WO2021185179A1 - 一种光模块 - Google Patents
一种光模块 Download PDFInfo
- Publication number
- WO2021185179A1 WO2021185179A1 PCT/CN2021/080550 CN2021080550W WO2021185179A1 WO 2021185179 A1 WO2021185179 A1 WO 2021185179A1 CN 2021080550 W CN2021080550 W CN 2021080550W WO 2021185179 A1 WO2021185179 A1 WO 2021185179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- waveguide
- section
- silicon waveguide
- beam splitter
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4213—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
- G02B6/428—Electrical aspects containing printed circuit boards [PCB]
Definitions
- the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
- optical communication technology In cloud computing, mobile Internet, video and other new business and application modes, optical communication technology will be used.
- the optical module is a tool to realize the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment.
- silicon optical chips since silicon optical chips have the advantages of small size, high integration density and low cost, the use of silicon optical chips to achieve electro-optical-to-optical conversion functions has become a mainstream solution adopted by high-speed optical modules.
- an optical module provided by an embodiment of the present disclosure includes: a circuit board; a silicon optical chip, which is arranged on the circuit board and is electrically connected to the circuit board, and the input optical port of the silicon optical chip is provided with polarization
- the rotating beam splitter receives the signal light transmitted to it from the outside of the optical module through the polarization rotating beam splitter, modulates the signal light into an electrical signal and outputs it through the photoelectric port of the silicon optical chip; the polarization rotating splitter
- the beamer includes: a substrate; a first silicon waveguide arranged on the substrate; a second silicon waveguide arranged above the first end of the first silicon waveguide, the thickness is greater than the thickness of the first silicon waveguide, and the length direction Parallel to the length direction of the first silicon waveguide; a third silicon waveguide, arranged above the first end of the first silicon waveguide, with a thickness greater than that of the first silicon waveguide, and the length direction is the same as the length direction of the first silicon waveguide Parallel, there is a gap between the third
- an optical module provided by an embodiment of the present disclosure includes: a circuit board; a light source, which is electrically connected to the circuit board, and is used to emit light that does not carry signals; and a silicon optical chip is arranged on the circuit board Electrically connected to the circuit board, the input light port of the silicon optical chip is provided with a polarization rotating beam splitter, and the light without signal is received by the polarization rotating beam splitter.
- the polarization rotating beam splitter includes: a substrate; a first silicon waveguide arranged on the substrate; a second silicon waveguide , Arranged above the first end of the first silicon waveguide, having a thickness greater than that of the first silicon waveguide, and having a length direction parallel to the length direction of the first silicon waveguide; a third silicon waveguide arranged on the first silicon waveguide Above the first end, the thickness is greater than the thickness of the first silicon waveguide, the length direction is parallel to the length direction of the first silicon waveguide, there is a gap between the third silicon waveguide and the second silicon waveguide, and the gap is filled with packets.
- a silicon nitride waveguide arranged above the second end of the first silicon waveguide, and a gap between the first silicon waveguide, and the cladding layer is filled in the gap, the length direction of the silicon nitride waveguide and the first silicon waveguide The length of a silicon waveguide is parallel.
- Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
- Figure 2 is a schematic diagram of the structure of an optical network unit
- FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
- FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
- FIG. 5 is a block diagram of the internal structure of an optical module provided by an embodiment of the disclosure.
- Fig. 6 is a front view of a polarization rotating beam splitter provided by an embodiment of the disclosure.
- FIG. 7 is a top view of a polarization rotating beam splitter provided by an embodiment of the disclosure.
- Figure 8 is a cross-sectional view in the direction of A-A in Figure 7;
- Figure 9 is a cross-sectional view in the direction of B-B in Figure 7;
- FIG. 10 is a schematic diagram of the division of the polarization rotating beam splitter provided by an embodiment of the disclosure.
- FIG. 11 is a schematic diagram of a partial structure of a polarization rotating beam splitter coupled to a first region according to an embodiment of the disclosure
- Figure 12 is a cross-sectional view in the direction of C-C in Figure 11;
- FIG. 13 is a schematic diagram of a partial structure of a polarization rotating beam splitter coupled to a second region provided by an embodiment of the disclosure
- Figure 14 is a cross-sectional view in the direction D-D in Figure 13;
- 15 is a schematic diagram of a partial structure of the third region of the polarization rotating beam splitter coupling provided by an embodiment of the present disclosure
- Figure 16 is a cross-sectional view in the direction of E-E in Figure 15;
- FIG. 17 is a schematic diagram of a partial structure of a coupling fourth region of a polarization rotating beam splitter provided by an embodiment of the present disclosure.
- Figure 18 is a cross-sectional view in the direction of F-F in Figure 17;
- FIG. 19 is a schematic diagram of a partial structure of the coupling fifth zone of a polarization rotating beam splitter provided by an embodiment of the disclosure.
- Figure 20 is a cross-sectional view in the G-G direction in Figure 19;
- 21 is a schematic diagram of a partial structure of a polarization rotating beam splitter coupled to a sixth region according to an embodiment of the disclosure.
- Figure 22 is a cross-sectional view in the direction of H-H in Figure 21;
- FIG. 23 is a schematic diagram of a partial structure of a polarization rotating beam splitter coupled to a seventh region according to an embodiment of the disclosure.
- Figure 24 is a cross-sectional view in the direction of I-I in Figure 23;
- 25 is a schematic diagram of a partial structure of a polarization rotating beam splitter coupled to an eighth zone according to an embodiment of the disclosure.
- Figure 26 is a cross-sectional view in the direction of J-J in Figure 25;
- FIG. 27 is a schematic diagram of a partial structure of the coupling ninth zone of a polarization rotating beam splitter provided by an embodiment of the disclosure.
- Fig. 28 is a cross-sectional view taken along the K-K direction in Fig. 27;
- One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
- Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
- the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
- information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
- the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
- the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
- the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
- the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
- Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
- the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
- One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
- the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
- the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
- the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
- the optical module realizes the mutual conversion between the optical signal and the electrical signal, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; in an embodiment of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module It is input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
- the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
- the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical Module, the optical network terminal is used as the upper computer of the optical module to monitor the work of the optical module.
- the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
- Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
- the common optical module upper computer also has optical lines Terminal and so on.
- FIG 2 is a schematic diagram of the optical network terminal structure.
- the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
- the optical module 200 is inserted into an optical network terminal.
- the electrical port of the optical module is inserted into an electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
- the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
- FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the present disclosure.
- the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300, a silicon optical chip 400, a light source 500 and an optical fiber socket 600.
- the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
- the lower shell includes a main board and Two side plates located on both sides of the main board and perpendicular to the main board;
- the upper casing includes a cover plate, and the cover plate covers the two side plates of the upper casing to form a wrapping cavity;
- the upper casing may also include On both sides of the cover plate, the two side walls perpendicular to the cover plate are combined by the two side walls and the two side plates, so that the upper shell is covered on the lower shell.
- the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into the upper computer such as the optical network terminal; the other opening is the optical port 205, which is used for external optical fiber access to connect the silicon optical chip 403 inside the optical module; the circuit board 300, silicon optical chip 400, light source 500 and other optoelectronic devices are located Wrap in the cavity.
- the upper shell and the lower shell are combined to facilitate the installation of the circuit board 300, silicon optical chip 400 and other components into the shell.
- the upper shell and the lower shell form the outermost package protection shell of the optical module.
- the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding The components cannot be installed, and it is not conducive to production automation.
- the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize a fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
- the unlocking component 203 has an engaging component that matches the cage of the host computer; pulling the end of the unlocking component can make the unlocking component move relatively on the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging component of the unlocking component Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed, so as to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
- the circuit board 300 is provided with circuit wiring, electronic components (such as capacitors, resistors, transistors, MOS tubes), and chips (such as MCU, clock data recovery CDR, power management chip, data processing chip DSP), etc.
- electronic components such as capacitors, resistors, transistors, MOS tubes
- chips such as MCU, clock data recovery CDR, power management chip, data processing chip DSP, etc.
- the circuit board connects the electrical components in the optical module according to the circuit design through circuit traces to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
- the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
- a metal pin/gold finger is formed on one end surface of the rigid circuit board for communication with Electrical connector connection; these are inconvenient for flexible circuit boards.
- Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver devices.
- the silicon optical chip 400 is arranged on the circuit board 300 and is electrically connected to the circuit board 300, which can be specifically wired connection; the periphery of the silicon optical chip and the circuit board 300 are connected by multiple conductive wires, so the silicon optical chip 400 is generally Set on the surface of the circuit board 300.
- the silicon optical chip 400 and the laser box 500 are optically connected through the first optical fiber ribbon 401.
- the silicon optical chip 400 receives the light from the laser box 500 through the first optical fiber ribbon 401, and then modulates the light.
- the signal is loaded on the light; the silicon optical chip 400 receives the light from the optical fiber socket 600, and then converts the optical signal into an electrical signal.
- the silicon optical chip 400 and the optical fiber socket 600 are optically connected through the second optical fiber ribbon 402, and the optical fiber socket 600 is optically connected to the external optical fiber of the optical module.
- the light modulated by the silicon optical chip 400 is transmitted to the optical fiber socket 600 through the second optical fiber ribbon 402, and is transmitted to the external optical fiber through the optical fiber socket 600; the light transmitted from the external optical fiber is transmitted to the second optical fiber ribbon 402 through the optical fiber socket 600, and passes through the second optical fiber
- the tape 402 is transmitted to the silicon optical chip 400; thus, the silicon optical chip 400 outputs light carrying data to the external optical fiber of the optical module, or receives signal light carrying data from the external optical fiber of the optical module.
- the silicon optical chip 400 is provided with an input optical port, an output optical port, a monitoring optical port, a high-speed electrical signal interface, a DC bias signal interface, and the like.
- the optical input port includes a first optical input port and a second optical input port.
- the first optical input port is used to couple the light output from the laser box 500 into the silicon optical chip;
- the second optical input port is used to connect the external optical fiber of the optical module.
- the light receiving and carrying data is coupled into the silicon optical chip; the output optical port is used to couple the modulated signal light out of the silicon optical chip 400.
- the material of the silicon optical chip 400 is mainly silicon. If the signal light input from the outside of the optical module is directly coupled to the silicon core layer in the silicon optical chip 400 through the second optical fiber ribbon 402 or coupled through the end coupler of the silicon waveguide structure To the silicon core layer in the silicon optical chip 400, since the refractive index of silicon is 3.5, the coupling efficiency of the light into the silicon optical chip 400 will be relatively low. In order to improve the coupling efficiency of the signal light transmitted by the second optical fiber ribbon 402 to the silicon optical chip 400, the input optical port of the silicon optical chip 400 is provided with a polarization rotating beam splitter 700 to improve the signal light transmission on the second optical fiber ribbon 402. Coupling efficiency in silicon optical chip 400.
- FIG. 5 is a block diagram of the internal structure of an optical module provided by an embodiment of the disclosure.
- the input optical port of the silicon optical chip 400 provided by the embodiment of the present disclosure is provided with a polarization rotating beam splitter 700.
- the signal light outside the optical module is transmitted through the second optical fiber 402, coupled to the polarization rotating beam splitter 700, and then coupled to the inside of the silicon optical chip 400 through the polarization rotating beam splitter 700.
- the polarization rotating beam splitter 700 provided by an embodiment of the present disclosure includes a substrate, a cladding, and a silicon nitride waveguide. 710, a first silicon waveguide 720, a second silicon waveguide 730, and a third silicon waveguide 740.
- the first silicon waveguide 720 is arranged on the substrate, the second silicon waveguide 730 and the third silicon waveguide 740 are arranged above the first end of the first silicon waveguide 720, and the silicon nitride waveguide 710 is arranged on the second end of the first silicon waveguide 720.
- the length direction of the second silicon waveguide 730 is parallel to the length direction of the first silicon waveguide 720
- the length direction of the third silicon waveguide 740 is parallel to the length direction of the first silicon waveguide 720
- the length direction of the silicon nitride waveguide 710 is parallel to the length direction of the first silicon waveguide 720.
- the length direction is parallel.
- the thickness of the second silicon waveguide 730 is greater than the thickness of the first silicon waveguide 720
- the thickness of the third silicon waveguide 740 is greater than the thickness of the first silicon waveguide 720.
- a material with a refractive index smaller than that of the waveguide such as silicon dioxide, is used as the lining of the silicon nitride waveguide 710, the first silicon waveguide 720, the second silicon waveguide 730, and the third silicon waveguide 740. Bottom and cladding.
- the end face of the silicon nitride waveguide 710 is used to couple the signal light transmitted to it through the second optical fiber ribbon 402.
- FIG. 7 is a top view of a polarization rotating beam splitter 700 provided by an embodiment of the disclosure
- FIG. 8 is a cross-sectional view in the direction of A-A in FIG. 7
- FIG. 9 is a cross-sectional view in the direction of B-B in FIG. 7.
- Figures 7-9 also show the transmission path of light, in which the solid arrow represents the transmission path of TE polarized light, and the dashed arrow represents the transmission path of TM polarized light. As shown in FIGS.
- the first silicon waveguide 720 is arranged below the silicon nitride waveguide 710
- the second silicon waveguide 730 and the third silicon waveguide 740 are arranged above the first end of the first silicon waveguide 720
- the second silicon waveguide 720 There is a gap between the waveguide 730 and the third silicon waveguide 740, and a cladding layer is arranged within the gap.
- the structure of the polarization rotating beam splitter 700 is a structure in which the silicon nitride waveguide 710, the first silicon waveguide 720, the second silicon waveguide 730, and the third silicon waveguide are wrapped by a substrate and a cladding.
- the second silicon waveguide 730 and the third silicon waveguide 740 are disposed above the first end of the first silicon waveguide 720.
- the second silicon waveguide 730 is in contact with the first silicon waveguide 720 to form a first ridge-type silicon waveguide with the first silicon waveguide 720 base;
- the third silicon waveguide 740 is in contact with the first silicon waveguide 720 to form a first silicon waveguide with the first silicon waveguide 720 base.
- the signal light outside the optical module is transmitted to the end face of the polarization rotating beam splitter 700 through the second optical fiber 402, and is coupled to the silicon nitride waveguide 710; it is gradually coupled to the first silicon waveguide through the silicon nitride waveguide 710 720, and realize the conversion of TM polarized light to TE10 polarized light mode in the silicon nitride waveguide and the first silicon waveguide system; the first ridge-type silicon waveguide formed by gradually coupling to the second silicon waveguide 730 through the first silicon waveguide 720; Finally, the second silicon waveguide 730 is gradually coupled to the second ridge silicon waveguide formed by the third silicon waveguide 740, and the TE10 polarized light to TE polarized light mode is realized in the first ridge silicon waveguide and the second ridge silicon waveguide system
- the second silicon waveguide 730 and the third silicon waveguide 740 are connected to the silicon core layer in the silicon optical chip 400, and the signal light is transmitted from the second silicon waveguide 730 and the third
- the silicon nitride waveguide 710 is a silicon nitride waveguide, and the first silicon waveguide 720, the second silicon waveguide 730, and the third silicon waveguide 740 are silicon waveguides.
- the refractive index of silicon is 3.5, while the refractive index of silicon nitride is 2, and the refractive index of silicon nitride is smaller than that of silicon.
- the waveguide 710 has higher coupling efficiency than light directly coupling to the silicon core layer in the silicon optical chip 400 or coupling to the silicon core layer in the silicon optical chip 400 through the end coupler of the silicon waveguide structure, and then passes through the first silicon waveguide 720, The second silicon waveguide 730 and the third silicon waveguide are coupled into the silicon optical chip 400. Therefore, the light transmitted to the silicon optical chip 400 through the second optical fiber ribbon 402 transits through the polarization rotating beam splitter 700, and the coupling efficiency of the light to the silicon optical chip 400 is improved.
- the signal light transmitted by the second optical fiber 402 when the signal light transmitted by the second optical fiber 402 is TE polarized light, the signal light outside the optical module is coupled to the silicon nitride waveguide 710 and passes through the silicon nitride waveguide 710. It is gradually coupled to the first silicon waveguide 720, and then gradually coupled to the third silicon waveguide 740 via the second silicon waveguide 730, and finally transmitted to the inside of the silicon optical chip 400 via the third silicon waveguide 740.
- the signal light outside the optical module transmitted through the second optical fiber 402 when the signal light outside the optical module transmitted through the second optical fiber 402 is TM polarized light, it is coupled to the silicon nitride waveguide 710.
- TM polarized light can be transmitted to The conversion of TE10 polarization mode, and the conversion of TE10 polarization to TE polarization mode is realized in the first silicon waveguide, the second silicon waveguide and the third silicon waveguide system, and it is gradually coupled to the third silicon waveguide 740, and finally through the third silicon waveguide.
- the silicon waveguide 740 is transmitted to the inside of the silicon optical chip 400. Therefore, the polarization rotating beam splitter 700 provided by the embodiments of the present disclosure can adjust the incident signal light of unknown polarization state to a known polarization state, and effectively couple TE polarization and TM polarization incident signal light to the silicon optical chip with high efficiency.
- the coupling efficiency of TE polarization and TM polarization signal light reaches more than 90%.
- the size of the polarization rotating beam splitter 700 is relatively small, and the upper surface can be as large as 1 mm 2.
- the thickness of the silicon nitride waveguide 710 is less than 500 nm
- the thickness of the first silicon waveguide 720 is less than 200 nm
- the thickness of the first ridge silicon waveguide is greater than 200 nm
- the thickness of the second ridge silicon waveguide is greater than 200nm.
- the thickness of the second silicon waveguide 730 is greater than 200 nm
- the thickness of the third silicon waveguide is greater than 200 nm.
- the thickness of the silicon nitride waveguide 710 is 250 nm
- the thickness of the first silicon waveguide 720 is 90 nm
- the thickness of the second silicon waveguide 730 is 220 nm
- the thickness of the third silicon waveguide is 220 nm.
- the distance between the silicon nitride waveguide 710 and the first silicon waveguide 720 is 50 nm-500 nm
- the distance between the second silicon waveguide 730 and the third silicon waveguide 740 is 50 nm-500 nm. In this way, it is convenient to realize the miniaturization of the polarization rotating beam splitter 700.
- FIG. 10 is a schematic diagram of the partition structure of a polarization rotating beam splitter 700 provided by an embodiment of the disclosure. As shown in FIG. 10, the first coupling zone, the second coupling zone, the third coupling zone, the fourth coupling zone, and the fifth coupling zone are sequentially connected.
- the silicon nitride waveguide 710 includes a first section 711, a second section 712, a third section 713, and a fourth section 714 that are sequentially connected;
- the first silicon waveguide 720 includes a first section 721, The second section 722, the third section 723, the fourth section 724, the fifth section 725, the sixth section 726, the seventh section 727 and the eighth section 728;
- the second silicon waveguide 730 includes the first section 731, the first section 731 and the eighth section connected in sequence.
- the third silicon waveguide 740 includes a first section 741 and a second section 742 connected in sequence.
- each section of the silicon nitride waveguide 710, the first silicon waveguide 720, the second silicon waveguide 730, and the third silicon waveguide 740 can be based on the actual needs of the polarization rotating beam splitter 700, as well as the silicon nitride waveguide 710 and the first silicon waveguide. 720, the thickness of the second silicon waveguide 730 and the third silicon waveguide 740 are selected.
- the polarization rotating beam splitter 700 provided by the embodiment of the present disclosure will be described in detail below in conjunction with the division of the polarization rotating beam splitter 700.
- FIG. 11 is a schematic diagram of a partial structure of a first coupling region provided by an embodiment of the disclosure
- FIG. 12 is a cross-sectional view in the direction of C-C in FIG. 11.
- the coupling first region includes the first section 711 of the silicon nitride waveguide.
- the signal light outside the optical module is transmitted to the end face of the polarization rotating beam splitter 700 through the second optical fiber 402, that is, transmitted to the end face of the silicon nitride waveguide 710, and is coupled to the first end face of the silicon nitride waveguide through the end face of the silicon nitride waveguide 710.
- the light of the first section 711 coupled to the silicon nitride waveguide is independently and stably transmitted in the first section 711 of the silicon nitride waveguide, and the length and width of the first section 711 of the silicon nitride waveguide meet the single-mode transmission condition.
- both TE polarized light and TM polarized light are independently and stably transmitted, without coupling of light fields and mode conversion.
- FIG. 13 is a schematic diagram of a partial structure of a second coupling region provided by an embodiment of the disclosure
- FIG. 14 is a cross-sectional view in the direction D-D in FIG. 13.
- the coupling second region includes the second section 712 of the silicon nitride waveguide and the first section 721 of the first silicon waveguide, forming a mixed waveguide system of silicon nitride and the first silicon.
- TE polarized light is coupled from the second section 712 of the silicon nitride waveguide to the first section 721 of the first silicon waveguide
- TM polarized light is coupled from the second section 712 of the silicon nitride waveguide to the silicon nitride and The first silicon hybrid waveguide system.
- the width of the first section 721 of the first silicon waveguide gradually increases from its front end to its end.
- the width of the first section 721 of the first silicon waveguide is the smallest at the front end, and gradually increases from the front end to the end.
- the "front end” refers to the end toward the left in FIG. 10
- the "end” refers to the end toward the right in FIG. 10.
- the front end of the first section 721 of the first silicon waveguide is the end to the left in FIG.
- the width of the first section 721 of the first silicon waveguide is the smallest at its front end, which facilitates reducing the coupling loss of the optical field from the silicon nitride waveguide to the silicon nitride and first silicon hybrid waveguide system.
- the first section 721 of the first silicon waveguide has an isosceles trapezoid shape, that is, the front end of the first section 721 of the first silicon waveguide has the smallest width of the first silicon waveguide 720, and the first silicon waveguide 720 has the smallest width.
- the two sides of the first section 721 of the waveguide gradually increase symmetrically along the length direction of the first silicon waveguide 720.
- the length of the coupled second zone mainly affects the coupling rate of the signal light. Therefore, the second section 712 of the silicon nitride waveguide and the first section 721 of the first silicon waveguide in the coupling second zone should be kept long enough, specifically according to the actual polarization rotation.
- the size of the beamer 700 and the thickness of the silicon nitride waveguide 710 and the first silicon waveguide 720 are selected.
- FIG. 15 is a schematic diagram of a partial structure of a third coupling region provided by an embodiment of the disclosure
- FIG. 16 is a cross-sectional view in the direction of E-E in FIG. 15.
- the third coupling region includes the third section 713 of the silicon nitride waveguide and the second section 722 of the first silicon waveguide, and continues to form a mixed waveguide system of silicon nitride and the first silicon.
- TE polarized light is transmitted stably
- TM polarized light is converted into TE10 polarized light in the mixed waveguide system of silicon nitride and first silicon.
- the width of the second section 722 of the first silicon waveguide gradually increases from its front end to its end.
- the width of the second section 722 of the first silicon waveguide is the smallest at its front end and gradually increases from the front end to the end thereof.
- the width of the second section 722 of the first silicon waveguide is the smallest at its front end, which facilitates the conversion of TM polarized light into a mixed waveguide system of silicon nitride and first silicon into TE10 polarized light.
- the second section 722 of the first silicon waveguide has an isosceles trapezoid shape, that is, the front end of the second section 722 of the first silicon waveguide has the smallest width of the second section 722 of the first silicon waveguide.
- the two sides of the second section 722 of the first silicon waveguide gradually increase symmetrically along the length direction of the first silicon waveguide 720.
- the length of the coupled second zone mainly affects the conversion of TM polarized light to TE10 polarized light. Therefore, the third section 713 of the silicon nitride waveguide in the coupling second zone and the second section 722 of the first silicon waveguide should be kept long enough.
- the size of the actual polarization rotating beam splitter 700 and the thickness of the silicon nitride waveguide 710 and the first silicon waveguide 720 are selected.
- FIG. 17 is a schematic diagram of a partial structure of the fourth coupling region provided by an embodiment of the disclosure
- FIG. 18 is a cross-sectional view in the direction of F-F in FIG. 17.
- the coupling fourth region includes the fourth section 714 of the silicon nitride waveguide and the third section 723 of the first silicon waveguide, and continues to form a silicon nitride and first silicon hybrid waveguide system.
- the TE polarized light is almost completely coupled to the third section 723 of the first silicon waveguide, and the TE10 polarized light is coupled from the silicon nitride and first silicon hybrid waveguide system to the third section 723 of the first silicon waveguide.
- the width of the fourth section 714 of the silicon nitride waveguide gradually decreases from its front end to its end.
- the width of the fourth section 714 of the silicon nitride waveguide is the largest at the front end, and gradually decreases from the front end to the end.
- the fourth section 714 of the silicon nitride waveguide has an isosceles trapezoid shape
- the front end of the fourth section 714 of the silicon nitride waveguide has the largest width
- the fourth section 714 of the silicon nitride waveguide The two sides of the silicon nitride waveguide 710 gradually decrease symmetrically along the length direction.
- the fourth section 714 of the silicon nitride waveguide in the fourth region is coupled.
- the third section 723 of the first silicon waveguide should be kept long enough, which is selected according to the size of the actual polarization rotating beam splitter 700 and the thickness of the silicon nitride waveguide 710 and the first silicon waveguide 720.
- the width of the third section 723 of the first silicon waveguide gradually increases from its front end to its end, and the width of the third section 723 of the first silicon waveguide is the smallest at its front end, which facilitates the realization of TE10 Polarized light is coupled from the silicon nitride and first silicon hybrid waveguide system to the third section 723 of the first silicon waveguide.
- the third section 723 of the first silicon waveguide has an isosceles trapezoid shape, that is, the front end of the third section 723 of the first silicon waveguide has the smallest width of the third section 723 of the first silicon waveguide.
- the two sides of the third section 723 of the first silicon waveguide gradually increase symmetrically along the length direction of the first silicon waveguide 720.
- FIG. 19 is a schematic diagram of a partial structure of a fifth coupling region provided by an embodiment of the disclosure
- FIG. 20 is a cross-sectional view in the direction of G-G in FIG. 19.
- the coupling fifth region includes the fourth section 724 of the first silicon waveguide.
- TE polarized light and TE10 polarized light are transmitted stably.
- the length of the fifth coupling zone can be arbitrarily selected as required, and the width of the fourth section 724 of the first silicon waveguide may be equal to or greater than the width of the end of the third section 723 of the first silicon waveguide.
- the width of the end of the third section 723 of the first silicon waveguide is larger or smaller, and the width of the fourth section 724 of the first silicon waveguide may gradually increase or decrease.
- FIG. 21 is a schematic diagram of a partial structure of a sixth coupling region provided by an embodiment of the disclosure
- FIG. 22 is a cross-sectional view in the direction of H-H in FIG. 21.
- the coupling sixth region includes the fifth section 725 of the first silicon waveguide and the first section 731 of the second silicon waveguide, forming a mixed waveguide system of the first silicon and the second silicon.
- the first section 731 of the second silicon waveguide is disposed above the fifth section 725 of the first silicon waveguide, and the thickness of the first section 731 of the second silicon waveguide is greater than the thickness of the fifth section 725 of the first silicon waveguide.
- the first section 731 of the second silicon waveguide is in contact with the fifth section 725 of the first silicon waveguide to form the first section of the first ridge-type silicon waveguide bottomed with the first silicon waveguide 720. Furthermore, in the sixth coupling region, TE polarized light and TE10 polarized light are gradually coupled from the region of the first section of the first ridge silicon waveguide to the ridge region of the first section of the first ridge silicon waveguide.
- the width of the first section 731 of the second silicon waveguide gradually increases from its front end to its end.
- the width of the first section 731 of the second silicon waveguide is the smallest at its front end and gradually increases from its front end to its end.
- the first section 731 of the second silicon waveguide is in the shape of an isosceles trapezoid, that is, the front end of the first section 731 of the second silicon waveguide has the smallest width of the second silicon waveguide 730, and the edges on both sides of the first section 731 of the second silicon waveguide The length direction of the second silicon waveguide 730 gradually increases symmetrically.
- the length of the coupled sixth zone mainly affects the coupling rate of TE polarized light and TE10 polarized light. Therefore, the fifth section 725 of the first silicon waveguide and the first section 731 of the second silicon waveguide in the sixth section should be sufficiently long. The selection is made according to the size of the actual polarization rotating beam splitter 700 and the thickness of the silicon nitride waveguide 710, the first silicon waveguide 720, and the second silicon waveguide.
- FIG. 23 is a schematic diagram of a partial structure of a coupling seventh region provided by an embodiment of the disclosure
- FIG. 24 is a cross-sectional view in the direction I-I in FIG. 23.
- the coupling seventh region includes the sixth section 726 of the first silicon waveguide and the second section 732 of the second silicon waveguide, and continues to form a mixed waveguide system of the first silicon and the second silicon.
- the second section 732 of the second silicon waveguide is in contact with the sixth section 726 of the first silicon waveguide to form the second section of the first ridge-type silicon waveguide bottomed with the first silicon waveguide 720.
- the seventh coupling zone it is used to realize stable transmission of TE polarized light and TE10 polarized light in the first ridge silicon waveguide.
- the width of the sixth section 726 of the first silicon waveguide gradually increases from its front end to its end.
- the width of the sixth section 726 of the first silicon waveguide is the smallest at its front end and gradually increases from its front end to its end.
- the sixth section 726 of the first silicon waveguide has an isosceles trapezoid shape, that is, the front end of the sixth section 726 of the first silicon waveguide has the smallest width of the sixth section 726 of the first silicon waveguide.
- the two sides of the sixth section 726 of the first silicon waveguide gradually increase symmetrically along the length direction of the first silicon waveguide 720.
- the width of the second section 732 of the second silicon waveguide is equal to the width of the end of the first section 731 of the second silicon waveguide.
- the sixth section 726 of the first silicon waveguide and the second section 732 of the second silicon waveguide in the coupling seventh zone should be kept long enough, and the beam splitter should be rotated according to the actual polarization.
- the size of 700 and the thickness of the silicon nitride waveguide 710, the first silicon waveguide 720, and the second silicon waveguide 730 are selected.
- FIG. 25 is a schematic diagram of a partial structure of a coupling eighth region provided by an embodiment of the disclosure
- FIG. 26 is a cross-sectional view along the J-J direction in FIG. 25.
- the coupling eighth region includes the seventh section 727 of the first silicon waveguide, the third section 733 of the second silicon waveguide, and the first section 741 of the third silicon waveguide, forming the first and second silicon waveguides. Silicon and third silicon hybrid waveguide system.
- the third section 732 of the second silicon waveguide is in contact with the seventh section 727 of the first silicon waveguide to form the third section of the first ridge-type silicon waveguide with the bottom of the first silicon waveguide 720; the first section 741 of the third silicon waveguide is connected with The seventh section 727 of the first silicon waveguide contacts the first section of the second ridge-type silicon waveguide formed with the first silicon waveguide 720 backplane.
- TE polarized light is transmitted stably in the third section of the first ridge silicon waveguide, and TE10 polarized light is converted into TE polarized light in the first silicon, second silicon and third silicon hybrid waveguide system, and then gradually Coupled into the first section of the second ridge-type silicon waveguide.
- the width of the third section 733 of the second silicon waveguide gradually decreases from its front end to its end, and the width of the first section 741 of the third silicon waveguide gradually increases from its front end to its end.
- the width of the third section 733 of the second silicon waveguide is the largest at its front end and gradually decreases from the front end to the end; the width of the first section 741 of the third silicon waveguide is the smallest at its front end and gradually increases from the front end to the end. Big.
- the third section 733 of the second silicon waveguide has an isosceles trapezoid shape, that is, the front end of the third section 733 of the second silicon waveguide has the largest width, and the third section of the second silicon waveguide has the largest width.
- the two sides of the 733 gradually decrease symmetrically along the length direction of the second silicon waveguide 730.
- the first section 741 of the third silicon waveguide has an isosceles trapezoid shape, that is, the front end of the first section 741 of the third silicon waveguide has the smallest width of the third silicon waveguide 740, and the third silicon waveguide 740 has the smallest width.
- the two sides of the first section 741 of the waveguide gradually increase symmetrically along the length direction of the third silicon waveguide 740.
- the length of the coupling eighth zone mainly affects the conversion and coupling of TE10 polarized light, so the seventh section 727 of the first silicon waveguide, the third section 733 of the second silicon waveguide and the first section of the third silicon waveguide in the eighth zone are coupled
- the 741 should be kept long enough, which is specifically selected according to the size of the actual polarization rotating beam splitter 700 and the thickness of the silicon nitride waveguide 710, the first silicon waveguide 720, the second silicon waveguide 730, and the third silicon waveguide 740.
- FIG. 27 is a schematic diagram of a partial structure of the coupling ninth region provided by an embodiment of the disclosure
- FIG. 28 is a cross-sectional view in the K-K direction in FIG. 27.
- the coupling ninth region includes the eighth section 728 of the first silicon waveguide, the fourth section 734 of the second silicon waveguide, and the second section 742 of the third silicon waveguide, forming the first silicon and the second silicon waveguide. Silicon and third silicon hybrid waveguide system.
- the fourth section 732 of the second silicon waveguide is in contact with the eighth section 728 of the first silicon waveguide to form the fourth section of the first ridge-type silicon waveguide with the bottom of the first silicon waveguide 720; the second section 742 of the third silicon waveguide is connected with The eighth section 728 of the first silicon waveguide contacts the second section of the second ridge-type silicon waveguide formed with the first silicon waveguide 720 backplane.
- the TE polarized light after TM conversion and the original TE polarized light are stably transmitted in the fourth section of the first ridge silicon waveguide and the second section of the second ridge silicon waveguide.
- the fourth section 734 of the second silicon waveguide and the second section 742 of the third silicon waveguide are used to connect the silicon core layer in the silicon optical chip 400, such as the single-mode silicon waveguide in the silicon optical chip 400, to achieve TM conversion.
- the TE polarized light and the original TE polarized light are coupled to the inside of the silicon optical chip 400.
- the TE polarized light after TM conversion is coupled to the inside of the silicon optical chip 400 through the second section 742 of the third silicon waveguide
- the original TE polarized light is coupled to the inside of the silicon optical chip 400 through the fourth section 734 of the second silicon waveguide.
- the fourth section of the second silicon waveguide can be selected as required. For example, when the length required to connect the single-mode silicon waveguide in the silicon optical chip 400 is longer, the length is selected relatively long; when the length required to connect the single-mode silicon waveguide in the silicon optical chip 400 is short, the length is selected relatively short.
- the width of the section 742 is a preset width.
- the preset width is equal to the width of the single-mode silicon waveguide, which facilitates the passage of light through the fourth section 734 of the second silicon waveguide and the second section 734 of the third silicon waveguide. Segment 742 is input into the single-mode waveguide.
- the silicon nitride waveguide 710, the first silicon waveguide 720, the second silicon waveguide 730, and the third silicon waveguide 740 can be optimized to achieve the transmission of light of different wavelengths to the silicon optical chip 400 according to the length of each section. High coupling efficiency coupling.
- a polarization rotating beam splitter is provided in the first input optical port to improve the coupling efficiency of light transmitted from the first optical fiber ribbon 401 to the silicon optical chip 400, which is similar to the polarization rotating beam splitter in the second input optical port of the foregoing embodiment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Abstract
光模块(200)包括:电路板(300)、硅光芯片(400)设置在电路板(300)上,硅光芯片(400)的输入光口内设置偏振旋转分束器(700),通过偏振旋转分束器(700)接收光模块(200)外部传输至其的信号光,将信号光调制为电信号并通过硅光芯片(400)的光电口输出。偏振旋转分束器(700)包括:衬底;第一硅波导(720),设置在衬底上;第二硅波导(730),设置在第一硅波导(720)第一端的上方,厚度大于第一硅波导(720)的厚度;第三硅波导(740),设置在第一硅波导(720)第一端的上方,厚度大于第一硅波导(720)的厚度,第三硅波导(740)与第二硅波导(730)之间存在间距,间距内填充包层;氮化硅波导(710),设置在第一硅波导(720)第二端的上方,与第一硅波导(720)之间存在间距,间距内填充包层。通过包含氮化硅波导(710)的偏振旋转分束器(700),提升光到硅光芯片内部的耦合效率。
Description
本公开要求在2020年03月20日提交中国专利局、申请号为202010203530.1、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
本公开涉及光通信技术领域,尤其涉及一种光模块。
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。而在光通信中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。其中,由于硅光芯片具有尺寸小、集成密度高成本低的优点,因此采用硅光芯片实现电光-光电转换功能已经成为高速光模块采用的一种主流方案。
但在采用硅光芯片实现光电转换的使用中发现,当信号光自硅光芯片的入光口耦合进入硅光芯片时,由于硅的折射率比较高造成信号光到硅光芯片的耦合效率比较低。同时,信号光在到达硅光芯片的入光口之前经过了一定距离的传输,信号光的偏振状态将不固定,而不同偏振态信号光的模场差别很大,进而造成信号光到硅光芯片的耦合效率更低。
发明内容
第一方面,本公开实施例提供的一种光模块,包括:电路板;硅光芯片,设置在所述电路板上与所述电路板电连接,所述硅光芯片的输入光口内设置偏振旋转分束器,通过所述偏振旋转分束器接收光模块外部传输至其的信号光,将所述信号光调制为电信号并通过所述硅光芯片的光电口输出;所述偏振旋转分束器包括:衬底;第一硅波导,设置在所述衬底上;第二硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行;第三硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行,所述第三硅波导与所述第二硅波导之间存在间距,间距内填充包层;氮化硅波导,设置在所述第一硅波导第二端的上方,与所述第一硅波导之间存在间距,间距内填充包层,所述氮化硅波导长度方向与所述第一硅波导长度方向平行。
第二方面,本公开实施例提供的一种光模块,包括:电路板;光源,与所述电路板电连接,用于发出不携带信号的光;硅光芯片,设置在所述电路板上与所述电路板电连接,所述硅光芯片的输入光口设置有偏振旋转分束器,通过所述偏振旋转分束器接收所述不携带信号的光,将所述不携带信号的光调制为信号光并通过所述硅光芯片的输出光口输出所述信号光;所述偏振旋转分束器包括:衬底;第一硅波导,设置在所述衬底上;第二硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行;第三硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行,所述第三硅波导与所述第 二硅波导之间存在间距,间距内填充包层;氮化硅波导,设置在所述第一硅波导第二端的上方,与所述第一硅波导之间存在间距,间距内填充包层,所述氮化硅波导长度方向与所述第一硅波导长度方向平行。
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或已有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例提供的一种光模块结构示意图;
图4为本公开实施例提供光模块分解结构示意图;
图5为本公开实施例提供的一种光模块的内部结构框图;
图6为本公开实施例提供的一种偏振旋转分束器的主视图;
图7为本公开实施例提供的一种偏振旋转分束器的俯视图;
图8为图7中A-A方向的剖视图;
图9为图7中B-B方向的剖视图;
图10为本公开实施例提供的偏振旋转分束器的分区示意图;
图11为本公开实施例提供的偏振旋转分束器耦合第一区的局部结构示意图;
图12为图11中C-C方向的剖视图;
图13为本公开实施例提供的偏振旋转分束器耦合第二区的局部结构示意图;
图14为图13中D-D方向的剖视图;
图15为本公开实施例提供的偏振旋转分束器耦合第三区的局部结构示意图;
图16为图15中E-E方向的剖视图;
图17为本公开实施例提供的偏振旋转分束器耦合第四区的局部结构示意图;
图18为图17中F-F方向的剖视图;
图19为本公开实施例提供的偏振旋转分束器耦合第五区的局部结构示意图;
图20为图19中G-G方向的剖视图;
图21为本公开实施例提供的偏振旋转分束器耦合第六区的局部结构示意图;
图22为图21中H-H方向的剖视图;
图23为本公开实施例提供的偏振旋转分束器耦合第七区的局部结构示意图;
图24为图23中I-I方向的剖视图;
图25为本公开实施例提供的偏振旋转分束器耦合第八区的局部结构示意图;
图26为图25中J-J方向的剖视图;
图27为本公开实施例提供的偏振旋转分束器耦合第九区的局部结构示意图;
图28为图27中K-K方向的剖视图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;在本公开的某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本公开的某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等 光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,在本公开的某一实施例中光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、硅光芯片400、光源500及光纤插座600。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开的某一实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的硅光芯片403;电路板300、硅光芯片400、光源500等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、硅光芯片400等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提 供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开的某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
硅光芯片400设置在电路板300上,与电路板300实现电连接,具体可以是打线连接;硅光芯片的周边与电路板300之间通过多条导电线连接,所以硅光芯片400一般设置在电路板300的表面。
硅光芯片400与激光盒500之间通过第一光纤带401实现光连接,硅光芯片400通过第一光纤带401接收来自激光盒500的光,进而对光进行调制,在本公开的某一实施例中将信号加载到光上;硅光芯片400接收来自光纤插座600的光,进而将光信号转换为电信号。
硅光芯片400与光纤插座600之间通过第二光纤带402实现光连接,光纤插座600实现与光模块外部光纤的光连接。硅光芯片400调制的光通过第二光纤带402传输至光纤插座600,通过光纤插座600传输至外部光纤;外部光纤传来的光通过光纤插座600传输至第二光纤带402,通过第二光纤带402传输至硅光芯片400中;从而实现硅光芯片400向光模块外部光纤输出携带数据的光,或从光模块外部光纤接收携带数据的信号光。
在本公开实施例中,硅光芯片400上设置输入光口、输出光口、监控光口、高速电信号接口和直流偏置信号接口等。其中输入光口包括第一输入光口和第二输入光口,第一输入光口用于将激光盒500输出的光耦合进入硅光芯片内部;第二输入光口用于将光模块外部光纤接收携带数据的光耦合进入硅光芯片内部;输出光口用于将调制后的信号光耦合出硅光芯片400。
下面结合第二输入光口内设置光波导耦合器,对提高第二光纤带402上传输光到硅光芯片400内的耦合效率为例进行详细说明。
硅光芯片400的材质主要为硅,若将光模块外部输入的信号光通过第二光纤带402传输的光直接耦合至硅光芯片400内的硅芯层或通过硅波导结构的端面耦合器耦合至硅光芯片400内的硅芯层,由于硅的折射率为3.5,将会导致该光到硅光芯片400内的耦合效率比较低。为提高第二光纤带402传输的信号光到硅光芯片400内的耦合效率,硅光芯片400的输入光口设置偏振旋转分束器700,用于提高第二光纤带402上传输信号光到硅光芯片400内的耦合效率。
图5为本公开实施例提供一种光模块的内部结构框图。如图5所示,本公开实施例提供的硅光芯片400的输入光口设置有偏振旋转分束器700。在本公开实施例中,光模块外部的信号光通过第二光纤402传输、耦合至偏振旋转分束器700,然后通过偏振旋转分束器700耦合至硅光芯片400内部。
图6为本公开实施例提供的一种偏振旋转分束器700的主视图,如图6所示,本公开实施例提供的偏振旋转分束器700包括衬底、包层、氮化硅波导710、第一硅波导720、第二硅波导730和第三硅波导740。第一硅波导720设置在衬底上,第二硅波导730和第 三硅波导740设置在第一硅波导720第一端的上方,氮化硅波导710设置在第一硅波导720第二端的上方。其中,以图6的视图方向为参照,“第一端”为靠右的一端,“第二端”为靠左的一端,“上方”靠近上部。第二硅波导730的长度方向与第一硅波导720长度方向平行,第三硅波导740的长度方向与第一硅波导720长度方向平行,氮化硅波导710的长度方向与第一硅波导720长度方向平行。氮化硅波导710与第一硅波导720之间存在间距,间距内填充包层。第二硅波导730的厚度大于第一硅波导720的厚度,第三硅波导740的厚度大于第一硅波导720的厚度。
在本公开的某一实施例中,采用二氧化硅等折射率小于波导折射率的材料用作氮化硅波导710、第一硅波导720、第二硅波导730和第三硅波导740的衬底和包层。在本公开实施例中,氮化硅波导710的端面用于耦合通过第二光纤带402传输至其的信号光。
图7为本公开实施例提供的一种偏振旋转分束器700的俯视图,图8为图7中A-A方向的剖视图,图9为图7中B-B方向的剖视图。图7-9中还示出了光的传输路径,其中实线箭头表示TE偏振光的传输路径、虚线箭头表示TM偏振光的传输路径。如图7-9所示,第一硅波导720设置在氮化硅波导710的下方,第二硅波导730和第三硅波导740设置在第一硅波导720第一端的上方,第二硅波导730与第三硅波导740之间存在间距,间距内设置包层。结合图6-9可知,偏振旋转分束器700的结构是衬底和包层包裹氮化硅波导710、第一硅波导720、第二硅波导730和第三硅波导的结构。
在本公开实施例中,第二硅波导730和第三硅波导740设置在第一硅波导720第一端的上方。第二硅波导730与第一硅波导720接触形成以第一硅波导720底板的第一脊型硅波导;第三硅波导740与第一硅波导720接触形成以第一硅波导720底板的第二脊型硅波导。
结合图7-9可知,光模块外部的信号光通过第二光纤402传输至偏振旋转分束器700的端面,耦合至氮化硅波导710;经氮化硅波导710逐渐耦合至第一硅波导720,并在氮化硅波导和第一硅波导体系中实现TM偏振光到TE10偏振光模式的转化;经第一硅波导720逐渐耦合至第二硅波导730形成的第一脊型硅波导;最后经第二硅波导730逐渐耦合至第三硅波导740形成的第二脊型硅波导,并在第一脊型硅波导和第二脊型硅波导体系中实现TE10偏振光到TE偏振光模式的转化,第二硅波导730和第三硅波导740与硅光芯片400中的硅芯层连接,进而实现了信号光从第二硅波导730和第三硅波导740传输至了硅光芯片400内部。偏振旋转分束器700用于实现光模块外部的信号光到硅光芯片400的耦合。
在本公开实施例中,氮化硅波导710为氮化硅材质的波导,第一硅波导720、第二硅波导730和第三硅波导740为硅材质的波导。硅的折射率为3.5,而氮化硅的折射率为2,氮化硅的折射率小于硅的折射率。光模块外部的信号光通过第二光纤带402传输至偏振旋转分束器700的端面时,耦合进氮化硅波导710,由于氮化硅波导710比硅的折射率小,那么使用氮化硅波导710将比光直接耦合至硅光芯片400内的硅芯层或通过硅波导结构的端面耦合器耦合至硅光芯片400内的硅芯层的耦合效率高,然后通过第一硅波导720、第二硅波导730和第三硅波导耦合进硅光芯片400内部。因此,通过第二光纤带402传输至 硅光芯片400的光,经过偏振旋转分束器700过渡,提高该光到硅光芯片400的耦合效率。
在本公开实施例提供的偏振旋转分束器700,当光模块外部的信号光通过第二光纤402传输的信号光为TE偏振光时,耦合至氮化硅波导710,经氮化硅波导710逐渐耦合至第一硅波导720,再经第二硅波导730逐渐耦合至第三硅波导740,最后经第三硅波导740传输至了硅光芯片400内部。同时,当光模块外部的信号光通过第二光纤402传输的信号光为TM偏振光时,耦合至氮化硅波导710,在氮化硅波导和第一硅波导体系中可以实现TM偏振光到TE10偏振光模式的转化,并在第一硅波导、第二硅波导和第三硅波导体系中实现TE10偏振光到TE偏振光模式的转化,逐渐耦合至第三硅波导740,最后经第三硅波导740传输至了硅光芯片400内部。因此,本公开实施例提供的偏振旋转分束器700,可将未知偏振态的入射信号光调整到已知的偏振态,有效的将TE偏振和TM偏振入射信号光高效率耦合到硅光芯片400内,对TE偏振和TM偏振信号光耦合效率达到90%以上。
在本公开实施例中,偏振旋转分束器700的尺寸比较小,上表面可至1mm2。在本公开的某一实施例中,氮化硅波导710的厚度小于500nm,第一硅波导720的厚度小于200nm,第一脊型硅波导的厚度大于200nm,第二脊型硅波导的厚度大于200nm。在本公开的某一实施例中,第二硅波导730的厚度大于200nm,第三硅波导的厚度大于200nm。如,氮化硅波导710的厚度为250nm,第一硅波导720的厚度为90nm,第二硅波导730的厚度为220nm,第三硅波导的厚度为220nm。氮化硅波导710与第一硅波导720之间的间距为50nm-500nm,第二硅波导730与第三硅波导740之间的间距为50nm-500nm。如此,便于实现偏振旋转分束器700尺寸小型化。
为便于偏振旋转分束器700实现提升光到硅光芯片400内部的耦合效率,偏振旋转分束器700沿其长度方向被分为耦合第一区、耦合第二区、耦合第三区、耦合第四区和耦合第五区。图10为本公开实施例提供到的一种偏振旋转分束器700的分区结构示意图。如图10所示,耦合第一区、耦合第二区、耦合第三区、耦合第四区和耦合第五区依次连接。
在本公开实施例中,氮化硅波导710包括依次连接的第一段711、第二段712、第三段713和第四段714;第一硅波导720包括依次连接的第一段721、第二段722、第三段723、第四段724、第五段725、第六段726、第七段727和第八段728;第二硅波导730包括依次连接的第一段731、第二段732、第三段733和第四段734;第三硅波导740包括依次连接的第一段741和第二段742。氮化硅波导710、第一硅波导720、第二硅波导730和第三硅波导740中各段的长度可根据偏振旋转分束器700的实际需要以及氮化硅波导710、第一硅波导720、第二硅波导730和第三硅波导740的厚度进行选择。
下面结合偏振旋转分束器700的分区对本公开实施例提供的偏振旋转分束器700的进行详细描述。
图11为本公开实施例提供的耦合第一区的局部结构示意图,图12为图11中C-C方向的剖视图。如图11和12所示,耦合第一区包括氮化硅波导的第一段711。光模块外部的信号光通过第二光纤402传输至偏振旋转分束器700的端面,即传输至氮化硅波导710的端面,经氮化硅波导710的端面耦合至氮化硅波导的第一段711,耦合至氮化硅波导的第一段711光在氮化硅波导的第一段711中独立稳定的传输,氮化硅波导的第一段711的 长度和宽度满足单模传输条件。在耦合第一区TE偏振光和TM偏振光均独立稳定的传输,不发生光场的耦合以及模式转化。
图13为本公开实施例提供的耦合第二区的局部结构示意图,图14为图13中D-D方向的剖视图。如图13和14所示,耦合第二区包括氮化硅波导的第二段712和第一硅波导的第一段721,形成氮化硅和第一硅的混合波导体系。在耦合第二区,TE偏振光从氮化硅波导的第二段712耦合至第一硅波导的第一段721,TM偏振光从氮化硅波导的第二段712耦合至氮化硅和第一硅的混合波导体系。
为减少光场从氮化硅波导到氮化硅和第一硅的混合波导体系的耦合损耗,第一硅波导的第一段721的宽度自其前端向其末端逐渐增大。在本公开的某一实施例中,第一硅波导的第一段721的宽度在其前端最小,并沿其前端至末端方向逐渐增大。其中,以图10的视图方向为参照,“前端”是指图10中靠左的一端,“末端”是指图10中靠右的一端。进而第一硅波导的第一段721的前端为图13中靠左的一端、第一硅波导的第一段721的末端为图13中靠右的一端。第一硅波导的第一段721的宽度在其前端最小,便于减小光场从氮化硅波导到氮化硅和第一硅混合波导体系的耦合损耗。
在本公开的某一实施例中,第一硅波导的第一段721呈等腰梯形状,即第一硅波导的第一段721的前端具有第一硅波导720最小的宽度,第一硅波导的第一段721的两侧边沿第一硅波导720的长度方向对称式逐渐增大。
耦合第二区的长度主要影响信号光的耦合率,因此耦合第二区中氮化硅波导的第二段712和第一硅波导的第一段721要保持足够长,具体根据实际偏振旋转分束器700的尺寸大小以及氮化硅波导710和第一硅波导720的厚度进行选择。
图15为本公开实施例提供的耦合第三区的局部结构示意图,图16为图15中E-E方向的剖视图。如图15和16所示,耦合第三区包括氮化硅波导的第三段713和第一硅波导的第二段722,继续形成氮化硅和第一硅的混合波导体系。在耦合第三区,TE偏振光稳定传输,TM偏振光在成氮化硅和第一硅的混合波导体系转化为TE10偏振光。
在耦合第三区,第一硅波导的第二段722的宽度自其前端向其末端逐渐增大。在本公开的某一实施例中,第一硅波导的第二段722的宽度在其前端最小,并沿其前端至末端方向逐渐增大。第一硅波导的第二段722的宽度在其前端最小,便于实现TM偏振光在成氮化硅和第一硅的混合波导体系转化为TE10偏振光。在本公开的某一实施例中,第一硅波导的第二段722呈等腰梯形状,即第一硅波导的第二段722的前端具有第一硅波导的第二段722最小的宽度,第一硅波导的第二段722的两侧边沿第一硅波导720的长度方向对称式逐渐增大。
耦合第二区的长度主要影响TM偏振光到TE10偏振光的转化,因此耦合第二区中氮化硅波导的第三段713和第一硅波导的第二段722要保持足够长,具体根据实际偏振旋转分束器700的尺寸大小以及氮化硅波导710和第一硅波导720的厚度进行选择。
图17为本公开实施例提供的耦合第四区的局部结构示意图,图18为图17中F-F方向的剖视图。如图17和18所示,耦合第四区包括氮化硅波导的第四段714和第一硅波导的第三段723,继续形成氮化硅和第一硅混合波导体系。在耦合第四区,TE偏振光在近乎全 部耦合至第一硅波导的第三段723,TE10偏振光从氮化硅和第一硅混合波导体系耦合至第一硅波导的第三段723。
在耦合第四区,氮化硅波导的第四段714的宽度自其前端向其末端逐渐减小。氮化硅波导的第四段714的宽度在其前端最大,并沿其前端至末端方向逐渐减小。在本公开的某一实施例中,氮化硅波导的第四段714呈等腰梯形状,氮化硅波导的第四段714的前端具有最大的宽度,氮化硅波导的第四段714的两侧边沿氮化硅波导710的长度方向对称式逐渐减小。在本公开实施例中,为实现TE偏振光和TE10偏振光从氮化硅和第一硅混合波导体系充分耦合到第一硅波导720,耦合第四区中氮化硅波导的第四段714和第一硅波导的第三段723要保持足够长,具体根据实际偏振旋转分束器700的尺寸大小以及氮化硅波导710和第一硅波导720的厚度进行选择。
在本公开的某一实施例中,第一硅波导的第三段723的宽度自其前端向其末端逐渐增大,第一硅波导的第三段723的宽度在其前端最小,便于实现TE10偏振光从氮化硅和第一硅混合波导体系耦合至第一硅波导的第三段723。在本公开的某一实施例中,第一硅波导的第三段723呈等腰梯形状,即第一硅波导的第三段723的前端具有第一硅波导的第三段723最小的宽度,第一硅波导的第三段723的两侧边沿第一硅波导720的长度方向对称式逐渐增大。
图19为本公开实施例提供的耦合第五区的局部结构示意图,图20为图19中G-G方向的剖视图。如图19和20所示,耦合第五区包括第一硅波导的第四段724。在耦合第五区,TE偏振光和TE10偏振光稳定传输。
在本公开实施例中,耦合第五区的长度可根据需要任意选择,并且第一硅波导的第四段724的宽度可与第一硅波导的第三段723末端的宽度相等,也可以比第一硅波导的第三段723末端的宽度大或小,第一硅波导的第四段724的宽度可逐渐增大或逐渐减小。
图21为本公开实施例提供的耦合第六区的局部结构示意图,图22为图21中H-H方向的剖视图。如图21和22所示,耦合第六区包括第一硅波导的第五段725和第二硅波导的第一段731,形成第一硅和第二硅的混合波导体系。其中,第二硅波导的第一段731设置在第一硅波导的第五段725上方,第二硅波导的第一段731的厚度大于第一硅波导的第五段725的厚度。第二硅波导的第一段731与第一硅波导的第五段725接触形成以第一硅波导720底板的第一脊型硅波导的第一段。进而在耦合第六区,TE偏振光和TE10偏振光逐渐从第一脊型硅波导的第一段的区域耦合至第一脊型硅波导的第一段的脊型区域。
为减少光场从氮化硅波导到氮化硅和第一硅的混合波导体系的耦合损耗,第二硅波导的第一段731的宽度自其前端向其末端逐渐增大。在本公开的某一实施例中,第二硅波导的第一段731的宽度在其前端最小,并沿其前端至末端方向逐渐增大。第二硅波导的第一段731呈等腰梯形状,即第二硅波导的第一段731的前端具有第二硅波导730最小的宽度,第二硅波导的第一段731的两侧边沿第二硅波导730的长度方向对称式逐渐增大。
耦合第六区的长度主要影响TE偏振光和TE10偏振光的耦合率,因此耦合第六区中第一硅波导的第五段725和第二硅波导的第一段731要保持足够长,具体根据实际偏振旋转分束器700的尺寸大小以及氮化硅波导710、第一硅波导720和第二硅波导的厚度进行选 择。
图23为本公开实施例提供的耦合第七区的局部结构示意图,图24为图23中I-I方向的剖视图。如图23和24所示,耦合第七区包括第一硅波导的第六段726和第二硅波导的第二段732,继续形成第一硅和第二硅的混合波导体系。第二硅波导的第二段732与第一硅波导的第六段726接触形成以第一硅波导720底板的第一脊型硅波导的第二段。在耦合第七区,用于实现TE偏振光和TE10偏振光在第一脊型硅波导中稳定传输。
在耦合第七区,第一硅波导的第六段726的宽度自其前端向其末端逐渐增大。在本公开的某一实施例中,第一硅波导的第六段726的宽度在其前端最小,并沿其前端至末端方向逐渐增大。在本公开的某一实施例中,第一硅波导的第六段726呈等腰梯形状,即第一硅波导的第六段726的前端具有第一硅波导的第六段726最小的宽度,第一硅波导的第六段726的两侧边沿第一硅波导720的长度方向对称式逐渐增大。第二硅波导的第二段732的宽度等于第二硅波导的第一段731末端宽度。
为保证实现TE偏振光和TE10偏振光稳定传输,耦合第七区中第一硅波导的第六段726和第二硅波导的第二段732要保持足够长,具体根据实际偏振旋转分束器700的尺寸大小以及氮化硅波导710、第一硅波导720和第二硅波导730的厚度进行选择。
图25为本公开实施例提供的耦合第八区的局部结构示意图,图26为图25中J-J方向的剖视图。如图25和26所示,耦合第八区包括第一硅波导的第七段727、第二硅波导的第三段733和第三硅波导的第一段741,形成第一硅、第二硅和第三硅混合波导体系。第二硅波导的第三段732与第一硅波导的第七段727接触形成以第一硅波导720底板的第一脊型硅波导的第三段;第三硅波导的第一段741与第一硅波导的第七段727接触形成以第一硅波导720底板的第二脊型硅波导的第一段。在耦合第八区,TE偏振光在第一脊型硅波导的第三段中稳定传输,TE10偏振光在第一硅、第二硅和第三硅混合波导体系转化为TE偏振光,然后逐渐耦合进入第二脊型硅波导的第一段。
在耦合第八区,第二硅波导的第三段733的宽度自其前端向其末端逐渐减小,第三硅波导的第一段741的宽度自其前端向其末端逐渐增大,第二硅波导的第三段733和第三硅波导的第一段741之间存在间距,间距大于为50nm-500nm。第二硅波导的第三段733的宽度在其前端最大,沿其前端至末端方向逐渐减小;第三硅波导的第一段741的宽度在其前端最小,沿其前端至末端方向逐渐增大。在本公开的某一实施例中,第二硅波导的第三段733呈等腰梯形状,即第二硅波导的第三段733的前端具有最大的宽度,第二硅波导的第三段733的两侧边沿第二硅波导730的长度方向对称式逐渐减小。在本公开的某一实施例中,第三硅波导的第一段741呈等腰梯形状,即第三硅波导的第一段741的前端具有第三硅波导740最小的宽度,第三硅波导的第一段741的两侧边沿第三硅波导740的长度方向对称式逐渐增大。
耦合第八区的长度主要影响TE10偏振光的转化和耦合,因此耦合第八区中第一硅波导的第七段727、第二硅波导的第三段733和第三硅波导的第一段741要保持足够长,具体根据实际偏振旋转分束器700的尺寸大小以及氮化硅波导710、第一硅波导720、第二硅波导730和第三硅波导740的厚度进行选择。
图27为本公开实施例提供的耦合第九区的局部结构示意图,图28为图27中K-K方向的剖视图。如图27和28所示,耦合第九区包括第一硅波导的第八段728、第二硅波导的第四段734和第三硅波导的第二段742,形成第一硅、第二硅和第三硅混合波导体系。第二硅波导的第四段732与第一硅波导的第八段728接触形成以第一硅波导720底板的第一脊型硅波导的第四段;第三硅波导的第二段742与第一硅波导的第八段728接触形成以第一硅波导720底板的第二脊型硅波导的第二段。在耦合第九区,实现TM转化后的TE偏振光和原TE偏振光在第一脊型硅波导的第四段和第二脊型硅波导的第二段稳定传输。
第二硅波导的第四段734和第三硅波导的第二段742用于连接硅光芯片400中的硅芯层,如硅光芯片400中的单模硅波导,进而实现TM转化后的TE偏振光和原TE偏振光耦合至硅光芯片400内部。如,TM转化后的TE偏振光通过第三硅波导的第二段742耦合至硅光芯片400内部,原TE偏振光通过第二硅波导的第四段734耦合至硅光芯片400内部。
在耦合第九区,为保证TM转化后的TE偏振光和原TE偏振光在第二硅波导的第四段734和第三硅波导的第二段742稳定传输,第二硅波导的第四段734和第三硅波导的第二段742长度可根据需要进行选择。如,当连接硅光芯片400中单模硅波导需要的长度较长,则选择长度相对较长;当连接硅光芯片400中单模硅波导需要的长度较短,则选择长度相对较短。并且当第二硅波导的第四段734和第三硅波导的第二段742连接硅光芯片400中单模硅波导时,第二硅波导的第四段734和第三硅波导的第二段742的宽度为预设宽度,在本公开的某一实施例中预设宽度等于单模硅波导的宽度,如此便于光通过第二硅波导的第四段734和第三硅波导的第二段742输入到单模波导中。
在本公开实施例中,可通过优化调整氮化硅波导710、第一硅波导720、第二硅波导730和第三硅波导740应各段的长度实现不同波长的光至硅光芯片400的高耦合效率的耦合。
第一输入光口内设置偏振旋转分束器,用于提高第一光纤带401上传输光到硅光芯片400内的耦合效率,与上述实施例第二输入光口内设置偏振旋转分束器类似。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
Claims (10)
- 一种光模块,其特征在于,包括:电路板;硅光芯片,设置在所述电路板上与所述电路板电连接,所述硅光芯片的输入光口内设置偏振旋转分束器,通过所述偏振旋转分束器接收光模块外部传输至其的信号光,将所述信号光调制为电信号并通过所述硅光芯片的光电口输出;所述偏振旋转分束器包括:衬底;第一硅波导,设置在所述衬底上;第二硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行;第三硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行,所述第三硅波导与所述第二硅波导之间存在间距,间距内填充包层;氮化硅波导,设置在所述第一硅波导第二端的上方,与所述第一硅波导之间存在间距,间距内填充包层,所述氮化硅波导长度方向与所述第一硅波导长度方向平行。
- 根据权利要求1所述光模块,其特征在于,所述偏振旋转分束器沿其长度方向分为分束器第一区、分束器第二区、分束器第三区和分束器第四区;所述氮化硅波导包括依次连接的第一段、第二段、第三段和第四段;所述第一硅波导包括依次连接的第一段、第二段和第三段;所述氮化硅波导的第一段位于所述分束器第一区,所述氮化硅波导的第一段用于耦合光模块外部传输的信号光;所述氮化硅波导的第二段和所述第一硅波导的第一段位于所述分束器第二区,所述第一硅波导的第一段的宽度自其前端向其末端逐渐增大;所述氮化硅波导的第三段和所述第一硅波导的第二段位于所述分束器第三区,所述第一硅波导的第二段的宽度自其前端向其末端逐渐增大;所述氮化硅波导的第四段和所述第一硅波导的第三段位于所述分束器第四区,所述氮化硅波导的第四段的宽度自其前端向其末端逐渐减小。
- 根据权利要求2所述光模块,其特征在于,所述偏振旋转分束器沿其长度方向还分为分束器第五区、分束器第六区、分束器第七区、分束器第八区和分束器第九区,所述分束器第五区连接所述分束器第四区;所述第一硅波导还包括依次连接的第四段、第五段、第六段、第七段和第八段;所述第二硅波导包括依次连接的第一段、第二段、第三段和第四段;所述第三硅波导包括依次连接的第一段和第二段;所述第一硅波导的第四段位于所述分束器第五区;所述第一硅波导的第五段和所述第二硅波导的第一段位于所述分束器第六区,所述第 二硅波导的第一段的宽度自其前端向其末端逐渐增大;所述第一硅波导的第六段和所述第二硅波导的第二段位于所述分束器第七区,所述第一硅波导的第六段的宽度自其前端向其末端逐渐增大;所述第一硅波导的第七段、所述第二硅波导的第三段和所述第三硅波导的第一段位于所述分束器第八区,所述第二硅波导的第三段的宽度自其前端向其末端逐渐减小,所述第三硅波导的第一段的宽度自其前端向其末端逐渐增加;所述第一硅波导的第八段、所述第二硅波导的第四段和所述第三硅波导的第二段位于所述分束器第九区。
- 根据权利要求2所述的光模块,其特征在于,所述氮化硅波导的第二段的宽度大于所述第一硅波导的第一段的宽度,所述氮化硅波导的第三段的宽度大于所述第一硅波导的第二段的宽度。
- 根据权利要求3所述的光模块,其特征在于,所述第一硅波导的第五段的宽度大于所述第二硅波导的第一段的宽度。
- 根据权利要求3所述的光模块,其特征在于,所述第二硅波导的第三段的宽度大于所述第三硅波导的第一段的宽度。
- 根据权利要求1所述的光模块,其特征在于,所述第二硅波导的厚度与所述第三硅波导的厚度相同。
- 根据权利要求1所述的光模块,其特征在于,所述第一硅波导的厚度小于200nm,所述第二硅波导的厚度大于200nm,所述第三硅波导的厚度大于200nm。
- 根据权利要求1所述的光模块,其特征在于,所述第一硅波导与所述氮化硅波导的间距为50-500nm,所述第二硅波导和所述第三硅波导均设置在所述第一硅波导上,所述第二硅波导和所述第三硅波导的间距为50-500nm。
- 一种光模块,其特征在于,包括:电路板;光源,与所述电路板电连接,用于发出不携带信号的光;硅光芯片,设置在所述电路板上与所述电路板电连接,所述硅光芯片的输入光口设置有偏振旋转分束器,通过所述偏振旋转分束器接收所述不携带信号的光,将所述不携带信号的光调制为信号光并通过所述硅光芯片的输出光口输出所述信号光;所述偏振旋转分束器包括:衬底;第一硅波导,设置在所述衬底上;第二硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行;第三硅波导,设置在所述第一硅波导第一端的上方,厚度大于第一硅波导的厚度,长度方向与所述第一硅波导长度方向平行,所述第三硅波导与所述第二硅波导之间存在间距,间距内填充包层;氮化硅波导,设置在所述第一硅波导第二端的上方,与所述第一硅波导之间存在间距, 间距内填充包层,所述氮化硅波导长度方向与所述第一硅波导长度方向平行。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010203530.1 | 2020-03-20 | ||
CN202010203530.1A CN111239936B (zh) | 2020-03-20 | 2020-03-20 | 一种光模块 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021185179A1 true WO2021185179A1 (zh) | 2021-09-23 |
Family
ID=70868474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/080550 WO2021185179A1 (zh) | 2020-03-20 | 2021-03-12 | 一种光模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111239936B (zh) |
WO (1) | WO2021185179A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239936B (zh) * | 2020-03-20 | 2021-10-15 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN113917624B (zh) * | 2020-07-07 | 2022-11-29 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN114594554A (zh) * | 2020-12-04 | 2022-06-07 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN116931172B (zh) * | 2023-09-18 | 2024-03-19 | 之江实验室 | 偏振无关的模斑转换器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016071345A1 (en) * | 2014-11-03 | 2016-05-12 | Consorzio Nazionale Interuniversitario Per Le Telecomunicazioni | Integrated photonic polarisation rotator and splitter and related method |
WO2016172970A1 (zh) * | 2015-04-30 | 2016-11-03 | 华为技术有限公司 | 一种偏振旋转器及光信号处理方法 |
CN107942451A (zh) * | 2017-12-14 | 2018-04-20 | 武汉电信器件有限公司 | 一种硅光芯片的耦合方法和耦合结构 |
CN109100828A (zh) * | 2017-06-21 | 2018-12-28 | 中兴光电子技术有限公司 | 一种偏振分束旋转器 |
CN110716262A (zh) * | 2019-11-19 | 2020-01-21 | 杭州芯耘光电科技有限公司 | 一种硅光光模斑模式转换器及其制造方法 |
CN210090745U (zh) * | 2019-06-20 | 2020-02-18 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN111239936A (zh) * | 2020-03-20 | 2020-06-05 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7702188B2 (en) * | 2005-09-08 | 2010-04-20 | Infinera Corporation | Polarization beam splitter-polarization rotator structure |
CN102902018B (zh) * | 2012-10-12 | 2014-01-08 | 中国计量学院 | 边框加载梯形结构的太赫兹波偏振分束器 |
WO2015070389A1 (zh) * | 2013-11-13 | 2015-05-21 | 华为技术有限公司 | 波导结构、波导耦合结构、及制备方法 |
EP3218749A2 (en) * | 2014-11-11 | 2017-09-20 | Finisar Corporation | Two-stage adiabatically coupled photonic systems |
CN104614809B (zh) * | 2015-01-12 | 2018-07-24 | 北京大学 | 一种光偏振旋转器和一种光偏振旋转方法 |
CN105223647A (zh) * | 2015-11-04 | 2016-01-06 | 江苏尚飞光电科技有限公司 | 一种偏振分束旋转器及其设计方法 |
EP3514608B1 (en) * | 2016-10-18 | 2021-12-15 | Huawei Technologies Co., Ltd. | Optocoupler device and method for controlling same |
US9864141B1 (en) * | 2016-12-09 | 2018-01-09 | Inphi Corporation | Silicon-waveguide-based broadband polarization beam rotator |
JP6864223B2 (ja) * | 2017-01-27 | 2021-04-28 | 富士通株式会社 | 光偏波回転素子及び光トランシーバ |
CN108563030B (zh) * | 2018-01-31 | 2023-05-26 | 中国地质大学(武汉) | 一种偏振分束器 |
CN109143466B (zh) * | 2018-08-31 | 2020-04-14 | 武汉光迅科技股份有限公司 | 一种混合集成硅光芯片、光器件及芯片制作方法 |
-
2020
- 2020-03-20 CN CN202010203530.1A patent/CN111239936B/zh active Active
-
2021
- 2021-03-12 WO PCT/CN2021/080550 patent/WO2021185179A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016071345A1 (en) * | 2014-11-03 | 2016-05-12 | Consorzio Nazionale Interuniversitario Per Le Telecomunicazioni | Integrated photonic polarisation rotator and splitter and related method |
WO2016172970A1 (zh) * | 2015-04-30 | 2016-11-03 | 华为技术有限公司 | 一种偏振旋转器及光信号处理方法 |
CN109100828A (zh) * | 2017-06-21 | 2018-12-28 | 中兴光电子技术有限公司 | 一种偏振分束旋转器 |
CN107942451A (zh) * | 2017-12-14 | 2018-04-20 | 武汉电信器件有限公司 | 一种硅光芯片的耦合方法和耦合结构 |
CN210090745U (zh) * | 2019-06-20 | 2020-02-18 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN110716262A (zh) * | 2019-11-19 | 2020-01-21 | 杭州芯耘光电科技有限公司 | 一种硅光光模斑模式转换器及其制造方法 |
CN111239936A (zh) * | 2020-03-20 | 2020-06-05 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Also Published As
Publication number | Publication date |
---|---|
CN111239936B (zh) | 2021-10-15 |
CN111239936A (zh) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021227317A1 (zh) | 一种光模块 | |
WO2021185179A1 (zh) | 一种光模块 | |
WO2021212849A1 (zh) | 一种光模块 | |
WO2021185180A1 (zh) | 一种光模块 | |
WO2022110965A1 (zh) | 一种光模块 | |
WO2021227643A1 (zh) | 一种光模块 | |
WO2021120668A1 (zh) | 一种光模块 | |
CN214954237U (zh) | 一种光模块 | |
CN113009648B (zh) | 一种光模块 | |
WO2022041801A1 (zh) | 一种光模块 | |
WO2021139200A1 (zh) | 一种光模块 | |
WO2022016932A1 (zh) | 一种光模块 | |
CN214704104U (zh) | 一种光模块 | |
WO2021232716A1 (zh) | 一种光模块 | |
WO2022007428A1 (zh) | 一种光模块 | |
WO2024040967A1 (zh) | 光模块 | |
WO2022116619A1 (zh) | 一种光模块 | |
CN113009649A (zh) | 一种光模块 | |
WO2022257486A1 (zh) | 光模块 | |
CN114063224B (zh) | 一种光模块 | |
WO2022166350A1 (zh) | 一种光模块 | |
WO2021244101A1 (zh) | 一种光模块 | |
WO2022052527A1 (zh) | 一种光模块 | |
CN113488832A (zh) | 一种具有调制器的激光器及光模块 | |
CN113009647A (zh) | 一种光模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21771028 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21771028 Country of ref document: EP Kind code of ref document: A1 |