WO2022111034A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022111034A1
WO2022111034A1 PCT/CN2021/120976 CN2021120976W WO2022111034A1 WO 2022111034 A1 WO2022111034 A1 WO 2022111034A1 CN 2021120976 W CN2021120976 W CN 2021120976W WO 2022111034 A1 WO2022111034 A1 WO 2022111034A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
conductive
chip
thin film
conductive area
Prior art date
Application number
PCT/CN2021/120976
Other languages
English (en)
French (fr)
Inventor
张晓磊
李永勃
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011360365.7A external-priority patent/CN114545569A/zh
Priority claimed from CN202011363883.4A external-priority patent/CN114545570A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022111034A1 publication Critical patent/WO2022111034A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • optical modules are usually used in the field to transmit and receive light of different wavelengths.
  • an embodiment of the present disclosure discloses an optical module, including: a circuit board, provided with a laser driving chip; a tube seat; pins, arranged on the tube seat; The chip is electrically connected; the ceramic substrate is arranged on the socket; the surface of the ceramic substrate includes a negative metal area, a positive metal area and a chip metal area; the bottom of the laser chip is provided with a negative electrode, the top is provided with a positive electrode, and the bottom of the laser chip is provided on the chip metal
  • the anode and the metal area of the chip are electrically connected; the anode and the anode metal area are connected by wires; the anode metal area is electrically connected to the anode pin; the anode metal area includes a first conductive area, a first thin film resistor and a second conductive area , the first thin film resistor is connected to the first conductive area and the second conductive area; the first conductive area is also electrically connected to the negative pin; the chip metal area is electrically connected to the first
  • an embodiment of the present disclosure discloses an optical module, comprising: a circuit board, on which a laser driving chip is arranged; a tube seat; Negative pin and positive pin; ceramic substrate, arranged on the socket; the surface of the ceramic substrate is provided with a negative metal area and a positive metal area; the bottom of the laser chip is provided with a negative electrode, the top is provided with a positive electrode, and the bottom of the laser chip is provided with a negative electrode
  • the surface of the metal area is used to realize the electrical connection between the negative electrode and the negative electrode metal area; the negative electrode metal area is electrically connected with the negative electrode pin; the positive electrode metal area includes: a sixth conductive area, a fourth thin film resistor and a seventh conductive area, and the fourth thin film resistor Six conductive areas and a seventh conductive area, the seventh conductive area is electrically connected to the positive electrode pin; the positive electrode of the laser chip is electrically connected to the sixth conductive area or the seventh conductive area by wires to meet the impedance matching requirements of the
  • an embodiment of the present disclosure discloses an optical module, comprising: a circuit board, on which a laser driving chip is arranged; a tube seat; and pins, which are arranged on the tube seat, the laser driving chip and the The pins are electrically connected, including a negative electrode pin and a positive electrode pin; a ceramic substrate is arranged on the socket for carrying devices; the surface of the ceramic substrate is provided with a negative electrode area, a positive electrode area and a chip area; wherein: The positive electrode area is electrically connected to the positive electrode pin; the negative electrode area includes: a first conductive area, a first thin film resistor and a second conductive area, and the first thin film resistor communicates with the first conductive area and the The second conductive area; the first conductive area is also electrically connected to the negative electrode pin; the chip area includes: a third conductive area, a second thin film resistor and a fourth conductive area, and the second thin film resistor is connected to all the third conductive area and the fourth conductive
  • an embodiment of the present disclosure discloses an optical module, comprising: a circuit board on which a laser driving chip is arranged; a tube seat; and pins arranged on the tube seat, the laser driving chip and the The pins are electrically connected, including a negative electrode pin and a positive electrode pin; a ceramic substrate is arranged on the socket for carrying devices; the surface of the ceramic substrate is provided with a negative electrode area, a positive electrode area and a chip area; wherein: The positive electrode area is electrically connected to the positive electrode pin; the negative electrode area is electrically connected to the negative electrode pin; the positive electrode area includes: a fifth conductive area, a third thin film resistor, a sixth conductive area, and a fourth thin film a resistor and a seventh conductive area, the third thin film resistor communicates with the fifth conductive area and the sixth conductive area, and the fourth thin film resistor communicates with the sixth conductive area and the seventh conductive area; laser The chip is arranged in the chip area, the negative electrode of the laser
  • FIG. 1A is a connection diagram of an optical communication system according to some embodiments.
  • FIG. 1B is a connection diagram of another optical communication system according to some embodiments.
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • FIG. 5 is a schematic diagram of an internal structure of an optical module according to some embodiments.
  • FIG. 6 is a schematic diagram of an exploded structure of a light emission sub-module according to some embodiments.
  • FIG. 7 is a schematic diagram of a partial structure of a light emitting sub-module according to some embodiments.
  • FIG. 8 is a schematic diagram 1 of connection of various components of an optical emission sub-module according to some embodiments.
  • FIG. 9 is an equivalent circuit diagram of each component of the light emitting sub-module shown in FIG. 8;
  • FIG. 10 is a second schematic diagram illustrating the connection of various components of a light emitting sub-module according to some embodiments.
  • Fig. 11 is an equivalent circuit diagram of each component of the light emitting sub-module shown in Fig. 10;
  • FIG. 12 is a schematic diagram 3 of the connection of various components of a light emitting sub-module according to some embodiments.
  • Fig. 13 is an equivalent circuit diagram of each component of the light emitting sub-module shown in Fig. 12;
  • FIG. 14 is a schematic diagram 4 of connection of various components of a light emitting sub-module according to some embodiments.
  • FIG. 15 is an equivalent circuit diagram of each component of the light emitting sub-module shown in FIG. 14;
  • FIG. 16 is a schematic diagram 5 of the connection of various components of a light emitting sub-module according to some embodiments.
  • FIG. 17 is an equivalent circuit diagram of each component of the light emitting sub-module shown in FIG. 16 .
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1A is a connection diagram of an optical communication system according to some embodiments
  • FIG. 1B is a connection diagram of another optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103; one end of the optical fiber 101 is connected to the remote server 1000, The other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 100 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a casing, a circuit board 300 disposed in the casing, and an optical transceiver;
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two side plates located on both sides of the cover plate and perpendicular to the cover plate.
  • An upper side plate is combined with the two side plates by two side walls, so as to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the light module 200 (the left end of FIG. 3 ), and the opening 205 is also located at the end of the light module 200 (the right end of FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the optical transceiver device inside the optical module 200 .
  • the combination of the upper case 201 and the lower case 202 is used to facilitate the installation of the circuit board 300, optical transceivers and other devices into the case, and the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels 2022 of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, limiter amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP) Wait.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, limiter amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP) Wait.
  • the circuit board 300 connects the above-mentioned devices in the optical module 200 together according to the circuit design through circuit traces, so as to realize functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. , in some embodiments of the present disclosure, metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector; these are inconvenient to be realized by the flexible circuit board.
  • Flexible circuit boards are also used in some optical modules; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceivers as a supplement to the rigid circuit boards.
  • the optical transceiver device 400 includes two parts, an optical transmitting sub-module and an optical receiving sub-module, which are respectively used for transmitting and receiving optical signals.
  • the light emission sub-module generally includes a light emitter, a lens and a light detector, and the lens and the light detector are located on different sides of the light emitter.
  • the front and back sides of the light emitter emit light beams respectively, and the lens is used to converge the light emitter.
  • the light beam emitted from the front side makes the light beam emitted by the light transmitter a convergent light to facilitate coupling to an external optical fiber; the light detector is used to receive the light beam emitted from the reverse side of the light transmitter to detect the optical power of the light transmitter.
  • the light emitted by the optical transmitter enters the optical fiber after being condensed by the lens, and the light detector detects the luminous power of the optical transmitter to ensure the constancy of the emitted optical power of the optical transmitter.
  • the optical transceiver device 400 will be described in detail below.
  • FIG. 5 is a schematic diagram of the internal structure of an optical module according to some embodiments; as shown in FIG. 5 , the optical transceiver device 400 in the foregoing embodiment includes an optical transmitting sub-module 500 and an optical receiving sub-module 700 , and the optical module further includes a round square
  • the optical transceiver sub-module can be connected to the optical fiber through the optical fiber adapter 800, that is, the optical fiber adapter 800 is inlaid on the circular square tube body 600 for connecting the optical fiber.
  • the round tube body 600 is provided with a third nozzle 603 into which the optical fiber adapter 800 is inserted.
  • the optical transceiver device establishes an optical connection with the optical fiber adapter 800 respectively, and the light emitted and received in the optical transceiver device is transmitted through the same optical fiber in the optical fiber adapter, that is, the same optical fiber in the optical fiber adapter is the transmission channel for the light in and out of the optical transceiver device , the optical transceiver device realizes the single-fiber bidirectional optical transmission mode.
  • the square tube body 600 is used to carry the light emitting sub-module 500 and the light receiving sub-module 700.
  • the round tube body 600 is made of metal material, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the round tube body 600 is provided with a first nozzle 601 and a second nozzle 602 , and the first nozzle 601 and the second nozzle 602 are respectively disposed on the adjacent side walls of the round tube body 600 .
  • the first orifice 601 is provided on the side wall of the circular square tube body 600 in the length direction
  • the second orifice 602 is provided on the side wall of the circular square tube body 600 in the width direction.
  • the light-emitting sub-module 500 is embedded in the first nozzle 601, and through the first nozzle 601, the light-emitting sub-module 500 thermally contacts the round tube body 600; the light-receiving sub-module 700 is embedded in the second nozzle 602, and passes through the second pipe The port 602 , the light receiving sub-module 700 thermally contacts the round tube body 600 .
  • the light emitting sub-module 500 and the light receiving sub-module 700 are directly press-fitted into the round tube body 600, and the round tube body 600 is directly or Contact via a thermally conductive medium.
  • the round and square tube body can be used for the heat dissipation of the light emitting sub-module 500 and the light receiving sub-module 700 , so as to ensure the heat dissipation effect of the light emitting sub-module 500 and the light receiving sub-module 700 .
  • FIG. 6 is a schematic diagram of an exploded structure of a light emission sub-module according to some embodiments
  • FIG. 7 is a schematic diagram of a partial structure of a light emission sub-module according to some embodiments; as shown in FIG. 6 and FIG.
  • the sub-module 500 includes a tube base 501 , a laser detector 503 disposed on the surface of the tube base, a base 502 , pins 504 and a tube cap 505 .
  • the base 502 is vertically arranged with the tube base 501 , and a ceramic substrate 506 is arranged on the surface of the base 502 .
  • a laser chip 507 is provided on the surface of the ceramic substrate 506 .
  • the laser detector 503 is connected to the pin 504 through a wire (not shown in the figure).
  • the cap 505 is provided with a collimating lens (not shown in the figure) for collimating the signal light emitted by the laser chip 507 .
  • the tube base 501 is used to support and carry the laser detector 503 and the base 502 , and the tube base 501 is provided with a plurality of through holes for fixing the pins 504 .
  • the base 502 is used to carry the ceramic substrate 504.
  • the base 502 mainly plays the role of fan heat and load bearing.
  • the material of the base 502 includes but is not limited to tungsten copper, Kovar alloy, SPCC (Steel Plate Cold rolled Commercial, cold rolled carbon steel) ), copper, etc., to facilitate the transfer of the heat generated by the optoelectronic device to the socket 501 for heat dissipation;
  • the ceramic substrate 504 is selected from alumina ceramics, aluminum nitride ceramics, etc. transmission.
  • the negative electrode of the laser chip 507 is connected to the negative electrode of the conductive area 508 through a metal heat sink, and the positive electrode is connected to the positive electrode of the conductive area through a wire.
  • the light emitting sub-module 500 is connected to the gold fingers of the external flexible circuit board through pins 504, and is then electrically connected to the circuit board 300 through the flexible circuit board.
  • a laser driver chip is provided on the circuit board 300 for excitation of the laser chip 507 .
  • the gold finger on the flexible circuit board introduces the electrical signal output by the laser driver chip into the pin 504, and then connects to the laser chip 507 through the pin 504 through the conductive area, and then uses the laser chip 507 to connect the The electrical signal is converted into an optical signal.
  • the laser chip 507 itself has a certain impedance, but due to individual differences, the resistance value of the laser chip 507 fluctuates within a certain range, and because the output impedance of the laser driver chip after passing through the flexible circuit board is rated, it is referred to in this disclosure as It is the characteristic impedance.
  • the output impedance of the laser chip 507 does not match the characteristic impedance, the signal transmitted between the laser driver chip and the laser chip will be lost, reducing the integrity of the signal. Therefore, in order to ensure the integrity of the signal, it is necessary to ensure that the output of the laser chip 507 The impedance matches the characteristic impedance.
  • the meaning of matching means that the impedance value output by the laser 505 reaches the characteristic impedance value, that is, the impedance value and the characteristic impedance value output by the pins corresponding to the laser chip 507 Consistent.
  • An example of the present disclosure provides an optical module, including: a circuit board provided with a laser driving chip; a base; pins disposed on the base; including a negative electrode pin and a positive electrode pin, which are electrically connected to the laser driving chip;
  • the ceramic substrate is arranged on the base; the surface of the ceramic substrate includes a negative metal area, a positive metal area and a chip metal area; the bottom of the laser chip is provided with a negative electrode, the top is provided with a positive electrode, and the bottom of the laser chip is provided with On the surface of the chip metal area, to realize the electrical connection between the negative electrode and the chip metal area; the positive electrode and the positive electrode metal area are connected by wires; the positive electrode metal area is electrically connected with the positive electrode pin; the negative electrode
  • the metal area includes: a first conductive area, a first thin film resistor and a second conductive area, the first thin film resistor communicates with the first conductive area and the second conductive area; the first conductive area is also connected with the The negative electrode pin is
  • a structural diagram of a light emission sub-module provided by an embodiment of the present disclosure, in the present disclosure, a first thin film resistor 5091 , a second thin film resistor 5092 , a third thin film resistor 5093 and a fourth thin film resistor 5093 are disposed on the surface of the ceramic substrate 504 Thin film resistors 5094, each thin film resistor is used to connect a different conductive area.
  • the first thin film resistor 5091 is disposed between the first conductive area 50812 and the second conductive area 50811
  • the second thin film resistor 5092 is disposed between the third conductive area 50831 and the fourth conductive area 50832
  • the The three thin film resistors 5093 are disposed between the fifth conductive region 50821 and the sixth conductive region 50822
  • the fourth thin film resistance is disposed between the sixth conductive region 50822 and the seventh conductive region 50823 .
  • the second conductive region 50811 and the third conductive region 50831 have no metal plating layer in conduction
  • the fourth conductive region 50832 and the fifth conductive region 50821 have no metal plating layer in conduction.
  • the first conductive area 50812, the first thin film resistor 5091 and the second conductive area 50811 are combined to form the negative metal area 5081, and the third conductive area 50831, the second thin film resistor 5092 and the fourth conductive area 50832 form the chip conductive area.
  • the fifth conductive region 50821, the sixth conductive region 50822, the seventh conductive region 50822, the third thin film resistor 5093 and the fourth thin film resistor 5094 form a positive conductive region.
  • One end of the first conductive area 50812 is electrically connected to the negative electrode pin; the fourth conductive area 50832 is provided with a laser chip 507, that is, the negative electrode of the laser chip 507 is electrically connected to the fourth sub-conductive area 50832; the seventh conductive area 50823 is connected to the positive electrode tube electrical connection.
  • the positive electrode of the laser chip 507 is connected to the fifth conductive area 50821, the sixth conductive area 50822, or the seventh conductive area 50823 through a wire, so as to realize the electrical connection between the positive electrode of the laser chip 507 and the positive electrode pin, and complete the circuit.
  • the number of thin film resistors in series with the laser chip 507 in the present disclosure can be configured according to the actual situation.
  • the thin film resistor has an impedance matching function, and finally the impedance output by the laser 505 is consistent with the characteristic impedance. Therefore, the thin film resistor can be called matching resistance.
  • the embodiment provided by the present disclosure is provided with four thin film resistors, namely a first thin film resistor 5091 , a second thin film resistor 5092 , a third thin film resistor 5093 , and a fourth thin film resistor 5091 .
  • the thin film resistor 5094 according to the actual resistance value of the laser chip 507, implements different impedance matching methods by means of wire bonding, so that the output impedance of the laser chip 507 is as close to the characteristic impedance as possible.
  • the positions of the first thin film resistor 5091, the second thin film resistor 5092, the third thin film resistor 5093, and the fourth thin film resistor 5094 on the ceramic substrate can be set as required.
  • the first thin film resistor 5091 and the second thin film resistor 5092 are arranged on one side of the laser chip 507, and the third thin film resistor 5093 and the fourth thin film resistor 5094 are arranged on the side of the laser chip 507. on the other side of the laser chip 507 .
  • the first thin film resistor 5091 is disposed in the negative metal area 5081
  • the second thin film resistor is disposed in the chip metal area 5083
  • the third thin film resistor and the fourth thin film resistor are disposed in the positive metal area 5082 .
  • the resistance of the first thin film resistor 5091, the second thin film resistor 5092, the third thin film resistor 5093 and the fourth thin film resistor 5094 The values should be as different as possible, and the difference is not large. The small difference here generally means that the difference does not exceed 7 ⁇ .
  • the negative metal area 5081 and the positive metal area 5082 are symmetrically arranged along the laser chip 507, and the symmetry here only represents the negative metal area 5081 and the positive electrode
  • the metal layer of the metal region 5082 is symmetrical in shape and structure, excluding the position and resistance value of the thin film resistor disposed thereon.
  • the first thin film resistor 5091 is disposed in the anode conductive area 5081
  • the second thin film resistor is disposed in the chip metal area 5083
  • the third thin film resistor and the fourth thin film resistor are disposed in the anode metal area 5082, and the impedance matching circuit connection method is introduced.
  • the negative electrode of the laser chip 507 is electrically connected to the fourth conductive region 50832 , that is, to the chip metal region 5083 , and then the chip metal region 5083 and the negative electrode metal region 5081 are electrically connected by wire bonding.
  • the series connection of different thin film resistors and the negative electrode of the laser chip 507 is realized.
  • the electrical connection between the positive electrode of the laser chip 507 and the positive electrode metal region 5082 is to set wires between the positive electrode of the laser chip 507 and the different conductive regions in the positive electrode metal region 5082 to realize the series connection of different thin film resistors and the positive electrode of the laser chip 507 .
  • the laser chip is directly arranged in the negative electrode metal area, that is, on the surface of the ceramic substrate, the negative electrode metal area and the positive electrode metal area are arranged;
  • the bottom of the laser chip is provided with a negative electrode, the top is provided with a positive electrode, and the bottom of the laser chip is provided on the surface of the negative electrode metal region, so as to realize the electrical connection between the negative electrode and the negative electrode metal region; the negative electrode metal region is connected to the negative electrode metal region.
  • the negative electrode pins are electrically connected;
  • the positive electrode metal area includes: a sixth conductive area, a fourth thin film resistor and a seventh conductive area, and the fourth thin film resistor communicates with the sixth conductive area and the seventh conductive area , the seventh conductive area is electrically connected to the positive electrode pin;
  • the positive electrode of the laser chip is electrically connected to the sixth conductive area or the seventh conductive area through a wire to meet the impedance matching requirements of the chip.
  • the resistance values of the first thin film resistor and the second thin film resistor are different, and the resistance values of the third thin film resistor and the fourth thin film resistor may also be different. .
  • FIG. 8 is a schematic diagram 1 of connecting components of an optical emitting sub-module according to some embodiments
  • FIG. 9 is an equivalent circuit diagram of each component of the optical emitting sub-module shown in FIG. 8
  • a wire connection is set between the second conductive area 50811 and the third conductive area 50831, the negative electrode of the laser chip 507 is connected in series with the first thin film resistor 5091 and the second thin film resistor 5092; the positive electrode of the laser chip 507 is connected to the sixth conductive area
  • a wire is set between the regions 50822, and the fourth thin film resistor 5094 is connected in series with the laser chip 507.
  • the final equivalent circuit diagram is shown in FIG.
  • the series circuit composed of 5094 makes the impedance value output by the corresponding pin of the laser chip 507 consistent with the characteristic impedance value.
  • FIG. 10 is a second schematic diagram showing the connection of various components of an optical emitting sub-module according to some embodiments
  • FIG. 11 is an equivalent circuit diagram of each component of the optical emitting sub-module shown in FIG. 10
  • a wire connection is set between the fifth sub-conductive region 50812 and the third conductive region 50831
  • the negative electrode of the laser chip 507 is connected in series with the second thin film resistor 5092
  • the positive electrode of the laser chip 507 and the sixth conductive region 50822 are connected in series
  • Figure 11 is a series circuit composed of the second thin film resistor 5092, the laser chip 507 and the fourth thin film resistor 5094, so that the laser The impedance value output by the corresponding pin of the chip 507 is consistent with the characteristic impedance value.
  • FIG. 12 is a schematic diagram 3 of connecting components of an optical emitting sub-module according to some embodiments
  • FIG. 13 is an equivalent circuit diagram of each component of the optical emitting sub-module shown in FIG. 12
  • a wire connection is set between the fifth sub-conductive region 50812 and the third conductive region 50831, the negative electrode of the laser chip 507 is connected in series with the second thin film resistor 5092, and the positive electrode of the laser chip 507 and the fifth conductive region 50821 are connected in series Set up wires, connect the laser chip 507 with the third thin film resistor 5093 and the fourth thin film resistor 5094 in series to form the final equivalent circuit diagram as shown in Figure 13, which is the second thin film resistor 5092, the laser chip 507, the third thin film resistor 5093 and the third thin film resistor 5093.
  • the series circuit composed of four thin film resistors 5094 makes the output impedance value of the corresponding pin of the laser chip 507 consistent with the characteristic impedance value.
  • FIG. 14 is a fourth schematic diagram illustrating the connection of various components of an optical emitting sub-module according to some embodiments
  • FIG. 15 is an equivalent circuit diagram of each component of the optical emitting sub-module shown in FIG. 14
  • a wire connection is set between the second conductive area 50811 and the fourth conductive area 50832
  • a wire is set between the positive electrode of the laser chip 507 and the fifth conductive area 50821 to form the final equivalent circuit diagram shown in FIG.
  • a series circuit composed of a thin film resistor 5091, a laser chip 507, a third thin film resistor 5093 and a fourth thin film resistor 5094 makes the output impedance value of the corresponding pin of the laser chip 507 consistent with the characteristic impedance value.
  • FIG. 16 is a schematic diagram 5 of connecting components of an optical emitting sub-module according to some embodiments
  • FIG. 17 is an equivalent circuit diagram of each component of the optical emitting sub-module shown in FIG. 16 .
  • a wire connection is set between the second conductive area 50811 and the third conductive area 50831, and a wire is set between the positive electrode of the laser chip 507 and the fifth conductive area 50821 to form the final equivalent circuit diagram as shown in FIG.
  • a series circuit composed of a thin film resistor 5091, a second thin film resistor 5092, a laser chip 507, a third thin film resistor 5093 and a fourth thin film resistor 5094 makes the output impedance value of the corresponding pin of the laser chip 507 consistent with the characteristic impedance value.
  • the wires used for connection between the components are gold wires
  • the gold wires are used to establish electrical connections in the wire bonding process
  • each conductive layer is a gold plated layer, which is beneficial to reduce the introduction of extra resistance and improve the laser power.
  • the impedance value of the corresponding pin output of the laser chip 507 is matched with the characteristic impedance value in a wire-bonding manner, so that the load impedance and the internal impedance of the excitation source are mutually matched, and the reflection of electrical signals is reduced. , to increase the power of the laser chip 507 .
  • the impedance value of the pin output corresponding to the laser chip 507 with the characteristic impedance value on the basis of the embodiments of the present disclosure, there are other combinations, or the number of thin film resistors is set to 5, 6 or other The numerical value is not repeated here.
  • the present disclosure discloses an optical module, comprising: a circuit board, a base and a ceramic substrate.
  • a laser driving chip is arranged on the circuit board; a ceramic substrate is arranged on the base and is used for carrying the device.
  • the laser chip which is carried by the ceramic substrate, is connected with the laser driver chip for converting electrical signals into optical signals.
  • a plurality of thin film resistors are arranged on the ceramic substrate. According to the characteristic impedance of the laser driving chip, one or more thin film resistors are selected in series with the laser chip to match the characteristic impedance of the laser driving chip.
  • one or more thin film resistors are selected in series with the laser chip using different wire bonding methods to achieve impedance matching with the laser driver chip, adapt to different lasers, improve matching accuracy, and avoid signal There are larger reflections.
  • the multi-resistor design is helpful for the multi-functional design of the socket, realizes the mass production process, and simplifies the production process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块(200),包括:电路板(300),设置有激光驱动芯片;管座(501);管脚(504),设置于管座(501)上;包括负极管脚和正极管脚,与激光驱动芯片电连接;陶瓷基板(506),设置于管座(501)上;陶瓷基板(506)表面包括负极金属区(5081)、正极金属区(5082)和芯片金属区(5083);激光芯片(507)的底部设置有负极,顶部设置有正极,激光芯片(507)的底部设置在芯片金属区(5083)表面,以实现负极与芯片金属区(5083)电连接;正极与正极金属区(5082)通过导线连接;正极金属区(5082)与正极管脚电连接;负极金属区(5081)包括:第一导电区(50812)、第一薄膜电阻(5091)和第二导电区(50811),第一薄膜电阻(5091)连通第一导电区(50812)和第二导电区(50811);第一导电区(50812)还与负极管脚电连接;芯片金属区(5083)与第一导电区(50812)或第二导电区(50811)通过导线电连接,以满足芯片的阻抗匹配要求。

Description

一种光模块
本公开要求在2020年11月27日提交中国专利局、申请号为202011363883.4、专利名称为“一种光模块”、在2020年11月27日提交中国专利局、申请号为202011360365.7、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
由于光纤通信领域中对通信带宽的要求越来越高,使得全球光通信正处在一个飞速发展时期。而在高速数据通信领域中,为了保障数据能够长距离高速传输,本领域通常采用光模块实现不同波长光的发射和接收。
发明内容
第一方面,本公开实施例公开了一种光模块,包括:电路板,设置有激光驱动芯片;管座;管脚,设置于管座上;包括负极管脚和正极管脚,与激光驱动芯片电连接;陶瓷基板,设置于管座上;陶瓷基板表面包括负极金属区、正极金属区和芯片金属区;激光芯片的底部设置有负极,顶部设置有正极,激光芯片的底部设置在芯片金属区表面,以实现负极与芯片金属区电连接;正极与正极金属区通过导线连接;正极金属区与正极管脚电连接;负极金属区包括第一导电区、第一薄膜电阻和第二导电区,第一薄膜电阻连通第一导电区和第二导电区;第一导电区还与负极管脚电连接;芯片金属区与第一导电区或第二导电区通过导线电连接,以满足芯片的阻抗匹配要求。
第二方面,本公开实施例公开了一种光模块,包括:电路板,电路板上设置激光驱动芯片;管座;管脚,设置于管座上,激光驱动芯片与管脚电连接,包括负极管脚和正极管脚;陶瓷基板,设置于管座上;陶瓷基板表面设置:负极金属区和正极金属区;激光芯片的底部设置有负极,顶部设置有正极,激光芯片的底部设置在负极金属区表面,以实现负极与负极金属区电连接;负极金属区与负极管脚电连接;正极金属区包括:第六导电区、第四薄膜电阻和第七导电区,第四薄膜电阻连通第六导电区和第七导电区,第七导电区与正极管脚电连接;激光芯片的正极与第六导电区或第七导电区通过导线电连接,以满足芯片的阻抗匹配要求。
第三方面,本公开实施例公开了一种光模块,包括:电路板,所述电路板上设置激光驱动芯片;管座;管脚,设置于所述管座上,所述激光驱动芯片与所述管脚电连接,包括负极管脚和正极管脚;陶瓷基板,设置于所述管座上,用于承载器件;所述陶瓷基板表面设置有负极区、正极区和芯片区;其中:所述正极区与所述正极管脚电连接;所述负极区包括:第一导电区、第一薄膜电阻和第二导电区,所述第一薄膜电阻连通所述第一导电区和所述第二导电区;所述第一导电区还与所述负极管脚电连接;所述芯片区包括:第三 导电区、第二薄膜电阻和第四导电区,所述第二薄膜电阻连通所述第三导电区和所述第四导电区;激光芯片,设置于所述第四导电区,所述激光芯片的负极与所述第四导电区电连接,正极与所述正极区通过导线连接;根据所述激光驱动芯片的特性阻抗,设置所述芯片区与所述负极区中不同导电区之间的导线连接,用于选择不同的薄膜电阻与所述激光芯片串联。
第四方面,本公开实施例公开了一种光模块,包括:电路板,所述电路板上设置激光驱动芯片;管座;管脚,设置于所述管座上,所述激光驱动芯片与所述管脚电连接,包括负极管脚和正极管脚;陶瓷基板,设置于所述管座上,用于承载器件;所述陶瓷基板表面设置有负极区、正极区和芯片区;其中:所述正极区与所述正极管脚电连接;所述负极区与所述负极管脚电连接;所述正极区包括:第五导电区、第三薄膜电阻、第六导电区、第四薄膜电阻和第七导电区,所述第三薄膜电阻连通所述第五导电区和所述第六导电区,所述第四薄膜电阻连通所述第六导电区和所述第七导电区;激光芯片,设置于所述芯片区,所述激光芯片的负极与所述芯片区电连接,正极与所述正极区通过导线连接;根据所述激光驱动芯片的特性阻抗,设置所述激光芯片的正极与所述正极区中不同导电区之间的导线连接。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为根据一些实施例的光通信系统连接关系图;
图1B为根据一些实施例的另一种光通信系统的连接关系图;
图2为根据一些实施例的光网络终端结构图;
图3为根据一些实施例的光模块结构图;
图4为根据一些实施例的光模块分解结构图;
图5为根据一些实施例的一种光模块的内部结构示意图;
图6为根据一些实施例的光发射次模块的分解结构示意图;
图7为根据一些实施例的光发射次模块的局部结构示意图;
图8为根据一些实施例的一种光发射次模块各部件连接示意图一;
图9为图8所示光发射次模块各部件等效电路图;
图10为根据一些实施例的一种光发射次模块各部件连接示意图二;
图11为图10所示光发射次模块各部件等效电路图;
图12为根据一些实施例的一种光发射次模块各部件连接示意图三;
图13为图12所示光发射次模块各部件等效电路图;
图14为根据一些实施例的一种光发射次模块各部件连接示意图四;
图15为图14所示光发射次模块各部件等效电路图;
图16为根据一些实施例的一种光发射次模块各部件连接示意图五;
图17为图16所示光发射次模块各部件等效电路图。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
光通信技术中使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1A为根据一些实施例的光通信系统连接关系图,图1B为根据一些实施例的另一种光通信系统的连接关系图。如图1A、图1B所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的光网络终端结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤100建立双向的电信号连接。
图3为根据一些实施例的光模块结构图,图4为根据一些实施例的光模块分解结构图。如图3和图4所示,光模块200包括壳体、设置于壳体中的电路板300及光收发器件;
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的左端),开口205也位于光模块200的端部(图3的右端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200内部的光收发器件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发器件等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300通过电路走线将光模块200中的上述器件按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开的一些实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接,作为硬性电路板的补充。
光收发器件400包括光发射次模块及光接收次模块两部分,分别用于实现光信号的发射与光信号的接收。光发射次模块一般包括光发射器、透镜与光探测器,且透镜与光探测器分别位于光发射器的不同侧,光发射器的正反两侧分别发射光束,透镜用于会聚光发射器正面发射的光束,使得光发射器射出的光束为会聚光,以方便耦合至外部光纤;光探测器用于接收光发射器反面发射的光束,以检测光发射器的光功率。在本公开的某一些实施例中,光发射器发出的光经透镜会聚后进入光纤中,同时光探测器检测光发射器的发光功率,以保证光发射器发射光功率的恒定性。下面对光收发器件400进行具体说明。
图5为根据一些实施例的一种光模块的内部结构示意图;如图5所示,前述实施例中的光收发器件400包括光发射次模块500和光接收次模块700,光模块还包括圆方管体600、光纤适配器800,在本公开实施例中,光收发次模块可以通过光纤适配器800连接光纤,即光纤适配器800镶嵌在圆方管体600上,用于连接光纤。在本公开的某一些实施例中,圆方管体600上设置有供光纤适配器800插入的第三管口603,光纤适配器800镶嵌入第三管口603,光发射次模块500和光接收次模块700分别与光纤适配器800建立光连接,光收发器件中发出的光及接收的光均经由光纤适配器中的同一根光纤进行传输,即光纤适配器中的同一根光纤是光收发器件进出光的传输通道,光收发器件实现单纤双向的光传输模式。
圆方管体600用于承载光发射次模块500和光接收次模块700,在本公开实施例中,圆方管体600采用金属材料,利于实现电磁屏蔽及散热。圆方管体600上设置有第一管口601、第二管口602,第一管口601和第二管口602分别设置在圆方管体600相邻的侧壁上。在本公开的某一些实施例中,第一管口601设置在圆方管体600长度方向的侧壁上,第二管口602设置在圆方管体600宽度方向的侧壁上。
光发射次模块500镶嵌入第一管口601,通过第一管口601,光发射次模块500导热接触圆方管体600;光接收次模块700镶嵌入第二管口602,通过第二管口602,光接收次模块700导热接触圆方管体600。在本公开的某一些实施例中,光发射次模块500和光接收次模块700直接压配到圆方管体600中,圆方管体600分别与光发射次模块500和光接收次模块700直接或通过导热介质接触。如此圆方管体可用于光发射次模块500和光接收次模块700的散热,保证光发射次模块500和光接收次模块700的散热效果。
图6为根据一些实施例的光发射次模块的分解结构示意图;图7为根据一些实施例的光发射次模块的局部结构示意图;如图6和图7所示,本公开实施例中光发射次模块500包括管座501、设置于管座表面的激光探测器503、底座502、管脚504和管帽505。底座502与管座501垂直设置,底座502的表面设置有陶瓷基板506。陶瓷基板506表面设有激光芯片507。激光探测器503通过导线与管脚504连接(图中未显示)。管帽505设置有准直透镜(图中未显示),用于激光芯片507发出的信号光的准直。
管座501用于支撑和承载激光探测器503、底座502,管座501设置有多个通孔,用于管脚504的固定。
底座502用于承载陶瓷基板504,本示例中,底座502主要起扇热和承载作用,底座502的材料包括但不限于钨铜、可伐合金、SPCC(Steel Plate Cold rolled Commercial,冷轧碳钢)、铜等,便于将光电器件产生的热量传递至管座501上进行散热;陶瓷基板504选氧化铝陶瓷、氮化铝陶瓷等,陶瓷基板504表面设有多个导电区,用于信号的传输。激光芯片507的负极通过金属热沉与导电区508的负极连接,正极通过导线与导电区的正极连接。
光发射次模块500通过管脚504与外部柔性电路板的金手指连接,再通过柔性电路板与电路板300电连接。通常电路板300上设置激光器驱动芯片,用于激光芯片507的激励。在光模块模进行信号发送时,柔性电路板上的金手指将激光器驱动芯片输出的电信号引入管脚504,再通过管脚504经导电区连接到激光芯片507,然后利用激光芯片507将该电信号转化为光信号。激光芯片507本身具有一定的阻抗,但因个体之间的差异,激光芯片507的阻值在一定范围内波动,而由于激光器驱动芯片经过柔性电路板后输出的阻抗额定,此处本公开中称之为特性阻抗。当激光芯片507输出的阻抗与该特性阻抗不匹配时,激光器驱动芯片和激光芯片之间传输信号会有损耗,降低信号的完整性,因此为了保证信号的完整性,需要保证激光芯片507输出的阻抗与该特性阻抗相匹配,需要说明的是,此处的匹配含义是指使激光器505输出的阻抗值达到特性阻抗值,也就是,激光芯片507相对应的管脚输出的阻抗值与特性阻抗值一致。
本公开示例提供一种光模块,包括:电路板,设置有激光驱动芯片;底座;管脚,设 置于所述底座上;包括负极管脚和正极管脚,与所述激光驱动芯片电连接;陶瓷基板,设置于所述底座上;所述陶瓷基板表面包括负极金属区、正极金属区和芯片金属区;所述激光芯片的底部设置有负极,顶部设置有正极,所述激光芯片的底部设置在所述芯片金属区表面,以实现所述负极与所述芯片金属区电连接;正极与所述正极金属区通过导线连接;所述正极金属区与所述正极管脚电连接;所述负极金属区包括:第一导电区、第一薄膜电阻和第二导电区,所述第一薄膜电阻连通所述第一导电区和所述第二导电区;所述第一导电区还与所述负极管脚电连接;所述芯片金属区与所述第一导电区或所述第二导电区通过导线电连接,以满足芯片的阻抗匹配要求。
图7所示,为本公开实施例提供的一种光发射次模块结构图,本公开中陶瓷基板504表面设置有第一薄膜电阻5091、第二薄膜电阻5092、第三薄膜电阻5093和第四薄膜电阻5094,每个薄膜电阻用于连接不同的导电区。即如图中所示,第一薄膜电阻5091设置于第一导电区50812与第二导电区50811之间,第二薄膜电阻5092设置于第三导电区50831与第四导电区50832之间,第三薄膜电阻5093设置于第五导电区50821与第六导电区50822之间,第四薄膜电阻设置于第六导电区50822与第七导电区50823之间。其中:第二导电区50811与第三导电区50831之间无金属镀层导通,第四导电区50832与第五导电区50821之间无金属镀层导通。
本实施例中第一导电区50812、第一薄膜电阻5091与第二导电区50811组合形成负极金属区5081,第三导电区50831、第二薄膜电阻5092与第四导电区50832形成芯片导电区,第五导电区50821、第六导电区50822、第七导电区50822、第三薄膜电阻5093和第四薄膜电阻5094形成正极导电区。
第一导电区50812的一端与负极管脚电连接;第四导电区50832上设置激光芯片507,也即激光芯片507的负极与第四子导电区50832电连接;第七导电区50823与正极管脚电连接。激光芯片507的正极通过导线与第五导电区50821、或第六导电区50822、或第七导电区50823连接,实现激光芯片507的正极与正极管脚的电连接,完成电路。
为实现阻抗匹配,本公开中激光芯片507串联薄膜电阻的数量可以根据实际情况配置,此时薄膜电阻具备阻抗匹配作用,最终使激光器505输出的阻抗与该特性阻抗相一致,因此可以将薄膜电阻称为匹配电阻。
为了能够同时满足不同阻值的激光芯片507的匹配,本公开提供的实施例中设置有4个薄膜电阻,分别为第一薄膜电阻5091、第二薄膜电阻5092、第三薄膜电阻5093、第四薄膜电阻5094,根据激光芯片507的实际阻值,通过打线的方式实现不同的阻抗匹配方式,使得激光芯片507输出的阻抗尽可能的接近特性阻抗。其中,第一薄膜电阻5091、第二薄膜电阻5092、第三薄膜电阻5093、第四薄膜电阻5094在陶瓷基板上的位置可根据需要设置。为保证薄膜电阻功能稳定性,同时尽量减少导线的长度,本公开将第一薄膜电阻5091、第二薄膜电阻5092设置于激光芯片507的一侧,第三薄膜电阻5093、第四薄膜电阻5094设置于激光芯片507的另一侧。如图中所示,第一薄膜电阻5091设置于负极金属区5081,第二薄膜电阻设置于芯片金属区5083;第三薄膜电阻和第四薄膜电阻设置于正极金属区5082。
根据激光芯片507的实际阻值,通过打线的方式实现不同的阻抗匹配方式,使得激光芯片507输出的阻抗尽可能的接近特性阻抗,当计算得到全部电阻串联入电路的阻抗大于特性阻抗时,通过导线将部分薄膜电阻短路,以实现阻抗匹配。为了能够同时满足不同阻值的激光芯片507的匹配,第一薄膜电阻5091、第二薄膜电阻5092、第三薄膜电阻5093、第四薄膜电阻5094的阻抗可能不同也可以相同。常用的组合方式可为:R1=8Ω,R2=5Ω,R3=4Ω,R4=2Ω;或R1=5Ω,R2=5Ω,R3=5Ω,R4=3Ω。
为了尽可能的实现对多种阻值的激光器实现阻抗匹配,减少基础件的设计、制造成本,第一薄膜电阻5091、第二薄膜电阻5092、第三薄膜电阻5093、第四薄膜电阻5094的阻值应尽量不同,且相差不大,此处相差不大一般是指差值不超过7Ω。
为了保证激光芯片507发射的信号光与准直透镜的中心轴线重合,提高光功率,负极金属区5081与正极金属区5082沿激光芯片507对称设置,此处的对称仅代表负极金属区5081与正极金属区5082的金属层在形状、结构上的对称,不包含其上设置的薄膜电阻的位置、阻值等。
本公开以第一薄膜电阻5091设置于正极导电区5081,第二薄膜电阻设置于芯片金属区5083;第三薄膜电阻和第四薄膜电阻设置于正极金属区5082,介绍阻抗匹配电路连接方式。
本公开实施例中,激光芯片507的负极与第四导电区50832电连接,即与芯片金属区5083实现电连接,再通过打线的方式实现芯片金属区5083与负极金属区5081的电连接。采用在不同的导电区之间设置导线,实现不同的薄膜电阻与激光芯片507负极的串联。
激光芯片507的正极与正极金属区5082的电连接,采用在激光芯片507的正极与正极金属区5082内不同的导电区之间设置导线,实现不同的薄膜电阻与激光芯片507正极的串联。
本公开实施例提供的另一种光模块中,陶瓷基板上没有独立的芯片金属区,而是将激光芯片直接设置在负极金属区,即在陶瓷基板表面设置:负极金属区和正极金属区;所述激光芯片的底部设置有负极,顶部设置有正极,所述激光芯片的底部设置在所述负极金属区表面,以实现所述负极与所述负极金属区电连接;所述负极金属区与所述负极管脚电连接;所述正极金属区包括:第六导电区、第四薄膜电阻和第七导电区,所述第四薄膜电阻连通所述第六导电区和所述第七导电区,所述第七导电区与所述正极管脚电连接;所述激光芯片的正极与所述第六导电区或所述第七导电区通过导线电连接,以满足芯片的阻抗匹配要求。
本公开实施例提供的一种光模块中,所述第一薄膜电阻与所述第二薄膜电阻的阻值不同,也可以是所述第三薄膜电阻与所述第四薄膜电阻的阻值不同。
图8为根据一些实施例的一种光发射次模块各部件连接示意图一,图9为图8所示光发射次模块各部件等效电路图。图8中,在第二导电区50811与第三导电区50831之间设置导线连接,激光芯片507的负极与第一薄膜电阻5091、第二薄膜电阻5092串联;激光芯片507的正极与第六导电区50822之间设置导线,将第四薄膜电阻5094与激光芯片507串联,最终等效电路图如图9所示,为第一薄膜电阻5091、第二薄膜电阻5092、激光芯 片507与第四薄膜电阻5094组成的串联电路,使得激光芯片507相对应的管脚输出的阻抗值与特性阻抗值一致。
图10为根据一些实施例的一种光发射次模块各部件连接示意图二,图11为图10所示光发射次模块各部件等效电路图。图10中,在第五子导电区50812与第三导电区50831之间设置导线连接,将激光芯片507的负极与第二薄膜电阻5092串联,激光芯片507的正极与第六导电区50822之间设置导线,将激光芯片507的正极与第四薄膜电阻5094串联,最终等效电路图如图11所示,为第二薄膜电阻5092、激光芯片507与第四薄膜电阻5094组成的串联电路,使得激光芯片507相对应的管脚输出的阻抗值与特性阻抗值一致。
图12为根据一些实施例的一种光发射次模块各部件连接示意图三,图13为图12所示光发射次模块各部件等效电路图。图12中,在第五子导电区50812与第三导电区50831之间设置导线连接,将激光芯片507的负极与第二薄膜电阻5092串联,激光芯片507的正极与第五导电区50821之间设置导线,经激光芯片507与第三薄膜电阻5093与第四薄膜电阻5094串联,形成最终等效电路图如图13所示,为第二薄膜电阻5092、激光芯片507、第三薄膜电阻5093与第四薄膜电阻5094组成的串联电路,使得激光芯片507相对应的管脚输出的阻抗值与特性阻抗值一致。
图14为根据一些实施例的一种光发射次模块各部件连接示意图四,图15为图14所示光发射次模块各部件等效电路图。图14中,在第二导电区50811与第四导电区50832之间设置导线连接,激光芯片507正极与第五导电区50821之间设置导线,形成最终等效电路图如图15所示,为第一薄膜电阻5091、激光芯片507、第三薄膜电阻5093与第四薄膜电阻5094组成的串联电路,使得激光芯片507相对应的管脚输出的阻抗值与特性阻抗值一致。
图16为根据一些实施例的一种光发射次模块各部件连接示意图五,图17为图16所示光发射次模块各部件等效电路图。图16中,在第二导电区50811与第三导电区50831之间设置导线连接,激光芯片507正极与第五导电区50821之间设置导线,形成最终等效电路图如图17所示,为第一薄膜电阻5091、第二薄膜电阻5092、激光芯片507、第三薄膜电阻5093与第四薄膜电阻5094组成的串联电路,使得激光芯片507相对应的管脚输出的阻抗值与特性阻抗值一致。
在本公开的某一些实施例中,各部件之间连接用导线为金线,在打线工艺中使用金线建立电连接,各导电层为金镀层,有利于减少额外电阻的引入,提高激光芯片507相对应的管脚输出的阻抗值与特性阻抗值的匹配精度。
本公开通过设置不同的薄膜电阻,以打线的方式实现激光芯片507相对应的管脚输出的阻抗值与特性阻抗值相匹配,使得负载阻抗与激励源内部阻抗互相适配,减少电信号反射,提高激光芯片507的功率。为实现激光芯片507相对应的管脚输出的阻抗值与特性阻抗值相匹配,在本公开实施例提供的基础上,还存在其他组合方式,或将薄膜电阻的数量设置为5、6或其他数值,在此不再一一赘述。
本公开公开了一种光模块,包括:电路板、底座和陶瓷基板。其中,电路板上设置激光驱动芯片;陶瓷基板,设置于底座上,用于承载器件。激光芯片,由陶瓷基板承载,与 激光驱动芯片连接,用于将电信号转化为光信号。多个薄膜电阻,设置于陶瓷基板上,根据激光驱动芯片的特性阻抗,选择一个或多个薄膜电阻与激光芯片串联,用于匹配激光驱动芯片的特性阻抗。通过在陶瓷基板上预设多个薄膜电阻,利用不同的打线方式选择一个或多个薄膜电阻与激光芯片串联,以实现与激光驱动芯片阻抗匹配,适应不同的激光器,提高匹配精度,避免信号有较大的反射。同时,多电阻设计有助于管座设计多功能化,实现批量生产工艺,简化生产过程。
由于以上实施方式均是在其他方式之上引用结合进行说明,不同实施例之间均具有相同的部分,本说明书中各个实施例之间相同、相似的部分互相参见即可。在此不再详细阐述。
需要说明的是,在本说明书中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或暗示这些实体或操作之间存在任何这种实际的关系或顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的电路结构、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种电路结构、物品或者设备所固有的要素。在没有更多限制的情况下,有语句“包括一个……”限定的要素,并不排除在包括要素的电路结构、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里发明的公开后,将容易想到本公开的其他实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求的内容指出。
以上的本公开实施方式并不构成对本公开保护范围的限定。

Claims (17)

  1. 一种光模块,其特征在于,包括:
    电路板,设置有激光驱动芯片;
    管座;
    管脚,设置于所述管座上;包括负极管脚和正极管脚,与所述激光驱动芯片电连接;
    陶瓷基板,设置于所述管座上;
    所述陶瓷基板表面包括负极金属区、正极金属区和芯片金属区;
    所述激光芯片的底部设置有负极,顶部设置有正极,所述激光芯片的底部设置在所述芯片金属区表面,以实现所述负极与所述芯片金属区电连接;正极与所述正极金属区通过导线连接;
    所述正极金属区与所述正极管脚电连接;
    所述负极金属区包括:第一导电区、第一薄膜电阻和第二导电区,所述第一薄膜电阻连通所述第一导电区和所述第二导电区;
    所述第一导电区还与所述负极管脚电连接;
    所述芯片金属区与所述第一导电区或所述第二导电区通过导线电连接,以满足芯片的阻抗匹配要求。
  2. 根据权利要求1所述的光模块,其特征在于,所述芯片金属区包括:第三导电区、第二薄膜电阻和第四导电区,所述第二薄膜电阻连通所述第三导电区和所述第四导电区;
    所述激光芯片设置于所述第四导电区,所述激光芯片的底部设置在所述第四导电区表面,以实现所述负极与所述第四导电区电连接;
    所述第三导电区与所述第二导电区通过导线电连接;
    所述第四导电区与所述第一导电区或所述第二导电区或第三导电区通过导线电连接,以满足芯片的阻抗匹配要求。
  3. 根据权利要求2所述的光模块,其特征在于,所述第一薄膜电阻与所述第二薄膜电阻的阻值不同。
  4. 根据权利要求3所述的光模块,其特征在于,所述导线为打线工艺使用的金线。
  5. 一种光模块,其特征在于,包括:电路板,所述电路板上设置激光驱动芯片;
    管座;
    管脚,设置于所述管座上,所述激光驱动芯片与所述管脚电连接,包括负极管脚和正极管脚;
    陶瓷基板,设置于所述管座上;
    所述陶瓷基板表面设置:负极金属区和正极金属区;
    所述激光芯片的底部设置有负极,顶部设置有正极,所述激光芯片的底部设置在所述负极金属区表面,以实现所述负极与所述负极金属区电连接;
    所述负极金属区与所述负极管脚电连接;
    所述正极金属区包括:第六导电区、第四薄膜电阻和第七导电区,所述第四薄膜电阻 连通所述第六导电区和所述第七导电区,所述第七导电区与所述正极管脚电连接;
    所述激光芯片的正极与所述第六导电区或所述第七导电区通过导线电连接,以满足芯片的阻抗匹配要求。
  6. 根据权利要求5所述的光模块,其特征在于,所述正极金属区包括:第五导电区及第三薄膜电阻,所述第三薄膜电阻连通所述第五导电区和所述第六导电区;所述激光芯片的正极与所述第五导电区或所述第六导电区或所述第七导电区通过导线电连接,以满足芯片的阻抗匹配要求。
  7. 根据权利要求5所述的光模块,其特征在于,所述第三薄膜电阻与所述第四薄膜电阻的阻值不同。
  8. 一种光模块,其特征在于,包括:电路板,所述电路板上设置激光驱动芯片;
    管座;
    管脚,设置于所述管座上,所述激光驱动芯片与所述管脚电连接,包括负极管脚和正极管脚;
    陶瓷基板,设置于所述管座上,用于承载器件;
    所述陶瓷基板表面设置:负极区、正极区和芯片区;
    其中:所述正极区与所述正极管脚电连接;
    所述负极区包括:第一导电区、第一薄膜电阻和第二导电区,所述第一薄膜电阻连通所述第一导电区和所述第二导电区;
    所述第一导电区还与所述负极管脚电连接;
    所述芯片区包括:第三导电区、第二薄膜电阻和第四导电区,所述第二薄膜电阻连通所述第三导电区和所述第四导电区;
    激光芯片,设置于所述第四导电区,所述激光芯片的负极与所述第四导电区电连接,正极与所述正极区通过导线连接;
    根据所述激光驱动芯片的特性阻抗,设置所述芯片区与所述负极区中不同导电区之间的导线连接。
  9. 根据权利要求8所述的光模块,其特征在于,所述第一导电区通过导线与所述第三导电区电连接;或所述第一导电区通过导线与所述第四导电区电连接。
  10. 根据权利要求8所述的光模块,其特征在于,所述第四导电区通过导线与所述第三导电区电连接。
  11. 根据权利要求8-10中任一项所述的光模块,其特征在于,所述第一薄膜电阻与所述第二薄膜电阻的阻值不同。
  12. 根据权利要求8所述的光模块,其特征在于,所述导线为金线。
  13. 一种光模块,其特征在于,包括:电路板,所述电路板上设置激光驱动芯片;
    管座;
    管脚,设置于所述管座上,所述激光驱动芯片与所述管脚电连接,包括负极管脚和正极管脚;陶瓷基板,设置于所述管座上,用于承载器件;
    所述陶瓷基板表面设置:负极区、正极区和芯片区;
    其中:所述负极区与所述负极管脚电连接;
    所述正极区包括:第五导电区、第三薄膜电阻、第六导电区、第四薄膜电阻和第七导电区,所述第三薄膜电阻连通所述第五导电区和所述第六导电区,所述第四薄膜电阻连通所述第六导电区和所述第七导电区;所述第七导电区还与所述正极管脚电连接;
    激光芯片,设置于所述芯片区,所述激光芯片的负极与所述芯片区电连接,正极与所述正极区通过导线连接;
    根据所述激光驱动芯片的特性阻抗,设置所述激光芯片的正极与所述正极区中不同导电区之间的导线连接。
  14. 根据权利要求13所述的光模块,其特征在于,所述激光芯片的正极与所述第五电区电连接;
    或,所述激光芯片的正极与所述第六电区电连接;
    或,所述激光芯片的正极与所述第七导电区电连接。
  15. 根据权利要求13所述的光模块,其特征在于,所述激光芯片的正极与所述第五导电区电连接,所述第六电区与所述第七导电区电连接。
  16. 根据权利要求13所述的光模块,其特征在于,还包括:柔性电路板,设置于所述管脚与所述电路板之间。
  17. 根据权利要求13所述的光模块,其特征在于,所述导线为金线。
PCT/CN2021/120976 2020-11-27 2021-09-27 一种光模块 WO2022111034A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011360365.7A CN114545569A (zh) 2020-11-27 2020-11-27 一种光模块
CN202011363883.4A CN114545570A (zh) 2020-11-27 2020-11-27 一种光模块
CN202011363883.4 2020-11-27
CN202011360365.7 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022111034A1 true WO2022111034A1 (zh) 2022-06-02

Family

ID=81753989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120976 WO2022111034A1 (zh) 2020-11-27 2021-09-27 一种光模块

Country Status (1)

Country Link
WO (1) WO2022111034A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933070A (zh) * 2022-07-21 2023-04-07 青岛海信宽带多媒体技术有限公司 一种光模块及激光组件
CN117353825A (zh) * 2023-12-04 2024-01-05 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705177A (zh) * 2004-05-31 2005-12-07 日本光进株式会社 光模块
US20140328595A1 (en) * 2013-05-06 2014-11-06 Phovel.Co.Ltd Radio frequency optical module and optical transmission apparatus including the same
CN108075350A (zh) * 2017-12-19 2018-05-25 深圳市东飞凌科技有限公司 同轴封装激光器
CN110888204A (zh) * 2018-11-28 2020-03-17 祥茂光电科技股份有限公司 具有集成于激光次基台的阻抗匹配网络的激光次模组以及实施它的光发射次模组
CN211375138U (zh) * 2019-09-26 2020-08-28 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705177A (zh) * 2004-05-31 2005-12-07 日本光进株式会社 光模块
US20140328595A1 (en) * 2013-05-06 2014-11-06 Phovel.Co.Ltd Radio frequency optical module and optical transmission apparatus including the same
CN108075350A (zh) * 2017-12-19 2018-05-25 深圳市东飞凌科技有限公司 同轴封装激光器
CN110888204A (zh) * 2018-11-28 2020-03-17 祥茂光电科技股份有限公司 具有集成于激光次基台的阻抗匹配网络的激光次模组以及实施它的光发射次模组
CN211375138U (zh) * 2019-09-26 2020-08-28 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933070A (zh) * 2022-07-21 2023-04-07 青岛海信宽带多媒体技术有限公司 一种光模块及激光组件
CN117353825A (zh) * 2023-12-04 2024-01-05 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射系统及控制方法
CN117353825B (zh) * 2023-12-04 2024-02-09 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射系统及控制方法

Similar Documents

Publication Publication Date Title
WO2022111034A1 (zh) 一种光模块
US20220224073A1 (en) Optical module
WO2022057866A1 (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN218350561U (zh) 一种光模块
WO2022052842A1 (zh) 一种光模块
WO2020108294A1 (zh) 光模块
WO2022127072A1 (zh) 一种光模块
CN111431611B (zh) 一种光模块
WO2023109210A1 (zh) 光模块
US20220337022A1 (en) Light Emission Assembly and an Optical Module
WO2023030457A1 (zh) 光模块
CN217693343U (zh) 一种光模块
WO2022193734A1 (zh) 一种光模块
WO2022127584A1 (zh) 一种光模块
WO2022127594A1 (zh) 一种光模块
CN213302589U (zh) 一种光模块
CN214474114U (zh) 一种光模块
WO2022116619A1 (zh) 一种光模块
CN114545570A (zh) 一种光模块
CN114545569A (zh) 一种光模块
WO2023082783A1 (zh) 光模块
WO2022262551A1 (zh) 一种光模块
CN217718170U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896536

Country of ref document: EP

Kind code of ref document: A1