WO2022262551A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022262551A1
WO2022262551A1 PCT/CN2022/095371 CN2022095371W WO2022262551A1 WO 2022262551 A1 WO2022262551 A1 WO 2022262551A1 CN 2022095371 W CN2022095371 W CN 2022095371W WO 2022262551 A1 WO2022262551 A1 WO 2022262551A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
circuit board
optical
chip
pad
Prior art date
Application number
PCT/CN2022/095371
Other languages
English (en)
French (fr)
Inventor
邵乾
韩继弘
宿靖啟
刘维伟
罗成双
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121355472.0U external-priority patent/CN214795313U/zh
Priority claimed from CN202121357731.3U external-priority patent/CN214795314U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022262551A1 publication Critical patent/WO2022262551A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to an optical module.
  • optical communication technology will be used in new business and application modes such as cloud computing, mobile Internet, and video.
  • the optical module is a tool to realize the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment.
  • the use of silicon photonic chips to realize the photoelectric conversion function has become a mainstream solution adopted by high-speed optical modules.
  • the silicon optical chip is set on the circuit board, and is electrically connected to the circuit board by bonding; the silicon optical chip is connected to the optical interface of the optical module through an optical fiber ribbon, so that optical signals enter and exit the silicon optical chip.
  • the silicon material used in silicon photonic chips is not an ideal light-emitting material for laser chips, and it cannot integrate light-emitting units in the manufacturing process of silicon photonic chips, so silicon photonic chips need to provide light from an external light source.
  • a silicon optical module electrical components such as a laser box (LB), a transimpedance amplifier (TIA), and a driver (DRIVER) are usually included.
  • LB laser box
  • TIA transimpedance amplifier
  • DRIVER driver
  • Some embodiments of the present disclosure provide an optical module.
  • An optical module including:
  • the circuit board has a blind groove on its first surface, including a copper layer disposed on the bottom surface of the blind groove, and a first heat conduction pad and a second heat conduction pad disposed on the copper layer;
  • a laser component arranged on the second heat-conducting pad and embedded in the blind slot for emitting light that does not carry a signal
  • a silicon photonics chip arranged on the first heat-conducting pad and embedded in the blind groove, is used to receive the light that does not carry a signal emitted by the laser component;
  • an electrical connector disposed in the blind slot, one end electrically connected to the silicon photonic chip, and the other end electrically connected to the circuit board, for electrically connecting the silicon photonic chip to the circuit board;
  • the metal upper cover is arranged on the second thermal pad and a part is in contact with the copper layer, and is used for transferring the heat generated by the laser component to the housing of the optical module.
  • FIG. 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • FIG. 2 is a schematic structural diagram of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an optical module provided by some embodiments of the present disclosure after removing the upper case and the lower case;
  • FIG. 6 is a schematic structural diagram of a circuit board of an optical module provided by some embodiments of the present disclosure.
  • FIG. 7A is a schematic structural diagram of components provided on a circuit board of an optical module provided by some embodiments of the present disclosure.
  • FIG. 7B is another structural schematic diagram of components provided on the circuit board of the optical module provided by some embodiments of the present disclosure.
  • FIG. 8A is a schematic structural diagram of various devices disposed on the heat conduction pad of the circuit board of the optical module provided by some embodiments of the present disclosure
  • FIG. 8B is another structural schematic diagram of devices disposed on the heat conduction pad of the circuit board of the optical module provided by some embodiments of the present disclosure.
  • FIG. 9A is a schematic diagram of the final structure of the optical module provided by some embodiments of the present disclosure after the metal upper cover is placed on the surface of the circuit board;
  • FIG. 9B is another schematic diagram of the final structure of the optical module provided by some embodiments of the present disclosure after the metal upper cover is placed on the surface of the circuit board;
  • Fig. 10 is a schematic diagram of the relative setting relationship between the metal upper cover and the circuit board of the optical module provided by some embodiments of the present disclosure
  • FIG. 11 is a schematic diagram of a three-dimensional structure of a metal upper cover of an optical module provided by some embodiments of the present disclosure.
  • FIG. 12 is a first schematic diagram of the relative relationship between the signal pad of the optical module and other structures provided by some embodiments of the present disclosure
  • FIG. 13 is a second schematic diagram of the relative relationship between the signal pad and other structures of the optical module provided by some embodiments of the present disclosure.
  • Fig. 14 is a schematic diagram of the gold wire connection of the silicon optical chip of the optical module provided by some embodiments of the present disclosure
  • Fig. 15 is a schematic diagram of the positional relationship between the metal upper cover of the optical module and other structures provided by some embodiments of the present disclosure under a viewing angle;
  • Fig. 16 is a schematic diagram of the positional relationship between the metal upper cover of the optical module and other structures provided by some embodiments of the present disclosure under another viewing angle;
  • Fig. 17 is a schematic diagram of the positional relationship between the metal upper cover of the optical module and other structures provided by some embodiments of the present disclosure under another viewing angle;
  • Fig. 18 is a schematic diagram of a three-dimensional structure of a metal upper cover provided by some embodiments of the present disclosure.
  • FIG. 19 is a schematic diagram of the positional relationship between the metal upper cover of the optical module and the bridge substrate at a viewing angle provided by some embodiments of the present disclosure
  • Fig. 20 is a schematic diagram of the positional relationship between the metal upper cover, the bridge substrate and the circuit board of the optical module provided by some embodiments of the present disclosure
  • FIG. 21 is a schematic diagram of wire bonding of an optical module provided by some embodiments of the present disclosure through a bridge substrate.
  • One of the core links of optical communication is the mutual conversion of optical and electrical signals.
  • Optical communication uses optical signals carrying information to be transmitted in information transmission equipment such as optical fibers/optical waveguides, and the passive transmission characteristics of light in optical fibers/optical waveguides can be used to achieve low-cost, low-loss information transmission; and information processing equipment such as computers Electric signals are used.
  • information transmission equipment such as optical fibers/optical waveguides
  • information processing equipment such as computers Electric signals are used.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on its internal circuit board.
  • the main electrical connection includes power supply, I2C signal, data signal and grounding; the electrical connection method realized by the gold finger has become an optical module
  • the mainstream connection method in the industry, based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of an optical communication terminal mainly includes an optical network unit 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • One end of the optical fiber 101 is connected to the remote server, and the other end is connected to the optical network unit 100 via the optical module 200; one end of the network cable 103 is connected to the local information processing device, and the other end is connected to the optical network unit 100, wherein the local information processing device and the remote server
  • the connection is completed via the network cable 103 , the optical network unit 100 , the optical module 200 , and the optical fiber 101 , and the connection between the optical fiber 101 and the network cable 103 is completed by the optical network unit 100 with the optical module 200 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber.
  • the electrical port of the optical module 200 is connected to the optical network unit 100 to establish a bidirectional electrical signal connection with the optical network unit.
  • the optical module implements mutual conversion between optical signals and electrical signals, thereby establishing a connection between the optical fiber 101 and the optical network unit 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network unit 100
  • the electrical signal from the optical network unit 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical module 200 is a tool for realizing mutual conversion of photoelectric signals, and does not have the function of processing data.
  • the carrier of information is converted between light and electricity, but the information itself does not change.
  • the optical network unit 100 has an optical module interface 102 for connecting to the optical module 200 and establishing a bidirectional electrical signal connection with the optical module 200 .
  • the optical network unit 100 has a network cable interface 104 for connecting to the network cable 103 and establishing a bidirectional electrical signal connection with the network cable 103 ; the optical module 200 and the network cable 103 are connected through the optical network unit 100 .
  • the optical network unit 100 transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module.
  • the optical network unit serves as the upper computer of the optical module to monitor the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing device through the optical fiber 101 , the optical module 200 , the optical network unit 100 and the network cable 103 in sequence.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network unit is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal OLT, etc.
  • FIG. 2 is a schematic structural diagram of an optical network unit. As shown in Figure 2, there is a circuit board 105 in the optical network unit 100, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector connected to the circuit board 105 is provided in the cage 106, for accessing golden fingers, etc.
  • the electrical port of the optical module; the cage 106 is provided with a radiator 107, and the radiator 107 has a raised structure such as fins to increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network unit 100 , specifically, the electrical port of the optical module 200 is inserted into the electrical connector in the cage 106 , and the optical port of the optical module 200 is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board 105 of the optical network unit 100, and the electrical connector on the circuit board 105 is wrapped in the cage 106; the optical module 200 is inserted into the cage 106, and the optical module 200 is fixed by the cage 106, and the heat generated by the optical module 200 The light is transmitted to the cage 106 through the housing of the optical module, and finally diffused through the heat sink 107 on the cage 106 .
  • FIG. 3 is a schematic structural diagram of an optical module provided by some embodiments of the present disclosure
  • Fig. 4 is a schematic exploded diagram of the optical module structure
  • Fig. 5 is an optical module provided by some embodiments of the present disclosure after removing the upper housing 201 and the lower housing 202 Schematic diagram of the structure; the optical module in the optical communication terminal in the foregoing embodiment will be described below with reference to FIG. 3 , FIG. 4 and FIG. 5 .
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201 , a lower housing 202 , an unlocking handle 203 , an electrical port 204 , an optical port 205 , a circuit board 300 , a silicon photonic The chip 500, and the laser component (covered), the first optical fiber ribbon 600, the second optical fiber ribbon 700 and the optical fiber interface 400, wherein the silicon photonic chip 500 and the laser component are arranged on the same side surface (such as the upper surface) of the circuit board 300 .
  • the upper housing 201 and the lower housing 202 can be combined to form a package cavity with two openings, and the two openings (204, 205) can be at both ends in the same direction as the length direction of the optical module 200. , it can also be two openings in different directions, one of which is an electrical port 204 for inserting into an upper computer such as an optical network unit, and the other opening is an optical port 205 for external optical fiber access to connect internal optical fibers , the circuit board 300, the silicon photonics chip 500, and the photoelectric devices such as the laser components are located in the package cavity.
  • the upper casing 201 and the lower casing 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation; the combination of the upper casing and the lower casing is used to facilitate the installation of circuit boards and other components in the casing, and generally do not
  • the housing of the optical module is integrated, so that when assembling components such as circuit boards, positioning components, heat dissipation and electromagnetic shielding structures cannot be installed, which is also not conducive to production automation.
  • the unlocking handle 203 is located on the outer wall of the package cavity/lower housing 202, pulling the end of the unlocking handle 203 can make the unlocking handle move relatively on the outer wall surface; when the optical module 200 is inserted into the upper computer, the optical module 200 is fixed on the upper computer by the unlocking handle 203 In the cage 106 of the upper computer, the locking relationship between the optical module and the upper computer is released by pulling the unlocking handle 203, so that the optical module can be pulled out from the cage of the upper computer.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can carry a load, for example, the rigid circuit board can carry chips stably. When the optical transceiver device is on the circuit board, the rigid circuit board can also provide a stable bearing; the rigid circuit board can also be inserted into the electrical connector in the cage of the host computer, specifically, a metal plate is formed on the surface of one end of the rigid circuit board Pins/fingers for connecting with electrical connectors; these are not easy to implement with flexible circuit boards.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, such as flexible circuit boards can be used to connect rigid circuit boards and optical transceivers.
  • the end surface of the circuit board 300 has gold fingers, and the gold fingers are composed of pins that are independent of each other.
  • the circuit board is inserted into the electrical connector in the cage, and the gold finger is conductively connected with the clamping shrapnel in the electrical connector.
  • Gold fingers can be provided on only one side of the circuit board; if the number of pins is large, gold fingers can be provided on both the upper and lower surfaces of the circuit board.
  • the gold finger is used to establish an electrical connection with the host computer, and the specific electrical connection can be used for power supply, grounding, transmission of I2C signals, communication data signals, etc.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver, limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP )Wait.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver, limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP )Wait.
  • the silicon photonics chip 500 has no light source itself, and the laser component is used as an external light source for the silicon photonics chip 500 .
  • a laser box can be selected for the laser component, and a laser chip is packaged inside the laser box.
  • the laser chip emits light to generate a laser beam.
  • the laser component is used to provide laser emission to the silicon photonics chip 500.
  • the laser has better single-wavelength characteristics and better wavelength tuning characteristics.
  • the preferred light source for optical modules and even optical fiber transmission, and other types of light such as LED light, etc. are generally not used in common optical communication systems, even if this light source is used in special optical communication systems, due to the characteristics of the light source and chip components There is a big difference from the use of laser, so that there is a big technical difference between the optical module using laser and the optical module using other light sources. Generally, those skilled in the art will not think that these two types of optical modules can give each other technical inspiration .
  • the bottom surface of the silicon photonic chip 500 and the bottom surface of the laser component are respectively arranged on the substrate.
  • the optical path is very sensitive to the positional relationship between the silicon photonic chip and the light source. Materials with different expansion coefficients It will cause different degrees of deformation, which is not conducive to the realization of the preset optical path.
  • the silicon photonic chip and the light source are arranged on the same substrate. If the substrate of the same material is deformed, the positions of the silicon photonic chip and the light source will be equally affected, and it is possible to avoid damage to the silicon photonic chip and light source.
  • the relative position of the light source changes greatly; the expansion coefficient of the substrate material is close to the expansion coefficient of the silicon photonic chip and/or the light source material.
  • the main material of the silicon photonic chip is silicon, and the light source can be Kovar metal. Generally, silicon or glass is used.
  • the circuit board 300 has an opening through the upper and lower surfaces, and the silicon photonic chip and/or light source are arranged in the opening, so that the silicon photonic chip and /or the light source can simultaneously dissipate heat to the upper surface of the circuit board and the lower surface of the circuit board, wherein the substrate is arranged on one side of the circuit board, and the silicon photonic chip and/or light source pass through the opening of the circuit board and then placed on the heat dissipation substrate , the substrate acts as a support and heat dissipation effect; in another way, the circuit board is not provided with openings, and the substrate is provided on the circuit board.
  • the substrate can be provided on the surface of the circuit board or embedded in the circuit board. and the light source are arranged on the surface of the substrate.
  • the bottom surface of the laser component is set on the substrate, the laser component emits light through the side, and the emitted light enters the silicon photonics chip 500 .
  • the silicon photonics chip uses silicon as the main substrate, but silicon is not an ideal light-emitting material.
  • the silicon photonics chip 500 cannot integrate a light source, and an external light source such as a laser component is required to provide a light source.
  • the light provided by the laser component to the silicon photonics chip is emitted light with a single wavelength and stable power without carrying any data.
  • the emitted light is modulated by the silicon photonics chip 500 to load data into the emitted light.
  • the bottom surface of the silicon photonics chip 500 is disposed on a substrate, and the side surface of the silicon photonics chip 500 receives emitted light from a light source.
  • the modulation of the emitted light and the demodulation of the received light from the outside are completed by the silicon photonics chip, and the surface of the silicon photonics chip 500 is provided with a bonding pad electrically connected to the circuit board 300 .
  • the circuit board provides the data signal from the upper computer to the silicon photonic chip, and the data signal is modulated into the emitted light by the silicon photonic chip 500. After the received light from the outside is demodulated into an electrical signal by the silicon photonic chip 500, it passes through the circuit The board is output to the host computer.
  • both the first optical fiber ribbon 600 and the second optical fiber ribbon 700 are formed by merging multiple optical fibers, and are covered by an optical fiber array.
  • the first fiber optic ribbon 600 is a launch fiber optic ribbon and the second fiber optic ribbon 700 is a receive fiber optic ribbon.
  • One end of the first optical fiber ribbon 600 is connected to the silicon optical chip 500, and the other end is connected to the optical fiber interface 400;
  • one end of the second optical fiber ribbon 700 is connected to the silicon optical chip 500, and the other end is connected to the optical fiber interface 400;
  • the optical fiber interface 400 is connected to the external optical fiber connect. It can be seen that the optical connection between the silicon photonics chip 500 and the optical fiber interface 400 is realized through the first optical fiber ribbon 600 and the second optical fiber ribbon 700, and the optical fiber interface 400 is optically connected with the optical fiber outside the optical module.
  • the laser component transmits the emitted light that does not carry a signal to the silicon photonics chip 500, and the silicon photonics chip 500 modulates the emitted light that does not carry a signal, specifically loads data into the emitted light that does not carry a signal, and then converts the signal that does not carry The emitted light of is modulated into the emitted light carrying the data signal.
  • the emitted light carrying the data signal is transmitted to the optical fiber interface 400 through the first optical fiber ribbon 600, and then transmitted to the external optical fiber through the optical fiber interface 400, so that the light carrying the data signal is transmitted to the external optical fiber of the optical module to realize the conversion of the electrical signal for the light signal.
  • the optical signal from the external optical fiber can be transmitted to the optical fiber interface 400 , and then the optical signal can be transmitted to the silicon optical chip 500 through the second optical fiber ribbon 700 .
  • the silicon photonics chip 500 demodulates the optical signal into an electrical signal, and outputs it to the host computer through the circuit board to convert the optical signal into an electrical signal.
  • design solutions provided by some embodiments of the present disclosure are not only applicable to 400G optical modules, but also applicable to high-rate transmission modules such as 800G optical modules.
  • FIG. 6 is a schematic structural diagram of a circuit board 300 provided by some embodiments of the present disclosure.
  • the upper surface of the circuit board 300 is provided with a first blind slot 310 and a second blind slot 320
  • the surface of the first blind slot 310 is provided with a first signal pad 330
  • the surface of the second blind slot 320 is provided with With the second signal pad 340
  • the design solutions provided by some embodiments of the present disclosure are not only applicable to 400G optical modules, but also applicable to high-speed transmission modules such as 800G optical modules.
  • only one blind slot can be provided on the surface of the adaptive circuit board 300; and when applicable to an 800G optical module, the surface of the adaptive circuit board 300 can be provided with a first blind slot 310 and a second blind slot 320.
  • blind slot mentioned in this disclosure does not penetrate the upper and lower surfaces of the circuit board, and the bottom surface of the blind slot can be seen from a top view.
  • blind slots are provided on the surface of the circuit board 300 instead of providing through slots on the surface of the circuit board 300 in the related art.
  • the setting of the blind slot in the present disclosure can allow the electronic component to be designed on the lower surface of the circuit board corresponding to the blind slot, and the distance between the bottom of the blind slot and the lower surface of the circuit board can be It is used for wiring between the inner layers of the circuit board.
  • FIG. 7A shows a structure in which thermal pads and electrical connectors are provided on the surface of a circuit board 300 provided by some embodiments of the present disclosure.
  • the surfaces of the first blind slot 310 and the second blind slot 320 are both covered with a copper layer, and the surface of the copper layer of the first blind slot 310 is pasted with a first thermal pad 311, The second heat conduction pad 312, the third heat conduction pad 313 and the fourth heat conduction pad 314; correspondingly, the copper layer surface of the second blind groove 320 is respectively pasted with corresponding four heat conduction pads through heat conduction adhesive, as shown in FIG. 7A Pad blocks 321, 322, 323, 324 in.
  • the surface of the blind slot is provided with an electrical connector for electrically connecting the silicon photonics chip 500 to the circuit board 300, for example, the first signal pad 330 and the second blind slot 320 are respectively provided on the surface of the first blind slot 310 and the second blind slot 320.
  • Two signal pads 340 are respectively provided on the surface of the first blind slot 310 and the second blind slot 320.
  • FIG. 7B shows another structure in which thermal pads and electrical connectors are provided on the surface of the circuit board 300 provided by some embodiments of the present disclosure, wherein the configuration of the thermal pads is the same as that in FIG. 7A , and the electrical connectors are shown in FIG. 7B It is the bridge substrate 315 .
  • the structure of the bridging substrate 315 can be clearly seen from its enlarged view in FIG. 7B , and the surface of the bridging substrate 315 is provided with metal traces.
  • the circuit board 300 includes a ground layer and a signal layer, the copper layer is connected to the ground layer through a via hole, and the electrical connector is connected to the signal layer through a via hole.
  • the blind slots in some embodiments of the present disclosure can accommodate silicon photonic chips and laser components, wherein the upper surface of the silicon photonic chip is flush with the upper surface of the circuit board, and the upper surface of the laser component is flush with the upper surface of the circuit board. It can shorten the bonding length of silicon photonic chips and laser components.
  • the following takes the first thermal pad 311, the second thermal pad 312, the third thermal pad 313 and the fourth thermal pad 314 as examples; the first thermal pad 311, the second thermal pad 312, the The surfaces of the third heat conduction pad 313 and the fourth heat conduction pad 314 are provided with corresponding structures, and the heat generated by each structure can be transferred to the copper layer through the heat conduction pad.
  • FIG. 8A and FIG. 8B respectively show a structure in which various devices are arranged on the thermal pad of the circuit board provided in some embodiments of the present disclosure.
  • the surface of the first thermal pad 311 is provided with a silicon photonics chip 500, and the surface of the silicon photonics chip 500 is provided with a TIA (transimpedance amplifier) chip 510 and a Driver (driver) chip 520, the Driver chip 520 is used to drive the laser component to send out optical signals, and the TIA chip 510 is used to amplify the optical signal transmitted to the silicon optical chip 500;
  • the second thermal pad 312 is provided with a laser component 801 and a collimating lens in sequence toward the silicon optical chip 500 802, an isolator 803 and a converging lens 804;
  • the third thermal pad 313 is provided with a first optical fiber array 610 for covering the first optical fiber ribbon 600, and the first optical fiber ribbon passes under the first optical fiber array 610; similarly A second optical fiber array 710
  • only one lens can be set in the light emitting direction of the laser component 801, for example, the converging lens 804 is located between the laser component 801 and the silicon photonic chip 500, and is used to emit the laser chip in the laser component 801.
  • the light converges for subsequent coupling; or two lenses can be set in the light emitting direction of the laser chip, such as a collimating lens 802 and a converging lens 804 respectively, and the light emitted by the laser chip becomes collimated light through the collimating lens 802, collimating The light can maintain a small optical power attenuation during the long-distance optical transmission process, and the converging lens 804 receives the collimated light to concentrate and couple the light into the silicon optical chip 500 .
  • the isolator 803 is used to prevent the light emitted by the laser chip from returning to the laser chip after being emitted, so the isolator 803 is arranged in the light emitting direction of the laser chip.
  • the surface of the first heat conduction pad 311 is provided with a silicon photonics chip 500
  • the surface of the second heat conduction pad 312 is provided with a laser assembly 801
  • the third heat conduction pad 313 is for the first optical fiber ribbon 600 to pass through
  • the fourth heat conduction pad 314 is for the first
  • the two optical fiber ribbons 700 pass through, so that the heat of the silicon photonics chip 500 , the laser component 801 , the first optical fiber ribbon 600 and the second optical fiber ribbon 700 is transferred to the copper layer through corresponding heat conducting pads.
  • one of the functions of the first thermal pad 311, the second thermal pad 312, the third thermal pad 313, and the fourth thermal pad 314 is heat conduction, so their thermal conductivity should be high, which is convenient for transferring the heat generated by the corresponding devices. heat.
  • the thermal expansion coefficients of the circuit board 300 and the silicon photonics chip 500, the laser component 801, the first optical fiber ribbon 600, and the second optical fiber ribbon 700 do not match, the stability of the optical path may be poor, so some embodiments of the present disclosure provide The thermal expansion coefficients of the first thermal pad 311, the second thermal pad 312, the third thermal pad 313, and the fourth thermal pad 314 can be compared with the silicon photonic chip 500, the laser assembly 801, the first optical fiber ribbon 600 and the second The thermal expansion coefficients of the optical fiber ribbon 700 are matched, thereby ensuring the stability of the optical path at different temperatures.
  • the material of each thermal pad is preferably but not limited to aluminum nitride ceramics or tungsten copper.
  • FIG. 8A the electrical connectors (signal pads) are blocked and not shown.
  • the electrical connection between the silicon photonics chip 500 and the circuit board 300 is realized through an electrical connector, wherein one end of the electrical connector is electrically connected to the silicon photonics chip 500 and the other end is wired to the circuit board 300 electrical connection.
  • the silicon photonics chip 500 is arranged on the thermal pad in the blind slot, rather than on the upper surface of the circuit board, so that the length of the gold wire between the high frequency signal of the silicon photonics chip 500 and the circuit board 300 can be shortened. , and then optimize the high-frequency signal transmission performance.
  • FIG. 9A and FIG. 9B respectively show a final structure after a metal upper cover is placed on the surface of the circuit board.
  • the heat of the corresponding device is transferred to the surface of the copper layer through each heat conducting pad.
  • a metal upper cover is provided, which has An extension extending downward from the top until it contacts the copper layer on the bottom surface of the blind slot.
  • a metal upper cover 900 is disposed above the second thermal pad 312 .
  • the metal upper cover 900 ′ is disposed on the second thermal pad 312 and the bridging substrate 315 .
  • FIG. 10 shows the relative positional relationship between the metal upper cover 900 and the circuit board 300 .
  • FIG. 11 shows the three-dimensional structure of the metal upper cover 900 .
  • the metal upper cover 900 includes a cover portion 911 and an extension located in the blind groove, and the extension portion extends downward from the cover portion 911 and includes a first extension portion 912 and a second extension portion 913 . 10 to 11, when the metal upper cover 900 is installed on the circuit board 300, the first extension part 912 is located in the first gap between the second thermal pad 312 and the third thermal pad 313 in the blind groove.
  • the second extension portion 913 is in contact with the copper layer in the second gap between the second thermal pad 312 and the fourth thermal pad 314 in the blind groove.
  • the side of the cover portion 911 opposite to the silicon photonics chip 500 has a protruding end 914 , which is directly connected to the circuit board 300 to achieve a better fixed connection with the circuit board 300 .
  • a notch 901 and a cavity 903 are formed in the structure of the metal upper cover 900, wherein the notch 901 is used to avoid the signal pad, and the cavity 903 is used to cover the second thermal conductor
  • Each device on the pad 312, wherein the metal upper cover 900 defines the two side walls of the cavity 903 (that is, corresponding to the first extension part 912 and the second extension part 913) are respectively located in the first The gap and the second gap are in contact with the copper layer.
  • a first signal pad 330 is provided on the surface of the copper layer of the first blind slot 310, and the first signal pad 330 is used for the silicon photonic chip. 500 and a gold wire bonding connection between the circuit board 300.
  • a notch 901 is provided on the end of the metal upper cover 900 close to the first signal pad 330, and the notch 901 just exposes the first signal pad 330 without being exposed. Covering facilitates the gold wire bonding connection between the silicon photonics chip 500 and the circuit board 300 .
  • Figure 12 is a first schematic diagram of the relative relationship between the signal pads of the optical module and other structures provided by some embodiments of the present disclosure
  • Figure 13 is a second schematic diagram of the relative relationship between the signal pads of the optical module provided by the embodiments of the present disclosure and other structures, wherein A part of the structure corresponding to a blind slot is shown, that is, the structure corresponding to the 400G optical module; similarly, the structure of the 800G optical module is adaptable.
  • Fig. 14 is a schematic diagram of gold wire connection of the silicon photonics chip of the optical module provided by some embodiments of the present disclosure. As shown in FIG. 14 , one end of the silicon photonics chip 500 is directly connected to the circuit board 300 by wire bonding, and the other end is connected to the first signal pad 330 by wire bonding to realize gold wire bonding between the silicon photonic chip 500 and the circuit board 300 connect.
  • FIG. 9B shows another final structure after the metal upper cover 900 ′ is covered on the surface of the circuit board 300 .
  • the metal upper cover 900 ′ is disposed above the second thermal pad 312 and the bridging substrate 315 .
  • FIG. 15 shows the structure after the second optical fiber array 710 and the second optical fiber ribbon 700 are removed.
  • Figure 16 shows that the first notch 901' on the metal upper cover 900' avoids one end of the bridge substrate 315;
  • Figure 17 shows that the second notch 902' on the metal upper cover 900' avoids the other end of the bridge substrate 315;
  • 18 shows the three-dimensional structure of the metal upper cover 900';
  • Figure 19 shows the positional relationship between the metal upper cover 900' and the bridge substrate 315;
  • Figure 20 shows the metal upper cover 900', the bridge substrate 315 The positional relationship with the circuit board 300.
  • the metal upper cover 900' includes a cover part 911' and an extension part located in the blind groove, and the extension part extends downward from the cover part 911', including a first extension part 912' and a second extension part 913', as can be seen from Fig. 15, Fig. 16 and Fig. 18, when the metal upper cover 900' is installed on the circuit board 300, the first extension part 912' is located in the second thermal pad 312 and the third thermal pad in the blind groove The first gap between the blocks 313 is in contact with the copper layer therein, and the second extension part 913' is located in the second gap between the second thermal pad 312 and the fourth thermal pad 314 in the blind slot and in it. copper layer contacts. As shown in FIG. 15 and FIG.
  • the side of the cover portion 911 ′ opposite to the silicon photonics chip 500 has a protruding end 914 ′, and the protruding end 914 ′ has a downward protruding portion, which is supported on the circuit board 300 by the downward protruding portion.
  • a better fixed connection with the circuit board 300 is realized.
  • the larger the contact area between the metal upper cover 900' and the copper layer the better the heat dissipation.
  • a first notch 901 ′, a second notch 902 ′, and a cavity 903 ′ are formed in the structure of the metal upper cover 900 ′.
  • the cover part 911' of the metal upper cover 900' includes a bridging substrate covering part 904, and the bridging substrate 315 is placed under the bridging substrate covering part 904 (as shown in Figures 19 and 20), and the bridging substrate covering part 904 Gold wires for protecting the bridge substrate 315 and its surface.
  • the bridge substrate covering part 904 and the bridge substrate 315 there is a certain gap between the bridge substrate covering part 904 and the bridge substrate 315 to prevent short circuit, and the gap is filled with thermally conductive and non-conductive materials, such as thermally conductive gel, to realize heat dissipation and ensure normal routing of gold wires.
  • the total height of the bridging substrate 315 , the bridging substrate covering part 904 and the gap between them is consistent with the height of the panel on the back of the metal upper cover 900 ′.
  • the first notch 901' is configured to expose the gold wire bonding area at the end of the bridge substrate 315 close to the silicon photonic chip
  • the second notch 902' is configured to expose the gold wire bonding area at the end of the bridge substrate 315 away from the silicon photonic chip
  • the area is exposed, and the cavity 903' is a cavity, which can cover and protect the laser assembly 801, collimating lens 802, isolator 803 and converging lens 804 placed on the second thermal pad 312 to avoid contamination or be destroyed, as shown in Figure 15 to Figure 18.
  • FIG. 21 shows a schematic diagram of wire bonding between a silicon photonics chip 500 and a circuit board 300 in some embodiments of the present disclosure.
  • the electrical connection between the silicon photonic chip 500 and the circuit board is realized through the bridge substrate 315.
  • One end of the bridge substrate 315 is electrically connected to the silicon photonic chip 500, and the other end Wire bonding with the circuit board 300 realizes electrical connection, and then realizes the electrical connection between the silicon photonics chip 500 and the circuit board.
  • the bridge substrate 315 is arranged on the surface of the copper layer of the blind slot for the gold connection between the silicon photonic chip 500 and the circuit board 300 .
  • Wirebond connection Specifically, one end of the bridge substrate 315 is electrically connected to the silicon photonics chip 500 through a gold wire, and the other end of the bridge substrate 315 is electrically connected to the circuit board 300 through a gold wire, thereby realizing the communication between the silicon photonics chip 500 and the circuit board 300. Gold wire bond connections.
  • the bridging substrate 315 can also be used to transfer the heat from the copper layer through the thermally conductive and non-conductive material filled between the bridging substrate 315 and the bridging substrate covering part 904
  • the heat on the surface of the copper layer is transferred to the metal upper cover 900 ′, so that the heat on the surface of the copper layer is transferred to the housing of the optical module through the metal upper cover 900 ′. Therefore, the functions of the bridge substrate 315 in the present disclosure are as follows: first, to realize the gold wire bonding connection between the silicon photonics chip 500 and the circuit board 300 , and second, to assist heat dissipation.
  • the metal upper cover is made of high thermal conductivity metal materials, including but not limited to tungsten copper, molybdenum copper, etc.
  • electrical connectors are provided for the electrical connection between the silicon photonics chip 500 and the circuit board 300; in some embodiments of the present disclosure, blind slots are provided on the surface of the circuit board, and copper Layer, the surface of the copper layer is provided with various thermal pads, and the surface of each thermal pad is provided with structures such as silicon photonic chips and laser components; at the same time, a metal upper cover is also provided, so that the silicon photonic chips, laser components and other structures are generated during work.
  • the heat is transferred to the surface of the copper layer through the thermal pad, and the heat on the surface of the copper layer is transferred to the outside of the optical module through the metal cover, and then the heat inside the optical module is dissipated to avoid heat accumulation and ensure the normal operation of the optical module.
  • the TIA chip 510 and the Driver chip 520 are flip-chip welded on the silicon photonic chip 500, that is, the side (ie, the front side) of the TIA chip 510 and the Driver chip 520 where the electronic components are placed faces the silicon photonic chip 500 , the back of the TIA chip 510 and the driver chip 520 opposite to the front are in close proximity to the housing of the optical module (specifically, the upper housing of the optical module).
  • the heat transfer between the TIA chip 510 and the upper casing of the optical module 200 can be carried out through a heat conduction column, or the heat can be transferred between the TIA chip 510 and the upper casing of the optical module 200.
  • the gap between the body is filled with thermal conductive glue for heat transfer.
  • the driver chip 520 can also conduct heat transfer through a thermally conductive column or a thermally conductive glue.
  • a blind slot is provided on the upper surface of the circuit board, a copper layer is provided on the surface of the blind slot, and an electrical connector, a first thermal pad and a second thermal pad are provided on the surface of the copper layer.
  • a silicon photonic chip is arranged on the first heat conduction pad, and the silicon photonic chip is connected to the circuit board by wire bonding through an electrical connector.
  • a laser component is provided on the second heat conduction pad, and a metal upper cover is provided on the top of the second heat conduction pad. .
  • blind slots are provided in the present disclosure, so that for high-transmission optical modules with a large number of electronic components, it is allowed to design electronic components on the lower surface of the circuit board corresponding to the blind slot, and the bottom of the blind slot is connected to the lower surface of the circuit board It can be used for wiring between the inner layers of the circuit board.
  • the setting of the first thermal pad and the second thermal pad can transfer the heat generated by the silicon photonics chip and the laser component to the copper layer, and then the heat on the surface of the copper layer is transferred to the housing of the optical module through the metal upper cover,
  • the electrical connector is the bridging substrate 315
  • the bridging substrate 315 since the bridging substrate 315 is also in direct contact with the copper layer, the bridging substrate 315 can also be used to transfer heat from the copper layer to the outside of the optical module. This facilitates heat dissipation inside the optical module and prevents concentrated accumulation of heat inside the optical module.
  • the heat transfer between the TIA chip and the upper housing of the optical module can be carried out through the heat conduction column, and the gap between the TIA chip and the upper housing of the optical module can also be filled with thermal conductive glue for heat transfer. Posts or thermal paste for heat transfer.
  • the thermal expansion coefficients of the first thermal pad, the second thermal pad, the third thermal pad and the fourth thermal pad are respectively different from those of the silicon optical chip, the laser component, the first optical fiber ribbon, and the second thermal pad.
  • the thermal expansion coefficients of the optical fiber ribbons are matched, which in turn ensures the stability of the optical path at different temperatures.
  • the optical module provided by the present disclosure has better heat dissipation performance and optical path stability performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括:电路板(300),在其第一表面具有盲槽(310,320),以及在盲槽(310,320)的底面的铜层、和设置在铜层上的第一导热垫块(311)和第二导热垫块(312)。激光组件,设置于第二导热垫块(312)上并嵌设于盲槽(310)内用于发出不携带信号的光。硅光芯片(500),设置于第一导热垫块(311)上并嵌设于盲槽(310)内,用于接收激光组件发出的不携带信号的光。电连接件(315),设置于盲槽(310)中,一端与硅光芯片(500)电连接,另一端与电路板(300)电连接,用于将硅光芯片(500)电连接至电路板(300)。金属上盖(900),罩设在第二导热垫块(312)上方且一部分与铜层相接触,用于将激光组件产生的热量传递至光模块的壳体。

Description

一种光模块
本申请要求2021年6月17日提交的申请号为202121355472.0和2021年6月17日提交的申请号为202121357731.3的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种光模块。
背景技术
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。而在光通信中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。其中,采用硅光芯片实现光电转换功能已经成为高速光模块采用的一种主流方案。
在硅光光模块中,硅光芯片设置在电路板上,通过打线与电路板实现电连接;硅光芯片通过光纤带与光模块的光接口连接,实现光信号进出硅光芯片。而硅光芯片采用的硅材料不是理想的激光芯片发光材料,不能在硅光芯片制作过程集成发光单元,所以硅光芯片需要由外部光源提供光。
因此在硅光光模块中,通常还包括激光盒(LB)、跨阻放大器(TIA)、驱动器(DRIVER)等电器件。但随着光通信的发展,光模块的集成度越来越高,光模块的功率密度也不断增大,致使光模块在工作过程中其内部产生大量的热。而若是光模块内部产生的热量不能及时散出,将严重影响光模块的工作性能。
发明内容
本公开的一些实施方式提供了一种光模块。
根据本公开一些实施方式的光模块,包括:
电路板,在其第一表面具有盲槽,包括设置在所述盲槽的底面的铜层、和设置在所述铜层上的第一导热垫块和第二导热垫块;
激光组件,设置于所述第二导热垫块上并嵌设于所述盲槽内用于发出不携带信号的光;
硅光芯片,设置于所述第一导热垫块上并嵌设于所述盲槽内,用于接收所述激光组件发出的不携带信号的光;
电连接件,设置于所述盲槽中,一端与所述硅光芯片电连接,另一端与所述电路板电连接,用于将所述硅光芯片电连接至所述电路板;以及
金属上盖,罩设在所述第二导热垫块上方且一部分与所述铜层相接触,用于将所述激光组件产生的热量传递至光模块的壳体。
附图说明
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开一些实施例提供的一种光模块结构示意图;
图4为本公开一些实施例提供的光模块的分解结构示意图;
图5为本公开一些实施例提供的光模块去除上壳体、下壳体后的结构示意图;
图6为本公开一些实施例提供的光模块的电路板的结构示意图;
图7A为本公开一些实施例提供的光模块的电路板上设置构件的一种结构示意图;
图7B为本公开一些实施例提供的光模块的电路板上设置构件的另一结构示意图;
图8A为本公开一些实施例提供的光模块的电路板导热垫块上设置各器件的一种结构示意图;
图8B为本公开一些实施例提供的光模块的电路板导热垫块上设置各器件的另一结构示意图;
图9A为本公开一些实施例提供的光模块的在电路板表面罩设金属上盖后所最终呈现出的一种结构示意图;
图9B为本公开一些实施例提供的光模块的在电路板表面罩设金属上盖后所最终呈现出的另一结构示意图;
图10为本公开一些实施例提供的光模块的金属上盖与电路板之间的相对设置关系示意图;
图11为本公开一些实施例提供的光模块的金属上盖立体结构示意图;
图12为本公开一些实施例提供的光模块的信号焊盘与其他结构的相对关系示意图一;
图13为本公开一些实施例提供的光模块的信号焊盘与其他结构的相对关系示意图二;
图14为本公开一些实施例提供的光模块的硅光芯片的金线连接示意图;
图15为本公开一些实施例提供的光模块金属上盖与其他结构在一视角下的位置关系示意图;
图16为本公开一些实施例提供的光模块金属上盖与其他结构在另一视角下位置关系示意图;
图17为本公开一些实施例提供的光模块金属上盖与其他结构在另一视角下的位置关系示意图;
图18为本公开一些实施例提供的金属上盖的立体结构示意图;
图19为本公开一些实施例提供的光模块金属上盖与过桥基板在一视角下的位置关系示意图;
图20为本公开一些实施例提供的光模块的金属上盖、过桥基板与电路板之间的位置关系示意图;
图21为本公开一些实施例提供的光模块通过过桥基板打线的示意图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光通信的核心环节之一是光、电信号的相互转换。光通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络单元100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器,另一端经由光模块200连接光网络单元100;网线103的一端连接本地信息处理设备,另一端连接光网络单元100,其中,本地信息处理设备与远端服务器的连接经由网线103、光网络单元100、光模块200、和光纤101完成,而光纤101与网线103之间的连接由具有光模块200的光网络单元100完成。
光模块200的光口与光纤101连接,与光纤建立双向的光信号连接。光模块200的电口接入光网络单元100中,与光网络单元建立双向的电信号连接。光模块实现光信号与电信号的相互转换,从而实现在光纤101与光网络单元100之间建立连接。
具体地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络单元100中,来自光网络单元100的电信号由光模块200转换为光信号输入至光纤101中。光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息的载体在光与电之间变换,但信息本身并未发生变化。
光网络单元100具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接。光网络单元100具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络单元100建立连接。具体地,光网络单元100将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络单元作为光模块的上位机监控光模块的工作。
至此,远端服务器依次通过光纤101、光模块200、光网络单元100及网线103,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络单元是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端OLT等。
图2为光网络单元结构示意图。如图2所示,在光网络单元100中具有电路板105,在电路板105的表面设置笼子106;在笼子106中设置有与电路板105连接的电连接器,用于接入金手指等光模块的电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络单元100中,具体为光模块200的电口插入笼子106中的电连接器,光模块200的光口与光纤101连接。
笼子106位于光网络单元100的电路板105上,将电路板105上的电连接器包裹在笼子106中;光模块200插入笼子106中,由笼子106固定光模块200,光模块200产生的热量通过光模块壳体传导给笼子106,最终通过笼子106上的散热器107进行扩散。
图3为本公开一些实施例提供的一种光模块结构示意图,图4为该光模块结构爆炸示意图,图5为本公开一些实施例提供的光模块去除上壳体201、下壳体202后的结构示意图;下面结合图3、图4和图5对前述实施例中光通信终端中的光模块进行说明。如图3、图4和图5所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁手柄203、电口204、光口205、电路板300、硅光芯片500、及激光组件(被罩设住)、第一光纤带600、第二光纤带700及光纤接口400,其中硅光芯片500及激光组件设置在电路板300的同侧表面(例如上表面)。
如图3所示,上壳体201与下壳体202可以组合形成具有两个开口的包裹腔体,两个开口(204、205)可以在与光模块200长度方向为同一方向上的两端,也可以是在不同方向上的两处开口,其中一个开口为电口204,用于插入光网络单元等上位机中,另一个开口为光口205,用于外部光纤接入以连接内部光纤,电路板300、硅光芯片500及激光组件等光电器件位于包裹腔体中。
上壳体201与下壳体202一般采用金属材料,利于实现电磁屏蔽及散热;采用上壳体、下壳体组合的装配方式,便于将电路板等器件安装在壳体中,一般不会将光模块的 壳体做成一体结果,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构无法安装,也不利于生产自动化。
解锁手柄203位于包裹腔体/下壳体202的外壁,拉动解锁手柄203的末端可以使解锁手柄在外壁表面相对移动;光模块200插入上位机时由解锁手柄203将光模块200固定在上位机的笼子106里,通过拉动解锁手柄203以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,可以实现承载作用,如硬性电路板可以平稳的承载芯片。当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,具体地,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
电路板300端部表面具有金手指,金手指是由相互独立的一根根引脚组成的。电路板插入笼子中的电连接件中,由金手指与电连接器中的卡接弹片导通连接。可以仅在电路板的一侧表面设置金手指;若引脚数量需求较大,可以在电路板上下表面均设置金手指。金手指用于与上位机建立电连接,具体的电连接可以用于供电、接地、传送I2C信号、通信数据信号等。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动器、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
硅光芯片500自身没有光源,激光组件用作硅光芯片500的外置光源。激光组件可选用激光盒,激光盒内部封装激光芯片,激光芯片发光产生激光束,激光组件用于向硅光芯片500提供发射激光,激光以较好的单波长特性及较佳的波长调谐特性成为光模块乃至光纤传输的首选光源,而其他类型的光如LED光等,常见的光通信系统一般不会采用,即使特殊的光通信系统中采用了这种光源,由于其光源的特性及芯片部件与使用激光时存在较大的差别,使得采用激光的光模块与采用其他光源的光模块存在较大的技术差别,本领域技术人员一般不会认为这两种类型的光模块可以相互给予技术启示。
硅光芯片500的底面与激光组件的底面分别设置在衬底上,硅光芯片500与光源之间具有光连接,光路对硅光芯片及光源之间的位置关系非常敏感,不同膨胀系数的材料会导致不同程度的形变,不利于预设光路的实现。在本公开一些实施例中,将硅光芯片及光源设置在同一衬底上,如果同一材料的衬底发生形变,则将等同地影响硅光芯片及光源的位置,可以避免对硅光芯片与光源的相对位置产生较大的改变;衬底材料的膨胀系数与硅光芯片和/或光源材质的膨胀系数相近为优选,硅光芯片的主材料是硅,光源可以采用可伐金属,衬底一般选用硅或玻璃等。
衬底与电路板300的关系有很多种,其中一种方式如图4所示,电路板300具有贯穿上下表面的开口,硅光芯片和/或光源设置在开口中,如此,硅光芯片和/或光源可以向电路板上表面及电路板下表面同时进行散热,其中,衬底设置在电路板的一侧,硅光芯片和/或光源穿过电路板的开口进而放置在散热衬底上,衬底起到承托及散热效果;另一种方式中,电路板不设置开口,衬底设置在电路板上,具体可以是衬底设置在电路板表面或嵌入电路板中,硅光芯片和光源设置在衬底表面。
激光组件的底面设置在衬底上,激光组件通过侧面出光,其发出的光进入硅光芯片500中。硅光芯片采用硅为主要的基材,而硅不是理想的发光材料,硅光芯片500内无法集成光源,需要外部的光源如激光组件提供光源。激光组件向硅光芯片提供的光为波长单一、功率稳定的发射光,不携带任何数据,由硅光芯片500对该发射光进行调制,以实现将数据加载到发射光中。
硅光芯片500的底面设置在衬底上,硅光芯片500的侧面接收来自光源的发射光。发射光的调制以及来自外部的接收光的解调由硅光芯片完成,硅光芯片500的表面设置有与电路板300打线电连接的焊盘。具体地,电路板向硅光芯片提供来自上位机的数据信号,由硅光芯片500将数据信号调制到发射光中,来自外部的接收光经硅光芯片500解调成电信号后,通过电路板输出至上位机中。
如图4所示,第一光纤带600和第二光纤带700均是由多根光纤合并而成,并且由光纤阵列罩设住。在本公开一些实施例中,第一光纤带600为发射光纤带,第二光纤带700为接收光纤带。第一光纤带600的一端与硅光芯片500连接,另一端与光纤接口400连接;第二光纤带700的一端与硅光芯片500连接,另一端与光纤接口400连接;光纤接口400与外部光纤连接。可以看出,硅光芯片500与光纤接口400之间是通过第一光纤带600和第二光纤带700实现光连接,光纤接口400与光模块外部光纤光连接。
激光组件将不携带信号的发射光传输至硅光芯片500中,硅光芯片500对不携带信号的发射光进行调制,具体是将数据加载到不携带信号的发射光中,进而将不携带信号的发射光调制为携带数据信号的发射光。该携带数据信号的发射光经过第一光纤带600传输至光纤接口400处,通过光纤接口400传输至外部光纤中,从而将携带数据信号的光传输至光模块外部光纤中,实现将电信号转换为光信号。
来自外部光纤的光信号可以传输至光纤接口400处,然后通过第二光纤带700将该光信号传输至硅光芯片500中。硅光芯片500将该光信号解调为电信号,通过电路板输出至上位机中,实现将光信号转换为电信号。
本公开一些实施例提供的设计方案不仅仅适用于400G光模块,还适用于800G光模块等高速率传输模块。
图6为本公开一些实施例提供的电路板300的结构示意图。如图6所示,电路板300的上表面设有第一盲槽310和第二盲槽320,第一盲槽310的表面设有第一信号焊盘330,第二盲槽320的表面设有第二信号焊盘340,本公开一些实施例提供的设计方案不仅仅适用于400G光模块,还适用于800G光模块等高速率传输模块。当适用于400G光模块时,适应性地电路板300表面可以仅设置一个盲槽;而当适用于800G光模块时,适应性地电路板300表面可以设置第一盲槽310和第二盲槽320。
需要说明的是,本公开中提及的盲槽未贯穿电路板上下表面,俯视可以看出盲槽的底面。
本公开在电路板300的表面设置盲槽,来代替相关技术的在电路板300表面设置通槽。对于电子元件数量较多的高传输速率光模块而言,本公开中盲槽的设置可以允许电子元件设计在盲槽处对应的电路板下表面,且盲槽底部至电路板下表面之间可以用于电路板内层之间的线路走线。
图7A示出了本公开一些实施例提供的电路板300表面设置导热垫块和电连接件的结构。具体地,如图7A所示,第一盲槽310和第二盲槽320的表面均铺设有铜层,第一盲槽310的铜层表面通过导热胶粘贴有第一导热垫块311、第二导热垫块312、第三导热垫块313和第四导热垫块314;相应地,第二盲槽320的铜层表面通过导热胶分别粘贴有相应地四个导热垫块,如图7A中的垫块321、322、323、324。此外,盲槽的表面设置有用于将硅光芯片500电连接至电路板300的电连接件,例如第一盲槽310和第二盲槽320的表面分别设置的第一信号焊盘330和第二信号焊盘340。
图7B示出了本公开一些实施例提供的电路板300表面设置导热垫块和电连接件的另一结构,其中,导热垫块的设置与图7A中相同,电连接件在图7B中显示为过桥基板315。具体地,过桥基板315的结构如图7B中其放大图可以清楚地看出,过桥基板315表面布设有金属走线。
电路板300包括接地层和信号层,所述铜层通过过孔与所述接地层连接,电连接件通过过孔与所述信号层连接。
本公开一些实施例中的盲槽可容纳硅光芯片和激光组件,其中硅光芯片的上表面与电路板的上表面平齐,激光组件的上表面与电路板的上表面平齐,这样设置可缩短硅光芯片和激光组件的打线长度。
下述以第一导热垫块311、第二导热垫块312、第三导热垫块313和第四导热垫块314为例进行说明;第一导热垫块311、第二导热垫块312、第三导热垫块313和第四导热垫块314表面均设置有相应结构,各结构工作时产生的热量可以通过导热垫块传递至铜层上。
图8A和图8B分别示出了本公开一些实施例中提供的电路板导热垫块上设置各器件的一种结构。如图8A和图8B所示,第一导热垫块311的表面设置有硅光芯片500,硅光芯片500的表面设置有TIA(跨阻放大器)芯片510和Driver(驱动)芯片520,Driver芯片520用于驱动激光组件发出光信号,TIA芯片510用于放大传输至硅光芯片500处的光信号;第二导热垫块312上朝硅光芯片500方向依次设有激光组件801、准直透镜802、隔离器803和汇聚透镜804;第三导热垫块313上设有用于罩设第一光纤带600的第一光纤阵列610,第一光纤带从该第一光纤阵列610下穿过;同样第四导热垫块314上设有用于罩设第二光纤带700的第二光纤阵列710,第二光纤带从该第二光纤阵列710下穿过。其中,在一些实施例中,在激光组件801的出光方向可以设置仅仅一个透镜,例如,汇聚透镜804,位于激光组件801及硅光芯片500之间,用于将激光组件801中的激光芯片发出的光汇聚以便后续耦合;或者在激光芯片的出光方向可以设置两个透镜,例如分别为准直透镜802和汇聚透镜804,激光芯片发出的光经准直透镜802变为准直光,准直光可以在较长距离的光传输过程中保持较小的光功率衰减,汇聚透镜804接收准直光,以将光汇聚耦合进硅光芯片500中。隔离器803用于防止激光芯片发出的光经发射后回到激光芯片中,所以隔离器803设置在激光芯片出光方向上。
第一导热垫块311表面设有硅光芯片500,第二导热垫块312表面设有激光组件801,第三导热垫块313供第一光纤带600穿过,第四导热垫块314供第二光纤带700穿过,这样硅光芯片500、激光组件801、第一光纤带600和第二光纤带700的热量通过相应的导热垫块传递至铜层上。基于此,第一导热垫块311、第二导热垫块312、第三导热垫块313和第四导热垫块314的作用之一为导热,因此其导热系数要高,便于传递相应器件产生的热量。同时,由于电路板300与硅光芯片500、激光组件801、第一光纤带600和第二光纤带700的热膨胀系数均不匹配而可以导致光路稳定性较差,因此本公开一些实施例提供的第一导热垫块311、第二导热垫块312、第三导热垫块313和第四导热垫块314的热膨胀系数可以分别与硅光芯片500、激光组件801、第一光纤带600和第二光纤带700的热膨胀系数匹配,进而可以确保光路在不同温度下的稳定性。本公开一些实施例中,各导热垫块的材料优选但不限于氮化铝陶瓷或钨铜材质。
图8A中电连接件(信号焊盘)被遮挡未示出。图8B中示出了电连接件,即过桥基板315。本公开一些实施例中通过电连接件实现硅光芯片500与电路板300之间的电连接,其中,电连接件的一端与硅光芯片500打线电连接,另一端与电路板300打线电连接。本公开一些实施例中硅光芯片500设置在盲槽中的导热垫块上,而非电路板上表面上,这样可以缩短硅光芯片500的高频信号与电路板300之间的金线长度,进而优化高频信号传输性能。
图9A和图9B分别示出了在电路板表面罩设金属上盖后所最终呈现出的一种结构。在本公开一些实施例中,通过各导热垫块将相应器件的热量传递至铜层表面,为了将铜层表面的热量传递至光模块外部,避免内部热量集中,提供了金属上盖,其具有自顶部向下延伸直至与盲槽底面上的铜层相接触的延伸部。
如图9A所示,在本公开一些实施例中,金属上盖900罩设在第二导热垫块312上方。如图9B所示,在本公开一些实施例中,金属上盖900'罩设在第二导热垫块312和过桥基板315上方。
图10示出了金属上盖900与电路板300的相对位置关系。图11示出了金属上盖900的立体结构。
如图11所示,金属上盖900包括盖部911和位于盲槽中的延伸部,延伸部自盖部911向下延伸,包括第一延伸部部分912和第二延伸部部分913,从图10至图11所示可知,当金属上盖900安装到电路板300时,第一延伸部部分912位于盲槽中的第二导热垫块312与第三导热垫块313之间的第一间隙中与其中的铜层接触,第二延伸部部分913位于盲槽中的第二导热垫块312与第四导热垫块314之间的第二间隙中与其中的铜层接触。如图10所示,盖部911的与硅光芯片500相对的一侧具有突出端914,其直接跨接在电路板300上,实现与电路板300更好的固定连接。为了达到更好的散热效果,金属上盖900与铜层的接触面积越大越有利于散热。
如图12和图13所示,在金属上盖900的结构中形成有缺口901和腔体903,其中,缺口901用于避让信号焊盘,而腔体903用于罩设所述第二导热垫块312上的各器件,其中金属上盖900的限定所述腔体903的两侧侧壁(即,对应于第一延伸部部分912和第二延伸部部分913)分别位于所述第一间隙和所述第二间隙且与所述铜层相接触。
本公开一些实施例中为了实现硅光芯片500与电路板300的电气连接,在第一盲槽310的铜层表面设有第一信号焊盘330,第一信号焊盘330用于硅光芯片500和电路板300之间的金线键合连接。
为了避让例如第一信号焊盘330,本公开一些实施例中在金属上盖900靠近第一信号焊盘330的一端设有缺口901,缺口901恰好使第一信号焊盘330裸露出来而不被覆盖,便于硅光芯片500和电路板300之间的金线键合连接。
图12为本公开一些实施例提供的光模块的信号焊盘与其他结构的相对关系示意图一;图13为本公开实施例提供的光模块的信号焊盘与其他结构的相对关系示意图二,其中示出了一个盲槽对应的结构的局部,即对应的为400G光模块结构;同样地,800G光模块结构适应性适用。
从图12和图13中可以看出,第一信号焊盘330与硅光芯片500、金属上盖900等结构之间的相对位置关系,各结构的设计使得第一信号焊盘330裸露出来而不被覆盖,便于硅光芯片500和电路板300之间的金线键合连接。
图14为本公开一些实施例提供的光模块的硅光芯片的金线连接示意图。如图14所示,硅光芯片500的一端直接与电路板300打线连接,另一端打线连接至第一信号焊盘330进而实现硅光芯片500和电路板300之间的金线键合连接。
图9B示出了在电路板300表面罩设金属上盖900'后所最终呈现出的另一结构。其中金属上盖900'罩设在第二导热垫块312和过桥基板315的上方。
为了清楚示出金属上盖900'在电路板300表面设置的位置关系,图15中示出了将第二光纤阵列710及第二光纤带700移除后的结构。图16示出了金属上盖900'上的第一缺口901'避让过桥基板315一端;图17示出了金属上盖900'上的第二缺口902'避让过桥基板315另一端;图18示出了金属上盖900'的立体结构;图19示出了金属上盖900'与过桥基板315之间的位置关系;以及图20示出了金属上盖900'、过桥基板315与电路板300之间的位置关系。
如图18所示,金属上盖900'包括盖部911'和位于盲槽中的延伸部,延伸部自盖部911'向下延伸,包括第一延伸部部分912'和第二延伸部部分913',从图15、图16以及图18可知,当金属上盖900'安装到电路板300时,第一延伸部部分912'位于盲槽中的第二导热垫块312与第三导热垫块313之间的第一间隙中与其中的铜层接触,第二延伸部部分913'位于盲槽中的第二导热垫块312与第四导热垫块314之间的第二间隙中与其中的铜层接触。如图15和图20所示,盖部911'的与硅光芯片500相对的一侧具有突出端914',突出端914'具有向下突出部,其通过向下突出部支撑在电路板300上,实现与电路板300更好的固定连接。为了达到更好的散热效果,金属上盖900'与铜层的接触面 积越大越有利于散热。
如图18所示,在金属上盖900'的结构中形成有第一缺口901'、第二缺口902'、和腔体903'。另外,金属上盖900'的盖部911'包括过桥基板覆盖部904,过桥基板315置于过桥基板覆盖部904下方(如图19和图20所示),过桥基板覆盖部904用于保护过桥基板315及其表面的金线走线。过桥基板覆盖部904和过桥基板315之间留有一定间隙防止短路,间隙用导热不导电材料进行填充,如导热凝胶等材料进行填充以实现散热且保证金线正常的走线。过桥基板315、过桥基板覆盖部904及二者之间的间隙的总高度与金属上盖900'的背面的面板的高度一致。
第一缺口901'被配置为使过桥基板315靠近硅光芯片一端的金线键合区域裸露出来,第二缺口902'被配置为使过桥基板315远离硅光芯片一端的金线键合区域裸露出来,腔体903'为空腔,可以罩设和保护置于其中的第二导热垫块312上的激光组件801、准直透镜802、隔离器803和汇聚透镜804,避免其被污染或被破坏,如图15至图18所示。
图21示出了本公开一些实施例中硅光芯片500与电路板300之间的打线示意图。如图21所示,本公开一些实施例中通过过桥基板315实现硅光芯片500与电路板之间的电连接,过桥基板315的一端与硅光芯片500打线实现电连接,另一端与电路板300打线实现电连接,进而实现硅光芯片500与电路板之间的电连接。
根据本公开的上述一些实施例,为了实现硅光芯片500与电路板300的电气连接,过桥基板315设置在盲槽的铜层表面,用于硅光芯片500和电路板300之间的金线键合连接。具体地,过桥基板315的一端通过金线与硅光芯片500电连接,过桥基板315的另一端通过金线与电路板300电连接,进而实现硅光芯片500和电路板300之间的金线键合连接。同时,由于过桥基板315直接与铜层相接触,因此过桥基板315也可以用来将来自铜层的热量经由填充在过桥基板315与过桥基板覆盖部904之间的导热不导电材料传递至金属上盖900',由此使得铜层表面的热量通过金属上盖900'传递至光模块的壳体上。因此,本公开中过桥基板315的作用有:一,用于实现硅光芯片500和电路板300之间的金线键合连接,二,用于辅助散热。
金属上盖采用高导热金属材料,包括但不限于钨铜、钼铜等。
综上所述,本公开一些实施例中提供电连接件供硅光芯片500与电路板300之间的电气连接;本公开一些实施例中电路板表面设有盲槽,盲槽表面设有铜层,铜层表面设有各导热垫块,各导热垫块表面设有硅光芯片、激光组件等结构;同时还设有金属上盖,这样硅光芯片、激光组件等结构在工作时产生的热量通过导热垫块传递至铜层表面,铜层表面的热量通过金属上盖传递至光模块的外部,进而将光模块内部的热量散发出去,避免热量的堆积从而保证光模块的正常工作。
另一方面,本公开一些实施例中由于TIA芯片510和Driver芯片520倒装焊接在硅光芯片500上,即TIA芯片510和Driver芯片520放置电子元件一面(即,正面)朝向硅光芯片500,则TIA芯片510和Driver芯片520的与正面相对的背面与光模块的壳体(具体地是光模块的上壳体)之间紧邻。本公开一些实施例中为了实现TIA芯片510和Driver芯片520的散热,TIA芯片510与光模块200上壳体之间可以通过导热柱进行热量传递,也可以在TIA芯片510与光模块200上壳体缝隙之间填充导热胶进行热量传递。Driver芯片520同样可以通过导热柱或导热胶进行热量传递。
由上述方案可见,本公开提供的光模块中,电路板上表面设置盲槽,盲槽表面设有铜层,铜层表面设有电连接件、第一导热垫块和第二导热垫块,第一导热垫块上设置有硅光芯片,硅光芯片通过电连接件与电路板打线连接,第二导热垫块上设置有激光组件,第二导热垫块的上方罩设有金属上盖。
一方面,本公开设置盲槽,这样对于电子元件数量较多的高传输速率光模块而言,允许将电子元件设计在盲槽处对应的电路板下表面,且盲槽底部至电路板下表面之间可以用于电路板内层之间的线路走线。
同时,第一导热垫块和第二导热垫块的设置可以将硅光芯片和激光组件产生的热量传递至铜层,然后铜层表面的热量通过金属上盖传递至光模块的壳体上,其中,在电连接件是过桥基板315情况下,由于过桥基板315同样直接与铜层相接触,因此过桥基板315也可以用来将铜层处的热量传递至光模块外部。由此便于实现光模块内部散热,避免光模块内部热量集中堆积。
同时,本公开中TIA芯片与光模块上壳体之间可以通过导热柱进行热量传递,也可以在TIA芯片与光模块上壳体缝隙之间填充导热胶进行热量传递,Driver芯片同样可以通过导热柱或导热胶进行热量传递。
同时,本公开一些实施例中第一导热垫块、第二导热垫块、第三导热垫块和第四导热垫块的热膨胀系数分别与硅光芯片、激光组件、第一光纤带和第二光纤带的热膨胀系数匹配,进而可以确保光路在不同温度下的稳定性。
因此,本公开提供的光模块散热性能和光路稳定性能均较好。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (16)

  1. 一种光模块,包括:
    电路板,在其第一表面具有盲槽,包括设置在所述盲槽的底面的铜层、和设置在所述铜层上的第一导热垫块和第二导热垫块;
    激光组件,设置于所述第二导热垫块上并嵌设于所述盲槽内,用于发出不携带信号的光;
    硅光芯片,设置于所述第一导热垫块上并嵌设于所述盲槽内,用于接收所述激光组件发出的不携带信号的光;
    电连接件,设置于所述盲槽中,一端与所述硅光芯片电连接,另一端与所述电路板电连接,用于将所述硅光芯片电连接至所述电路板;以及金属上盖,罩设在所述第二导热垫块上方且一部分与所述铜层相接触,用于将所述激光组件产生的热量传递至光模块的壳体。
  2. 根据权利要求1所述的光模块,其中,所述金属上盖包括腔体,所述第二导热垫块置于所述腔体中,其中,所述金属上盖的限定所述腔体的侧壁的底部与所述铜层相接触,所述电连接件的电连接区域是裸露的,未被所述金属上盖遮盖。
  3. 根据权利要求2所述的光模块,其中,所述电连接件是过桥基板,所述过桥基板设于所述铜层上,具有靠近所述硅光芯片的第一端和与所述第一端相对的第二端,所述过桥基板通过在所述第一端的所述电连接区域与所述硅光芯片电连接,以及通过在所述第二端的所述电连接区域与所述电路板电连接;以及所述金属上盖包括过桥基板覆盖部,所述过桥基板覆盖部设于所述过桥基板上方使得所述过桥基板的所述电连接区域裸露,且所述过桥基板覆盖部与所述过桥基板之间具有间隙。
  4. 根据权利要求3所述的光模块,其特征在于,所述过桥基板为陶瓷过桥基板,所述过桥基板的上表面镀有金属层。
  5. 根据权利要求3所述的光模块,其特征在于,所述金属上盖包括第一缺口和第二缺口,所述第一缺口用于使所述过桥基板的所述第一端的电连接区域裸露,所述第二缺口用于使所述过桥基板所述第二端的电连接区域裸露,所述电连接区域是键合区域;
    所述过桥基板覆盖部设于所述第一缺口和所述第二缺口之间。
  6. 根据权利要求3所述的光模块,其特征在于,所述过桥基板覆盖部和所述过桥基板之间的间隙内填充有导热且不导电材料。
  7. 根据权利要求1所述的光模块,其中,所述硅光芯片的上表面与所述电路板的上表面平齐,所述激光组件的上表面与所述电路板的上表面平齐。
  8. 根据权利要求1所述的光模块,其中,所述电路板包括接地层和信号层,所述铜层通过过孔与所述接地层连接,所述电连接件通过过孔与所述信号层连接。
  9. 根据权利要求2所述的光模块,其中,所述盲槽表面还设有第三导热垫块和第四导热垫块,所述第三导热垫块上设有第一光纤阵列,所述第四导热垫块上设有第二光纤阵列;
    所述光模块还包括:
    第一光纤带,穿过所述第一光纤阵列;
    第二光纤带,穿过所述第二光纤阵列。
  10. 根据权利要求9所述的光模块,其中,所述第二导热垫块与所述第三导热垫块之间具有第一间隙,所述第二导热垫块与所述第四导热垫块之间具有第二间隙;
    所述金属上盖的限定所述腔体的两侧侧壁分别位于所述第一间隙和所述第二间隙且与所述铜层相接触。
  11. 根据权利要求9所述的光模块,其中,所述第一导热垫块、所述第二导热垫块、所述第三导热垫块和所述第四导热垫块的热膨胀系数分别与所述硅光芯片、所述激光组件、所述第一光纤带和所述第二光纤带的热膨胀系数匹配。
  12. 根据权利要求9所述的光模块,其中,所述电连接件位于所述第二导热垫块和所述第四导热垫块之间。
  13. 根据权利要求12所述的光模块,其中,所述电连接件是信号焊盘,靠近所述硅光芯片。
  14. 根据权利要求2所述的光模块,其中,所述金属上盖包括缺口和突出端;
    所述缺口用于避让所述电连接件的电连接区域,所述突出端跨接在所述电路板上,所述腔体用于罩设所述第二导热垫块上的各器件。
  15. 根据权利要求1所述的光模块,其中,所述硅光芯片表面设有TIA芯片和Driver芯片,所述TIA芯片与所述光模块的壳体之间填充有导热胶,所述Driver芯片与所述光模块的壳体之间填充有导热胶。
  16. 根据权利要求1所述的光模块,其中,所述激光组件和所述硅光芯片之间依次设有准直透镜、隔离器和汇聚透镜。
PCT/CN2022/095371 2021-06-17 2022-05-26 一种光模块 WO2022262551A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202121355472.0U CN214795313U (zh) 2021-06-17 2021-06-17 一种光模块
CN202121355472.0 2021-06-17
CN202121357731.3 2021-06-17
CN202121357731.3U CN214795314U (zh) 2021-06-17 2021-06-17 一种光模块

Publications (1)

Publication Number Publication Date
WO2022262551A1 true WO2022262551A1 (zh) 2022-12-22

Family

ID=84526920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095371 WO2022262551A1 (zh) 2021-06-17 2022-05-26 一种光模块

Country Status (1)

Country Link
WO (1) WO2022262551A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094170A (ja) * 2000-09-13 2002-03-29 Hitachi Ltd 光モジュール
CN101872042A (zh) * 2010-05-27 2010-10-27 华为技术有限公司 光模块和光通信系统
CN107819515A (zh) * 2017-11-20 2018-03-20 江苏亨通光网科技有限公司 一种硅光子芯片高度集成多通道光收发模块和有源光缆
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块
CN111522102A (zh) * 2019-02-01 2020-08-11 青岛海信宽带多媒体技术有限公司 一种光模块
US20210149130A1 (en) * 2019-11-14 2021-05-20 Shunsin Technology (Zhong Shan) Limited Optical communication module manufacturable other than in a vacuum and method of manufacture thereof
CN112965183A (zh) * 2021-03-11 2021-06-15 宁波芯速联光电科技有限公司 一种硅光模块
CN214795313U (zh) * 2021-06-17 2021-11-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN214795314U (zh) * 2021-06-17 2021-11-19 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094170A (ja) * 2000-09-13 2002-03-29 Hitachi Ltd 光モジュール
CN101872042A (zh) * 2010-05-27 2010-10-27 华为技术有限公司 光模块和光通信系统
CN107819515A (zh) * 2017-11-20 2018-03-20 江苏亨通光网科技有限公司 一种硅光子芯片高度集成多通道光收发模块和有源光缆
CN111522102A (zh) * 2019-02-01 2020-08-11 青岛海信宽带多媒体技术有限公司 一种光模块
US20210149130A1 (en) * 2019-11-14 2021-05-20 Shunsin Technology (Zhong Shan) Limited Optical communication module manufacturable other than in a vacuum and method of manufacture thereof
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块
CN112965183A (zh) * 2021-03-11 2021-06-15 宁波芯速联光电科技有限公司 一种硅光模块
CN214795313U (zh) * 2021-06-17 2021-11-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN214795314U (zh) * 2021-06-17 2021-11-19 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN111338039B (zh) 一种光模块
CN214795314U (zh) 一种光模块
WO2021227317A1 (zh) 一种光模块
CN214795313U (zh) 一种光模块
WO2021227643A1 (zh) 一种光模块
CN112965190A (zh) 一种光模块
WO2022127072A1 (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
WO2022052842A1 (zh) 一种光模块
CN214278492U (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
CN113009649B (zh) 一种光模块
CN113281853B (zh) 一种光模块
WO2024066360A1 (zh) 光模块
US20230116287A1 (en) Optical module
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN217718170U (zh) 一种光模块
WO2021244101A1 (zh) 一种光模块
WO2023030457A1 (zh) 光模块
CN217693343U (zh) 一种光模块
US20220404563A1 (en) Optical Module
CN214540156U (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
WO2022262551A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824031

Country of ref document: EP

Kind code of ref document: A1