WO2022193734A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022193734A1
WO2022193734A1 PCT/CN2021/134355 CN2021134355W WO2022193734A1 WO 2022193734 A1 WO2022193734 A1 WO 2022193734A1 CN 2021134355 W CN2021134355 W CN 2021134355W WO 2022193734 A1 WO2022193734 A1 WO 2022193734A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ceramic substrate
gold
transmission line
sub
Prior art date
Application number
PCT/CN2021/134355
Other languages
English (en)
French (fr)
Inventor
张加傲
王欣南
邵宇辰
慕建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022193734A1 publication Critical patent/WO2022193734A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • Optical communication technology will be used in new business and application modes such as cloud computing, mobile Internet, and video.
  • the optical module realizes the function of photoelectric conversion in the field of optical communication technology, and is one of the key components in optical communication equipment.
  • the optical signal intensity input by the optical module to the external optical fiber directly affects the quality of optical fiber communication.
  • An embodiment of the present disclosure discloses an optical module, comprising: an upper casing; a lower casing, which is covered with the upper casing to form a wrapping cavity; a circuit board is disposed in the wrapping cavity; and a light emission sub-module, It is arranged in the encapsulation cavity, and includes: a first ceramic substrate, which is used to realize the electrical connection between the circuit board and the light emission sub-module; a transmission line is provided on the surface of the first ceramic substrate, and the transmission line includes: grounding line and signal line; laser; a second ceramic substrate, a conductive layer is arranged on its surface, one end is connected to the signal line, and the other end is connected to the laser; the surface of the second ceramic substrate is also provided with a secondary conductive layer, one end is connected to the the ground wire is connected; the matching resistor is arranged on the surface of the second ceramic substrate, one end is connected to the conductive layer, and the other end is connected to the secondary conductive layer; the second ceramic substrate is arranged on the first ceramic substrate with
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a schematic diagram of an exploded structure of a light emission sub-module according to some embodiments.
  • FIG. 6 is another exploded schematic diagram of a light emission sub-module according to some embodiments.
  • FIG. 7 is a schematic diagram of a partial structure of a light emitting device according to some embodiments.
  • FIG. 8 is a schematic diagram of a partial structure of a light emitting sub-module according to some embodiments.
  • FIG. 9 is a second partial structural schematic diagram of a light emitting sub-module according to some embodiments.
  • FIG. 10 is a schematic structural diagram of an absorbing film according to some embodiments.
  • FIG. 11 is a schematic diagram 3 of a partial structure of a light emitting sub-module according to some embodiments.
  • FIG. 12 is a schematic diagram 4 of a partial structure of a light emitting sub-module according to some embodiments.
  • FIG. 13 is a schematic diagram 5 of a partial structure of a light emitting sub-module according to some embodiments.
  • FIG. 14 is a schematic diagram 6 of a partial structure of a light emitting sub-module according to some embodiments.
  • 15 is an exploded schematic view of another light emitting sub-module according to some embodiments.
  • 16 is a partial schematic diagram of another light emitting sub-module according to some embodiments.
  • FIG. 17 is a schematic structural diagram 1 of a second ceramic substrate according to some embodiments.
  • FIG. 18 is a second structural schematic diagram of a second ceramic substrate according to some embodiments.
  • FIG. 19 is an exploded schematic view of a second ceramic substrate according to some embodiments.
  • 20 is a partial schematic diagram of a light emission sub-module according to some embodiments.
  • 21 is an exploded schematic diagram of a second ceramic substrate and a laser according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100. For example, the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100 , and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 includes an upper casing 201, a lower casing 202, an unlocking part 203, a circuit board 300 and an optical transceiver assembly;
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two sides of the cover plate are perpendicular to the cover plate.
  • the two upper side plates are combined with the two side plates by the two side walls to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the optical transceiver components inside the optical module 200 .
  • the combination of the upper casing 201 and the lower casing 202 is used to facilitate the installation of the circuit board 300, optical transceiver components and other devices into the casing.
  • the upper casing 201 and the lower casing 202 can form encapsulation protection for these devices.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission, and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip may include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock and data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip .
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock and data recovery chip
  • DSP digital signal processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. .
  • the circuit board 300 further includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of pins which are independent of each other.
  • the circuit board 300 is inserted into the cage 106 , and is electrically connected to the electrical connector in the cage 106 by gold fingers.
  • the golden fingers can be arranged only on one side surface of the circuit board 300 (eg, the upper surface shown in FIG. 4 ), or can be arranged on the upper and lower surfaces of the circuit board 300 , so as to meet the needs of a large number of pins.
  • the golden finger is configured to establish an electrical connection with the upper computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • the optical transceiver assembly includes two parts, an optical transmitting sub-module 400 and an optical receiving sub-module 500, which are respectively used for transmitting and receiving optical signals.
  • the emission sub-module generally includes a light emitter, a lens and a light detector, and the lens and the light detector are located on different sides of the light emitter. The front and back sides of the light emitter emit light beams respectively.
  • the lens is used to converge the front of the light emitter.
  • the emitted light beam makes the light beam emitted by the light transmitter a convergent light so as to be easily coupled to an external optical fiber; the light detector is used to receive the light beam emitted from the reverse side of the light transmitter to detect the optical power of the light transmitter.
  • the light emitted by the optical transmitter enters the optical fiber after being condensed by the lens, and the light detector detects the luminous power of the optical transmitter to ensure the constancy of the emitted optical power of the optical transmitter.
  • FIG. 5 is a schematic diagram of an exploded structure of a light emission sub-module according to some embodiments
  • FIG. 6 is a schematic diagram of another exploded structure of a light emission sub-module according to some embodiments; The overall structure of the light emitting portion will be described. As shown in FIG. 5 and FIG.
  • the light emitting sub-module 400 includes a cover plate 401 and a casing 402, and the cover plate 401 and the casing 402 are connected in a covering manner; in some embodiments of the present disclosure, the cover plate 401 covers the casing from above 402 , one side wall of the housing 402 has an opening 404 for the insertion of the circuit board 300 , and the other side wall of the housing 402 has a through hole for the insertion of the optical fiber adapter 403 .
  • the circuit board 300 extends into the housing 402 through the opening 404, and the circuit board 300 is fixed to the lower casing 202; the circuit board 300 is plated with metal traces, and the optical device can be wired by means of wire bonding It is electrically connected with the corresponding metal traces to realize the electrical connection between the optical device in the housing 402 and the circuit board 300 .
  • the signal light emitted by the light emitting device enters the through hole, and the optical fiber adapter 403 extends into the through hole 405 to couple and receive the signal light.
  • This assembly structure design can make the optical fiber adapter 403 move back and forth in the through hole 405, and the optical fiber can be adjusted.
  • the optical fiber adapter can be moved backward (towards the outside of the cavity) in the through hole to meet the connection size requirements; when the optical fiber is long , the fiber adapter can be moved forward (towards the inside of the cavity) in the through hole to straighten the fiber and avoid fiber bending.
  • the optical fiber adapter 403 is inserted into the through hole to realize the fixation with the light emitting sub-module 400; during the assembly process, the optical fiber adapter 403 can be moved in the through hole to select a fixed position.
  • One side wall of the housing 402 has an opening 404 for the insertion of the circuit board 300 , and the other side wall of the housing 402 has a through hole for the insertion of the optical fiber adapter 403 .
  • the optical device in the housing 402 may also be connected to the circuit board 300 through pins, wherein the pins are designed in a shape that matches the lower housing, and one end of the pins is inserted into the lower housing Inside, and this end is plated with metal traces, the optical device can be electrically connected with the corresponding metal traces by means of wire bonding, and one end of the pin placed in the housing 402 is provided with a plurality of tubes electrically connected to the metal traces By inserting the pins into the circuit board 300 and soldering them together, the optical device in the housing 402 is electrically connected to the circuit board 300.
  • the pins on the pins can also be directly welded to the circuit board 300. together to achieve electrical connection between the optics within the housing 402 and the circuit board 300 .
  • the optical emitting device in the housing 402 converts the electrical signal into an optical signal, and then the optical signal enters the optical fiber adapter 403 and is transmitted to the optical module external.
  • the light emitting sub-module has a packaging structure to encapsulate the laser chip, etc.
  • the packaging structure of the related art includes coaxial packaging TO-CAN, silicon photonics packaging, chip-on-board lens assembly packaging COB-LENS, and micro-optical XMD packaging.
  • the package is also divided into airtight packaging and non-airtight packaging. On the one hand, the package provides a stable and reliable working environment for the laser chip, and on the other hand, it forms the external electrical connection and light output.
  • the optical module will use different packages to make the light emitting sub-module.
  • the laser chip has vertical cavity surface emitting light, and also has edge emitting light.
  • the different light emitting direction of the laser chip will also affect the choice of packaging form.
  • FIG. 7 is a schematic diagram of a partial structure of a light emitting device according to some embodiments; as shown in FIG. 7 , the light emitting sub-module 500 in the embodiment of the present disclosure includes: a ceramic substrate 501 disposed in the housing 402 and selected from alumina ceramics , aluminum nitride ceramics, etc.
  • the surface of the ceramic substrate 501 is engraved with a functional circuit of a laser chip for signal transmission, such as a transmission line 502.
  • the surface of the ceramic substrate 501 is provided with an EML laser 503.
  • the EML laser 503 is an integrated device of the laser DFB and the electro-absorption modulator EA.
  • the laser DFB converts the electrical signal into an optical signal
  • the electro-absorption modulator EA encodes and modulates the optical signal. output, so that the output optical signal carries information.
  • Optical converters and optical modulators, electro-absorption modulators are one of the commonly used optical modulators. They are widely used in the transmission of high-speed optical signals due to their fast response speed and low power consumption.
  • the golden finger introduces the electrical signal into the laser driver chip
  • the laser driver chip transmits the electrical signal to the EML laser 503, and then uses the EML laser 503 to convert the electrical signal into an optical signal, wherein the laser driver
  • the chip and the EML laser 503 are connected through the transmission line 502, which has a certain characteristic impedance. Since the output impedance of the laser driver chip is rated, when the output impedance of the EML laser 503 does not match the characteristic impedance, the laser driver chip and the laser will not match. There will be loss in the transmission of signals between the two, which reduces the integrity of the signal.
  • the impedance output by the EML laser 503 matches the characteristic impedance. It should be noted that the meaning of matching here refers to the use of the EML laser.
  • the impedance value output by 503 reaches the characteristic impedance value, that is, the impedance value output by the EML laser 503 is consistent with the characteristic impedance value.
  • the first matching resistor 504 is connected in parallel at the EML laser 503 .
  • the first matching resistor 504 has an impedance matching function, and finally the impedance output by the EML laser 503 is consistent with the characteristic impedance.
  • FIG. 8 is a schematic diagram of a partial structure of a light emitting sub-module according to some embodiments.
  • FIG. 9 is a second partial structural schematic diagram of a light emitting sub-module according to some embodiments.
  • an embodiment of the present disclosure provides a light emission sub-module, including: a ceramic substrate 501, a transmission line 502 is provided on the surface of the ceramic substrate 501. The surface of the ceramic substrate 501 is provided with an EML laser 503.
  • the EML laser 503 is an integrated device of the laser DFB and the electro-absorption modulator EA, and the electro-absorption modulator EA and the transmission line 502 are connected by wires.
  • the surface of the ceramic substrate 501 is provided with a first matching resistor 504, which is connected to the electro-absorption modulator EA through wires.
  • the transmission line 502 and the first matching resistor 504 are connected by wires.
  • the electro-absorption modulator EA is disposed between the first matching resistor 504 and the transmission line 502 .
  • the electro-absorption modulator EA is connected to the transmission line 502 by a first wire group 505 .
  • the first matching resistor 504 is connected to the electro-absorption modulator EA through the second wire group 506 .
  • the transmission line 502 and the first matching resistor 504 are connected through a third wire group 507 .
  • One end of the third wire group 507 is connected to the transmission line 502 , and the other end is connected to the first matching resistor 504 .
  • the electro-absorption modulator EA is located between the third wire group 507 and the ceramic substrate 501 .
  • the first wire group 505 , the second wire group 506 , and the third wire group 507 are gold wires, but since the gold wires are in the form of elongated wires, the transmission line 502 matches the first wire The distance between the resistors 504 is long, which is prone to generate parasitic inductance, which affects signal transmission.
  • the third wire group 507 includes: a first sub-conductor 5071 and a second sub-conductor 5072 .
  • One end of the first sub-conductor 5071 is connected to the transmission line 502, the other end is connected to the first matching resistor 504, one end of the second sub-conductor 5072 is connected to the transmission line 502, and the other end is connected to the first matching resistor 504, which effectively relieves the EML laser 503,
  • the parasitic inductance of the gold wire interconnection between the transmission line 502 and the first matching resistor 504 increases the signal transmission capability between the transmission line 502 and the first matching resistor 504 .
  • the number of sub-conductors in the third wire group 507 includes but is not limited to 2, and the specific number is set according to the actual specifications, positions, etc. of the EML laser 503, the transmission line 502, and the first matching resistor 504 in the optical module.
  • connection point of the first sub-conductor 5071 on the transmission line 502 does not overlap with the connection point of the second sub-conductor 5072 on the transmission line 502 , which effectively ensures the electrical connection between the sub-conductor and the transmission line 502 .
  • connection point of the first matching resistor 504 of the first sub-conductor 5071 and the connection point of the second sub-conductor 5072 of the first matching resistor 504 do not overlap.
  • the surface of the ceramic substrate 501 is further provided with an absorption film 508 , which is covered over the first wire group 505 , the second wire group 506 , and the third wire group 507 .
  • One end of the absorption film 508 is disposed outside the first matching resistor 504 , and the other end is disposed outside the transmission line 502 .
  • the absorption film 508 is glued to the ceramic substrate 501 .
  • the absorption film 508 is covered over the gold wire, which can effectively improve the parasitic effect of the gold wire and absorb radiation.
  • FIG. 10 is a schematic diagram of the structure of an absorbent film according to some embodiments.
  • the absorption film 508 includes: an insulating layer 5081 and a metal layer 5082.
  • the insulating layer 5081 is disposed inside and facing the ceramic substrate 501, which reduces the inductance of the gold wire to external signals and improves the parasitic effect of the gold wire.
  • the metal layer 5082 is disposed on the outside, which can effectively absorb the radiation generated from the outside.
  • the embodiment of the present disclosure provides an optical module.
  • the interconnection among the electro-absorption modulator EA, the transmission line 502, and the first matching resistor 504 adopts the transmission line to connect a gold wire to the EA pad, and the EA pad
  • a cross-device wire bonding method is added, that is, the wire is wired across the electro-absorption modulator EA, and the transmission line 502, the first wire can be realized by laying two or more wires.
  • the matching resistors 504 are interconnected, thereby reducing the parasitic inductance of the three interconnections.
  • it is proposed to add a layer of light-weight thin film structure on the gold wire to reduce the wire bonding inductance, absorb the wire bonding radiation, and improve the signal quality of this part.
  • FIG. 11 is a schematic diagram 3 of a partial structure of a light emitting sub-module according to some embodiments
  • FIG. 12 is a schematic diagram 4 of a partial structure of a light emitting sub-module according to some embodiments.
  • the first matching resistor 504 is disposed between the electro-absorption modulator EA and the transmission line 502 .
  • the first matching resistor 504 is connected to the electro-absorption modulator EA through the second wire group 506 .
  • the transmission line 502 and the first matching resistor 504 are connected through a third wire group 507 .
  • the electro-absorption modulator EA is connected to the transmission line 502 by a first wire group 505 .
  • One end of the first wire group 505 is connected to the transmission line 502, and the other end is connected to the electro-absorption modulator EA.
  • the first matching resistor 504 is disposed between the first wire group 505 and the ceramic substrate 501 .
  • the first wire group 505 , the second wire group 506 , and the third wire group 507 are gold wires, but since the gold wires are in the form of long and thin wires, the electro-absorption modulator EA and the The distance between the transmission lines 502 is long, and parasitic inductance is easily generated, which affects signal transmission.
  • the first wire group 505 includes: a plurality of first sub-wires 5051 .
  • One end of the first sub-conductor 5051 is connected to the transmission line 502, and the other end is connected to the electro-absorption modulator EA, which effectively alleviates the parasitic inductance of the gold wire interconnection of the EML laser 503, the transmission line 502, and the first matching resistor 504, and increases the transmission line Signal transfer capability between 502 and the electro-absorption modulator EA.
  • the number of sub-wires in the first wire group 505 includes but is not limited to 2, and the specific number is set according to the actual specifications and positions of the EML laser 503, the transmission line 502, and the first matching resistor 504 in the optical module.
  • connection points of the different first sub-conductors 5051 on the transmission line 502 do not overlap, effectively ensuring the electrical connection between the sub-conductors and the transmission line 502 .
  • the different first sub-conductors 5051 do not coincide at the connection points of the electro-absorption modulator EA.
  • the surface of the ceramic substrate 501 is further provided with an absorption film 508 , which is covered over the first wire group 505 , the second wire group 506 , and the third wire group 507 .
  • One end of the absorption film 508 is disposed outside the electro-absorption modulator EA, and the other end is disposed outside the transmission line 502 .
  • the absorption film 508 is glued to the ceramic substrate 501 .
  • the absorption film 508 is covered over the gold wire, which can effectively improve the parasitic effect of the gold wire and absorb radiation.
  • the absorption film 508 includes an insulating layer and a metal layer.
  • the insulating layer is disposed inside and facing the ceramic substrate 501 to reduce the inductance of the gold wire to external signals and improve the parasitic effect of the gold wire.
  • the metal layer is arranged on the outside, which can effectively absorb the radiation generated from the outside.
  • the embodiment of the present disclosure provides an optical module.
  • the interconnection among the electro-absorption modulator EA, the transmission line 502, and the first matching resistor 504 adopts the transmission line to connect a gold wire to the EA pad, and the EA pad
  • a cross-device wire bonding method is added, that is, the wire is wired across the first matching resistor 504, and the electro-absorption modulator is realized by laying two or more wires.
  • the transmission line 502 is interconnected, thereby reducing the parasitic inductance of the interconnection of the three.
  • it is proposed to add a layer of light-weight thin film structure on the gold wire to reduce the wire bonding inductance, absorb the wire bonding radiation, and improve the signal quality of this part.
  • FIG. 13 is a schematic diagram 5 of a partial structure of a light emitting sub-module according to some embodiments
  • FIG. 14 is a schematic diagram 6 of a partial structure of a light emitting sub-module according to some embodiments.
  • the transmission line 502 is arranged between the electro-absorption modulator EA and the first matching resistor 504 .
  • the electro-absorption modulator EA is connected to the transmission line 502 by a first wire group 505 .
  • the first matching resistor 504 is connected to the electro-absorption modulator EA through the second wire group 506 .
  • the transmission line 502 and the first matching resistor 504 are connected through a third wire group 507 .
  • the electro-absorption modulator EA is connected to the transmission line 502 by a first wire group 505 .
  • One end of the second wire group 506 is connected to the first matching resistor 504, and the other end is connected to the electro-absorption modulator EA.
  • the transmission line 502 is disposed between the second wire group 506 and the ceramic substrate 501 .
  • the first wire group 505 , the second wire group 506 , and the third wire group 507 are gold wires, but because the gold wires are in the form of elongated wires, the electro-absorption modulators EA, The distance between the first matching resistors 504 is relatively long, which is prone to generate parasitic inductance, which affects signal transmission.
  • the second wire group 506 includes: a plurality of second sub-wires 5061 .
  • One end of the second sub-conductor 5061 is connected to the first matching resistor 504, and the other end is connected to the electro-absorption modulator EA, which effectively alleviates the parasitic inductance of the gold wire interconnection of the EML laser 503, the transmission line 502, and the first matching resistor 504, increasing the The signal transmission capability between the transmission line 502 and the electro-absorption modulator EA is improved.
  • the number of sub-wires in the second wire group 506 includes but is not limited to 2, and the specific number is set according to the actual specifications and positions of the EML laser 503, the transmission line 502, and the first matching resistor 504 in the optical module.
  • connection points of the different second sub-conductors 5061 do not overlap at the first matching resistor 504 , which effectively ensures the electrical connection between the sub-conductor and the first matching resistor 504 .
  • the different second sub-conductors 5061 do not coincide at the connection points of the electro-absorption modulator EA.
  • the surface of the ceramic substrate 501 is also provided with an absorption film 508 , which is covered over the first wire group 505 , the second wire group 506 , and the third wire group 507 .
  • One end of the absorption film 508 is disposed outside the first matching resistor 504, and the other end is disposed outside the electro-absorption modulator EA.
  • the absorption film 508 is glued to the ceramic substrate 501 .
  • the absorption film 508 is covered over the gold wire, which can effectively improve the parasitic effect of the gold wire and absorb radiation.
  • the absorption film 508 includes an insulating layer 5081 and a metal layer 5082.
  • the insulating layer 5081 is disposed inside and facing the ceramic substrate 501 to reduce the sensitivity of the gold wire to external signals and improve the parasitic effect of the gold wire.
  • the metal layer 5082 is disposed on the outside, which can effectively absorb the radiation generated from the outside.
  • the embodiment of the present disclosure provides an optical module.
  • the interconnection among the electro-absorption modulator EA, the transmission line 502, and the first matching resistor 504 adopts the transmission line to connect a gold wire to the EA pad, and the EA pad
  • the cross-device wire bonding method is added, that is, the wire is connected across the transmission line 502, and the electro-absorption modulator EA, the first wire can be realized by laying two or more wires.
  • a matching resistor 504 is interconnected, thereby reducing the parasitic inductance of the three interconnections.
  • the embodiments of the present disclosure provide an optical module, in which the interconnection among the electro-absorption modulator EA, the transmission line, and the matching resistor adopts the transmission line to attach a gold wire to the EA pad, and the EA pad to attach a gold wire to the EA pad.
  • the cross-device wire bonding method is added, that is, the wire is connected across the device in the middle, and the electrical devices on both sides are interconnected by laying two or more wires, thereby reducing the power consumption.
  • the parasitic inductance of the three interconnections Moreover, a scheme of adding a light-weight thin film structure to the gold wire to reduce the wire-bonding inductance, absorb wire-bonding radiation, and improve the signal quality of this part is proposed.
  • the light emission sub-module includes: the light emission sub-module 400 includes a housing 402 , a cover plate 401 , and an emission component 430 .
  • the emission component 430 is located in the light emission cavity formed by the housing 402 and the cover plate 401 .
  • the light emission cavity is provided with emission components such as an optical chip, a light detector, and a collimating lens.
  • One end of the housing 402 is connected to the optical fiber adapter 403, and the emission component is used for emitting light beams and is condensed and coupled to the optical fiber adapter 403, so that the light beams can be emitted through the optical fibers.
  • the other end of the housing 402 away from the optical fiber adapter 403 is provided with a first ceramic substrate 700, the first ceramic substrate 700 is connected to one end of the flexible circuit board, and the first ceramic substrate 700 is provided with optoelectronic devices such as laser chips, photodetectors, and laser drivers. Connection; the other end of the flexible circuit board is used for electrical connection with the circuit board 300 .
  • the shell 402 and the cover plate 401 can be made of metal structural parts, such as die-casting and milling metal parts.
  • an embodiment of the present disclosure provides a light emission sub-module, including: a first ceramic substrate 700 , a second ceramic substrate 800 , The EML laser 503 is disposed between the first ceramic substrate 700 and the second ceramic substrate 800 .
  • a transmission line is laid on the surface of the first ceramic substrate 700 , and a metal layer is provided on the second ceramic substrate 800 to realize the connection between the transmission line and the EA pad of the EML laser 503 .
  • the first ceramic substrate 700 is arranged in the housing 402 , and the surface of the main base 705 of the first ceramic substrate 700 is engraved with a functional circuit of a laser chip for signal transmission, including: a first transmission line 701 , a second Two transmission lines 702 and third transmission lines 703, wherein: the third transmission line 703 is disposed between the first transmission line 701 and the second transmission line 702, the first transmission line 701 and the second transmission line 702 are ground lines, and the third transmission line 703 is a signal transmission line.
  • the first ceramic substrate 700 is further provided with a substrate recess 704 for carrying the EML laser 503 .
  • the upper mesa of the substrate recess 704 is lower than the mesa of the main body base 705 .
  • the third transmission line 703 is a signal transmission line, which is arranged between the first transmission line 701 and the second transmission line 702, which is beneficial to shield clutter signals, improve the anti-electromagnetic effect, provide signal return, and reduce the crosstalk of external radiation to the laser channel.
  • FIG. 17 is a schematic diagram 1 of a second ceramic substrate structure according to some embodiments
  • FIG. 18 is a schematic diagram 2 of a second ceramic substrate structure according to some embodiments
  • FIG. 19 is a schematic diagram of a second ceramic substrate according to some embodiments Exploded schematic diagrams, Figures 17 and 18 show the structure of the second ceramic substrate from different angles.
  • the second ceramic substrate 800 includes: a main substrate 810 and a sub-substrate 820, wherein the upper surface 811 of the main substrate 810 is provided with a first gold-plated layer 8111, and the first gold-plated layer 8111 covers the entire main substrate The upper surface 811 of 810.
  • the first side surface 812 adjacent to the upper surface 811 is provided with a second gold plating layer 8121 , and the second gold plating layer 8121 covers the entire first side surface 812 .
  • the second side surface 813 opposite to the first side surface 812 is provided with a third gold plating layer 8131 , and the third gold plating layer 8131 covers the entire second side surface 813 .
  • first gold plating layer 8111 is connected to the second gold plating layer 8121 , and the other end is connected to the third gold plating layer 8131 .
  • first gold plating layer 8111 may not cover the entire upper surface 811 of the main body substrate 810
  • second gold plating layer 8121 may not cover the entire first side surface 812
  • third gold plating layer 8131 may The entire second side surface 813 is not covered.
  • first gold-plated layer 8111 is connected to the second gold-plated layer 8121, and the other end is connected to the third gold-plated layer 8131 to realize electrical connection between the first gold-plated layer 8111, the second gold-plated layer 8121, and the third gold-plated layer 8131.
  • the opposite side of the upper surface 811 is defined as the lower surface 814.
  • the lower surface 814 is provided with a first conductive region 8141, a second conductive region 8142 and a third conductive region 8143.
  • the third conductive region 8143 is provided in the first conductive region 8141 and the second conductive region. between the regions 8142, and the first conductive region 8141, the second conductive region 8142 and the third conductive region 8143 are non-conductive with each other.
  • the first conductive region 8141 is connected to the second gold plating layer 8121
  • the third conductive region 8143 is connected to the third gold plating layer 8131 .
  • the first conductive region 8141 , the second gold-plated layer 8121 , the first gold-plated layer 8111 , the third gold-plated layer 8131 , and the third conductive region 8143 are connected in sequence to form a secondary conductive layer.
  • the main body substrate 810 is attached above the first ceramic substrate 700 .
  • the lower surface 814 of the first ceramic substrate 700 is connected to the main body substrate 810 .
  • the first transmission line 701 is connected to the first conductive region 8141
  • the third conductive region 8143 is connected to the third transmission line 703
  • the second transmission line 702 is connected to the second conductive region 8142 .
  • the first transmission line 701 , the first conductive region 8141 , the second gold-plated layer 8121 , the first gold-plated layer 8111 , the third gold-plated layer 8131 , the third conductive region 8143 , and the third transmission line 703 are sequentially connected to form a via.
  • a fourth gold-plated layer 8211 is applied to the sub-top surface 821 of the sub-substrate 820 , a fifth gold-plated layer 8221 is applied to the first sub-side surface 822 adjacent to the sub-upper surface 821 , and the fourth gold-plated layer 8211 is connected to the fifth gold-plated layer 8221 .
  • the opposite side of the sub-upper surface 821 is the sub-lower surface 823 .
  • the surface of the sub-lower surface 823 is covered with a sixth gold-plated layer 8231 , and the sixth gold-plated layer 8231 is connected to the fifth gold-plated layer 8221 .
  • the sixth gold plating layer 8231 is connected to the third conductive region 8143 .
  • the fourth gold plating layer 8211 is also connected to the first gold plating layer 8111 .
  • the EML laser 503 and the sub-substrate 820 are sequentially arranged above the substrate recess 704 , and the sub-substrate 820 is connected to the EA pad of the EML laser 503 , and the sixth gold-plated layer 8231 is connected to the EA pad by conductive glue.
  • the third transmission line 703, the third conductive region 8143, the sixth gold-plated layer 8231, the EA pad 5031, the fifth gold-plated layer 8221, the fourth gold-plated layer 8211, and the first gold-plated layer 8111 are connected to form a via.
  • all the gold-plated layers are substantially the same as the conductive layers, replacing the gold wires in the original circuit. Because of their good conduction ability, the parasitic inductance of the gold wire interconnection between the EML laser, the transmission line and the matching resistor can be effectively reduced, and the increase of The signal transmission capability between the transmission line and the electro-absorption modulator EA is improved.
  • the sub-upper surface 821 of the sub-substrate 820 is further provided with a second matching resistor 8212, which is located between the fourth gold-plated layer 8211 and the first gold-plated layer 8111, the second matching resistor 8212 is connected to the EA pad, and the second matching resistor 8212 passes through the
  • the fourth gold-plated layer 8211 and the fifth gold-plated layer 8221 are connected to the EA pad, and the second matching resistor 8212 is also connected to the third transmission line 703 through the fourth gold-plated layer 8211, the fifth gold-plated layer 8221, and the second conductive area 8142.
  • the EA pad, the third transmission line 703 and the second matching resistor 8212 are connected, and the connection between the EA pad, the third transmission line 703 and the second matching resistor 8212 is realized through the second ceramic substrate 800 , and the connection passes through the surface of the second ceramic substrate 800 It can replace the original gold wire connection method, effectively reduce the parasitic inductance of the gold wire interconnection between the EML laser, the transmission line and the matching resistor, and increase the signal transmission capacity between the transmission line and the electro-absorption modulator EA.
  • the sub-substrate 820 and the main substrate 810 are integrally formed, and the conductive regions and the gold-plated layers of the sub-substrate 820 and the main substrate 810 are made of the same material and process. production.
  • the first transmission line 701 is connected to the first conductive area 8141 , the third conductive area 8143 and the third transmission line 703 .
  • the conductive adhesive can be commonly used silver adhesive.
  • 20 is a partial schematic diagram of a light emitting sub-module according to some embodiments. 20 and 16, in order to realize the installation and positioning between the first ceramic substrate 700 and the second ceramic substrate 800, in the embodiment of the present disclosure, the upper surface 811 of the main substrate 810 is further provided with a plurality of limit marks, which are used for The positioning before the transmission line and the conductive layer prevents short circuit between the first transmission line 701 and the second transmission line 702 , or between the second transmission line 702 and the third transmission line 703 during the attaching process.
  • the upper surface 811 of the main body substrate 810 is provided with a first limit mark 8112, a second limit mark 8113, a third limit mark 8114, and a fourth limit mark 8115, wherein the first limit mark 8115
  • the line where the bit mark 8112 and the second limit mark 8113 are located is parallel to the edge line of the first transmission line 701
  • the straight line where the third limit mark 8114 and the fourth limit mark 8115 are located is parallel to the edge line of the second transmission line 702 .
  • the third conductive region 8143 and the third transmission line 703, and the second transmission line 702 and the second conductive region 8142 Positioning to avoid a conductive area crossing different transmission lines, resulting in a short circuit.
  • the straight line formed by the first limit mark 8112 and the second limit mark 8113 and the first conductive area 8141 are close to the side of the third conductive area.
  • the edges are flush, and the straight line formed by the third limiting mark 8114 and the fourth limiting mark 8115 is flush with the edge of the side of the second conductive area 8142 close to the third conductive area 8143 .
  • the first limit mark 8112 , the second limit mark 8113 , the third limit mark 8114 and the fourth limit mark 8115 may be disposed on the surface of the first gold plating layer 8111 , or may be It is provided on the surface of the main body substrate 810 .
  • the straight line where the first limit mark 8112 and the second limit mark 8113 are located can be arranged in parallel with the edge line of the first transmission line 701 , and the third limit mark 8114 and the fourth limit mark 8115 are located The straight line is parallel to the edge line of the third transmission line 703 .
  • the line where the first limit mark 8112 and the second limit mark 8113 are located is parallel to the edge line of the second transmission line 702
  • the line where the third limit mark 8114 and the fourth limit mark 8115 are located is parallel to the line of the third transmission line 703 .
  • the edge lines are set parallel. The above arrangement manners can all achieve the positioning between the main body substrate 810 and the first ceramic substrate 700 .
  • the sub-substrate 820 in order to realize the positioning between the third conductive region 8143 and the EA pad, is provided with a through hole 824 , and the surface of the through hole 824 is provided with a through hole gold plating layer. A portion of the EA pad is exposed outside the via 824 .
  • the through hole 824 is a semi-circular opening structure, and a part of the EA pad is exposed outside the through hole 824 , that is, exposed outside the sub-substrate 820 , and is used between the EA pad and the sixth gold plating layer 8231 positioning to prevent open circuits.
  • FIG. 21 is an exploded schematic diagram of a second ceramic substrate and a laser according to some embodiments.
  • the second ceramic substrate 800 is disposed above the EML laser 503 .
  • the pad of the electro-absorption modulator of the EML laser 503 includes: a main bonding area 5032 and a secondary bonding area that are connected to each other; wherein the main bonding area 5032 has a circular structure, and the secondary bonding area includes a first conduction area 5033 and a second bonding area that are perpendicular to each other.
  • the through hole 824 is located on one side of the second ceramic substrate 800 and has an arc-shaped structure.
  • the edge of the second conducting region 5034 can be set to overlap with one side of the second ceramic substrate 800, and the second conducting region 5034 is exposed outside the through hole 824; a part of the main welding region 5032 can also be set together with The secondary bonding area is exposed outside the through hole 824 , and the second conductive area 5034 is matched and positioned with the through hole 824 .
  • the position of the through hole 824 may also be set to other shapes, which is not specifically limited.
  • the limit setting between the through hole 824 and the EML laser 503 ensures the limitation of the electrical connection position between the second ceramic substrate 800 and the EML laser 503 and avoids an open circuit.
  • the EA pad and the sixth gold-plated layer 8231 are connected by conductive adhesive.
  • the interconnection between the transmission lines will cause a short circuit.
  • An insulating tape 8232 is provided on the sub-lower surface 823 of the 820, and the insulating tape 8232 is attached to the surface of the sixth gold-plated layer 8231, so as not to hinder the connection between the sixth gold-plated layer 8231 and the EA pad.
  • the sixth gold-plated layer 8231 is connected to the third conductive region 8143.
  • the width of the sixth gold-plated layer 8231 and the third conductive region 8143 is the same.
  • the side of the sub-substrate 820 is introverted relative to the side of the main substrate 810 , and the sides of the main substrate 810 protrude from the side of the sub-substrate 820 to facilitate clamping and fixing.
  • an optical module comprising: a first ceramic substrate, a second ceramic substrate and an EML laser, wherein the first ceramic substrate is provided with a main base and a base concave, and the stepped surface of the main base is high Due to the stepped surface of the substrate concave platform, the EML laser is arranged on the substrate concave platform.
  • the main base is provided with a transmission line
  • the surface of the second ceramic substrate is provided with a conductive layer for connecting the transmission line and the EA pad of the EML laser.
  • a matching resistor is integrated on the surface of the second ceramic substrate, and the transmission line is connected with the matching resistor to realize the interconnection among the electro-absorption modulator EA, the transmission line and the matching resistor.
  • the parasitic inductance of the gold wire interconnection between the EML laser, the transmission line and the matching resistor is effectively reduced, and the signal transmission capacity between the transmission line and the electro-absorption modulator EA is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块(200),包括:上壳体(201),下壳体(202),与上壳体(201)盖合形成包裹腔体。包裹腔体内设置电路板(300)和光发射次模块(400)。光发射次模块(400)包括:第一陶瓷基板(700)、第二陶瓷基板(800)和激光器(503),其中,第一陶瓷基板(700)表面设置信号线和接地线,第二陶瓷基板(800)表面设置导电层,用于连接信号线与激光器(503)的焊盘。同时第二陶瓷基板(800)表面集成有匹配电阻(8212),信号线通过导电层与匹配电阻(8212)的一端连接;第二陶瓷基板(800)表面还设置次导电区,一端与接地线连接,另一端与匹配电阻(8212)的另一端连接。实现激光器(503)、信号线、匹配电阻(8212)三者之间的互连;替代原有的金线连接方式,有效减少激光器(503)、传输线、匹配电阻(8212)三者金线互连的寄生电感,增加了传输线与激光器(503)之间的信号传输能力。

Description

一种光模块
本公开要求在2021年03月19日提交中国专利局、申请号为202110297027.1、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。光模块在光通信技术领域中实现光电转换的功能,是光通信设备中的关键器件之一,光模块向外部光纤中输入的光信号强度直接影响光纤通信的质量。
发明内容
本公开实施例公开了一种光模块,包括:上壳体;下壳体,与所述上壳体盖合形成包裹腔体;电路板,设置于所述包裹腔体内;光发射次模块,设置于所述包裹腔体内,包括:第一陶瓷基板,用于实现所述电路板与所述光发射次模块的电连接;所述第一陶瓷基板表面设有传输线,所述传输线包括:接地线和信号线;激光器;第二陶瓷基板,其表面设置导电层,一端与所述信号线连接,另一端与所述激光器连接;所述第二陶瓷基板表面还设有次导电层,一端与所述接地线连接;所述匹配电阻设置于所述第二陶瓷基板表面,一端与所述导电层连接,另一端与所述次导电层连接;所述第二陶瓷基板设置于所述第一陶瓷基板与所述激光器上方。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光发射次模块的分解结构示意图;
图6为根据一些实施例的光发射次模块的另一分解结构示意图;
图7为根据一些实施例的一种光发射器件的局部结构示意图;
图8为根据一些实施例的一种光发射次模块的局部结构示意图;
图9为根据一些实施例的一种光发射次模块的局部结构示意图二;
图10为根据一些实施例的一种吸收薄膜结构示意图;
图11为根据一些实施例的一种光发射次模块的局部结构示意图三;
图12为根据一些实施例的一种光发射次模块的局部结构示意图四;
图13为根据一些实施例的一种光发射次模块的局部结构示意图五;
图14为根据一些实施例的一种光发射次模块的局部结构示意图六;
图15为根据一些实施例的另一种光发射次模块的分解示意图;
图16为根据一些实施例的另一种光发射次模块的局部示意图;
图17为根据一些实施例的一种第二陶瓷基板结构示意图一;
图18为根据一些实施例的一种第二陶瓷基板结构示意图二;
图19为根据一些实施例的一种第二陶瓷基板分解示意图;
图20为根据一些实施例的一种光发射次模块局部示意图;
图21为根据一些实施例的一种第二陶瓷基板与激光器分解示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转 换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,光模块200包括上壳体201、下壳体202、解锁部件203、电路板300及光收发组件;
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200内部的光收发组件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发组件等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
光收发组件包括光发射次模块400及光接收次模块500两部分,分别用于实现光信号的发射与光信号的接收。发射次模块一般包括光发射器、透镜与光探测器,且透镜与光探测器分别位于光发射器的不同侧,光发射器的正反两侧分别发射光束,透镜用于会聚光发射器正面发射的光束,使得光发射器射出的光束为会聚光,以方便耦合至外部光纤;光探测器用于接收光发射器反面发射的光束,以检测光发射器的光功率。在本公开的某一些实施例中,光发射器发出的光经透镜会聚后进入光纤中,同时光探测器检测光发射器的发光功率,以保证光发射器发射光功率的恒定性。
图5为根据一些实施例的一种光发射次模块的分解结构示意图;图6为根据一些实施 例的光发射次模块的另一分解结构示意图;下面结合图5和图6对本公开光模块的光发射部分的整体结构进行说明。如图5、图6所示,光发射次模块400包括盖板401和外壳402,盖板401和外壳402盖合连接;在本公开的某一些实施例中,盖板401从上方盖合外壳402,外壳402的一侧壁具有开口404,用于电路板300的插入,外壳402的另一侧壁具有通孔,用于光纤适配器403的插入。
在本公开的某一些实施例中,电路板300通过开口404伸入外壳402中,电路板300与下壳体202固定;电路板300上镀有金属走线,光学器件可以通过打线的方式与对应的金属走线电连接,以实现外壳402内的光学器件与电路板300的电连接。
光发射器件发射的信号光射入该通孔,光纤适配器403伸入通孔405中以耦合接收信号光,这种配装结构设计可以使得光纤适配器403在通孔405中前后移动,可以调节光纤在光发射次模块及光纤插头之间的需求尺寸,当光纤较短时,可以在通孔中将光纤适配器向后(向腔体外部方向)移动,以满足连接尺寸要求;当光纤较长时,可以在通孔中将光纤适配器向前(向腔体内部方向)移动,以拉直光纤,避免光纤弯曲。光纤适配器403插入通孔中以实现与光发射次模块400的固定;装配过程中,光纤适配器403可以在通孔中移动以选择固定位置。
外壳402的一侧壁具有开口404,用于电路板300的插入,外壳402的另一侧壁具有通孔,用于光纤适配器403的插入。
在本公开的某一些实施例中,外壳402内的光学器件还可以通过引脚与电路板300连接,其中,引脚设计为与下壳体相适配的形状,引脚一端插入下壳体内部,并且在该端上镀有金属走线,光学器件可以通过打线的方式与对应的金属走线电连接,引脚置于外壳402的一端设有多个与金属走线电连接的管脚,通过将管脚插入电路板300中并焊接在一起,进而实现外壳402内的光学器件与电路板300的电连接,当然,也可以通过将引脚上的管脚直接与电路板300焊接在一起,以实现外壳402内的光学器件与电路板300的电连接。
在信号发射过程中,外壳402内的光发射器件在接收到电路板300传输来的电信号后,会将该电信号转换成光信号,然后该光信号进入光纤适配器403后,发射至光模块外部。
光发射次模块具有封装结构,以将激光芯片等封装起来,相关技术的封装结构包括同轴封装TO-CAN、硅光封装、板上芯片透镜组件封装COB-LENS、微光学XMD封装。封装还分为气密性封装及非气密性封装,封装一方面为激光芯片提供稳定、可靠的工作环境,另一方面形成对外的电连接及光输出。
根据产品设计及工艺,光模块会采用不同的封装以制作光发射次模块。激光芯片有垂直腔面出光,也有边发光,激光芯片出光方向的不同也会影响对封装形态的选择。各种封装之间具有明显的技术区别,不论从结构还是从工艺都是不同的技术方向,本领域技术人员知晓,虽然不同封装实现的目的具有一定的相同点,但是不同封装属于不同的技术路线,不同的封装技术之间不会相互给与技术启示。
图7为根据一些实施例的一种光发射器件的局部结构示意图;如图7所示,本公开实施例中光发射次模块500包括:陶瓷基板501,设置于外壳402内,选氧化铝陶瓷、氮化铝陶瓷等。陶瓷基板501表面雕刻有激光器芯片的功能电路,用于信号的传输,如传输线 502。陶瓷基板501的表面设有EML激光器503,EML激光器503为激光器DFB与电吸收调制器EA与的集成器件,激光器DFB将电信号转换为光信号,电吸收调制器EA对光信号进行编码调制后输出,使得输出的光信号携带信息。光转换器和光调制器,电吸收调制器是常用光调制器之一,因具有响应速度快、功耗低的特点,广泛应用于传输高速光信号。
在光模块模进行信号发送时,金手指将电信号引入到激光器驱动芯片,激光器驱动芯片将该电信号传输到EML激光器503,然后利用EML激光器503将该电信号转化为光信号,其中激光器驱动芯片和EML激光器503之间通过传输线502连接,该导线存在一定地特性阻抗,由于激光器驱动芯片输出的阻抗额定,当EML激光器503输出的阻抗与该特性阻抗不匹配时,激光器驱动芯片和激光器之间传输信号会有损耗,降低信号的完整性,因此为了保证信号的完整性,需要保证EML激光器503输出的阻抗与该特性阻抗相匹配,需要说明的是,此处的匹配含义是指使EML激光器503输出的阻抗值达到特性阻抗值,也就是,EML激光器503输出的阻抗值与特性阻抗值一致。
本公开中在EML激光器503处并联第一匹配电阻504,此时第一匹配电阻504具备阻抗匹配作用,最终使EML激光器503输出的阻抗与该特性阻抗相一致。
图8为根据一些实施例的一种光发射次模块的局部结构示意图。图9为根据一些实施例的一种光发射次模块的局部结构示意图二。如图8和图9所示,为了改善EML激光器503、传输线502、第一匹配电阻504三者金线互连的寄生电感,本公开实施例提供了一种光发射次模块,包括:陶瓷基板501,陶瓷基板501表面设有传输线502。陶瓷基板501的表面设有EML激光器503,EML激光器503为激光器DFB与电吸收调制器EA与的集成器件,电吸收调制器EA与传输线502通过导线连接。陶瓷基板501表面设有第一匹配电阻504,通过导线与电吸收调制器EA连接。传输线502与第一匹配电阻504通过导线连接。
如图8所示,电吸收调制器EA设置于第一匹配电阻504、传输线502之间。电吸收调制器EA与传输线502通过第一导线组505连接。第一匹配电阻504通过第二导线组506与电吸收调制器EA连接。传输线502与第一匹配电阻504通过第三导线组507连接。第三导线组507的一端与传输线502连接,另一端与第一匹配电阻504连接。电吸收调制器EA位于第三导线组507与陶瓷基板501之间。
在本公开的某一些实施例中,第一导线组505、第二导线组506、第三导线组507为金线,但由于金线为细长打线形式的结构,传输线502与第一匹配电阻504之间距离较长,容易产生寄生电感,影响信号传输。为了增强传输线502与第一匹配电阻504之间的信号传输能力,第三导线组507包括:子导线一5071和子导线二5072。子导线一5071的一端与传输线502连接,另一端与第一匹配电阻504连接,子导线二5072的一端与传输线502连接,另一端与第一匹配电阻504连接,有效的缓解了EML激光器503、传输线502、第一匹配电阻504三者金线互连的寄生电感,增加了传输线502与第一匹配电阻504之间的信号传输能力。
在本实施例中,第三导线组507中子导线的个数包括但不限于2个,具体数量根据光 模块中EML激光器503、传输线502、第一匹配电阻504实际规格、位置等进行设置。
子导线一5071在传输线502的连接点与子导线二5072在传输线502的连接点不重合,有效保证子导线与传输线502之间的电性连接。同样的,子导线一5071在第一匹配电阻504的连接点与子导线二5072在第一匹配电阻504的连接点不重合。
如图9所示,陶瓷基板501的表面还设置有吸收薄膜508,罩设于第一导线组505、第二导线组506、第三导线组507的上方。吸收薄膜508一端设置于第一匹配电阻504的外侧,另一端设置于传输线502的外侧。吸收薄膜508与陶瓷基板501胶接。吸收薄膜508罩设于金线的上方,能够有效改善金线的寄生效应,吸收辐射。
图10为根据一些实施例的一种吸收薄膜结构示意图。如图10所示,吸收薄膜508包括:绝缘层5081和金属层5082,绝缘层5081设置于内侧,面向陶瓷基板501设置,降低了金线对外部信号的感性,改善了金线的寄生效应。金属层5082设置于外侧,可以有效吸收外部产生的辐射。
本公开实施例提供了一种光模块,在电吸收调制器EA,传输线502,第一匹配电阻504三者之间的互连采用的是传输线打一根金线到EA焊盘,EA焊盘打一根线到第一匹配电阻这种互连形式的基础上,增加跨器件打线方式,即打线跨过电吸收调制器EA,通过打两根或者多根线实现传输线502、第一匹配电阻504互连,从而降低三者互连的寄生电感。而且提出了在金线上增加一层轻质的薄膜结构,降低打线电感,吸收打线辐射,提升该部分信号质量。
图11为根据一些实施例的一种光发射次模块的局部结构示意图三,图12为根据一些实施例的一种光发射次模块的局部结构示意图四。如图11和图12所示,第一匹配电阻504设置于电吸收调制器EA、传输线502之间。第一匹配电阻504通过第二导线组506与电吸收调制器EA连接。传输线502与第一匹配电阻504通过第三导线组507连接。电吸收调制器EA与传输线502通过第一导线组505连接。第一导线组505的一端与传输线502连接,另一端与电吸收调制器EA连接。第一匹配电阻504设置于第一导线组505与陶瓷基板501之间。
在本公开的某一些实施例中,第一导线组505、第二导线组506、第三导线组507为金线,但由于金线为细长打线形式的结构,电吸收调制器EA与传输线502之间距离较长,容易产生寄生电感,影响信号传输。为了增强电吸收调制器EA与传输线502之间的信号传输能力,第一导线组505包括:多条第一子导线5051。第一子导线5051的一端与传输线502连接,另一端与电吸收调制器EA连接,有效缓解了EML激光器503、传输线502、第一匹配电阻504三者金线互连的寄生电感,增加了传输线502与电吸收调制器EA之间的信号传输能力。
在本实施例中,第一导线组505中子导线的个数包括但不限于2个,具体数量根据光模块中EML激光器503、传输线502、第一匹配电阻504实际规格、位置等进行设置。
不同的第一子导线5051在传输线502的连接点不重合,有效保证子导线与传输线502之间的电性连接。同样的,不同的第一子导线5051在电吸收调制器EA的连接点不重合。
陶瓷基板501的表面还设置有吸收薄膜508,罩设于第一导线组505、第二导线组506、 第三导线组507的上方。吸收薄膜508一端设置于电吸收调制器EA的外侧,另一端设置于传输线502的外侧。吸收薄膜508与陶瓷基板501胶接。吸收薄膜508罩设于金线的上方,能够有效改善金线的寄生效应,吸收辐射。
吸收薄膜508包括:绝缘层和金属层,绝缘层设置于内侧,面向陶瓷基板501设置,降低金线对外部信号的感性,改善金线的寄生效应。金属层设置于外侧,可以有效吸收外部产生的辐射。
本公开实施例提供了一种光模块,在电吸收调制器EA,传输线502,第一匹配电阻504三者之间的互连采用的是传输线打一根金线到EA焊盘,EA焊盘打一根线到第一匹配电阻504这种互连形式的基础上,增加跨器件打线方式,即打线跨过第一匹配电阻504,通过打两根或者多根线实现电吸收调制器EA,传输线502互连,从而降低三者互连的寄生电感。而且提出了在金线上增加一层轻质的薄膜结构,降低打线电感,吸收打线辐射,提升该部分信号质量。
图13为根据一些实施例的一种光发射次模块的局部结构示意图五,图14为根据一些实施例的一种光发射次模块的局部结构示意图六。如图13和图14所示,传输线502设置于电吸收调制器EA、第一匹配电阻504之间。电吸收调制器EA与传输线502通过第一导线组505连接。第一匹配电阻504通过第二导线组506与电吸收调制器EA连接。传输线502与第一匹配电阻504通过第三导线组507连接。电吸收调制器EA与传输线502通过第一导线组505连接。第二导线组506的一端与第一匹配电阻504连接,另一端与电吸收调制器EA连接。传输线502设置于第二导线组506与陶瓷基板501之间。
在本公开的某一些实施例中,第一导线组505、第二导线组506、第三导线组507为金线,但由于金线为细长打线形式的结构,电吸收调制器EA、第一匹配电阻504之间距离较长,容易产生寄生电感,影响信号传输。为了增强电吸收调制器EA与第一匹配电阻504之间的信号传输能力,第二导线组506包括:多条第二子导线5061。第二子导线5061的一端与第一匹配电阻504连接,另一端与电吸收调制器EA连接,有效缓解EML激光器503、传输线502、第一匹配电阻504三者金线互连的寄生电感,增加了传输线502与电吸收调制器EA之间的信号传输能力。
在本实施例中,第二导线组506中子导线的个数包括但不限于2个,具体数量根据光模块中EML激光器503、传输线502、第一匹配电阻504实际规格、位置等进行设置。
不同的第二子导线5061在第一匹配电阻504的连接点不重合,有效保证子导线与第一匹配电阻504之间的电性连接。同样的,不同的第二子导线5061在电吸收调制器EA的连接点不重合。
陶瓷基板501的表面还设置有吸收薄膜508,罩设于第一导线组505、第二导线组506、第三导线组507的上方。吸收薄膜508一端设置于第一匹配电阻504的外侧,另一端设置于电吸收调制器EA的外侧。吸收薄膜508与陶瓷基板501胶接。吸收薄膜508罩设于金线的上方,能够有效改善金线的寄生效应,吸收辐射。
吸收薄膜508包括:绝缘层5081和金属层5082,绝缘层5081设置于内侧,面向陶瓷基板501设置,降低金线对外部信号的感性,改善金线的寄生效应。金属层5082设置于 外侧,可以有效吸收外部产生的辐射。本公开实施例提供了一种光模块,在电吸收调制器EA,传输线502,第一匹配电阻504三者之间的互连采用的是传输线打一根金线到EA焊盘,EA焊盘打一根线到第一匹配电阻504这种互连形式的基础上,增加跨器件打线方式,即打线跨过传输线502,通过打两根或者多根线实现电吸收调制器EA、第一匹配电阻504互连,从而降低三者互连的寄生电感。而且提出了在金线上增加一层轻质的薄膜结构,降低打线电感,吸收打线辐射,提升该部分信号质量。
综上,本公开实施例提供了一种光模块,在电吸收调制器EA、传输线、匹配电阻三者之间的互连采用的是传输线打一根金线到EA焊盘,EA焊盘打一根线到匹配电阻这种互连形式的基础上,增加跨器件打线方式,即打线跨过位于中间的器件,通过打两根或者多根导线实现两侧电器件互连,从而降低三者互连的寄生电感。而且提出了在金线上增加一层轻质的薄膜结构,降低打线电感,吸收打线辐射,提升该部分信号质量的方案。
图15为根据一些实施例的另一种光发射次模块的分解示意图。如图15所示,根据一些实施例的光发射次模块,包括:光发射次模块400包括外壳402、盖板401、发射组件430。发射组件430位于外壳402与盖板401形成的光发射腔体内。光发射腔体内设置有光芯片、光探测器、准直透镜等发射组件。外壳402的一端连接光纤适配器403,发射组件用于发射光束并汇聚耦合至光纤适配器403,以实现光束通过光纤发射出去。外壳402远离光纤适配器403的另一端设置有第一陶瓷基板700,该第一陶瓷基板700与柔性电路板的一端连接,第一陶瓷基板700设置激光芯片、光探测器、激光驱动器等光电器件电连接;柔性电路板的另一端用于与电路板300电连接。外壳402与盖板401可采用金属材料结构件,如压铸、铣削加工的金属件。
如图15,为了实现EML激光器、传输线、匹配电阻之间的互连,消除寄生电感,本公开实施例提供了一种光发射次模块,包括:第一陶瓷基板700、第二陶瓷基板800、EML激光器503,EML激光器503设置于第一陶瓷基板700与第二陶瓷基板800之间。第一陶瓷基板700表面敷设传输线,第二陶瓷基板800上设置金属层实现传输线与EML激光器503的EA焊盘的连接。
图16为根据一些实施例的另一种光发射次模块的局部示意图。如图16所示,第一陶瓷基板700设置于外壳402内,第一陶瓷基板700的主体基台705表面雕刻有激光器芯片的功能电路,用于信号的传输,包括:第一传输线701、第二传输线702和第三传输线703,其中:第三传输线703设置于第一传输线701与第二传输线702之间,第一传输线701与第二传输线702为接地线,第三传输线703为信号传输线。第一陶瓷基板700还设置有基板凹台704,用于承载EML激光器503。基板凹台704的上台面低于主体基台705的台面。EML激光器503安装于基板凹台704后,EML激光器503的上表面与主体基台705的台面一致。
第三传输线703为信号传输线,设置于第一传输线701和第二传输线702之间,有利于屏蔽杂波信号,提高抗电磁效应,提供信号回流,减少外部辐射对该激光器通道的串扰。
图17为根据一些实施例的一种第二陶瓷基板结构示意图一,图18为根据一些实施例的一种第二陶瓷基板结构示意图二,图19为根据一些实施例的一种第二陶瓷基板分解示 意图,图17和图18从不同的角度展示了第二陶瓷基板的结构。
如图17、图18和图19第二陶瓷基板800,包括:主体基板810和子基板820,其中,主体基板810的上表面811设有第一镀金层8111,第一镀金层8111覆盖整个主体基板810的上表面811。与上表面811的相邻的第一侧表面812设有第二镀金层8121,第二镀金层8121覆盖全部第一侧表面812。第一侧表面812的对侧第二侧表面813设有第三镀金层8131,第三镀金层8131覆盖全部第二侧表面813。第一镀金层8111的一端与第二镀金层8121连接,另一端与第三镀金层8131连接。当然,在本公开的一些实施例中,第一镀金层8111可以不覆盖整个主体基板810的上表面811,同样第二镀金层8121可以不覆盖全部第一侧表面812,第三镀金层8131可以不覆盖全部第二侧表面813。需要的是第一镀金层8111的一端与第二镀金层8121连接,另一端与第三镀金层8131连接,实现第一镀金层8111、第二镀金层8121、第三镀金层8131之间电连接。
上表面811的对侧定义为下表面814,下表面814设置第一导电区8141、第二导电区8142和第三导电区8143,第三导电区8143设置于第一导电区8141、第二导电区8142之间,且第一导电区8141、第二导电区8142和第三导电区8143之间互不导通。且,第一导电区8141与第二镀金层8121连接,第三导电区8143与第三镀金层8131连接。最终实现第一导电区8141、第二镀金层8121、第一镀金层8111、第三镀金层8131、第三导电区8143依次连接,形成次导电层。
主体基板810贴附于第一陶瓷基板700上方,在本公开的某一些实施例中,第一陶瓷基板700的下表面814与主体基板810连接。且,第一传输线701与第一导电区8141连接,第三导电区8143与第三传输线703连接,第二传输线702与第二导电区8142连接。
通过以上连接,第一传输线701、第一导电区8141、第二镀金层8121、第一镀金层8111、第三镀金层8131、第三导电区8143、第三传输线703依次连接,形成通路。
子基板820的子上表面821敷设第四镀金层8211,与子上表面821相邻的第一子侧表面822敷设第五镀金层8221,第四镀金层8211与第五镀金层8221连接。子上表面821的对侧为子下表面823,子下表面823的表面敷设第六镀金层8231,第六镀金层8231与第五镀金层8221连接。第六镀金层8231与第三导电区8143连接。第四镀金层8211还与第一镀金层8111连接。
基板凹台704上方依次设置EML激光器503、子基板820,且子基板820与EML激光器503的EA焊盘连接,第六镀金层8231与EA焊盘通过导电胶连接。
由以上可知,第三传输线703、第三导电区8143、第六镀金层8231、EA焊盘5031、第五镀金层8221、第四镀金层8211、第一镀金层8111连接,形成通路。
本实施例中全部镀金层与导电层实质相同,替代原始电路中的金线,因其具有良好的导通能力,有效减少EML激光器、传输线、匹配电阻三者金线互连的寄生电感,增加了传输线与电吸收调制器EA之间的信号传输能力。
子基板820的子上表面821还设置有第二匹配电阻8212,位于第四镀金层8211与第一镀金层8111之间,第二匹配电阻8212与EA焊盘连接,第二匹配电阻8212通过第四镀金层8211、第五镀金层8221实现与EA焊盘连接,第二匹配电阻8212还通过第四镀金层 8211、第五镀金层8221、第二导电区8142实现与第三传输线703连接,因此EA焊盘、第三传输线703与第二匹配电阻8212连接,通过第二陶瓷基板800实现EA焊盘、第三传输线703与第二匹配电阻8212之间的连接,连接通过第二陶瓷基板800表面的导电区域实现,替代原有的金线连接方式,有效减少EML激光器、传输线、匹配电阻三者金线互连的寄生电感,增加了传输线与电吸收调制器EA之间的信号传输能力。
在本公开的某一些实施例中,为提高互连性能,子基板820与主体基板810为一体成型结构,且子基板820与主体基板810的导电区域与镀金层采用同种材质、同种工艺制成。
在本公开的某一些实施例中,为加强主体基板810与第一陶瓷基板700之间的电性连接,第一传输线701与第一导电区8141、第三导电区8143与第三传输线703之间采用导电胶连接。导电胶可采用常用的银胶。
图20为根据一些实施例的一种光发射次模块局部示意图。结合图20、图16所示为实现第一陶瓷基板700与第二陶瓷基板800之间的安装定位,本公开实施例中,主体基板810的上表面811还设置有多个限位标记,用于传输线与导电层之前的定位,防止贴附过程中,造成第一传输线701与第二传输线702、或第二传输线702和第三传输线703之间短路。
在本公开的某一些实施例中,主体基板810的上表面811设置第一限位标记8112、第二限位标记8113、第三限位标记8114和第四限位标记8115,其中第一限位标记8112、第二限位标记8113所在的直线与第一传输线701的边缘线平行设置,第三限位标记8114和第四限位标记8115所在的直线与第二传输线702的边缘线平行设置。
在本公开的某一些实施例中,为更加准确的实现第一传输线701与第一导电区8141、第三导电区8143与第三传输线703、第二传输线702与第二导电区8142之间的定位,避免某一导电区跨不同的传输线,导致短路,本公开实施例中第一限位标记8112、第二限位标记8113所组成的直线与第一导电区8141靠近第三导电区一侧边缘平齐,第三限位标记8114、第四限位标记8115所组成的直线与第二导电区8142靠近第三导电区8143一侧边缘平齐。
在本公开的某一些实施例中,第一限位标记8112、第二限位标记8113、第三限位标记8114和第四限位标记8115可以设置于第一镀金层8111的表面,也可以设置于主体基板810的表面。
在一些实施例中,还可采用第一限位标记8112、第二限位标记8113所在的直线与第一传输线701的边缘线平行设置,第三限位标记8114和第四限位标记8115所在的直线与第三传输线703的边缘线平行设置。或第一限位标记8112、第二限位标记8113所在的直线与第二传输线702的边缘线平行设置,第三限位标记8114和第四限位标记8115所在的直线与第三传输线703的边缘线平行设置。以上设置方式均可实现主体基板810与第一陶瓷基板700之间的定位。
在本公开的某一些实施例中,为实现第三导电区8143与EA焊盘之间的定位,子基板820设置通孔824,通孔824表面设置有通孔镀金层。EA焊盘的一部分显露于通孔824外侧。在本实施例中通孔824为半圆形开孔结构,EA焊盘的一部分显露于通孔824外侧,也即显露于子基板820外,用于EA焊盘与第六镀金层8231之间的定位,防止开路。
图21为根据一些实施例的一种第二陶瓷基板与激光器分解示意图。如图21所示,在本公开的一些实施例中,第二陶瓷基板800设置于EML激光器503上方。EML激光器503的电吸收调制器的焊盘包括:相互连接的主焊区5032和次焊区;其中主焊区5032呈圆形结构,次焊区包括相互垂直的第一导通区5033和第二导通区5034,第一导通区5033的一端与主焊区5032连接,另一端与第二导通区5034连接,且第一导通区5033与主焊区5032的圆弧垂直设置。通孔824位于第二陶瓷基板800的一侧边,呈弧形结构。为实现定位功能,可设置第二导通区5034的边缘与第二陶瓷基板800的一侧边重合,第二导通区5034裸露于通孔824外侧;还可以设置主焊区5032的一部分连同次焊区裸露于通孔824外侧,第二导通区5034与通孔824匹配定位。当然在本公开的一些实施例中,通孔824的位置还可设置为其他形状,并不做具体限定。通孔824与EML激光器503之间限位设置,确保第二陶瓷基板800与EML激光器503之间电连接位置的限定,避免开路。
EA焊盘与第六镀金层8231之间采用导电胶连接,为避免导电胶沿第六镀金层8231与第三导电区8143延伸至主体基板810上,导致传输线之间互连造成短路,子基板820的子下表面823设置绝缘带8232,绝缘带8232贴附于第六镀金层8231表面,不阻碍第六镀金层8231与EA焊盘的连接。
第六镀金层8231与第三导电区8143连接,为减少阻抗,增加信号传输能力,第六镀金层8231与第三导电区8143的宽度一致。
本公开实施例中,为便于第二陶瓷基板800的安装,子基板820的侧面相对主体基板810的侧面内敛,主体基板810两侧边凸出于子基板820的侧面,方便夹取固定。
综上可知,本公开公开了一种光模块,包括:第一陶瓷基板、第二陶瓷基板和EML激光器,其中,第一陶瓷基板设置主体基台和基板凹台,主体基台的台阶面高出于基板凹台的台阶面,EML激光器设置于基板凹台上。主体基台设置传输线,第二陶瓷基板表面设置导电层,用于连接传输线与EML激光器的EA焊盘。同时第二陶瓷基板表面集成有匹配电阻,传输线与匹配电阻连接,实现电吸收调制器EA、传输线、匹配电阻三者之间的互连。替代原有的金线连接方式,有效减少EML激光器、传输线、匹配电阻三者金线互连的寄生电感,增加了传输线与电吸收调制器EA之间的信号传输能力。
由于以上实施方式均是在其他方式之上引用结合进行说明,不同实施例之间均具有相同的部分,本说明书中各个实施例之间相同、相似的部分互相参见即可。在此不再详细阐述。
需要说明的是,在本说明书中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或暗示这些实体或操作之间存在任何这种实际的关系或顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的电路结构、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种电路结构、物品或者设备所固有的要素。在没有更多限制的情况下,有语句“包括一个……”限定的要素,并不排除在包括所述要素的电路结构、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践本公开的公开后,将容易想到本公开的其他实施 方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求的内容指出。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光模块,其特征在于,包括:上壳体;
    下壳体,与所述上壳体盖合形成包裹腔体;
    电路板,设置于所述包裹腔体内;
    光发射次模块,设置于所述包裹腔体内,包括:
    第一陶瓷基板,用于实现所述电路板与所述光发射次模块的电连接;所述第一陶瓷基板表面设有传输线,所述传输线包括:接地线和信号线;
    激光器;
    第二陶瓷基板,设置于所述第一陶瓷基板与所述激光器上方,表面设置导电层;
    所述导电层的一端与所述信号线连接,另一端与所述激光器连接;
    所述第二陶瓷基板表面还设有次导电层,与所述导电层不连接,且所述次导电层的一端与所述接地线连接;
    所述匹配电阻设置于所述第二陶瓷基板表面,一端与所述导电层连接,另一端与所述次导电层连接。
  2. 根据权利要求1所述的光模块,其特征在于,所述第二陶瓷基板的一端设有通孔,所述激光器的焊盘一部分裸露于所述通孔处,用于所述第二陶瓷基板与所述激光器定位。
  3. 根据权利要求1所述的光模块,其特征在于,所述的通孔设置于所述第二陶瓷基板的一侧边,为弧形让位孔;所述弧形让位孔设置于所述激光器的焊盘上方,且所述激光器的焊盘一部分裸露于所述弧形让位孔外部。
  4. 根据权利要求1所述的光模块,其特征在于,所述第一陶瓷基板包括主体基台和基板凹台,所述基板凹台的上台面低于主体基台的上台面;所述激光器设置于所述基板凹台上;所述传输线设置于所述主体基台表面。
  5. 根据权利要求1所述的光模块,其特征在于,所述第二陶瓷基板表面设有多个限位标记,用于限定所述第二陶瓷基板与所述传输线的位置。
  6. 根据权利要求1所述的光模块,其特征在于,所述第二陶瓷基板包括:一体成型的主体基板和子基板;
    所述导电层包括:第三导电区,设置于所述主体基板的下表面,用于连接所述信号线和所述子基板;
    所述次导电层包括:第一镀金层,设置于所述主体基板的上表面;
    第二镀金层,设置于所述主体基板的侧表面,其中所述主体基板的侧表面与所述主体基板的上表面的相邻;所述第一镀金层与所述第二镀金层连接;
    第一导电区,设置于所述主体基板的下表面,所述主体基板的下表面位于所述主体基板的上表面对侧;
    所述第三导电区与所述第一导电区不连接;且所述第一导电区所述接地线连接。
  7. 根据权利要求6所述的光模块,其特征在于,所述子基板的上表面设置匹配电阻;
    所述导电层还包括:第四镀金层,设置于所述子基板的上表面,一端与所述匹配电阻 连接;
    第五镀金层,设置于所述子基板的侧面,一端与所述第四镀金层连接,所述子基板的侧面与所述子基板的上表面相邻;
    第六镀金层,设置于所述子基板的下表面,一端与所述第三导电区连接,另一端与所述第五镀金层;
    且所述第六镀金层与所述激光器的焊盘电连接。
  8. 根据权利要求1所述的光模块,其特征在于,所述第二陶瓷基板与所述第一陶瓷基板通过导电胶电连接;所述激光器与所述第一陶瓷基板通过导电胶电连接。
  9. 根据权利要求1所述的光模块,其特征在于,还包括吸收薄膜,罩设于所述第二陶瓷基板的上方,用于吸收外部辐射。
  10. 根据权利要求1所述的光模块,其特征在于,所述接地线包括:第一传输线和第二传输线,所述信号线设置于所述第一传输线和所述第二传输线之间。
PCT/CN2021/134355 2021-03-19 2021-11-30 一种光模块 WO2022193734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110297027.1 2021-03-19
CN202110297027.1A CN115113345B (zh) 2021-03-19 2021-03-19 一种光模块

Publications (1)

Publication Number Publication Date
WO2022193734A1 true WO2022193734A1 (zh) 2022-09-22

Family

ID=83321698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134355 WO2022193734A1 (zh) 2021-03-19 2021-11-30 一种光模块

Country Status (2)

Country Link
CN (1) CN115113345B (zh)
WO (1) WO2022193734A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421261A (zh) * 2022-09-28 2022-12-02 深圳新联胜光电科技有限公司 一种基于合封技术的镀膜光纤光电转换模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045145A (ja) * 2003-07-25 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> 光モジュールおよびそれを用いた光通信用送受信回路
CN104734000A (zh) * 2015-03-30 2015-06-24 青岛海信宽带多媒体技术有限公司 激光发射器
CN106125213A (zh) * 2016-08-26 2016-11-16 青岛海信宽带多媒体技术有限公司 一种光模块
CN110780397A (zh) * 2019-11-08 2020-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN112189285A (zh) * 2018-05-29 2021-01-05 三菱电机株式会社 光模块以及光发送器
CN112398541A (zh) * 2020-11-05 2021-02-23 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868589B (zh) * 2018-04-09 2022-10-04 华为技术有限公司 激光器、激光器阵列的封装结构及封装组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045145A (ja) * 2003-07-25 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> 光モジュールおよびそれを用いた光通信用送受信回路
CN104734000A (zh) * 2015-03-30 2015-06-24 青岛海信宽带多媒体技术有限公司 激光发射器
CN106125213A (zh) * 2016-08-26 2016-11-16 青岛海信宽带多媒体技术有限公司 一种光模块
CN112189285A (zh) * 2018-05-29 2021-01-05 三菱电机株式会社 光模块以及光发送器
CN110780397A (zh) * 2019-11-08 2020-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN112398541A (zh) * 2020-11-05 2021-02-23 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421261A (zh) * 2022-09-28 2022-12-02 深圳新联胜光电科技有限公司 一种基于合封技术的镀膜光纤光电转换模组
CN115421261B (zh) * 2022-09-28 2023-07-28 深圳新联胜光电科技有限公司 一种基于合封技术的镀膜光纤光电转换模组

Also Published As

Publication number Publication date
CN115113345B (zh) 2023-05-05
CN115113345A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN214795314U (zh) 一种光模块
US20220224073A1 (en) Optical module
CN112965190A (zh) 一种光模块
WO2022127072A1 (zh) 一种光模块
CN114637081B (zh) 一种光模块
US20220221667A1 (en) Optical Module
CN114035287A (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114035288A (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN216772051U (zh) 一种光模块
WO2022111034A1 (zh) 一种光模块
CN216310330U (zh) 一种光模块
WO2022193734A1 (zh) 一种光模块
WO2023030457A1 (zh) 光模块
WO2022242309A1 (zh) 光模块
CN217718170U (zh) 一种光模块
CN217693343U (zh) 一种光模块
WO2022127594A1 (zh) 一种光模块
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN113009649A (zh) 一种光模块
CN216772052U (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
CN216248442U (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931308

Country of ref document: EP

Kind code of ref document: A1