WO2021227317A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021227317A1
WO2021227317A1 PCT/CN2020/114570 CN2020114570W WO2021227317A1 WO 2021227317 A1 WO2021227317 A1 WO 2021227317A1 CN 2020114570 W CN2020114570 W CN 2020114570W WO 2021227317 A1 WO2021227317 A1 WO 2021227317A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
chip
optical module
protrusion
laser
Prior art date
Application number
PCT/CN2020/114570
Other languages
English (en)
French (fr)
Inventor
郑龙
杨思更
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US17/364,327 priority Critical patent/US20210356683A1/en
Publication of WO2021227317A1 publication Critical patent/WO2021227317A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • optical modules are one of the key components in optical communications equipment.
  • the degree of integration of optical modules is getting higher and higher, and the power density of the optical modules is also increasing, which causes a large amount of heat to be generated inside the optical modules during the working process. If the heat generated inside the optical module cannot be dissipated in time, the working performance of the optical module will be seriously affected.
  • the embodiment of the present disclosure provides an optical module, including: a lower housing; a circuit board mounted on the lower housing and provided with an empty slot; a laser component and a silicon optical chip are arranged in the empty slot; the laser component is mounted on On the lower shell, it is connected to the circuit board and used to emit light that does not carry signals; the silicon optical chip is mounted on the lower shell and connected to the circuit board to modulate the light that does not carry signals. .
  • FIG. 1 is a schematic diagram of the connection relationship of optical communication terminals according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of the structure of an optical network unit according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of an optical module according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of a partial structure of the first optical module according to some embodiments of the present disclosure.
  • Fig. 6 is another partial structural diagram of the first optical module according to some embodiments of the present disclosure.
  • FIG. 7 is a cross-sectional front view of the first optical module with the upper casing removed according to some embodiments of the present disclosure
  • FIG. 8 is another cross-sectional front view of the first optical module with the upper housing removed according to some embodiments of the present disclosure
  • Fig. 9 is a partial structural diagram of a second type of optical module according to some embodiments of the present disclosure.
  • FIG. 10 is another partial structural diagram of the second type of optical module according to some embodiments of the present disclosure.
  • FIG. 11 is a cross-sectional front view of a second type of optical module with the upper casing removed according to some embodiments of the present disclosure
  • FIG. 12 is another cross-sectional front view of the second optical module with the upper casing removed according to some embodiments of the present disclosure
  • FIG. 13 is a partial schematic diagram of a third optical module with the upper casing removed according to some embodiments of the present disclosure
  • FIG. 14 is another partial schematic diagram of the third optical module with the upper casing removed according to some embodiments of the present disclosure.
  • FIG. 15 is a cross-sectional front view of a third optical module with the upper casing removed according to some embodiments of the present disclosure
  • FIG. 16 is another cross-sectional front view of a third optical module with the upper casing removed according to some embodiments of the present disclosure
  • FIG. 17 is a partial schematic diagram of a fourth type of optical module with the upper casing removed according to some embodiments of the present disclosure.
  • FIG. 18 is another partial schematic diagram of the fourth optical module with the upper casing removed according to some embodiments of the present disclosure.
  • FIG. 19 is a cross-sectional front view of a fourth type of optical module with the upper casing removed according to some embodiments of the present disclosure.
  • FIG 20 is another cross-sectional front view of the fourth optical module with the upper casing removed according to some embodiments of the present disclosure
  • Figure 21 is a cross-sectional right view of the optical module with the upper housing removed according to some embodiments of the present disclosure
  • 22 is another cross-sectional right view of the optical module with the upper housing removed according to some embodiments of the present disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
  • Fig. 1 is a schematic diagram of a connection relationship of an optical communication terminal according to some embodiments of the present disclosure.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical hole of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between the optical signal and the electrical signal, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; in some embodiments of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module It is input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical Module, the optical network terminal is used as the upper computer of the optical module to monitor the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • Fig. 2 is a schematic structural diagram of an optical network terminal according to some embodiments of the present disclosure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers;
  • a heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical hole of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board 105, and the electrical connectors on the circuit board 105 are wrapped in the cage 106; the optical module 200 is inserted into the cage 106, and the optical module 200 is fixed by the cage 106. The heat generated by the optical module 200 is conducted to the cage 106, and then The diffusion is carried out through the radiator 107 on the cage 106.
  • FIG. 3 is a schematic diagram of the structure of an optical module according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module according to some embodiments of the present disclosure.
  • the optical module 200 includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300 and an empty slot 400;
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower shell includes a main board and Two side plates located on both sides of the main board and perpendicular to the main board;
  • the upper casing includes a cover plate, and the cover plate covers the two side plates of the upper casing to form a wrapping cavity;
  • the upper casing may also include On both sides of the cover plate, the two side walls perpendicular to the cover plate are combined by the two side walls and the two side plates, so that the upper shell is covered on the lower shell.
  • the two openings can be two openings in opposite directions, or two openings in other different directions; the openings 204 and 205 in FIG. 3 are two openings in opposite directions, where the opening 204 is an electrical port, The golden finger extends from the electrical port 204 and inserts it into an upper computer such as an optical network terminal; the other opening 205 is an optical hole for external optical fiber access to connect the optical transceiver 400 inside the optical module; the circuit board 300, the optical transceiver 400 and other optoelectronic devices are located in the package cavity.
  • the upper shell and the lower shell are combined to facilitate the installation of the circuit board 300, the optical transceiver 400 and other components into the shell.
  • the upper shell and the lower shell form the outermost package protection shell of the optical module.
  • the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding The components cannot be installed, and it is not conducive to production automation.
  • a plurality of protrusions are provided on the lower housing 202, and the protrusion positions correspond to the position directly below the cavity 400.
  • the protrusions are used to provide height for each device in the cavity 400.
  • the unlocking component 203 is located on the outer wall of the lower housing 202 in the wrapping cavity, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part that matches the cage of the upper computer; pulling the end of the unlocking part can move the unlocking part on the surface of the outer wall; the optical module is inserted into the cage of the upper computer, and the optical module is fixed by the engaging part of the unlocking part In the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed to release the optical module and the host computer. The module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, transistors, MOS tubes), and chips (such as MCUs, limiting amplifier chips, clock data recovery CDR, power management chips, data processing chips DSP) and the like.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as MCUs, limiting amplifier chips, clock data recovery CDR, power management chips, data processing chips DSP) and the like.
  • the circuit board 300 connects the electrical components in the optical module according to the circuit design through circuit wiring to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also carry It can provide a stable load; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. In some embodiments of the present disclosure, a metal pin/gold finger is formed on one end surface of the rigid circuit board. It is connected with the electrical connector; these are inconvenient to realize with the flexible circuit board.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver devices.
  • the middle of the circuit board 300 is hollowed out to obtain an empty slot 400.
  • the empty groove 400 can have any shape.
  • FIG. 5 is a schematic diagram of a partial structure of a first optical module provided according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another partial structure of the first optical module provided by an embodiment of the disclosure.
  • FIG. 7 is a cross-sectional front view of the first optical module with the upper casing removed according to an embodiment of the disclosure.
  • FIG. 8 is another cross-sectional front view of the first optical module with the upper casing removed according to an embodiment of the disclosure.
  • FIG. 21 is a cross-sectional right view of the optical module provided by the embodiment of the disclosure with the upper casing removed.
  • FIG. 22 is another cross-sectional right view of the optical module with the upper casing removed according to an embodiment of the disclosure.
  • a laser component 401 and a silicon optical chip 404 are arranged in the empty slot 400 of the first optical module provided by the embodiment of the present disclosure.
  • the laser assembly 401 which is a laser box, is mounted on the lower housing 202 and is connected to the circuit board 300 by wire bonding for emitting light that does not carry signals.
  • the laser box includes a laser chip, a collimating lens, a focusing lens, and an isolator.
  • the laser assembly 401 includes a first laser assembly and a second laser assembly, and both the first laser assembly and the second laser assembly are used to emit light that does not carry a signal. Both the first laser component and the second laser component are correspondingly mounted on the lower housing 202, and are connected to the circuit on the circuit board 300 by wire bonding.
  • the laser box includes a laser chip, a collimating lens, a focusing lens, and an isolator, and the laser component 401 and the silicon optical chip 404 are connected by an optical fiber, the light emitted by the laser component 401 without carrying signals is transmitted to the silicon optical chip 404 through the optical fiber.
  • the silicon optical chip 404 includes a Mach-Zehnder modulator, which is combined with a Mach-Zehnder modulator, a transimpedance amplifier, a laser driver, and other devices to realize optical signal modulation.
  • Mach-Zehnder modulator modulation adopts the principle of light interference of the same wavelength.
  • a Mach-Zehnder modulator is equipped with two interference arms, and a beam of light is input to a single interference arm. A total of two beams of the same wavelength need to be provided to one Mach-Zehnder modulator. After being modulated by the Mach-Zehnder modulator, the light on the interference arm will fuse into a beam of light.
  • the silicon optical chip 404 also includes a number of optical holes, which are used for the silicon optical chip 404 to receive the light transmitted by the laser assembly 301, output the modulated signal light, and receive the signal light transmitted from the optical module to the silicon optical chip 404 through the optical fiber. specific,
  • the silicon optical chip 404 includes a first optical hole and a second optical hole, and each of the first optical hole and the second optical hole has a plurality of optical channels.
  • the first light hole is arranged on the side surface of the silicon optical chip 404 and is located on the same horizontal line as the optical path of the laser assembly 401, the focusing lens 402, and the isolator 403, and is used to receive the light that does not carry signals from the laser assembly 401.
  • the first optical hole includes multiple optical channels
  • multiple paths of light with the same wavelength can be input into the silicon optical chip 404 through these optical channels, so as to provide each interference arm of the Mach-Zehnder modulator with light of the same wavelength.
  • the luminous power of a single laser chip is limited, superimposing the light of multiple laser chips can increase the optical power of a single wavelength.
  • multiple laser chips generally provide light of different wavelengths, and the optical power of a single wavelength is not superimposed. promote.
  • the second optical hole is arranged on the side or surface of the silicon optical chip 404 and is connected to the insertion end of the optical fiber ribbon 301 for transmitting the modulated signal light to the optical fiber ribbon 301.
  • the optical fiber ribbon 301 has one end connected to the second optical hole of the silicon optical chip 404 and the other end connected to the MPO optical interface 302 for transmitting optical signals.
  • the angle between the insertion end of the optical fiber ribbon 301 and the optical fiber ribbon 301 is 0 degrees. Specifically, when the second optical hole is located on the side of the silicon optical chip 404, the angle between the insertion end of the optical fiber ribbon 301 and the second optical hole is 0 degrees. In order to facilitate the insertion of the insertion end of the optical fiber 301 into the second optical hole, The angle between the insertion end of the optical fiber ribbon 301 and the optical fiber ribbon 301 is 0 degrees.
  • the angle between the insertion end of the optical fiber ribbon 301 and the optical fiber ribbon 301 is 90 degrees.
  • the angle between the insertion end of the optical fiber 301 and the second optical hole is 90 degrees.
  • the insertion end of the optical fiber ribbon 301 is bent 90 degrees, and the angle between the insertion end of the optical fiber ribbon 301 and the optical fiber ribbon 301 is 90 degrees.
  • the first laser assembly and the second laser assembly are respectively located on both sides of the optical fiber ribbon 301.
  • the first laser assembly and the second laser assembly are both located on the same side of the optical fiber ribbon 301.
  • the laser box is wired and connected to the circuit board 300, and the height of the upper surface of the laser box is similar to the height of the upper surface of the circuit board 300, there is no need to provide protrusions corresponding to the laser assembly 401 on the lower housing 202.
  • the silicon optical chip 404 Since the silicon optical chip 404 is wired and connected to the circuit board 300, when the height of the upper surface of the silicon optical chip 404 is close to the height of the upper surface of the circuit board 300, there is no need to provide bumps corresponding to the silicon optical chip 404 on the lower housing 202 . When the height of the upper surface of the silicon optical chip 404 is much smaller than the height of the upper surface of the circuit board 300, the second protrusion 2022 needs to be provided on the lower housing 202. The second protrusion 2022 is bonded to the silicon optical chip 404 for fixing the silicon optical chip 404 to the lower housing 202.
  • the arrangement of the second bump 2022 not only allows the silicon optical chip 404 to receive the light that does not carry signals from the laser assembly 401; it also makes the upper surface of the silicon optical chip 404 and the upper surface of the circuit board 300 lie on the same horizontal plane, reducing wire bonding length.
  • FIG. 9 is a schematic diagram of a partial structure of a second optical module provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of another partial structure of a second optical module provided by an embodiment of the disclosure.
  • Fig. 11 is a cross-sectional front view of a second type of optical module with an upper casing removed according to an embodiment of the present disclosure.
  • FIG. 12 is another cross-sectional front view of the second optical module with the upper casing removed according to an embodiment of the disclosure.
  • a focusing lens 402 and an isolator are provided in the empty slot 400 of the second optical module provided by the embodiment of the present disclosure. ⁇ 403. specific,
  • the laser component 401 including a laser chip and a heat sink, is mounted on the lower housing 202, and is connected to the circuit board 300 by wire bonding, and is used to emit light that does not carry signals.
  • the laser chip is arranged on the heat sink, and the heat sink is mounted on the lower housing 202.
  • the laser assembly 401 includes a first laser assembly and a second laser assembly, and both the first laser assembly and the second laser assembly are used to emit light that does not carry a signal. Both the first laser component and the second laser component correspond to the bumps mounted on the lower housing 202, and are connected to the circuit on the circuit board 300 by wire bonding.
  • the focusing lens 402 mounted on the lower housing 202, is located between the laser assembly 401 and the isolator 403 (that is, between the laser assembly 401 and the silicon optical chip 404), and is used to transmit the non-carrying signal from the laser assembly 401 The light converges for subsequent coupling.
  • the isolator 403, mounted on the lower housing 202, is arranged in the light emitting direction of the laser chip, between the focusing lens 402 and the silicon optical chip 404, and is used to prevent the light emitted by the laser chip from returning to the laser chip after reflection .
  • the focusing lens 402 corresponding to the laser assembly 401 includes a first focusing lens and a second focusing lens, and the first laser assembly corresponds to the first focusing lens, and the second laser The component corresponds to the second focusing lens.
  • the focusing lens 402 includes a first focusing lens and a second focusing lens
  • the isolator 403 corresponding to the focusing lens 402 includes a first isolator and a second isolator
  • the first focusing lens corresponds to the first isolator.
  • the two focusing lenses correspond to the second isolator.
  • the light that does not carry signals emitted by the laser assembly 401 enters the silicon optical chip 404 through the focusing lens 402 and the isolator 403 in sequence.
  • a first focusing lens and a first isolator are sequentially arranged along the light exit direction of the first laser assembly.
  • a second focusing lens and a second isolator are sequentially arranged along the light emitting direction of the second laser assembly.
  • the first laser assembly and the second laser assembly are respectively located on both sides of the optical fiber ribbon 301. Since the first laser component and the second laser component are respectively located on both sides of the optical fiber ribbon 301, the first lens and the first isolator corresponding to the first laser component and the second lens and the second isolator corresponding to the second laser component The devices are located on both sides of the optical fiber ribbon 301.
  • the first laser assembly and the second laser assembly are both located on the same side of the optical fiber ribbon 301. Since the first laser assembly and the second laser assembly are located on the same side of the optical fiber ribbon 301, the first lens and the first isolator corresponding to the first laser assembly and the second lens and the second isolator corresponding to the second laser assembly The device is located on the same side of the optical fiber ribbon 301.
  • the height of the upper surface of the laser chip is much smaller than the height of the upper surface of the circuit board 300, and the first protrusion 2021 needs to be provided on the lower housing 202.
  • the first protrusion 2021 is bonded to the laser assembly 401 for fixing the laser assembly 401 to the lower housing 202.
  • the arrangement of the first protrusion 2021 not only allows the laser component 401 to emit light without carrying signals into the silicon optical chip 404; it also makes the upper surface of the laser component 401 and the upper surface of the circuit board 300 lie on the same horizontal plane, reducing the length of the wire bonding .
  • the silicon optical chip 404 can be directly mounted on the lower housing 202 without the need for the lower housing A bump corresponding to the silicon optical chip 404 is provided on the 202.
  • a third protrusion 2023 and a fifth protrusion 2025 are also provided on the lower housing 202. Specifically, the third protrusion 2023 is located between the first protrusion 2021 and the fifth protrusion 2025 and is bonded to the focusing lens 402 for fixing the focusing lens 402 to the lower housing 202.
  • the fifth protrusion 2025 is bonded to the isolator 403 for fixing the isolator 403 to the lower housing 202.
  • the first protrusion 2021, the third protrusion 2023, and the fifth protrusion 2025 are arranged so that the light that does not carry signals emitted by the laser assembly 401 passes through the focusing lens 402 and the isolator 403 into the silicon optical chip 404 in sequence.
  • a protrusion corresponding to the silicon optical chip 404 is provided on the lower housing 202.
  • a third protrusion 2023 and a fifth protrusion 2025 are also provided on the lower housing 202.
  • the third protrusion 2023 is located between the first protrusion 2021 and the fifth protrusion 2025 and is bonded to the focusing lens 402 for fixing the focusing lens 402 to the lower housing 202.
  • the fifth protrusion 2025 is bonded to the isolator 403 for fixing the isolator 403 to the lower housing 202.
  • the first protrusion 2021, the third protrusion 2023, and the fifth protrusion 2025 are arranged so that the light that does not carry signals emitted by the laser assembly 401 passes through the focusing lens 402 and the isolator 403 into the silicon optical chip 404 in sequence.
  • FIG. 13 is a schematic diagram of a partial structure of a third optical module provided by an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of another partial structure of a third optical module provided by an embodiment of the disclosure.
  • 15 is a cross-sectional front view of a third optical module provided by an embodiment of the disclosure with the upper casing removed.
  • FIG. 16 is another cross-sectional front view of the third optical module with the upper casing removed according to the embodiment of the disclosure.
  • the third optical module includes a collimating lens 405 and a fourth protrusion 2024 in addition to the second optical module. specific,
  • the collimating lens 405 is attached to the lower housing 202 and is arranged between the laser assembly 401 and the focusing lens 402, and is used to convert the light that does not carry signals emitted by the laser assembly 401 into collimated light.
  • the fourth protrusion 2024 is disposed on the lower housing 202, is located between the first protrusion 2021 and the third protrusion 2023, and is bonded to the collimating lens 405 for fixing the collimating lens 405 to the lower housing 202 , So that the light that does not carry signals emitted by the laser assembly 401 enters the silicon optical chip 404 through the collimating lens 405, the focusing lens 402, and the isolator 403 in sequence.
  • the focusing lens 402 is disposed between the collimating lens 405 and the isolator 403.
  • the third protrusion 2023 of the fixed focus lens 402 and the fourth protrusion 2024 of the fixed collimator lens 405 may constitute one protrusion.
  • the silicon photonics chip 404 can be directly mounted on the lower housing 202.
  • the lower housing 202 is also provided with a fourth protrusion. 2024.
  • the first protrusion 2021, the third protrusion 2023, the fourth protrusion 2024, and the fifth protrusion 2025 are arranged so that the light that does not carry signals emitted by the laser assembly 401 passes through the collimating lens 405, the focusing lens 402, and the isolator in sequence 403 enters the silicon optical chip 404.
  • a protrusion corresponding to the silicon optical chip 404 is provided on the lower housing 202.
  • a fourth protrusion 2024 is provided in addition to the first protrusion 2021, the second protrusion 2022, the third protrusion 2023, and the fifth protrusion 2025 are provided on the lower housing 202.
  • the first protrusion 2021, the second protrusion 2022, the third protrusion 2023, the fourth protrusion 2024, and the fifth protrusion 2025 are arranged so that the light that does not carry signals emitted by the laser assembly 401 passes through the collimating lens 405, The focusing lens 402 and the isolator 403 enter the silicon optical chip 404.
  • FIG. 17 is a partial schematic diagram of the fourth optical module with the upper casing removed according to an embodiment of the disclosure.
  • FIG. 18 is another partial schematic diagram of the fourth optical module with the upper casing removed according to an embodiment of the disclosure.
  • FIG. 19 is a cross-sectional front view of the fourth optical module with the upper casing removed according to an embodiment of the disclosure.
  • FIG. 20 is another cross-sectional front view of the fourth optical module with the upper casing removed according to an embodiment of the disclosure.
  • the focusing lens 402 is arranged between the isolator 403 and the silicon optical chip 404, and the third protrusion 2023 is located between the fifth protrusion 2025 and the second protrusion 2022 .
  • the light that does not carry signals emitted by the laser assembly 401 passes through the collimator lens 405, the isolator 403, and the focusing lens 402 into the silicon optical chip 404 in sequence.
  • the optical module further includes a golden finger 303.
  • the golden finger 303 is arranged on the upper surface of the circuit board 300 and is used to insert into the upper computer and transmit the electrical signals in the optical module to the upper computer or transmit the electrical signals in the upper computer to the optical module.
  • the present disclosure provides an optical module, which includes a lower housing and a circuit board mounted on the lower housing.
  • the circuit board is provided with an empty slot.
  • a laser component and a silicon optical chip mounted on the lower shell are arranged in the empty groove.
  • the laser component is wired and connected to the circuit board to emit light that does not carry signals.
  • the laser component and the silicon optical chip are directly fixed on the lower shell, thereby reducing the laser component and the silicon optical chip.
  • the barrier between the lower casing and the lower casing facilitates the timely dissipation of the heat generated by the laser component and the silicon optical chip, and does not affect the working performance of the optical module.
  • the present disclosure also provides an optical module, which includes a lower housing and a circuit board mounted on the lower housing.
  • the circuit board is provided with an empty slot.
  • the laser component which is a laser chip, is arranged in the empty slot, is mounted on the lower shell, and is connected to the circuit board by wire bonding, and the light that does not carry the signal is coupled to the optical fiber array through the lens.
  • the lens can be a focusing lens, or a collimating lens and a focusing lens. When the lens is a focusing lens, the focusing lens is located between the laser chip and the optical fiber array.
  • the lens is a collimating lens and a focusing lens
  • the collimating lens and the focusing lens are located between the laser chip and the optical fiber array
  • the collimating lens is located between the laser chip and the focusing lens
  • the focusing lens is located between the collimating lens and the optical fiber Between arrays.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括下壳体(202)、贴装于下壳体(202)上的电路板(300)。电路板(300)设置有空槽(400),空槽(400)内设置有贴装于下壳体(202)上的激光组件(401)和硅光芯片(404),激光组件(401)与电路板(300)打线连接,用于发出不携带信号的光,硅光芯片(404)与电路板(300)打线连接,用于对不携带信号的光进行调制,通过在电路板(300)设置空槽(400),空槽(400)内设置有激光组件(401)和硅光芯片(404),将电路板(300)、激光组件(401)和硅光芯片(404)均直接固定于下壳体(202)上,减少了激光组件(401)和硅光芯片(404)与下壳体(202)之间的阻隔物,方便激光组件(401)和硅光芯片(404)产生的热量及时散出,不影响光模块(200)的工作性能。

Description

一种光模块
相关申请的交叉引用
本申请要求在2020年05月13日提交中国专利局、申请号为202010404349.7、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在光通信中,光模块是光通信设备中的关键器件之一。随着光通信的发展,光模块的集成度越来越高,光模块的功率密度也不断增大,致使光模块在工作过程中其内部产生大量的热。而若是光模块内部产生的热量不能及时散出,将严重影响光模块的工作性能。
发明内容
本公开实施例提供一种光模块,包括:下壳体;电路板,贴装于下壳体上,设置有空槽;空槽内设置有激光组件和硅光芯片;激光组件,贴装于下壳体上,与电路板打线连接,用于发出不携带信号的光;硅光芯片,贴装于下壳体上,与电路板打线连接,用于对不携带信号的光进行调制。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例的光通信终端连接关系示意图;
图2为根据本公开一些实施例的光网络单元结构示意图;
图3为根据本公开一些实施例的一种光模块结构示意图;
图4为根据本公开一些实施例的光模块分解结构示意图;
图5为根据本公开一些实施例的第一种光模块的一个局部结构示意图;
图6为根据本公开一些实施例的第一种光模块的另一个局部结构示意图;
图7为根据本公开一些实施例的去除上壳体的第一种光模块的一个剖面正视图;
图8为根据本公开一些实施例的去除上壳体的第一种光模块的另一个剖面正视图;
图9为根据本公开一些实施例的第二种光模块的一个局部结构示意图;
图10为根据本公开一些实施例的第二种光模块的另一个局部结构示意图;
图11为根据本公开一些实施例的去除上壳体的第二种光模块的一个剖面正视图;
图12为根据本公开一些实施例的去除上壳体的第二种光模块的另一个剖面正视图;
图13为根据本公开一些实施例的去除上壳体的第三种光模块的一个局部示意图;
图14为根据本公开一些实施例的去除上壳体的第三种光模块的另一个局部示意图;
图15为根据本公开一些实施例的去除上壳体的第三种光模块的一个剖面正视图;
图16为根据本公开一些实施例的去除上壳体的第三种光模块的另一个剖面正视图;
图17为根据本公开一些实施例的去除上壳体的第四种光模块的一个局部示意图;
图18为根据本公开一些实施例的去除上壳体的第四种光模块的另一个局部示意图;
图19为根据本公开一些实施例的去除上壳体的第四种光模块的一个剖面正视图;
图20为根据本公开一些实施例的去除上壳体的第四种光模块的另一个剖面正视图;
图21为根据本公开一些实施例的去除上壳体的光模块的一个剖面右视图;
图22为根据本公开一些实施例的去除上壳体的光模块的另一个剖面右视图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为根据本公开一些实施例的光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光孔对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;在本公开的某些实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电 信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本公开的某些实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为根据本公开一些实施例的光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光孔与光纤101连接。
笼子106位于电路板105上,电路板105上的电连接器包裹在笼子106中;光模块200插入笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过笼子106上的散热器107进行扩散。
图3为根据本公开一些实施例的一种光模块结构示意图,图4为根据本公开一些实施例的光模块分解结构示意图。如图3、图4所示,光模块200包括上壳体201、下壳体202、解锁部件203、电路板300和空槽400;
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开的某些实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口可以是在相反方向的两个开口,也可以是其他不同方向上的两处开口;图3中开口204和205为相反方向的两个开口,其中开口204为电口,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口205为光孔,用于外部光纤接入以连接光模块内部的光收发器件400;电路板300、光收发器件400等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光收发器件400等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
下壳体202上设置多个凸起,凸起位置对应于空槽400的正下方。凸起用于为空槽400内的各个器件提供高度。
解锁部件203位于包裹腔体中下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板300上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开的某些实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
电路板300的中间挖空得到空槽400。其中,空槽400可以为任意形状。
图5为根据本公开实施例提供的第一种光模块的一个局部结构示意图。图6为本公开实施例提供的第一种光模块的另一个局部结构示意图。图7为本公开实施例提供的去除上壳体的第一种光模块的一个剖面正视图。图8为本公开实施例提供的去除上壳体的第一种光模块的另一个剖面正视图。图21为本公开实施例提供的去除上壳体的光模块的一个剖面右视图。图22为本公开实施例提供的去除上壳体的光模块的另一个剖面右视图。如图5、6、7、8、21和22所示,本公开实施例提供的第一种光模块的空槽400内设置有激光组件401和硅光芯片404。
激光组件401,为激光盒,贴装于下壳体202上,与电路板300通过打线连接,用于发出不携带信号的光。具体的,激光盒包括激光芯片、准直透镜、聚焦透镜和隔离器。激光组件401包括第一激光组件和第二激光组件,第一激光组件和第二激光组件均用于发出不携带信号的光。第一激光组件和第二激光组件均对应贴装在下壳体202上,并通过打线连接的方式连接电路板300上的电路。
由于激光盒包括激光芯片、准直透镜、聚焦透镜和隔离器,且激光组件401与硅光芯片404通过光纤连接,则激光组件401发出的不携带信号的光通过光纤传输至硅光芯片404。
硅光芯片404内部包括马赫曾德调制器,结合马赫增德调制器以及跨阻放大器和激光驱动器等器件实现光信号的调制。马赫曾德调制器调制采用了同波长光干涉原理,一个马 赫曾德调制器设置有两个干涉臂,单个干涉臂上输入一束光,一共需要向一个马赫曾德调制器提供两束同波长的光,经马赫曾德调制器调制后,干涉臂上的光会融合为一束光。
硅光芯片404还包括若干光孔,若干光孔用于硅光芯片404接收激光组件301传输的光、输出调制后信号光以及接收光模块外部通过光纤传输至硅光芯片404的信号光。具体的,
硅光芯片404包括第一光孔和第二光孔,第一光孔和第二光孔中均具有若干个光通道。
第一光孔,设置于硅光芯片404的侧面,与激光组件401、聚焦透镜402、隔离器403的光路位于同一水平线,用于接收激光组件401发出的不携带信号的光。
由于第一光孔包括多个光通道,进而通过这些光通道可以将多路相同波长的光输入硅光芯片404中,为马赫曾德调制器的各个干涉臂提供相同波长的光。因为单个激光芯片的发光功率有限,叠加多个激光芯片的光可以提升单个波长的光功率,而已有技术中,多个激光芯片之间一般提供不同波长的光,单个波长的光功率并未叠加提升。
第二光孔,设置于硅光芯片404的侧面或者表面,与光纤带301的插入端连接,用于将调制后的信号光传输至光纤带301。光纤带301,一端连接硅光芯片404的第二光孔,另一端连接MPO光接口302,用于传输光信号。
当第二光孔位于硅光芯片404的侧面时,光纤带301的插入端与光纤带301之间的夹角为0度。具体的,当第二光孔位于硅光芯片404的侧面时,光纤带301的插入端与第二光孔之间的夹角为0度,为了方便光纤301的插入端插入第二光孔,光纤带301的插入端与光纤带301之间的夹角为0度。
当第二光孔位于硅光芯片404的表面时,光纤带301的插入端与光纤带301之间的夹角为90度。具体的,当第二光孔位于硅光芯片404的表面时,光纤301的插入端与第二光孔之间的夹角为90度,为了方便光纤301的插入端插入第二光孔,将光纤带301的插入端弯折90度,则光纤带301的插入端与光纤带301之间的夹角为90度。
当两个第一光孔分别位于第二光孔的两侧时,第一激光组件和第二激光组件分别位于光纤带301的两侧。当两个第一光孔均位于第二光孔的同一侧时,第一激光组件和第二激光组件均位于光纤带301的同一侧。
由于激光盒与电路板300打线连接,且激光盒上表面的高度与电路板300上表面的高度相近,则无需要在下壳体202上设置对应激光组件401的凸起。
由于硅光芯片404与电路板300打线连接,当硅光芯片404上表面的高度与电路板300上表面的高度相近时,则无需要在下壳体202上设置对应硅光芯片404的凸起。当硅光芯片404上表面的高度远小于电路板300上表面的高度时,则需要在下壳体202上设置第二凸起2022。第二凸起2022,与硅光芯片404粘接,用于将硅光芯片404固定于下壳体202。第二凸起2022的设置,不仅可以让硅光芯片404接收激光组件401发出的不携带信号的光;还可以使得硅光芯片404上表面与电路板300上表面位于同一水平面,减少打线的长度。
图9为本公开实施例提供的第二种光模块的一个局部结构示意图。图10为本公开实施例提供的第二种光模块的另一个局部结构示意图。图11为本公开实施例提供的去除上 壳体的第二种光模块的一个剖面正视图。图12为本公开实施例提供的去除上壳体的第二种光模块的另一个剖面正视图。如图9、10、11、和12所示,本公开实施例提供的第二种光模块的空槽400内除了设置有激光组件401和硅光芯片404外,还设置有聚焦透镜402和隔离器403。具体的,
激光组件401,包括激光芯片和热沉,贴装于下壳体202上,与电路板300通过打线连接,用于发出不携带信号的光。具体的,激光芯片设置于热沉上,热沉贴装于下壳体202上。激光组件401包括第一激光组件和第二激光组件,第一激光组件和第二激光组件均用于发出不携带信号的光。第一激光组件和第二激光组件均对应贴装在下壳体202上的凸起,并通过打线连接的方式连接电路板300上的电路。
聚焦透镜402,贴装于下壳体202上,位于激光组件401与隔离器403之间(即位于激光组件401和硅光芯片404之间),用于将激光组件401发出的不携带信号的光汇聚以便后续耦合。
隔离器403,贴装于下壳体202上,设置于激光芯片的出光方向上,位于聚焦透镜402与硅光芯片404之间,用于防止激光芯片发出的光经反射后回到激光芯片中。
由于激光组件401包括第一激光组件和第二激光组件,与激光组件401对应的聚焦透镜402包括第一聚焦透镜和第二聚焦透镜,且第一激光组件与第一聚焦透镜对应,第二激光组件与第二聚焦透镜对应。又由于聚焦透镜402包括第一聚焦透镜和第二聚焦透镜,则与聚焦透镜402对应的隔离器403包括第一隔离器和第二隔离器,且第一聚焦透镜与第一隔离器对应,第二聚焦透镜与第二隔离器对应。
为了使激光组件401发出的光尽可能传输至硅光芯片404内,本公开实施例中,激光组件401发出的不携带信号的光依次经过聚焦透镜402、隔离器403进入硅光芯片404。沿着第一激光组件的出光方向依次设置有第一聚焦透镜和第一隔离器。沿着第二激光组件的出光方向依次设置有第二聚焦透镜和第二隔离器。
当两个第一光孔分别位于第二光孔的两侧时,第一激光组件和第二激光组件分别位于光纤带301的两侧。由于第一激光组件和第二激光组件分别位于光纤带301的两侧,则与第一激光组件对应的第一透镜、第一隔离器和与第二激光组件对应的第二透镜、第二隔离器均位于光纤带301的两侧。
当两个第一光孔均位于第二光孔的同一侧时,第一激光组件和第二激光组件均位于光纤带301的同一侧。由于第一激光组件和第二激光组件均位于光纤带301的同一侧,则与第一激光组件对应的第一透镜、第一隔离器和与第二激光组件对应的第二透镜、第二隔离器位于光纤带301的同一侧。
由于激光芯片与电路板300打线连接,激光芯片上表面的高度远小于电路板300上表面的高度,则需要在下壳体202上设置有第一凸起2021。第一凸起2021,与激光组件401粘接,用于将激光组件401固定于下壳体202。第一凸起2021的设置,不仅可以让激光组件401发出不携带信号的光进入硅光芯片404中;还可以使得激光组件401上表面与电路板300上表面位于同一水平面,减少打线的长度。
当第一凸起2021的高度较低时,为了使激光组件401发出的不携带信号的光进入硅 光芯片404时,硅光芯片404可直接贴装于下壳体202上,无需在下壳体202上设置对应硅光芯片404的凸起。如图11、12和21所示,本公开实施例中,下壳体202上除了设置有第一凸起2021外,还设置有第三凸起2023和第五凸起2025。具体的,第三凸起2023,位于第一凸起2021和第五凸起2025之间,与聚焦透镜402粘接,用于将聚焦透镜402固定于下壳体202。第五凸起2025,与隔离器403粘接,用于将隔离器403固定于下壳体202。第一凸起2021、第三凸起2023、第五凸起2025的设置,使得激光组件401发出的不携带信号的光依次经过聚焦透镜402、隔离器403进入硅光芯片404中。
当第一凸起2021的高度较高时,为了使激光组件401发出的不携带信号的光进入硅光芯片404,在下壳体202上设置对应硅光芯片404的凸起。如图11、12和22所示,本公开实施例中,下壳体202上除了设置第一凸起2021和第二凸起2022外,还设置第三凸起2023和第五凸起2025。具体的,第三凸起2023,位于第一凸起2021和第五凸起2025之间,与聚焦透镜402粘接,用于将聚焦透镜402固定于下壳体202。第五凸起2025,与隔离器403粘接,用于将隔离器403固定于下壳体202。第一凸起2021、第三凸起2023、第五凸起2025的设置,使得激光组件401发出的不携带信号的光依次经过聚焦透镜402、隔离器403进入硅光芯片404中。
图13为本公开实施例提供的第三种光模块的一个局部结构示意图。图14为本公开实施例提供的第三种光模块的另一个局部结构示意图。图15为本公开实施例提供的去除上壳体的第三种光模块的一个剖面正视图。图16为本公开实施例提供的去除上壳体的第三种光模块的另一个剖面正视图。如图13、14、15、16、21和22所示,本公开实施例中,第三种光模块除了包括第二种光模块外,还包括准直透镜405和第四凸起2024。具体的,
准直透镜405,贴装于下壳体202上,设置于激光组件401与聚焦透镜402之间,用于将激光组件401发出的不携带信号的光变为准直光。
第四凸起2024,设置于下壳体202上,位于第一凸起2021与第三凸起2023之间,与准直透镜405粘接,用于将准直透镜405固定于下壳体202,以使得激光组件401发出的不携带信号的光依次经过准直透镜405、聚焦透镜402和隔离器403进入硅光芯片404中。
在第三种光模块中,聚焦透镜402设置于准直透镜405与隔离器403之间。固定聚焦透镜402的第三凸起2023和固定准直透镜405的第四凸起2024可以组成一个凸起。
当第一凸起2021的高度较低时,硅光芯片404可直接贴装于下壳体202上。如图15、16和21所示,本公开实施例中,下壳体202上除了设置有第一凸起2021、第三凸起2023和第五凸起2025外,还设置有第四凸起2024。第一凸起2021、第三凸起2023、第四凸起2024和第五凸起2025的设置,使得激光组件401发出的不携带信号的光依次经过准直透镜405、聚焦透镜402、隔离器403进入硅光芯片404中。
当第一凸起2021的高度较高时,在下壳体202上设置有对应硅光芯片404的凸起。如图15、16和22所示,本公开实施例中,下壳体202上除了设置有第一凸起2021、第二凸起2022、第三凸起2023和第五凸起2025外,还设置有第四凸起2024。第一凸起2021、第二凸起2022、第三凸起2023、第四凸起2024和第五凸起2025的设置,使得激光组件 401发出的不携带信号的光依次经过准直透镜405、聚焦透镜402、隔离器403进入硅光芯片404中。
图17为本公开实施例提供的去除上壳体的第四种光模块的一个局部示意图。图18为本公开实施例提供的去除上壳体的第四种光模块的另一个局部示意图。图19为本公开实施例提供的去除上壳体的第四种光模块的一个剖面正视图。图20为本公开实施例提供的去除上壳体的第四种光模块的另一个剖面正视图。如图17-22所示,第四种光模块中,聚焦透镜402设置于隔离器403与硅光芯片404之间,第三凸起2023位于第五凸起2025和第二凸起2022之间。本公开实施例中,激光组件401发出的不携带信号的光依次经过准直透镜405、隔离器403、聚焦透镜402进入硅光芯片404中。
如图5-20所示,本公开实施例中,光模块还包括金手指303。金手指303,设置于电路板300的上表面,用于插入上位机中,并将光模块中的电信号传输至上位机或者将上位机中的电信号传输至光模块。
本公开提供了一种光模块,包括下壳体、贴装于下壳体上的电路板。电路板设置有空槽。空槽内设置有贴装于下壳体上的激光组件和硅光芯片。激光组件,与电路板打线连接,用于发出不携带信号的光。硅光芯片,与电路板打线连接,用于对不携带信号的光进行调制。本公开中,通过在电路板设置空槽,空槽内设置有激光组件和硅光芯片,将电路板、激光组件和硅光芯片均直接固定于下壳上,减少了激光组件和硅光芯片与下壳体之间的阻隔物,方便激光组件和硅光芯片产生的热量及时散出,不影响光模块的工作性能。
本公开还提供了一种光模块,光模块包括下壳体和贴装于下壳体上的电路板。电路板设置有空槽。激光组件,为激光芯片,设置于空槽内,贴装于下壳体上,与电路板打线连接,通过透镜将发出的不携带信号的光耦合至光纤阵列。其中,透镜可以为一个聚焦透镜,也可以为一个准直透镜和一个聚焦透镜。当透镜为一个聚焦透镜时,聚焦透镜位于激光芯片与光纤阵列之间。当透镜为一个准直透镜和一个聚焦透镜时,准直透镜和聚焦透镜均位于激光芯片和光纤阵列之间,且准直透镜位于激光芯片与聚焦透镜之间,聚焦透镜位于准直透镜与光纤阵列之间。
本说明书中实施例之间相同相似的部分互相参见即可。需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    下壳体;
    电路板,贴装于所述下壳体上,设置有空槽;
    所述空槽内设置有激光组件和硅光芯片;
    所述激光组件,贴装于所述下壳体上,与所述电路板打线连接,用于发出不携带信号的光;
    所述硅光芯片,贴装于所述下壳体上,与所述电路板打线连接,用于对不携带信号的光进行调制。
  2. 根据权利要求1所述的光模块,其特征在于,所述激光组件包括激光芯片和热沉,所述激光芯片设置于所述热沉上,所述下壳体上设置有第一凸起;
    所述第一凸起与所述激光组件粘接,以使得所述激光组件发出的不携带信号的光进入硅光芯片中。
  3. 根据权利要求1所述的光模块,其特征在于,所述激光组件为激光盒,所述激光盒与所述硅光芯片通过光纤连接。
  4. 根据权利要求2或3所述的光模块,其特征在于,所述光模块还包括第二凸起;
    所述第二凸起,设置于下壳体上,与所述硅光芯片粘接,以使得所述激光组件发出的不携带信号的光进入硅光芯片中。
  5. 根据权利要求2所述的光模块,其特征在于,所述光模块还包括聚焦透镜和第三凸起;
    所述聚焦透镜,贴装于所述下壳体上,位于所述激光组件与所述硅光芯片之间,用于将不携带信号的光汇聚以便后续耦合;
    所述第三凸起,设置于下壳体上,与所述聚焦透镜粘接。
  6. 根据权利要求5所述的光模块,其特征在于,所述光模块还包括准直透镜和第四凸起;
    所述准直透镜,贴装于所述下壳体上,设置于所述激光组件与所述聚焦透镜之间,用于将不携带信号的光变为准直光;
    所述第四凸起,设置于下壳体上,位于所述第一凸起与第三凸起之间,与所述准直透镜粘接。
  7. 根据权利要求5所述的光模块,其特征在于,所述光模块还包括隔离器和第五凸起;
    所述隔离器,贴装于所述下壳体上,设置于所述激光组件与所述硅光芯片之间,用于防止激光组件发出的光经反射后回到激光组件中;
    所述第五凸起,设置于下壳体上,与所述隔离器粘接。
  8. 根据权利要求1或2所述的光模块,其特征在于,所述硅光芯片设置有第一光孔和第二光孔;所述第一光孔,设置于所述硅光芯片的侧面,与所述激光组件的光路位于同 一水平线,用于接收激光组件发出的不携带信号的光;
    所述第二光孔,设置于所述硅光芯片的侧面或者表面,与光纤带的插入端连接。
  9. 根据权利要求8所述的光模块,其特征在于,当所述第二光孔位于所述硅光芯片的侧面时,所述光纤带的插入端与所述光纤带之间的夹角为0度;当所述第二光孔位于所述硅光芯片的表面时,所述光纤带的插入端与所述光纤带之间的夹角为90度。
  10. 一种光模块,其特征在于,包括:
    下壳体;
    电路板,贴装于所述下壳体上,设置有空槽;
    所述激光组件,为激光芯片,设置于所述空槽内,贴装于所述下壳体上,与所述电路板打线连接,通过透镜将发出的不携带信号的光耦合至光纤阵列。
PCT/CN2020/114570 2020-05-13 2020-09-10 一种光模块 WO2021227317A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/364,327 US20210356683A1 (en) 2020-05-13 2021-06-30 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010404349.7A CN111474644A (zh) 2020-05-13 2020-05-13 一种光模块
CN202010404349.7 2020-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/364,327 Continuation-In-Part US20210356683A1 (en) 2020-05-13 2021-06-30 Optical module

Publications (1)

Publication Number Publication Date
WO2021227317A1 true WO2021227317A1 (zh) 2021-11-18

Family

ID=71757325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114570 WO2021227317A1 (zh) 2020-05-13 2020-09-10 一种光模块

Country Status (2)

Country Link
CN (1) CN111474644A (zh)
WO (1) WO2021227317A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815093A (zh) * 2022-05-18 2022-07-29 河北华美光电子有限公司 光模块

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474644A (zh) * 2020-05-13 2020-07-31 青岛海信宽带多媒体技术有限公司 一种光模块
CN114167553B (zh) * 2020-09-11 2023-02-21 青岛海信宽带多媒体技术有限公司 一种光模块
CN114167554B (zh) * 2020-09-11 2023-04-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN112904496A (zh) * 2021-01-14 2021-06-04 众瑞速联(武汉)科技有限公司 一种硅光集成模块
CN112965183A (zh) * 2021-03-11 2021-06-15 宁波芯速联光电科技有限公司 一种硅光模块
CN112965184B (zh) * 2021-03-11 2024-04-12 宁波芯速联光电科技有限公司 一种新型硅光模块
CN113671639A (zh) * 2021-07-16 2021-11-19 武汉英飞光创科技有限公司 一种光模块结构及其制作方法
CN113514924B (zh) * 2021-07-16 2024-08-23 亨通洛克利科技有限公司 一种800g光模块
CN113703104B (zh) * 2021-08-19 2023-02-14 武汉昱升光电股份有限公司 一种蝶形soa器件及生产耦合方法
CN216251625U (zh) * 2021-11-24 2022-04-08 青岛海信宽带多媒体技术有限公司 一种激光芯片及光模块
CN114721095A (zh) * 2022-04-07 2022-07-08 深圳市易飞扬通信技术有限公司 光发射模块的封装方法及光发射模块
CN114815089B (zh) * 2022-04-18 2023-10-24 东莞立讯技术有限公司 光模块
WO2024055570A1 (zh) * 2022-09-14 2024-03-21 青岛海信宽带多媒体技术有限公司 光模块
CN117826340A (zh) * 2022-09-29 2024-04-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN116047680A (zh) * 2023-04-03 2023-05-02 众瑞速联(武汉)科技有限公司 一种小型化硅光芯片、硅光组件及其cob组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017806A (ko) * 2014-08-06 2016-02-17 (주)옵토라인 옵티칼 인터커넥션 디바이스
CN108761670A (zh) * 2018-06-14 2018-11-06 青岛海信宽带多媒体技术有限公司 一种光模块
CN109239861A (zh) * 2018-09-11 2019-01-18 武汉光迅科技股份有限公司 一种硅光光收发模块
CN110376688A (zh) * 2019-07-16 2019-10-25 武汉光迅科技股份有限公司 一种光模块
CN110388576A (zh) * 2018-04-23 2019-10-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN110764202A (zh) * 2019-12-09 2020-02-07 亨通洛克利科技有限公司 一种400g光模块的结构
CN111474644A (zh) * 2020-05-13 2020-07-31 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844999B2 (ja) * 1991-11-18 1999-01-13 日本電気株式会社 光半導体アレイモジュール
KR101924939B1 (ko) * 2017-02-24 2018-12-04 주식회사 지파랑 슬림형 커넥터 플러그, 이를 이용한 액티브 광 케이블 조립체 및 그의 제조방법
CN110730599B (zh) * 2017-07-19 2021-07-09 苏州旭创科技有限公司 光模块
CN108390256B (zh) * 2018-03-16 2021-06-01 青岛海信宽带多媒体技术有限公司 光模块及制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017806A (ko) * 2014-08-06 2016-02-17 (주)옵토라인 옵티칼 인터커넥션 디바이스
CN110388576A (zh) * 2018-04-23 2019-10-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN108761670A (zh) * 2018-06-14 2018-11-06 青岛海信宽带多媒体技术有限公司 一种光模块
CN109239861A (zh) * 2018-09-11 2019-01-18 武汉光迅科技股份有限公司 一种硅光光收发模块
CN110376688A (zh) * 2019-07-16 2019-10-25 武汉光迅科技股份有限公司 一种光模块
CN110764202A (zh) * 2019-12-09 2020-02-07 亨通洛克利科技有限公司 一种400g光模块的结构
CN111474644A (zh) * 2020-05-13 2020-07-31 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815093A (zh) * 2022-05-18 2022-07-29 河北华美光电子有限公司 光模块
CN114815093B (zh) * 2022-05-18 2024-04-09 河北华美光电子有限公司 光模块

Also Published As

Publication number Publication date
CN111474644A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021227317A1 (zh) 一种光模块
WO2021212849A1 (zh) 一种光模块
WO2021120668A1 (zh) 一种光模块
WO2021185179A1 (zh) 一种光模块
WO2021185180A1 (zh) 一种光模块
CN213659029U (zh) 一种光模块
CN113325526A (zh) 一种光模块
CN111948762A (zh) 一种光模块
WO2021139200A1 (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114624829A (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
WO2022127059A1 (zh) 一种光模块
WO2021103958A1 (zh) 一种光模块
WO2021232716A1 (zh) 一种光模块
WO2021120669A1 (zh) 一种光模块
WO2024066360A1 (zh) 光模块
CN113009649B (zh) 一种光模块
CN214540156U (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
WO2022127073A1 (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
WO2022052527A1 (zh) 一种光模块
WO2022007428A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935141

Country of ref document: EP

Kind code of ref document: A1