WO2022193733A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022193733A1
WO2022193733A1 PCT/CN2021/134354 CN2021134354W WO2022193733A1 WO 2022193733 A1 WO2022193733 A1 WO 2022193733A1 CN 2021134354 W CN2021134354 W CN 2021134354W WO 2022193733 A1 WO2022193733 A1 WO 2022193733A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip array
light
emitting chip
light emitting
optical
Prior art date
Application number
PCT/CN2021/134354
Other languages
English (en)
French (fr)
Inventor
王凤来
姜双弟
�田�浩
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022193733A1 publication Critical patent/WO2022193733A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is mainly used for photoelectric and electro-optical conversion.
  • the transmitting end converts the electrical signal into an optical signal and transmits it through an optical fiber, and the receiving end converts the received optical signal into an electrical signal.
  • An optical module provided by the present disclosure includes: a circuit board, a surface of which is provided with a light emitting chip array isolation component, the light emitting chip array isolation component is used to surround the light emitting chip array to isolate the light emitting chip array from glue On; the light emitting chip array includes a plurality of light emitting chips, which are arranged in the isolation part of the light emitting chip array and are used to emit multiple beams of signal light with different wavelengths; the first lens assembly, the bottom of which is connected to the The circuit board is covered on the light emitting chip array, and is used for transmitting and changing the propagation direction of the signal light emitted by the light emitting chip array.
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a structural diagram of a relative positional relationship between a circuit board and a lens assembly according to some embodiments
  • FIG. 6 is a perspective view one of a first lens assembly according to some embodiments.
  • FIG. 7 is a second perspective view of a first lens assembly according to some embodiments.
  • FIG. 8 is a schematic structural diagram of a first lens assembly carrying other optical devices according to some embodiments.
  • FIG. 9 is a schematic structural diagram of a circuit board according to some embodiments.
  • FIG. 10 is a cross-sectional view of a circuit board and second lens assembly according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 includes a housing and a circuit board 300 disposed in the housing;
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two sides of the cover plate are perpendicular to the cover plate.
  • the two upper side plates are combined with the two side plates by the two side walls to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the light module 200 (the left end of FIG. 3 ), and the opening 205 is also located at the end of the light module 200 (the right end of FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the inside of the optical module 200 .
  • the combination of the upper casing 201 and the lower casing 202 is adopted to facilitate the installation of components such as the circuit board 300 into the casing, and the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission, and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip may include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock and data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip .
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock and data recovery chip
  • DSP digital signal processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. .
  • the circuit board 300 further includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of pins which are independent of each other.
  • the circuit board 300 is inserted into the cage 106 , and is electrically connected to the electrical connector in the cage 106 by gold fingers.
  • the golden fingers can be arranged only on one side surface of the circuit board 300 (eg, the upper surface shown in FIG. 4 ), or can be arranged on the upper and lower surfaces of the circuit board 300 , so as to meet the needs of a large number of pins.
  • the golden finger is configured to establish an electrical connection with the upper computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • the optical module further includes a lens assembly, and the lens assembly is disposed on the circuit board 300 .
  • the lens assembly and the circuit board 300 form a cavity enclosing the light emitting chip array or the light receiving chip array, and the light emitting chip array or the light receiving chip array is located in the cavity.
  • the lens assembly is used to transmit the light beam and change the direction of the beam transmission during the transmission process.
  • the light emitted by the optical chip in the light emitting chip array is transmitted and reflected by the lens assembly and then enters the optical fiber; or, the light from the optical fiber enters the light receiving chip after being reflected by the lens assembly, and the lens assembly not only functions to seal the optical chip It also establishes the optical connection between the optical chip and the optical fiber.
  • the lens assembly is also covered above the light-emitting chip array or the light-receiving chip array, which facilitates changing the propagation direction of the signal light emitted by the light-emitting chip or the signal light from outside the optical module by using fewer components.
  • the light emitting chip array is covered by the lens assembly, or the light receiving chip array is covered by the lens assembly, or the light emitting chip array and the light receiving chip array are covered by the lens assembly respectively.
  • the number of lens components may be one, or two, or the like.
  • the lens assembly may not only be disposed at one end of the circuit board 300 close to the optical port, but also may be disposed in the middle of the circuit board 300, which may be selected according to the actual needs of the optical module.
  • 5 is a structural diagram of the relative positional relationship between a circuit board and a lens assembly according to some embodiments.
  • the lens assembly is disposed on the light-emitting chip array or the light-receiving chip array in a cover-up manner Above; wherein: the light-emitting chip array includes several light-emitting chips, usually each light-emitting chip is used to emit signal light of one wavelength, and then the light-emitting chip array is used to emit multiple beams of signal light of different wavelengths; light receiving The chip array includes several light-receiving chips, usually each light-receiving chip is used to receive signal light of one wavelength, and then the light-receiving chip array is used to receive different multiple beams of signal light of different wavelengths.
  • the light-emitting chip array includes 2, 3, and 4 light-emitting chips, and the light-receiving chip array includes 2, 3, and 4 light-receiving chips.
  • this embodiment includes two lens assemblies.
  • one lens assembly is referred to as a first lens assembly
  • the other lens assembly is referred to as a second lens assembly.
  • the lens assembly covered on the light emitting chip array is called the first lens assembly
  • the lens assembly covered on the light receiving chip array is called the second lens assembly.
  • the two lens assemblies include a first lens assembly 400 and a second lens assembly 500, but the relative positions of the first lens assembly 400 and the second lens assembly 500 in FIG. A specific definition of where the lens assembly is located is disclosed.
  • high-speed data transmission requires that the optical chips and their driving/matching chips in the light-emitting chip array or the light-receiving assembly be arranged at close distances, so as to shorten the wiring between the chips and reduce the Signal loss caused by wires is avoided, and when the lens assembly is installed above the optical chip, the lens assembly generally covers the optical chip and its driving/matching chip at the same time. Therefore, in the light-emitting chip array, the light-emitting chip and the driving chip of the light-emitting chip are arranged in close proximity, and the lens assembly covers the light-emitting chip and the driving chip of the light-emitting chip; The lens assembly covers the light receiving chip and the transimpedance amplifying chip.
  • the embodiments of the present disclosure include other optical devices and lens assemblies.
  • the structure of the first lens assembly 400 and the second lens assembly 500 are the same or similar, and the principles of the two are the same. The following describes the specific use of the first lens assembly 400 in detail. For the specific structure of the second lens assembly 500, refer to the first lens assembly 400. related description.
  • FIG. 6 is a first perspective view of a first lens assembly according to some embodiments
  • FIG. 7 is a second perspective view of a first lens assembly according to some embodiments.
  • the top of the first lens assembly 400 is provided with a first accommodating cavity 410
  • the bottom of the first lens assembly 400 is provided with a second accommodating cavity 420 .
  • the first accommodating cavity 410 includes a first reflective surface 411, and the first accommodating cavity 410 is used for arranging optical devices, such as lenses, optical multiplexing components and other optical devices.
  • the first reflection surface 411 is an inclined surface for reflecting signal light incident thereon.
  • a bearing surface 412 is provided at the bottom of the first accommodating cavity 410, and the bearing surface 412 facilitates the installation of optical devices such as lenses and optical multiplexing components;
  • the surface 412 is closer to the light exit position of the first lens assembly 400 than the first reflecting surface 411 .
  • the second accommodating cavity 420 is used to facilitate the first lens assembly 400 to accommodate and cover the light emitting chip array, so as to facilitate the installation and fixation of the first lens assembly 400 on the circuit board 300 .
  • the projection covers the first reflective surface 411 .
  • the top surface of the first lens assembly 400 is sunk to form the first accommodating cavity 410 , and the bottom of the first accommodating cavity 410 forms the first reflecting surface 411 and the bearing surface 412 ;
  • a second accommodating cavity 420 is formed on the bottom surface.
  • the top surface of the second accommodating cavity 420 is generally parallel to the circuit board 300 .
  • the first lens assembly 400 is usually a transparent plastic part, which is generally injection-molded in one piece.
  • a first lens group 421 is disposed on the top surface of the second accommodating cavity 420 , and the first lens group 421 includes several lenses for collimating the signal light of the light-emitting chip array.
  • the number of lenses in the first lens group 421 mainly depends on the number of light emitting chips in the light emitting chip array. Generally, the number of lenses in the first lens group 421 is equal to the number of light emitting chips in the light emitting chip array.
  • the lenses in the first lens group 421 may be protrusions formed by the downward protrusion of the top surface of the second accommodating cavity 420 .
  • the projection of the first reflection surface 411 in the direction of the top surface of the second accommodating cavity 420 covers the first lens group 421 , and then all the signal light collimated by the first lens group 421 is transmitted to the first reflection surface 411 .
  • FIG. 8 is a schematic structural diagram of a first lens assembly carrying other optical devices according to some embodiments.
  • the optical module according to some embodiments further includes an optical multiplexing component 206 , and the optical multiplexing component 206 is disposed on the bearing surface 412 of the first accommodating cavity 410 .
  • the combined signal light is transmitted out of the first lens assembly 400 through its right side, and then the optical multiplexing assembly 206 is arranged at the right position of the first accommodating cavity 410 , and then the first The reflection surface 411 is inclined to the right and the bearing surface 412 is disposed on the right side of the first reflection surface 411 .
  • the optical module further includes a second lens group 207 , and the second lens group 207 is disposed on the bearing surface 412 of the first accommodating cavity 410 .
  • the second lens group 207 includes several lenses.
  • the number of lenses in the second lens group 207 mainly depends on the number of light emitting chips in the light emitting chip array. Generally, the number of lenses in the second lens group 207 is equal to the number of light emitting chips in the light emitting chip array.
  • the lenses in the second lens group 207 may be glass lenses for collimating the signal light reflected by the first reflecting surface 411 .
  • the second lens group 207 is disposed between the first reflecting surface 411 and the optical multiplexing component 206 , and the signal light emitted by the first reflecting surface 411 is collimated by the second lens group 207 and transmitted to the optical multiplexing component.
  • glue is used between the first lens assembly 400 and the circuit board 300 and between the second lens assembly 500 and the circuit board 300 to be glued and cured; the glue needs to be thermally cured to achieve complete curing, However, in the process of baking to complete curing, the epoxy resin and diluent and other small molecular additives in the glue will seep out and diffuse, and the glue seeps out to the light-emitting chip array or light-receiving chip array, under the action of capillary action It overflows to the surface of the optical chip, causing the surface of the optical chip to be dirty.
  • the optical chip includes a light emitting chip and a light receiving chip.
  • FIG. 9 is a schematic structural diagram of a circuit board according to some embodiments.
  • the surface of the circuit board 300 is provided with a light-emitting chip array isolation part 310 , the light-emitting chip array is arranged in the light-emitting chip array isolation part 310 , and the light-emitting chip array isolation part 310 uses A bump is formed on the surface of the circuit board 300 to surround the light emitting chip array to isolate the light emitting chip array and the first lens assembly 400, and then the glue used to fix the first lens assembly 400 by processing and dispensing is isolated from the light emitting chip array. open to avoid glue contamination to the light-emitting chips in the light-emitting chip array.
  • the surface of the circuit board 300 is provided with a light-receiving chip array isolation part 320 , the light-receiving chip array is arranged in the light-receiving chip array isolation part 320 , and the light-receiving chip array isolation part 320 is used in the circuit
  • a protrusion is formed on the surface of the board 300 to surround the light-receiving chip array to isolate the light-receiving chip array and the second lens assembly 500, and then the glue used to fix the second lens assembly 500 by processing and dispensing is isolated from the light-receiving chip array to avoid The glue contaminates the light-receiving chips in the light-receiving chip array.
  • FIG. 10 is a cross-sectional view of a circuit board and second lens assembly according to some embodiments.
  • the second lens assembly 500 is covered on the light-receiving chip array isolation member 320, and the light-receiving chip array isolation member 320 protrudes from the contact surface between the second lens assembly 500 and the circuit board 300, and then the light-receiving chip array
  • the isolation member 320 can effectively isolate the glue overflowing onto the light receiving chips in the light receiving chip array when the second lens assembly 500 is fixed by dispensing.
  • the structure of the light-emitting chip array isolation part 310 is similar to that of the light-receiving chip array isolation part 320 .
  • the area of the light-emitting chip array isolation member 310 in the embodiment of the present disclosure is larger than that of the light-emitting chip array
  • the area of the light-receiving chip array isolation part 320 is larger than that of the light-receiving chip array, so that the reserved space for the light-emitting chip array isolation part 310 and the light-receiving chip array isolation part 320 is larger, so that the light-emitting chip can be protected comprehensively.
  • the safety distance between the lens assembly and the corresponding optical chip can be increased. The larger the safety distance, the more difficult it is for the glue to overflow to the surface of the optical chip, thereby protecting the light emitting chip array or the light receiving chip array.
  • the light-emitting chip array isolation member may be set as a light-emitting chip array isolation ring, and correspondingly, the light-receiving chip array isolation member may be set as a light-receiving chip array isolation ring.
  • the light-emitting chip array isolation ring can be set as a green oil circle
  • the light-receiving chip array isolation circle can also be set as a green oil circle, that is, a green oil circle formed by coating green oil, which is a liquid photoresist.
  • Solder resist such as an acrylic oligomer
  • green oil can be used as a protective layer to coat circuits and substrates that do not need to be soldered on circuit boards to protect the formed circuit patterns for a long time.
  • the circuit board is specially coated with green oil to form two green oil circles, which can protect the light-emitting chip array and the light-receiving chip array respectively.
  • the area where the light-emitting chip array and the light-receiving chip array are placed in the circuit board are surrounded by green oil, and the design height of the green oil can be 40um, so that the glue can be blocked during the normal baking process of the glue. Glue overflow path, so as to prevent the glue overflow problem on the surface of the optical chip.
  • the optical module provided by the present disclosure includes a circuit board, a light emitting chip array, a light emitting array isolation component, and a first lens assembly, wherein the first lens assembly includes a first accommodating cavity and a second accommodating cavity, and the first accommodating cavity has a A first reflection surface is arranged on the bottom surface, a second lens group and a light multiplexing component are arranged in the first accommodating cavity, and the light emitting chip array covered and accommodated under the second accommodating cavity includes a plurality of light emitting chips.
  • the light emitting chip array can emit multiple beams of signal light with different wavelengths, and the multiple beams of signal light with different wavelengths are transmitted to the first reflection surface, reflected by the first reflection surface to change the transmission direction, and then transmitted to the first reflection surface through the second lens group.
  • the optical multiplexing component of the accommodating cavity is combined into a bundle of signal light by the optical multiplexing component, and finally transmitted to the optical fiber to realize the simultaneous transmission of signal light of multiple wavelengths in a single optical fiber.
  • the first lens assembly is bonded to the circuit board through glue curing.
  • the glue overflows to the light emitting chip array under the action of capillary action, causing the light emitting chip to be dirty and affecting the light coupling efficiency.
  • the emission array isolation part is used to mount the light emission chip array inside the area of the light emission array isolation part.
  • the light emission array isolation part can realize the isolation of the first lens assembly and the light emission chip array, and block the overflow of glue from the first lens assembly.
  • the path to the light emitting chip array can ensure that the surface of the light emitting chip array is clean, thereby ensuring the light coupling efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开提供的光模块中,包括:电路板,表面设有光发射芯片阵列隔离部件,光发射芯片阵列隔离部件用于围绕光发射芯片阵列以将光发射芯片阵列与胶水隔离开;光发射芯片阵列,包括多个光发射芯片,设置在光发射芯片阵列隔离部件内,用于发射多束不同波长的信号光;第一透镜组件,底部通过胶水连接电路板且罩设在光发射芯片阵列上,用于传输并改变光发射芯片阵列发射信号光的传播方向。本公开中通过设置光发射阵列隔离部件,将光发射芯片阵列贴装在光发射阵列隔离部件的区域内部,光发射阵列隔离部件可以实现第一透镜组件和光发射芯片阵列的隔离,阻断胶水溢流至光发射芯片阵列的路径,从而保证光发射芯片阵列表面洁净、进而保证光耦合效率的效果。

Description

一种光模块
本公开要求在2021年03月17日提交中国专利局、申请号为202120556367.7、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光模块主要用于光电、电光转换,其发射端将电信号转换为光信号并通过光纤传输出去,其接收端将接收到的光信号转换为电信号。
发明内容
本公开提供的一种光模块,包括:电路板,表面设有光发射芯片阵列隔离部件,所述光发射芯片阵列隔离部件用于围绕光发射芯片阵列以将所述光发射芯片阵列与胶水隔离开;所述光发射芯片阵列,包括多个光发射芯片,设置在所述光发射芯片阵列隔离部件内,用于发射多束不同波长的信号光;第一透镜组件,底部通过胶水连接所述电路板且罩设在所述光发射芯片阵列上,用于传输并改变所述光发射芯片阵列发射信号光的传播方向。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种电路板与透镜组件相对位置关系的结构图;
图6为根据一些实施例的一种第一透镜组件的立体图一;
图7为根据一些实施例的一种第一透镜组件的立体图二;
图8为根据一些实施例的一种第一透镜组件承载其他光器件的结构示意图;
图9为根据一些实施例的一种电路板的结构示意图;
图10为根据一些实施例的一种电路板与第二透镜组件的剖视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备 之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光 网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,光模块200包括壳体、设置于壳体中的电路板300;
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的左端),开口205也位于光模块200的端部(图3的右端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200的内部。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电 路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
在本公开某一些实施例中,光模块还包括透镜组件,透镜组件设置电路板300上。在本公开的某一些实施例中,透镜组件与电路板300形成包裹光发射芯片阵列或光接收芯片阵列的腔体,光发射芯片阵列或光接收芯片阵列位于该腔体中。透镜组件用于传输光束并在传输过程中改变光束传输方向。在使用中:光发射芯片阵列中光芯片发出的光经透镜组件传输并反射后进入光纤中;或者,来自光纤的光经透镜组件反射后进入光接收芯片中,透镜组件不仅起到密封光芯片的作用,同时也建立了光芯片与光纤之间的光连接。透镜组件同时罩设在光发射芯片阵列或光接收芯片阵列上方,便于利用较少器件实现改变光发射芯片发射的信号光或来自光模块外部的信号光的传播方向。在本公开某一些实施例中,光发射芯片阵列通过透镜组件罩设,或光接收芯片阵列通过透镜组件罩设,或者光发射芯片阵列和光接收芯片阵列分别通过透镜组件罩设。在本公开某一些实施例中,透镜组件的数量可以为1个,还可以为2个等。
在本公开某一些实施例中,透镜组件不仅可以设置在电路板300靠近光口的一端,还可以设置在电路板300的中部,可根据光模块的实际需要进行选择。图5为根据一些实施例的一种电路板与透镜组件相对位置关系的结构图,在本公开某一些实施例中,透镜组件采用罩设式的方式设置在光发射芯片阵列或光接收芯片阵列的上方;其中:光发射芯片阵列中包括若干光发射芯片,通常每一光发射芯片用于发射一种波长的信号光,进而光发射芯片阵列用于发射多束不同波长的信号光;光接收芯片阵列中包括若干光接收芯片,通常每一光接收芯片用于接收一种波长的信号光,进而光接收芯片阵列用于接收不同多束不同波长的信号光。光发射芯片阵列中包括2个、3个、4个等光发射芯片,光接收芯片阵列中包括2个、3个、4个等光接收芯片。
且如图5所示,在本实施例中包括两个透镜组件,为便于描述将一个透镜组件称为第一透镜组件,另一个透镜组件称为第二透镜组件,在本公开的某一些实施例中将罩设在光发射芯片阵列上的透镜组件称为第一透镜组件,将罩设在光接收芯片阵列上的透镜组件称 为第二透镜组件。如图5所示,两个透镜组件包括第一透镜组件400和第二透镜组件500,但图5中第一透镜组件400和第二透镜组件500的相对位置仅是一个示例,但不构成对本公开透镜组件设置位置的具体限定。
在本公开的某一些实施例中,高速率数据传输要求光发射芯片阵列或光接收组件中光芯片及其驱动/匹配芯片之间近距离设置,以缩短芯片之间的连线、减小连线造成的信号损失,而透镜组罩设在光芯片的上方时,透镜组件一般将光芯片及其驱动/匹配芯片同时罩设住。所以光发射芯片阵列中光发射芯片与光发射芯片的驱动芯片近距离设置,透镜组件罩设光发射芯片与光发射芯片的驱动芯片;光接收芯片阵列中光接收芯片与跨阻放大芯片近距离设置,透镜组件罩设光接收芯片与跨阻放大芯片。
为便于实现光发射芯片阵列发射出多束不同波长信号光的传输以及实现光接收芯片阵列接收不同波长信号光,本公开实施例中包括其他光器件配合透镜组件。第一透镜组件400和第二透镜组件500结构相同或相似,二者原理相同,下面结合第一透镜组件400的具体使用进行详细描述,第二透镜组件500的具体结构可参考第一透镜组件400的相关描述。
图6为根据一些实施例的一种第一透镜组件的立体图一,图7为根据一些实施例的一种第一透镜组件的立体图二。如图6和7所示,第一透镜组件400的顶部设置第一容纳腔410,第一透镜组件400的底部设置第二容纳腔420。第一容纳腔410内包括第一反射面411,第一容纳腔410内用于设置光学器件,如透镜、光复用组件等光学器件。第一反射面411为倾斜面,用于反射入射至其上的信号光。在本公开的某一些实施例中,第一容纳腔410的底部设置承载面412,承载面412便于透镜、光复用组件等光学器件设置;承载面412位于第一反射面411的一侧,承载面412较第一反射面411更靠近第一透镜组件400的出光位置。第二容纳腔420用于方便第一透镜组件400容纳罩设光发射芯片阵列,便于第一透镜组件400在电路板300上的安装固定,同时第二容纳腔420在第一容纳腔410方向的投影覆盖第一反射面411。
在本公开某一些实施例中,第一透镜组件400的顶面下沉形成第一容纳腔410,第一容纳腔410的底部形成第一反射面411和承载面412;第一透镜组件400的底面上沉形成第二容纳腔420,当第一透镜组件400装配固定至电路板300上时第二容纳腔420的顶面通常平行于电路板300。第一透镜组件400通常为透明塑料件,一般采用一体注塑成型。
在本公开的某一些实施例中,第二容纳腔420的顶面设置第一透镜组421,第一透镜组421包括若干透镜,用于准直光发射芯片阵列的信号光。第一透镜组421中透镜的数量主要取决于光发射芯片阵列中光发射芯片的数量,通常第一透镜组421中透镜的数量等于光发射芯片阵列中光发射芯片的数量。第一透镜组421中透镜可为第二容纳腔420的顶面下凸形成的一个个凸起。第一反射面411在第二容纳腔420的顶面方向上的投影覆盖第一透镜组421,进而经过第一透镜组421准直的信号光全部传输至第一反射面411。
图8为根据一些实施例的一种第一透镜组件承载其他光器件的结构示意图。如图8所示,根据一些实施例的光模块中,还包括光复用组件206,光复用组件206设置在第一容纳腔410的承载面412上。图8所示的第一透镜组件400,合束后的信号光通过其右侧传 输出第一透镜组件400,进而光复用组件206设置在第一容纳腔410的较右的位置,进而第一反射面411向右倾斜以及承载面412设置在第一反射面411的右侧。
在本公开的某一些实施例中,根据一些实施例的光模块中,还包括第二透镜组207,第二透镜组207设置在第一容纳腔410的承载面412上。第二透镜组207包括若干透镜。第二透镜组207中透镜的数量主要取决于光发射芯片阵列中光发射芯片的数量,通常第二透镜组207中透镜的数量等于光发射芯片阵列中光发射芯片的数量。第二透镜组207中透镜可为玻璃透镜,用于准直经第一反射面411反射至其的信号光。第二透镜组207设置在第一反射面411与光复用组件206之间,进而第一反射面411发射的信号光经第二透镜组207准直后的信号光传输至光复用组件。
在本公开某一些实施例中,将第一透镜组件400和电路板300之间、第二透镜组件500和电路板300之间均通过胶水进行粘接固化;该胶水需要热固化实现完全固化,但是在烘烤至完全固化过程中,胶水中的环氧树脂及稀释剂等小分子助剂会渗出并扩散,胶水渗出物流到光发射芯片阵列或光接收芯片阵列处,在毛细作用下溢流到光芯片表面,造成光芯片表面脏污,光芯片包括光发射芯片和光接收芯片。
图9为根据一些实施例的一种电路板的结构示意图。如图9所示,本公开实施例中,电路板300的表面设有光发射芯片阵列隔离部件310,光发射芯片阵列设置在光发射芯片阵列隔离部件310内,光发射芯片阵列隔离部件310用以在电路板300的表面形成凸起,用于围绕光发射芯片阵列以隔离光发射芯片阵列和第一透镜组件400,进而将加工点胶固定第一透镜组件400的胶水与光发射芯片阵列隔离开,避免胶水污染到光发射芯片阵列中的光发射芯片。
对应地,如图9所示,电路板300的表面设有光接收芯片阵列隔离部件320,光接收芯片阵列设置在光接收芯片阵列隔离部件320内,光接收芯片阵列隔离部件320用以在电路板300的表面形成凸起,用于围绕光接收芯片阵列以隔离光接收芯片阵列和第二透镜组件500,进而将加工点胶固定第二透镜组件500的胶水与光接收芯片阵列隔离开,避免胶水污染到光接收芯片阵列中的光接收芯片。
图10为根据一些实施例的一种电路板与第二透镜组件的剖视图。如图10所示,第二透镜组件500罩设在光接收芯片阵列隔离部件320上,光接收芯片阵列隔离部件320突出于第二透镜组件500与电路板300的接触面,进而光接收芯片阵列隔离部件320可以有效隔离点胶固定第二透镜组件500时胶水溢流到光接收芯片阵列中光接收芯片上。光发射芯片阵列隔离部件310的结构与光接收芯片阵列隔离部件320类似。
在本公开某一些实施例中,由于在贴装光发射芯片或光接收芯片时位置上存在一定的误差,因此本公开实施例中光发射芯片阵列隔离部件310的面积大于光发射芯片阵列的面积,光接收芯片阵列隔离部件320的面积大于光接收芯片阵列的面积,这样光发射芯片阵列隔离部件310、光接收芯片阵列隔离部件320的预留空间较大,从而可较全面地保护光发射芯片阵列或光接收芯片阵列,同时,可以增加透镜组件至相应光芯片的安全距离,安全距离越大,胶水溢流至光芯片表面的难度越大,进而保护光发射芯片阵列或光接收芯片阵列。
在本公开某一些实施例中可以将光发射芯片阵列隔离部件设为光发射芯片阵列隔离圈,对应地,将光接收芯片阵列隔离部件设为光接收芯片阵列隔离圈,在本公开某一些实施例中,光发射芯片阵列隔离圈可以设为绿油圈,光接收芯片阵列隔离圈同样可以设为绿油圈,即通过涂布绿油形成的绿油圈,绿油是一种液态光致阻焊剂,如一种丙烯酸低聚物,绿油作为一种保护层可涂覆在电路板不需焊接的线路和基材进而长期保护所形成的线路图形,本公开实施例中除了在电路板上涂覆常规的绿油外,还在电路板上专门涂覆绿油形成两个绿油圈,这两个绿油圈可分别保护光发射芯片阵列和光接收芯片阵列。
在本公开的某一些实施例中,将电路板中放置光发射芯片阵列和光接收芯片阵列的区域用绿油围起来,绿油设计高度可以为40um,这样在胶水正常烘烤过程中阻断胶水溢胶路径,从而实现防止光芯片表面出现溢胶问题。
本公开提供的光模块中,包括电路板、光发射芯片阵列、光发射阵列隔离部件和第一透镜组件,其中,第一透镜组件包括第一容纳腔和第二容纳腔,第一容纳腔的底面设置第一反射面且第一容纳腔内设置第二透镜组和光复用组件,第二容纳腔下覆盖容纳的光发射芯片阵列包括多个光发射芯片。光发射芯片阵列可以发射多束不同波长的信号光,多束不同波长的信号光传输至第一反射面、经第一反射面反射改变传输方向,然后经第二透镜组传输至设置在第一容纳腔的光复用组件,经光复用组件合波成一束信号光,最后传输至光纤,实现单光纤中多个波长的信号光同时传输。
第一透镜组件通过胶水固化粘结在电路板上,在热固化过程中胶水在毛细作用下溢流至光发射芯片阵列处,造成光发射芯片脏污影响光耦合效率,本公开中通过设置光发射阵列隔离部件,将光发射芯片阵列贴装在光发射阵列隔离部件的区域内部,光发射阵列隔离部件可以实现第一透镜组件和光发射芯片阵列的隔离,阻断胶水从第一透镜组件溢流至光发射芯片阵列的路径,从而起到保证光发射芯片阵列表面洁净、进而保证光耦合效率的效果。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处,相关之处参见方法实施例的部分说明即可。需要说明的是,本领域技术人员在考虑说明书及实践这里的实用新型后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未实用新型的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。

Claims (7)

  1. 一种光模块,其特征在于,所述光模块包括:
    电路板,表面设有光发射芯片阵列隔离部件,所述光发射芯片阵列隔离部件用于围绕光发射芯片阵列以将所述光发射芯片阵列与胶水隔离开;
    所述光发射芯片阵列,包括多个光发射芯片,设置在所述光发射芯片阵列隔离部件内,用于发射多束不同波长的信号光;
    第一透镜组件,底部通过胶水连接所述电路板且罩设在所述光发射芯片阵列上,用于传输并改变所述光发射芯片阵列发射信号光的传播方向。
  2. 根据权利要求1所述的光模块,其特征在于,所述电路板的表面还设有光接收芯片阵列隔离部件,所述光接收芯片阵列隔离部件用于围绕光接收芯片阵列以将所述光接收芯片阵列与胶水隔离开;所述光模块还包括:
    所述光接收芯片阵列,包括多个光接收芯片,设置在所述光接收芯片阵列隔离部件内,用于接收多束不同波长的信号光;
    第二透镜组件,底部通过胶水连接所述电路板且罩设在所述光接收芯片阵列上,用于传输并改变所述光接收芯片阵列接收信号光的传播方向。
  3. 根据权利要求2所述的光模块,其特征在于,所述光发射芯片阵列隔离部件的面积大于所述光发射芯片阵列的面积,所述光接收芯片阵列隔离部件的面积大于所述光接收芯片阵列的面积。
  4. 根据权利要求1所述的光模块,其特征在于,所述光发射芯片阵列隔离部件设为光发射芯片阵列隔离圈。
  5. 根据权利要求4所述的光模块,其特征在于,所述光发射芯片阵列隔离圈设为绿油圈。
  6. 根据权利要求1所述的光模块,其特征在于,所述第一透镜组件包括设置在顶部的第一容纳腔和设置在底部的第二容纳腔,所述第一容纳腔的底部设置第一反射面,所述第二容纳腔覆盖容纳所述光发射芯片阵列,所述第一反射面在所述第二容纳腔方向的投影覆盖所述光发射芯片阵列中的光发射芯片,所述第一反射面用于反射所述光发射芯片阵列发射的多束不同波长的信号光。
  7. 根据权利要求6所述的光模块,其特征在于,所述第二容纳腔的顶面设置第一透镜组,所述第一透镜组在所述电路板方向的投影覆盖所述光发射芯片阵列中的光发射芯片;
    所述第一容纳腔内设有:
    第二透镜组,包括多个透镜,用于准直所述第一反射面反射的多束不同波长的信号光;
    光复用组件,用于将所述第二透镜组准直后的多束不同波长的信号光合波成一束信号光。
PCT/CN2021/134354 2021-03-17 2021-11-30 一种光模块 WO2022193733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120556367.7 2021-03-17
CN202120556367.7U CN214278493U (zh) 2021-03-17 2021-03-17 一种光模块

Publications (1)

Publication Number Publication Date
WO2022193733A1 true WO2022193733A1 (zh) 2022-09-22

Family

ID=77798385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134354 WO2022193733A1 (zh) 2021-03-17 2021-11-30 一种光模块

Country Status (2)

Country Link
CN (1) CN214278493U (zh)
WO (1) WO2022193733A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214278493U (zh) * 2021-03-17 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205899084U (zh) * 2016-08-17 2017-01-18 武汉智丽丰信息科技有限公司 一种混合集成多波长光发射组件
CN108508553A (zh) * 2018-04-11 2018-09-07 青岛海信宽带多媒体技术有限公司 一种光模组
CN209402599U (zh) * 2018-08-28 2019-09-17 南昌欧菲光电技术有限公司 感光组件、摄像模组及移动终端
CN210090745U (zh) * 2019-06-20 2020-02-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN211236927U (zh) * 2019-12-19 2020-08-11 南昌欧菲生物识别技术有限公司 一种感光组件、指纹识别模组及电子装置
CN214278493U (zh) * 2021-03-17 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205899084U (zh) * 2016-08-17 2017-01-18 武汉智丽丰信息科技有限公司 一种混合集成多波长光发射组件
CN108508553A (zh) * 2018-04-11 2018-09-07 青岛海信宽带多媒体技术有限公司 一种光模组
CN209402599U (zh) * 2018-08-28 2019-09-17 南昌欧菲光电技术有限公司 感光组件、摄像模组及移动终端
CN210090745U (zh) * 2019-06-20 2020-02-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN211236927U (zh) * 2019-12-19 2020-08-11 南昌欧菲生物识别技术有限公司 一种感光组件、指纹识别模组及电子装置
CN214278493U (zh) * 2021-03-17 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN214278493U (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021212849A1 (zh) 一种光模块
WO2021120668A1 (zh) 一种光模块
CN114035287B (zh) 一种光模块
CN114035288B (zh) 一种光模块
CN114035286B (zh) 一种光模块
CN218350561U (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
WO2013081390A1 (ko) 광전 배선 모듈
US20230341640A1 (en) Optical module
WO2021114714A1 (zh) 一种光模块
WO2024040967A1 (zh) 光模块
WO2023035711A1 (zh) 光模块
CN217693343U (zh) 一种光模块
WO2022257486A1 (zh) 光模块
CN114660740B (zh) 一种光模块
CN114779412B (zh) 一种光模块
WO2023273585A1 (zh) 一种具有调制器的激光器及光模块
WO2022193734A1 (zh) 一种光模块
WO2021244101A1 (zh) 一种光模块
WO2022193933A1 (zh) 光模块
WO2022206169A1 (zh) 光模块
CN220983575U (zh) 一种光模块
WO2023168927A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931307

Country of ref document: EP

Kind code of ref document: A1