WO2022016932A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022016932A1
WO2022016932A1 PCT/CN2021/089076 CN2021089076W WO2022016932A1 WO 2022016932 A1 WO2022016932 A1 WO 2022016932A1 CN 2021089076 W CN2021089076 W CN 2021089076W WO 2022016932 A1 WO2022016932 A1 WO 2022016932A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
sub
flexible circuit
optical
optical module
Prior art date
Application number
PCT/CN2021/089076
Other languages
English (en)
French (fr)
Inventor
熊轶
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022016932A1 publication Critical patent/WO2022016932A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • Optical modules are important components in the field of optical communication, which can realize mutual conversion between optical signals and electrical signals.
  • Optical modules sometimes have sealing requirements.
  • Common packaging methods include optical device boxes and flexible circuit boards.
  • the optical device box is internally packaged with optical devices and electronic components, and the optical devices and electronic components may be light-emitting devices and/or light-receiving devices.
  • the optical device box and the circuit board are located in the closed cavity.
  • the end of the circuit board is connected to the flexible circuit board, and further, the circuit board is connected to the optical device box through the flexible circuit board, so as to realize the connection between the optical device box and the circuit board.
  • the number of devices encapsulated in the optical device box is also increasing, and the number of signal lines required on the flexible circuit board is also increasing.
  • the flexible circuit board and circuit The number of metal pads required on the board also needs to be increased, and further, the circuit board width or length of the circuit board needs to be increased to realize the electrical connection between the circuit board and the flexible circuit board.
  • increasing the width or length of the circuit board not only does not meet the requirements of the current miniaturization trend of optical modules, but also increases the material cost.
  • the optical module includes: a circuit board; an optical sub-module for outputting an optical signal or receiving an optical signal; a flexible circuit board, including a first sub-flexible circuit board and a second sub-flexible circuit board, the first sub-flexible circuit board The first end of the flexible circuit board is electrically connected to the upper surface of the circuit board, the second end is electrically connected to the optical sub-module, the first end of the second sub-flexible circuit board is electrically connected to the lower surface of the circuit board, and the second end is electrically connected to the optical sub-module.
  • the sub-module is electrically connected; wherein, at the second ends of the first sub-flexible circuit board and the second sub-flexible circuit board, the lower surface of the first sub-flexible circuit board is fixedly connected with the upper surface of the second sub-flexible circuit board.
  • Fig. 1 is a schematic diagram of the connection relationship of optical communication terminals
  • Fig. 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided in an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of the assembly structure of an optical fiber adapter, a light receiving assembly, and a flexible circuit board provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a first split structure of an optical fiber adapter, a light receiving assembly, and a flexible circuit board provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a second split structure of an optical fiber adapter, a light receiving assembly, and a flexible circuit board according to an embodiment of the present disclosure
  • FIG. 8 is a schematic cross-sectional structural diagram of an optical fiber adapter, a light receiving assembly, and a flexible circuit board provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a basic structure of a flexible circuit board provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional structural diagram of a light receiving component and a circuit board provided by an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a first exploded structure of a flexible circuit board provided by an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a second exploded structure of a flexible circuit board provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of an assembly structure of a flexible circuit board, a light receiving chip, and a transimpedance amplifying chip according to an embodiment of the present disclosure.
  • optical fiber communication uses information-carrying optical signals to transmit in optical fibers/optical waveguides, and low-cost, low-loss information transmission can be achieved by utilizing the passive transmission characteristics of light in optical fibers.
  • Information processing equipment such as computers uses electrical signals, which requires the mutual conversion of electrical signals and optical signals in the process of signal transmission.
  • the optical module realizes the above-mentioned photoelectric conversion function in the technical field of optical fiber communication, and the mutual conversion of optical signal and electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on the circuit board.
  • the main electrical connections include power supply, I2C signal, data signal transmission and grounding, etc.
  • the electrical connection method realized by the gold finger has become the optical module industry.
  • the standard way, based on this, the circuit board is a necessary technical feature in most optical modules.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes an optical network unit 100, an optical module 200, an optical fiber 101 and a network cable 103; one end of the optical fiber is connected to the remote server, one end of the network cable is connected to the local information processing equipment, and the local information processing equipment is connected to
  • the connection of the remote server is completed by the connection between the optical fiber and the network cable; and the connection between the optical fiber and the network cable is completed by the optical network unit with the optical module.
  • the optical port of the optical module 200 is connected to the optical fiber 101 to establish a two-way optical signal connection with the optical fiber; the electrical port of the optical module 200 is connected to the optical network unit 100 to establish a two-way electrical signal connection with the optical network unit; the optical module realizes the optical signal Mutual conversion with electrical signals, so as to establish a connection between the optical fiber and the optical network unit; in an embodiment of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by an optical module and then input to the optical network unit 100 , the electrical signal from the optical network unit 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical module 200 is a tool for realizing the mutual conversion of photoelectric signals, and does not have the function of processing data. During the above-mentioned photoelectric conversion process, the information does not change.
  • the optical network unit has an optical module interface 102, which is used to access the optical module and establish a two-way electrical signal connection with the optical module; the optical network unit has a network cable interface 104, which is used to access the network cable and establish a two-way electrical signal connection with the network cable; The connection between the module and the network cable is established through the optical network unit.
  • the optical network unit transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network unit acts as the optical network unit.
  • the upper computer of the module monitors the work of the optical module.
  • the remote server has established a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network units and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network unit is the host computer of the optical module, providing data signals to the optical module and receiving data signals from the optical module.
  • FIG. 2 is a schematic structural diagram of an optical network unit.
  • the optical network unit 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided in the cage 106, which is used to connect to the electrical port of an optical module such as a gold finger;
  • the cage 106 is provided with a radiator 107, and the radiator 107 has a raised structure such as fins to increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network unit.
  • the electrical port of the optical module is inserted into the electrical connector in the cage 106 , and the optical port of the optical module is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage; the optical module is inserted into the cage, the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage through the optical module housing, and finally passes through the cage.
  • radiator 107 for diffusion is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage; the optical module is inserted into the cage, the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage through the optical module housing, and finally passes through the cage. radiator 107 for diffusion.
  • FIG. 3 is a schematic structural diagram of an optical module 200 according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an exploded optical module 200 according to this embodiment.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking handle 203 , a circuit board 30 , a light emitting assembly 50 and a light receiving assembly 40 .
  • the upper casing 201 is closed on the lower casing 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square body, in an embodiment of the present disclosure, the lower casing includes a main board and Two side plates are located on both sides of the main board and are vertically arranged with the main board; the upper shell includes a cover plate, and the cover plate is closed on the two side plates of the upper shell to form a wrapping cavity; the upper shell can also include a The two side walls on both sides of the cover plate and the two side walls vertically arranged with the cover plate are combined with the two side plates to realize that the upper casing is covered on the lower casing.
  • the two openings may be the openings 204 and 205 at both ends of the casing in the same direction, or may be two openings of the casing in different directions.
  • the aforementioned same direction refers to the direction in which the connection line between the openings 204 and 205 is located, which is consistent with the length direction of the optical module 200 ; the aforementioned different directions refer to the direction in which the connection line between the openings 204 and 205 is located and the length of the optical module 200 .
  • the directions are inconsistent, for example, the opening 204 is located at the end face of the optical module 200 , and the opening 205 is located at the side of the optical module 200 .
  • One of the openings is the electrical port 204, and the gold fingers of the circuit board protrude from the electrical port 204 and are inserted into the host computer such as the optical network unit; the other opening is the optical port 205, which is used for external optical fiber access to connect the optical module inside the optical module.
  • the photoelectric devices such as the transmitting component 50 and the light receiving component 40; the circuit board 30, the light transmitting component 50 and the light receiving component 40 are located in the package cavity.
  • the combination of the upper casing and the lower casing is adopted to facilitate the installation of the circuit board 30, the light emitting assembly 50 and the light receiving assembly 40 into the casing, and the upper casing and the lower casing form the outermost layer of the optical module.
  • Encapsulate the protective casing; the upper casing and the lower casing are generally made of metal materials, which are conducive to electromagnetic shielding and heat dissipation; generally, the casing of the optical module is not made into an integrated structure, so that when assembling circuit boards and other devices, positioning parts, Heat dissipation and electromagnetic shielding structures cannot be installed and are not conducive to production automation.
  • the unlocking handle 203 is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking handle 203 has an engaging structure matching the cage of the host computer; pulling the end of the unlocking handle can make the unlocking handle move relatively on the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is moved by the engaging structure of the unlocking handle. It is fixed in the cage of the upper computer; by pulling the unlocking handle, the engaging structure of the unlocking handle moves with it, thereby changing the connection relationship between the engaging structure and the upper computer, so as to release the engaging relationship between the optical module and the upper computer, so that the The optical module is pulled out from the cage of the host computer.
  • the circuit board 30 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as microprocessor MCU2045, laser driver chips, limiting amplifiers, clock data recovery CDRs, power management chips, data Processing chip DSP) and so on.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as microprocessor MCU2045, laser driver chips, limiting amplifiers, clock data recovery CDRs, power management chips, data Processing chip DSP) and so on.
  • the circuit board 30 connects the electrical components in the optical module together according to the circuit design through circuit wiring, so as to realize electrical functions such as power supply, electrical signal transmission and grounding.
  • the circuit board 30 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; when the light emitting component 50 and the light receiving component 40 are located on the circuit board, The rigid circuit board can also provide stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. In an embodiment of the present disclosure, metal pins/ Gold fingers are used to connect with electrical connectors; these are inconvenient to implement with flexible circuit boards.
  • Flexible circuit boards are also used in some optical modules as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceivers.
  • the light emission component 50 is used to realize the emission of light signals.
  • the light emitting component 50 is encapsulated by a housing, and the light emitting component 50 is electrically connected to the circuit board 30 through a flexible circuit board.
  • the circuit board 30 may also extend into the housing of the light emitting component 50 Inside the body, and electrically connected to the components in the housing through metal bonding wires, such as through gold wires; or, the light emitting component 50 may also be packaged in a non-airtight manner.
  • the light receiving component 40 is used to realize the receiving of the light signal.
  • the light-receiving component 40 in this embodiment is packaged by a housing, and the light-receiving component 40 is electrically connected to the circuit board 30 through the flexible circuit board 60 .
  • the light emitting component 50 and the light receiving component 40 may also be packaged in one housing.
  • the number of devices packaged in the light receiving component 40 also increases.
  • a 4*50G product is used as an example, and further It is necessary to set four light-receiving chips in the housing of the light-receiving assembly 40, and since the current signal output by the light-receiving chip is usually small, in order to reduce the signal distortion, the distance between the transimpedance amplifying chip and the light-receiving chip should be as far as possible. Therefore, in this embodiment, the transimpedance amplifying chip is also arranged in the housing of the light receiving component 40 . Based on the above settings, the number of signal lines required on the flexible circuit board 60 is also increasing.
  • components are arranged on the upper and lower surfaces of the circuit board 30 , and pads for electrical connection with the flexible circuit board 60 are arranged on the upper and lower surfaces of the circuit board 30 .
  • the surface of the circuit board 30 facing the upper casing 201 is referred to as its upper surface
  • the surface facing the lower casing 202 is referred to as its lower surface.
  • the flexible circuit board 60 is configured to be composed of two sub-flexible circuit boards, and the two sub-flexible circuit boards are respectively connected to the upper and lower surfaces of the circuit board 30 .
  • FIG. 5 is a schematic diagram of the assembly structure of an optical fiber adapter, a light receiving assembly, and a flexible circuit board according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a first split structure of the optical fiber adapter, the light receiving assembly, and the flexible circuit board according to the embodiment of the present disclosure
  • 7 is a schematic diagram of a second split structure of an optical fiber adapter, a light receiving assembly, and a flexible circuit board provided by an embodiment of the present disclosure. As shown in FIGS.
  • the light receiving assembly 40 in this embodiment includes an upper tube case 41 , a lower tube case 42 , a displacement prism 43 , a demultiplexer 44 , a 45° prism 45 , a focusing lens 46 , a light
  • the receiving chip 48 , the transimpedance amplifying chip 49 and the pad 47 are provided.
  • the upper tube shell 41 is covered on the lower tube shell 42 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square body, and in an embodiment of the present disclosure, the upper tube shell 41 includes a cover plate , and also includes two side plates located on both sides of the cover plate and vertically arranged with the cover plate; the lower tube shell 42 includes a main board, and the main board is covered with the two side plates of the upper tube shell 41 to form a wrapping cavity; The ends of the shell 41 and the lower tube shell 42 are respectively provided with a side wall, and the two side walls are combined with the two side plates to realize that the upper tube shell 41 is covered on the lower tube shell 42 .
  • FIGS. 6 to 8 is a schematic cross-sectional structural diagram of an optical fiber adapter, a light receiving assembly, and a flexible circuit board provided by an embodiment of the present disclosure.
  • a through hole (not shown in the figure) is formed on the side wall of the upper casing 41 , and the optical fiber adapter 70 is inserted into the through hole, so as to transmit the light beam transmitted by the external optical fiber of the optical module.
  • the light beam is transmitted to the displacement prism 43 inside the casing of the light receiving component 40 , and the light beam passes through the displacement prism 43 to change the transmission path to the designated position of the demultiplexer 44 .
  • the demultiplexer 44 is divided into four beams of different wavelengths.
  • the number of beams is not limited to four, and the beams of the four wavelengths enter the 45° prism 45 respectively.
  • the four beams are irradiated to the photosensitive surface of the light-receiving chip 48 through the 45° prism 45 to change the optical transmission path.
  • the photosensitive surface of the light receiving chip 48 is small.
  • a focusing lens 46 is added at the light exit of the 45° prism 45 to reduce the light spot irradiated to the photosensitive surface.
  • the light signal received by the light receiving chip 48 is converted into a current signal and transmitted to the transimpedance amplifying chip 49.
  • the signal is amplified by the transimpedance amplifying chip 49.
  • the current signal is also converted into a voltage signal for transmission. to the flexible circuit board 60 .
  • this embodiment is also provided with a gasket 47 .
  • the gasket 47 can be made of ceramic materials with good thermal conductivity, good insulation performance and high machining accuracy, and is certainly not limited to ceramics.
  • a metallized circuit pattern may also be provided on the pad 47 .
  • the upper surface of the gasket 47 is in contact with the upper tube shell 41, wherein, it can be fixed on the upper tube shell 41 by thermally conductive glue, etc.
  • the light receiving chip 48 and the transimpedance amplifying chip 49 are arranged on the lower surface of the gasket 47, and then the light The heat generated by the receiving chip 48 and the transimpedance amplifying chip 49 can be quickly conducted to the package through the gasket 47 .
  • FIG. 9 is a schematic diagram of a basic structure of a flexible circuit board provided by an embodiment of the present disclosure. As shown in FIG. 9 , the flexible circuit board in this embodiment includes a first sub-flexible circuit board 61 , a second sub-flexible circuit board 62 and a reinforcing plate 63 .
  • the end of the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 used for connecting with the circuit board 30 is referred to as its first end, which is used for connecting with the light receiving chip 48 and the light receiving chip 48 and the circuit board 30 .
  • the end connected to the transimpedance amplifying chip 49 is called its second end.
  • Both the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 include an insulating medium layer.
  • signal wires and ground wires may be provided on one surface or both surfaces of the insulating medium layer.
  • Equal wiring, and at the same time, pads connected to the wiring are arranged on both ends of the insulating medium layer to realize electrical connection with the circuit board 30 , the light receiving chip 48 and the transimpedance amplifying chip 49 .
  • the insulating medium layer may be made of a flexible insulating material.
  • FIG. 10 is a schematic cross-sectional structural diagram of a light receiving component and a circuit board according to an embodiment of the present disclosure.
  • the first end of the first sub-flexible circuit board 61 is connected to the upper surface of the circuit board 30
  • the first end of the second sub-flexible circuit board 62 is connected to the lower surface of the circuit board 30
  • Components are provided on both the upper surface and the lower surface of the circuit board 30, so that double-sided signal transmission can be realized.
  • the flexible circuit board is split into the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 in this embodiment, the number of traces that need to be laid on the two sub-flexible circuit boards can be compared with that of an integral flexible circuit board. It can be greatly reduced, and then the overall thickness can be reduced. For example, only one insulating medium layer can be provided to meet the requirements of the number of wirings, thereby ensuring its overall flexibility and meeting the requirements of different bending degrees. Moreover, since the ends of the two sub-flex circuit boards connected to the circuit boards are independent, they can be set to different lengths as required.
  • the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 are used for the second end connected to the light receiving chip 48 and the transimpedance amplifying chip 49, and need to be The connection is made by wire bonding. Therefore, the surface flatness of the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 is required to be relatively high. Otherwise, the soldering between the pads on the flexible circuit board and the chip will be affected. The alignment accuracy between the discs affects the line-bonding effect. Based on the above reasons, in this embodiment, the first end portions of the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 are fixed together.
  • FIG. 11 is a schematic diagram of a first exploded structure of a flexible circuit board provided by an embodiment of the present disclosure.
  • the first sub-flex circuit board 61 and the second sub-flex circuit board 62 protrude into the inside of the housing of the light emitting assembly.
  • the first sub-flex circuit board 61 and the second sub-flex The circuit boards 62 are fixed together, that is, at the second ends of the two sub-flexible circuit boards, the lower surface of the first sub-flexible circuit board 61 is fixedly connected to the upper surface of the second sub-flexible circuit board.
  • the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 may be fixed together by welding or the like, or the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 are integrally formed, which is not specifically limited in this embodiment.
  • a reinforcing plate 63 is also fixedly disposed at the second ends of the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62, that is, the reinforcing plate 63 is fixed and stacked on the first sub-flexible circuit board 61 and the second end of the second sub-flexible circuit board 62.
  • the reinforcing plate 63 may be made of a material such as a steel plate or a ceramic plate with higher hardness.
  • the pads of the light receiving chip 48 and the transimpedance amplifying chip 49 are disposed toward the lower tube case 42, or can also be described as disposed toward the upper surface of the circuit board 30. Therefore, in order to facilitate the connection between the flexible circuit board and the chip
  • the reinforcing plate 63 is disposed on the upper surface of the first sub-flexible circuit board 61 , that is, the lower surface of the reinforcing plate 63 is fixedly connected to the upper surface of the second end of the first sub-flexible circuit board 61 .
  • the pads of the light receiving chip 48 and the transimpedance amplifying chip 49 are arranged toward the upper package 41, that is, toward the lower surface of the circuit board 30, the upper surface of the reinforcing plate 63 can be connected to the first The lower surfaces of the second ends of the two sub-flex circuit boards are fixedly connected.
  • the overall thickness can be increased, thereby ensuring the overall strength and flatness of the flexible board at this position, which is more conducive to achieving integration with the optical sub-module. device alignment to ensure alignment accuracy.
  • disposing the reinforcing plate 63 on the upper surface of the second end of the first sub-flexible circuit board 61 and/or the lower surface of the second end of the second sub-flexible circuit board 62 can enhance the overall strength of the second end of the flexible circuit board , preventing it from breaking and improving its flatness.
  • the reinforcing plate 63 may not be provided.
  • FIG. 12 is a schematic diagram of a second exploded structure of a flexible circuit board provided by an embodiment of the present disclosure.
  • through holes are provided at the second ends of the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 that protrude into the tube shell of the light receiving assembly and the reinforcing plate 63 , namely A through hole 611 is formed at the second end of the first sub-flexible circuit board 61 , a through hole 621 is formed at the second end of the second sub-flexible circuit board 62 , and a through hole 631 is formed on the reinforcing plate 63 .
  • FIG. 13 is a schematic diagram of an assembly structure of a flexible circuit board, a light receiving chip, and a transimpedance amplifying chip according to an embodiment of the present disclosure.
  • the light receiving chip 48 and the transimpedance amplifying chip 49 are disposed in the above-mentioned through holes, and are respectively electrically connected to the pads disposed around the through holes through bonding wires.
  • the distance between the chip and the flexible circuit board can be shortened. The distance between the pads can shorten the length of the wire and reduce the impedance.
  • the first sub-flexible circuit board 61 is arranged for The high-speed signal line for transmitting the signal received by the optical module, the low-speed signal line (such as power line, control signal line, etc.) is arranged on the second sub-flex circuit board 62.
  • the first sub-flex Low-speed signal lines are arranged on the circuit board 61
  • high-speed signal lines are arranged on the second sub-flexible circuit board 62
  • two different lines are arranged.
  • the distance between the two is relatively close.
  • a through hole is opened on the second sub-flexible circuit board 62, because the second sub-flexible circuit board 62
  • the board 62 also has through holes for accommodating the light receiving chip 48 and the transimpedance amplifying chip 49. Therefore, the area of the through holes 621 opened on the second sub-flex circuit board 62 is larger than that of the first sub-flex circuit board 61.
  • the area of the through hole 611 is large. Meanwhile, the low-speed signal lines are arranged on both sides of the through hole 621 .
  • the high-speed signal lines on the first sub-flex circuit board 61 may be arranged uniformly or may be arranged in the projected area of the through hole 621 .
  • the distance between the high-speed signal lines on the first sub-flexible circuit board 61 and the second sub-flex circuit board 62 is increased, and the second sub-flex circuit board 62 is reduced. The influence of the board 62 on the high-speed line impedance of the first sub-flexible circuit board 61, thereby realizing the control of the signal impedance of the first sub-flexible circuit board 61.
  • this The implementation also designs the pads on the two sub-flex circuit boards. As shown in FIGS.
  • the pads 612 on the first sub-flex circuit board 61 are arranged on the through holes 611 of the sub-flex circuit board near its first end, namely On the side close to the circuit board 30, at the same time, the pads 622 on the second sub-flex circuit board 62 are arranged on the side of the through hole 621 except the side close to the circuit board 30, so that the two sub-flex circuit boards Complementary shielding of the pads, and there is no need to open new pad avoidance holes.
  • the pads on the two sub-flex circuit boards can also be arranged in other manners.
  • the second end of the first sub-flexible circuit board 61 and the second sub-flexible circuit board 62 and the end of the reinforcing plate 63 are provided with a notch, and the notch is connected to the upper
  • the opened through holes are connected to realize avoidance of other components in the light receiving assembly, and to facilitate the installation of the light receiving chip 48 and the transimpedance amplifying chip 49 in the through holes.
  • the upper surface and the lower surface described in this embodiment are oriented with the upper casing 201 and the lower casing 202 as a reference, and may also be defined as other directions in other embodiments.
  • the flexible circuit board provided in this embodiment is not only suitable for the packaging form of the light receiving component shown in the figure, and the optical and electrical components inside the light receiving component are not limited to the components provided in this embodiment.
  • the flexible circuit board provided in this embodiment can also be adapted to be used for the electrical connection between the light emitting component and the circuit board.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开提供了一种光模块,将连接电路板和光学次模块的柔性电路板分成两部分,分别为第一子柔性电路板和第二子柔性电路板。将第一子柔性电路板与电路板的上表面电连接、第二子柔性电路板的第一端与电路板的下表面电连接,进而可以实现在电路板的双面传输信号,进而有助于减少电路板的面积,并且,将柔性电路板分为两个独立的子柔性电路板分别与电路板电连接,可以满足柔性板的弯折和柔韧性要求;同时,还将第一、第二子柔性电路板中用于与光学次模块电连接的一端固定在一起,由于两层柔性板直接固定在一起,可以增加整体厚度,进而可以保证该位置处柔性板的整体的强度和平整度,保证与光学次模块中的器件的对准精度。

Description

一种光模块
本公开要求在2020年07月22日提交中国专利局、申请号为202010712908.0、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光模块是光通信领域的重要部件,其可以实现光信号与电信号之间的相互转换。
光模块有时会有密封需求,常用的封装方式包括光器件盒体加柔性电路板的方式。该封装方式下光器件盒体内部封装光器件和电子元器件,光器件和电子元器件可以是光发射用器件和/或光接收用器件。光模块的上壳体和下壳体扣合后形成密闭空腔,光器件盒体和电路板位于该密闭空腔内。电路板的端部连接柔性电路板,进而,电路板通过柔性电路板连接至光器件盒体,实现光器件盒体和电路板之间的连接。
随着光模块通信速率的增加,光器件盒体内所封装的器件的数量也越来越多,进而柔性电路板上所需要的信号线数目也越来越多,相应的,柔性电路板和电路板上所需要的金属焊盘的数量也需要增加,进而需要增加电路板的电路板宽度或长度,来实现电路板与柔性电路板的电连接。但是,增加电路板的宽度或长度不仅不符合目前光模块的小型化趋势要求,还会增加材料成本。
发明内容
本公开实施例提供的光模块,包括:电路板;光学次模块,用于输出光信号或接收光信号;柔性电路板,包括第一子柔性电路板和第二子柔性电路板,第一子柔性电路板的第一端与电路板的上表面电连接、第二端与光学次模块电连接,第二子柔性电路板的第一端与电路板的下表面电连接、第二端与光学次模块电连接;其中,在第一子柔性电路板和第二子柔性电路板的第二端部处,第一子柔性电路板的下表面与第二子柔性电路板的上表面固定连接。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例中提供的一种光模块的结构示意图;
图4为本公开实施例中提供的一种光模块的分解结构示意图;
图5为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的组装结构示意图;
图6为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的第一拆分结构示意图;
图7为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的第二拆分结构示意图;
图8为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的剖面结构示意图;
图9为本公开实施例提供的柔性电路板的基本结构示意图;
图10为本公开实施例提供的光接收部件与电路板的剖面结构示意图;
图11为本公开实施例提供的柔性电路板的第一分解结构示意图;
图12为本公开实施例提供的柔性电路板的第二分解结构示意图;
图13为本公开实施例提供的柔性电路板、光接收芯片和跨阻放大芯片的组装结构示意图。
具体实施方式
下面将结合本实施例中的附图,对本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光电信号的转换。光纤通信使用携带信息的光信号在光纤/光波导中传输,利用光在光纤中的无源传输特性可以实现低成本、低损耗的信息传输。而计算机等信息处理设备采用的是电信号,这就需要在信号传输过程中实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光电转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、传输数据信号以及接地等,金手指实现的电连接方式已经成为光模块行业的标准方式,以此为基础,电路板是大部分光模块中必备的技术特征。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络单元100、光模块200、光纤101及网线103;光纤的一端连接远端服务器,网线的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤与网线的连接完成;而光纤与网线之间的连接由具有光模块的光网络单元完成。
光模块200的光口与光纤101连接,与光纤建立双向的光信号连接;光模块200的电口接入光网络单元100中,与光网络单元建立双向的电信号连接;光模块实现光信号与电信号的相互转换,从而实现在光纤与光网络单元之间建立连接;在本公开的某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络单元100中,来自光网络单元100的电信号由光模块转换为光信号输入至光纤中。光模块200是实现光电信号相互转换的工 具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络单元具有光模块接口102,用于接入光模块,与光模块建立双向的电信号连接;光网络单元具有网线接口104,用于接入网线,与网线建立双向的电信号连接;光模块与网线之间通过光网络单元建立连接,在本公开的某一实施例中,光网络单元将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络单元作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络单元及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络单元是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络单元结构示意图。如图2所示,在光网络单元100中具有电路板105,在电路板105的表面设置笼子106;在笼子106中设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络单元中,在本公开的某一实施例中光模块的电口插入笼子106中的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中;光模块插入笼子中,由笼子固定光模块,光模块产生的热量通过光模块壳体传导给笼子,最终通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块200的结构示意图,图4为本实施例提供光模块200的分解结构示意图。如图3和图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁手柄203、电路板30、光发射组件50和光接收组件40。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开的某一实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口可以是壳体在同一方向上的两端的开口204和205,也可以是壳体在不同方向上两处开口。前述同一方向指的是开口204和205的连线所在的方向,该方向与光模块200的长度方向一致;前述不同方向指的是开口204和205的连线所在的方向与光模块200的长度方向不一致,例如开口204位于光模块200的端面,而开口205则位于光模块200的侧部。其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络单元等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光发射组件50和光接收组件40;电路板30、光发射组件50和光接收组件40等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板30、光发射组件50和光接收组 件40等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体结构,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构无法安装,也不利于生产自动化。
解锁手柄203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁手柄203具有与上位机笼子匹配的卡合结构;拉动解锁手柄的末端可以在使解锁手柄在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁手柄的卡合结构将光模块固定在上位机的笼子里;通过拉动解锁手柄,解锁手柄的卡合结构随之移动,进而改变卡合结构与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板30上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如微处理器MCU2045、激光驱动芯片、限幅放大器、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板30通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板30一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光发射组件50和光接收组件40位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开的某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
光发射组件50,用于实现光信号的发射。本实施例中的光发射组件50采用壳体封装,光发射组件50通过柔性电路板与电路板30电连接,当然,在其它实施例中,电路板30还可以伸入光发射组件50的壳体内,并通过金属材质的打线与壳体内的元器件实现电连接、例如通过金线实现电连接;或者,光发射组件50还可以采用非气密方式封装。
光接收组件40,用于实现光信号的接收。本实施例中的光接收组件40采用壳体封装,光接收组件40通过柔性电路板60与电路板30电连接。当然,在其它实施例中,光发射组件50和光接收组件40还可以封装在一个壳体内。
在本公开的某一实施例中的,随着光模块通信速率的增加,光接收组件40内所封装的器件的数量也越来越多,如本实施例以4*50G产品为例,进而需要在光接收组件40的壳体内设置四路光接收芯片,而由于光接收芯片所输出的电流信号通常较小,为了减少信号失真,跨阻放大芯片与光接收芯片之间的距离应该尽可能的小,因此,本实施例将跨阻放大芯片也设置在光接收组件40的壳体内。基于上述设置,柔性电路板60上所需要的信号线数目也越来越多,目前常用的做法是增加柔性电路板60的层数来布设更多的信号线,但是常规的柔性电路板的层数超过两层其弯折和柔韧特性经无法满足需求,并且,这样还 需要在电路板30的表面上布设更多的焊盘,进而需要增减电路板30的面积。
基于上述原因,本实施例在电路板30的上、下表面均布设有元器件,并且,其上、下表面均布设用于与柔性电路板60电连接的焊盘。其中,本实施例中将电路板30中朝向上壳体201的表面称为其上表面、朝向下壳体202的表面称为其下表面。相应的,本实施例将柔性电路板60设置为由两个子柔性电路板构成,两个子柔性电路板分别连接至电路板30的上、下表面。基于上述设计原理,下面将结合附图,对本实施提供的光接收组件40以及柔性电路板60进行详细介绍。
图5为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的组装结构示意图,图6为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的第一拆分结构示意图,图7为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的第二拆分结构示意图。如图5至7所示,本实施例中的光接收组件40包括上管壳41、下管壳42、位移棱镜43、解波分复用器44、45°棱镜45、聚焦透镜46、光接收芯片48、跨阻放大芯片49以及垫片47。
上管壳41盖合在下管壳42上,形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开的某一实施例中,上管壳41包括盖板,还包括位于盖板两侧、与盖板垂直设置的两个侧板;下管壳42包括主板,主板盖合在上管壳41的两个侧板上,以形成包裹腔体;上管壳41以及下管壳42的端部分别设有一个侧壁,由两个侧壁与两个侧板结合,以实现上管壳41盖合在下管壳42上。
图8为本公开实施例提供的光纤适配器、光接收组件以及柔性电路板的剖面结构示意图。如图6至8所示,通过在上管壳41的侧壁上开设有通孔(图中未示出),光纤适配器70穿设在该通孔中,以将光模块外部光纤传输的光束传送至光接收组件40的管壳内部的位移棱镜43,光束经过位移棱镜43改变传输路径至解波分复用器44的指定位置。经过解波分复用器44分为四束不同波长的光束,需要说明的是,光束的数目并不限于四束,四个波长的光束分别进入45°棱镜45。四束光束经过45°棱镜45改变光路传输路径照射至光接收芯片48的光敏面。其中,由于光接收芯片48的光敏面较小。为解决光敏面小导致的光接收芯片48与45°棱镜45之间的耦合困难,本实施例在45°棱镜45的光出口处增加聚焦透镜46使照射至其光敏面的光斑缩小。经过光接收芯片48将其接收的光信号转换为电流信号传输至跨阻放大芯片49,经过跨阻放大芯片49对该信号进行放大,有些实施例中还会将该电流信号转换为电压信号传输至柔性电路板60。
由于光接收芯片48和跨阻放大芯片49在工作的过程中会产生热量,并且芯片温度的变化会影响到其信号的输出,为使光接收芯片48和跨阻放大芯片49可以更好的散热,本实施例还设置有垫片47。垫片47可以选用热传导性能好、绝缘性能好且加工精度高的陶瓷材料制成,当然也不限于陶瓷。其中,为了便于垫片47上各电元件的安装,还可以在垫片47上设置金属化电路图案。垫片47的上表面与上管壳41相接触,其中,可以通过导热胶等固定在上管壳41上,光接收芯片48和跨阻放大芯片49设置在垫片47的下表面,进而光接收芯片48和跨阻放大芯片49所产生的热量可以经过垫片47快速传导至管壳。
柔性电路板60伸入管壳内部,并通过打线分别与光接收芯片48和跨阻放大芯片49 电连接。图9为本公开实施例提供的柔性电路板的基本结构示意图。如图9所示,本实施例中的柔性电路板包括第一子柔性电路板61、第二子柔性电路板62以及加强板63。其中,为了方便描述,本实施例中将第一子柔性电路板61和第二子柔性电路板62用于与电路板30连接的一端称为其第一端、用于与光接收芯片48和跨阻放大芯片49连接的一端称为其第二端。
第一子柔性电路板61和第二子柔性电路板62均包括绝缘介质层,在本公开的某一实施例中的,可以在绝缘介质层一个表面或者两个表面上设置信号线、地线等走线,同时,在绝缘介质层的两个端部布设与走线连接的焊盘,以实现与电路板30、光接收芯片48以及跨阻放大芯片49的电连接。为保证第一子柔性电路板61和第二子柔性电路板62的弯折性以及柔韧性,绝缘介质层可以采用柔性绝缘材料制成。
图10为本公开实施例提供的光接收部件与电路板的剖面结构示意图。如图10所示,本实施例中第一子柔性电路板61的第一端连接至电路板30的上表面,第二子柔性电路板62的第一端连接至电路板30的下表面,电路板30的上表面和下表面均设置有元器件,进而可以实现双面信号传输。由于本实施例将柔性电路板拆分为第一子柔性电路板61和第二子柔性电路板62,两个子柔性电路板上需要布设的走线数量相对于一个整体的柔性电路板相比可以大大减少,进而可以减小其整体厚度,如仅设置一层绝缘介质层便可以满足布线的数量要求,进而可以保证其整体柔韧性,实现不同的弯折度的要求。并且,由于两个子柔性电路板与电路板连接的一端是独立的,进而可以根据需要设置为不同的长度。
在本公开的某一实施例中的,本实施中第一子柔性电路板61和第二子柔性电路板62用于与光接收芯片48以及跨阻放大芯片49连接的第二端部,需要通过打线的方式连接,因此,第一子柔性电路板61和第二子柔性电路板62的表面平整度要求较高,否则,将会影响到柔性电路板上的焊盘与芯片上的焊盘之间的对准精度,进而影响打线效果。基于上述原因,本实施例将第一子柔性电路板61和第二子柔性电路板62的第一端部固定在一起。
图11为本公开实施例提供的柔性电路板的第一分解结构示意图。如图11所示,在第一子柔性电路板61和第二子柔性电路板62伸入光发射组件的壳体内部的第二端部处,第一子柔性电路板61和第二子柔性电路板62固定在一起,即在两个子柔性电路板的第二端部处,第一子柔性电路板61的下表面与第二子柔性电路板的上表面固定连接,其中,可以通过胶水、熔焊等方式固定在一起,或者,第一子柔性电路板61和第二子柔性电路板62为一体成型结构,本实施例不做具体限定。
在本公开的某一实施例中的,还在第一子柔性电路板61和第二子柔性电路板62的第二端部处固定设置有加强板63,即将加强板63固定叠放在第一子柔性电路板61和第二子柔性电路板62的第二端部处,其中,加强板63可以采用硬度较高的钢板、陶瓷板等材料制成。由于本实施例中光接收芯片48以及跨阻放大芯片49的焊盘朝向下管壳42设置、或者也可以描述为朝向电路板30的上表面设置,因此,为了方便柔性电路板与芯片之间的打线,本实施例将加强板63设置在第一子柔性电路板61的上表面、即加强板63的下表面与第一子柔性电路板61的第二端部的上表面固定连接。当然,如果在其它实施例中,光接收芯片48以及跨阻放大芯片49的焊盘朝向上管壳41设置、即朝向电路板30的下表 面设置,则可以将加强板63的上表面与第二子柔性电路板的第二端部的下表面固定连接。
通过上述配置,由于两层柔性板的第二端部直接固定在一起,可以增加整体厚度,进而可以保证该位置处柔性板的整体的强度和平整度,进而更有利于实现与光学次模块中的器件对准,保证对准精度。另外,在第一子柔性电路板61第二端部的上表面和/或第二子柔性电路板62第二端的下表面设置加强板63,可以柔性电路板的第二端部的整体强度增强,防止其断裂,提高其平整度,当然,在其它实施例中也可以不设置加强板63。
图12为本公开实施例提供的柔性电路板的第二分解结构示意图。如图12所示,本实施例在第一子柔性电路板61和第二子柔性电路板62伸入光接收组件的管壳内的第二端部处以及加强板63上开设通孔,即第一子柔性电路板61的第二端部开设有通孔611,第二子柔性电路板62的第二端部开设有通孔621、加强板63上开设通孔631,同时,在第一子柔性电路板61和第二子柔性电路板62的通孔的周围设置有焊盘。图13为本公开实施例提供的柔性电路板、光接收芯片和跨阻放大芯片的组装结构示意图。如图13所示,本实施例将光接收芯片48和跨阻放大芯片49设置在上述通孔内、并分别通过打线与设置在通孔周围的焊盘电连接。本实施例通过在柔性电路板上开设通孔并将焊盘布设在通孔的周围的方式,与直接将焊盘设置在柔性电路板的端头相比,可以缩短芯片与柔性电路板上的焊盘之间的距离,进而可以缩短打线的长度,减小阻抗。
在本公开的某一实施例中的,为了方便电路板30以及第一子柔性电路板61和第二子柔性电路板62的布线,本实施例在第一子柔性电路板61上布设用于传输光模块所接收的信号的高速信号线,第二子柔性电路板62上布设低速信号线(如电源线、控制信号线等),当然,在其它实施例中,也可以在第一子柔性电路板61上布设低速信号线、第二子柔性电路板62上布设高速信号线,或者,布设两种不同的线。由于本实施例将第一子柔性电路板61和第二子柔性电路板62的第二端部固定在一起,所以,两者间距较近,为了实现对信号阻抗的调整,如图12所示,本实施例在第一子柔性电路板61与第二子柔性电路板62之间的距离小于预设距离处,在第二子柔性电路板62上开设有通孔,由于第二子柔性电路板62上还开设用于容纳光接收芯片48和跨阻放大芯片49的通孔,因此,第二子柔性电路板62上所开设的通孔621的面积要比第一子柔性电路板61上的通孔611的面积大。同时,将低速信号线布设在通孔621的两侧,另外,第一子柔性电路板61上的高速信号线可以均匀布置也可以布置在通孔621所投影的区域。本实施例通过第二子柔性电路板62开设通孔的方式,增加了第一子柔性电路板61上的高速信号线与第二子柔性电路板62之间的间距,减少第二子柔性电路板62对第一子柔性电路板61的高速线阻抗的影响,进而实现对第一子柔性电路板61信号阻抗的管控。
基于上述第二子柔性电路板62上所开设的通孔621的面积要比第一子柔性电路板61上的通孔611的面积大的特点,以及两个子柔性电路板的排布方式,本实施还对两个子柔性电路板上的焊盘进行设计,如图12和13所示,第一子柔性电路板61上的焊盘612设置在其通孔611上靠近其第一端部、即靠近电路板30的侧边上,同时,第二子柔性电路板62上的焊盘622设置在其通孔621上除靠近电路板30之外的侧边上,这样,两个子柔性电路板上的焊盘互补遮挡,且也无需开设新的焊盘避让孔。当然,在其它实施例中,两个 子柔性电路板上的焊盘也可以采用其它布置方式。
另外,如图12和13,本实施例还在第一子柔性电路板61和第二子柔性电路板62板的第二端头以及加强板63的端头设有豁口,并且该豁口与其上开设的通孔相连通,以实现光接收组件内其它元器件的避让,以及方便将光接收芯片48和跨阻放大芯片49安装在其通孔内。
需要说明的是,本实施例中所描述的上表面和下表面,是以上壳体201和下壳体202作为参考进行定向的,在其它实施例,也可以定义为其它方向。本实施例提供的柔性电路板不仅适用于图中所示的光接收组件的封装形式,光接收组件内部的光学以及电学元器件也并不限于本实施例所提供的元件。另外,另外,本实施例提供的柔性电路板也可以适应用于光发射组件与电路板的电连接。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光学次模块,用于输出光信号或接收光信号;
    柔性电路板,包括第一子柔性电路板和第二子柔性电路板,所述第一子柔性电路板的第一端与所述电路板的上表面电连接、第二端与所述光学次模块电连接,所述第二子柔性电路板的第一端与所述电路板的下表面电连接、第二端与所述光学次模块电连接;
    其中,在所述第一子柔性电路板的第二端部和所述第二子柔性电路板的第二端部处,所述第一子柔性电路板的下表面与所述第二子柔性电路板的上表面固定连接。
  2. 根据权利要求1所述的光模块,其特征在于,所述柔性电路板还包括加强板,其中:
    所述加强板的下表面与所述第一子柔性电路板的第二端部的上表面固定连接,
    或者,
    所述加强板的上表面与所述第二子柔性电路板的第二端部的下表面固定连接。
  3. 根据权利要求1所述的光模块,其特征在于,所述光学次模块包括:
    管壳;
    光接收芯片,设置在所述管壳内,用于将接收的光信号转换为电信号;
    跨阻放大芯片,设置在所述管壳内,用于将所述电信号进行放大;
    所述第一子柔性电路板和所述第二子柔性电路板的第二端部伸入所述管壳内,所述第一子柔性电路板的第二端部以及所述第二子柔性电路板的第二端部处开设有通孔,所述通孔的周围设置有焊盘,所述光接收芯片和所述跨阻放大芯片设置在所述通孔内、并分别通过打线与所述焊盘电连接。
  4. 根据权利要求1至3任一所述的光模块,其特征在于,所述第一子柔性电路板上布设有高速信号线,所述第二子柔性电路板上布设有低速信号线,其中:
    在所述第一子柔性电路板与所述第二子柔性电路板之间的距离小于预设距离处,所述第二子柔性电路板上开设有通孔,所述低速信号线布设在所述通孔的两侧。
  5. 根据权利要求4所述的光模块,其特征在于,所述光接收芯片和所述跨阻放大芯片的焊盘朝向所述电路板的上表面设置;所述第一子柔性电路板的焊盘设置在其通孔上靠近所述电路板的侧边上。
  6. 根据权利要求3所述的光模块,其特征在于,所述柔性电路板还包括:
    加强板,固定叠放在所述第一子柔性电路板和所述第二子柔性电路板的第二端部处;
    其中,
    如果所述光接收芯片和所述跨阻放大芯片的焊盘朝向所述电路板的上表面设置,则所述加强板的下表面与所述第一子柔性电路板的第二端部的上表面固定连接;
    如果所述光接收芯片和所述跨阻放大芯片的焊盘朝向所述电路板的下表面设置,则所述加强板的上表面与所述第二子柔性电路板的第二端部的下表面固定连接。
  7. 根据权利要求3所述的光模块,其特征在于,所述管壳内还设有:
    芯片承载部件,设置在所述通孔内,其第一表面上设置所述光接收芯片和所述跨阻放大芯片、第二表面与所述管壳相接触。
  8. 根据权利要求3所述的光模块,其特征在于,所述第一子柔性电路板和所述第二子柔性电路板的第二端头设有豁口,所述豁口与所述通孔相连通。
  9. 根据权利要求1所述的光模块,其特征在于,所述第一子柔性电路板包括一层绝缘介质层,所述绝缘介质层的至少一个表面上布设有信号线。
  10. 根据权利要求1所述的光模块,其特征在于,所述第二子柔性电路板包括一层绝缘介质层,所述绝缘介质层的至少一个表面上布设有信号线。
PCT/CN2021/089076 2020-07-22 2021-04-22 一种光模块 WO2022016932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010712908.0 2020-07-22
CN202010712908.0A CN113970815B (zh) 2020-07-22 2020-07-22 一种光模块

Publications (1)

Publication Number Publication Date
WO2022016932A1 true WO2022016932A1 (zh) 2022-01-27

Family

ID=79585139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089076 WO2022016932A1 (zh) 2020-07-22 2021-04-22 一种光模块

Country Status (2)

Country Link
CN (1) CN113970815B (zh)
WO (1) WO2022016932A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488420A (zh) * 2020-10-23 2022-05-13 青岛海信宽带多媒体技术有限公司 一种光模块
CN114660740B (zh) * 2022-03-28 2023-08-22 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503044A (zh) * 2014-12-31 2015-04-08 苏州旭创科技有限公司 光模块
US9568694B2 (en) * 2015-04-02 2017-02-14 Hitachi Metals, Ltd. Optical module
CN205958803U (zh) * 2016-08-31 2017-02-15 中航海信光电技术有限公司 一种并行光组件
CN110231687A (zh) * 2018-03-06 2019-09-13 住友电气工业株式会社 光收发器
JP2020064191A (ja) * 2018-10-17 2020-04-23 住友電気工業株式会社 光トランシーバ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071980A (ja) * 2005-09-05 2007-03-22 Mitsubishi Electric Corp 光モジュール
JP4957503B2 (ja) * 2007-10-16 2012-06-20 住友電気工業株式会社 光モジュールおよび光モジュールの製造方法
JP2009252918A (ja) * 2008-04-04 2009-10-29 Sumitomo Electric Ind Ltd 光データリンク
JP6452327B2 (ja) * 2014-06-24 2019-01-16 日本オクラロ株式会社 光モジュール
CN107402425A (zh) * 2017-08-31 2017-11-28 武汉联特科技有限公司 一种光接收模块及其封装结构以及封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503044A (zh) * 2014-12-31 2015-04-08 苏州旭创科技有限公司 光模块
US9568694B2 (en) * 2015-04-02 2017-02-14 Hitachi Metals, Ltd. Optical module
CN205958803U (zh) * 2016-08-31 2017-02-15 中航海信光电技术有限公司 一种并行光组件
CN110231687A (zh) * 2018-03-06 2019-09-13 住友电气工业株式会社 光收发器
JP2020064191A (ja) * 2018-10-17 2020-04-23 住友電気工業株式会社 光トランシーバ

Also Published As

Publication number Publication date
CN113970815A (zh) 2022-01-25
CN113970815B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2021212849A1 (zh) 一种光模块
WO2021227317A1 (zh) 一种光模块
WO2021227643A1 (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
CN112965190A (zh) 一种光模块
WO2021185179A1 (zh) 一种光模块
WO2022083366A1 (zh) 一种光模块
CN213659029U (zh) 一种光模块
WO2021185180A1 (zh) 一种光模块
CN113325526A (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
WO2022052842A1 (zh) 一种光模块
WO2022127059A1 (zh) 一种光模块
CN214278492U (zh) 一种光模块
WO2022127073A1 (zh) 一种光模块
CN217693343U (zh) 一种光模块
WO2023030457A1 (zh) 光模块
WO2021244101A1 (zh) 一种光模块
WO2022052527A1 (zh) 一种光模块
WO2021232624A1 (zh) 一种光模块
CN113009649B (zh) 一种光模块
CN113281859B (zh) 一种光模块
CN113281853B (zh) 一种光模块
CN214540156U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847056

Country of ref document: EP

Kind code of ref document: A1