组件包括:
    发射壳体和覆盖在所述发射壳体上的发射盖板;光密壳体,位于所述发射壳体和所述发射盖板所界定的空间内,并与所述发射盖板密封连接;
    光密盖板,位于所述发射壳体和所述发射盖板所界定的空间内,并与所述光密壳体密封连接;
    激光器,位于所述光密壳体和所述光密盖板所界定的密封空间内,被配置为向所述光模块的外部发射所述光信号。
  13. 根据权利要求12所述的光模块,其中,所述光密壳体包括相对设置的第一光密开口和第二光密开口;
    所述第一光密开口与所述发射盖板密封连接,所述第二光密开口与所述光密盖板密封连接,以使所述光密壳体在垂直于所述发射盖板的方向上的密封。
  14. 根据权利要求12或13所述的光模块,其中,所述光密壳体还包括光窗开口,所述光窗开口位于所述激光器的出光方向上;
    所述光发射组件还包括光窗,所述光窗与所述光窗开口密封连接。
  15. 根据权利要求14所述的光模块,其中,所述光密壳体还包括光窗承载台,所述光窗承载台与所述光窗开口位于所述光密壳体的同一侧;
    所述光窗承载台包括光窗底板和垂直设置于所述光窗底板两侧的第一光窗侧板和第二光窗侧板;
    所述光窗一侧的表面与所述光窗底板靠近所述光窗开口的表面密封连接,所述光窗另外两侧的表面分别与所述第一光窗侧板和所述第二光窗侧板密封连接。
  16. 根据权利要求15所述的光模块,其中,所述光密壳体还包括转接口,所述转接口与所述光窗开口相对设置;
    所述光发射组件还包括转接块,所述转接块与所述转接口密封连接。
  17. 根据权利要求16所述的光模块,其中,所述转接块的第一端通过所述转接口伸入所述光密壳体内部,所述转接块的第二端设置于所述光密壳体外部;
    所述转接块的第一端与所述激光器电连接,所述转接块的第二端与所述电路板电连接,以使所述激光器接收来自所述电路板的电信号。
  18. 根据权利要求12所述的光模块,其中,所述光发射组件还包括会聚透镜、光隔离器、光合波器和承载板;
    所述承载板包括沿所述激光器的出光方向依次连接的第一安装面、第二安装面和第三安装面,所述会聚透镜固定在所述第一安装面上,所述光隔离器固定在所述第二安装面上,所述光合波器固定在所述第三安装面上。
  19. 根据权利要求18所述的光模块,其中,所述承载板还包括第一避让槽、第二避让槽、第一卡板和第二卡板;
    所述第一避让槽设置于所述第三安装面远离第二安装面的一侧,所述第一卡板设置于所述第一避让槽远离所述第三安装面的一侧;
    所述第二避让槽设置于所述第一避让槽的相邻侧,所述第二卡板设置于所述第一卡板的相邻侧;
    所述第二避让槽设置于所述第三安装面与所述第二卡板之间。
  20. 根据权利要求13所述的光模块,其中,所述壳体包括下壳体和上壳体,所述光发射组件和所述光接收组件堆叠,所述光发射组件靠近所述下壳体设置,所述光接收组件靠近所述光接收组件设置。
  21. 根据权利要求20所述的光模块,其中,
    发射壳体包括发射底板、以及分别位于所述发射底板两侧的第一发射侧板和第二发射侧板;所述第一发射侧板包括第一限位凸起和第二限位凸起,所述第二发射侧板包括第三限位凸起和第四限位凸起;
    所述下壳体包括底板以及位于所述底板两侧的第一下侧板和第二下侧板;所述第一下侧板包括第一限位槽和第二限位槽,所述第二下侧板包括第三限位槽和第四限位槽;
    所述第一限位凸起、所述第二限位凸起、所述第三限位凸起和所述第四限位凸起分别嵌入所述第一限位槽、所述第二限位槽、所述第三限位槽和所述第四限位槽内。
PCT/CN2022/123636 2022-03-28 2022-09-30 光模块 WO2023184922A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202220699448.7U CN217484546U (zh) 2022-03-28 2022-03-28 一种光模块
CN202220699450.4U CN217484547U (zh) 2022-03-28 2022-03-28 一种光模块
CN202210314271.9A CN114779412B (zh) 2022-03-28 2022-03-28 一种光模块
CN202210314271.9 2022-03-28
CN202220699450.4 2022-03-28
CN202220699449.1 2022-03-28
CN202220699448.7 2022-03-28
CN202220699449.1U CN216901053U (zh) 2022-03-28 2022-03-28 一种光模块
CN202210316221.4A CN114660740B (zh) 2022-03-28 2022-03-28 一种光模块
CN202210316221.4 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023184922A1 true WO2023184922A1 (zh) 2023-10-05

Family

ID=88198956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123636 WO2023184922A1 (zh) 2022-03-28 2022-09-30 光模块

Country Status (1)

Country Link
WO (1) WO2023184922A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025094A (ja) * 2003-07-01 2005-01-27 Maspro Denkoh Corp 光受信機
CN110888208A (zh) * 2019-12-09 2020-03-17 亨通洛克利科技有限公司 一种具有绕纤机构的光模块
CN113534367A (zh) * 2021-08-18 2021-10-22 菲尼萨光电通讯(上海)有限公司 一种解决光纤制造长度波动导致光功率异常和光纤断裂的结构
CN113805286A (zh) * 2020-06-16 2021-12-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN114035284A (zh) * 2021-11-22 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN114200596A (zh) * 2020-09-18 2022-03-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN114660740A (zh) * 2022-03-28 2022-06-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN114779412A (zh) * 2022-03-28 2022-07-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN217484547U (zh) * 2022-03-28 2022-09-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN217484546U (zh) * 2022-03-28 2022-09-23 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025094A (ja) * 2003-07-01 2005-01-27 Maspro Denkoh Corp 光受信機
CN110888208A (zh) * 2019-12-09 2020-03-17 亨通洛克利科技有限公司 一种具有绕纤机构的光模块
CN113805286A (zh) * 2020-06-16 2021-12-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN114200596A (zh) * 2020-09-18 2022-03-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN113534367A (zh) * 2021-08-18 2021-10-22 菲尼萨光电通讯(上海)有限公司 一种解决光纤制造长度波动导致光功率异常和光纤断裂的结构
CN114035284A (zh) * 2021-11-22 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN114660740A (zh) * 2022-03-28 2022-06-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN114779412A (zh) * 2022-03-28 2022-07-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN217484547U (zh) * 2022-03-28 2022-09-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN217484546U (zh) * 2022-03-28 2022-09-23 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN217085337U (zh) 一种光模块
CN218350561U (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN117693697A (zh) 光模块
CN114675383A (zh) 一种光模块
WO2023185220A1 (zh) 一种光模块
WO2023035711A1 (zh) 光模块
CN114660740B (zh) 一种光模块
CN114779412B (zh) 一种光模块
WO2022257486A1 (zh) 光模块
WO2022267805A1 (zh) 光模块
CN217484547U (zh) 一种光模块
WO2023184922A1 (zh) 光模块
CN217484546U (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
US11927817B2 (en) Optical module
WO2023184906A1 (zh) 光模块
CN220543163U (zh) 一种光模块
CN218675388U (zh) 一种光模块
WO2023045423A1 (zh) 光模块
WO2022247426A1 (zh) 光模块
CN217543461U (zh) 一种光模块
WO2022183800A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934740

Country of ref document: EP

Kind code of ref document: A1