WO2021218462A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021218462A1
WO2021218462A1 PCT/CN2021/080964 CN2021080964W WO2021218462A1 WO 2021218462 A1 WO2021218462 A1 WO 2021218462A1 CN 2021080964 W CN2021080964 W CN 2021080964W WO 2021218462 A1 WO2021218462 A1 WO 2021218462A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
glass sheet
module
nozzle
Prior art date
Application number
PCT/CN2021/080964
Other languages
English (en)
French (fr)
Inventor
吴涛
蔚永军
濮宏图
慕建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021218462A1 publication Critical patent/WO2021218462A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • optical return loss is a key indicator. As the communication rate increases, the requirements for optical return loss (ORL) are getting higher and higher. For optical transceiver sub-modules with a transmission rate of 25G or more, the optical return loss requirement has reached -26dB.
  • the end face of the optical fiber of the optical fiber adapter in the traditional optical module is polished at an angle of 4° to 8°.
  • the optical fiber in the optical fiber adapter includes a core layer and a cladding layer, and the optical signal is transmitted in the core layer of the optical fiber. Since the end face of the fiber and the fiber are not perpendicular to each other, when the incident light enters the end face of the fiber from the fiber, the incident light is reflected on the end face of the fiber, and the reflected light is directed to the cladding of the fiber. The reflected light cannot be returned along the original path along the center of the fiber To fiber.
  • an embodiment of the present disclosure provides an optical module, including: a circuit board; an optical transceiver sub-module, which is electrically connected to the circuit board, and includes a rectangular tube body, an optical transmitter, an optical receiver, and an optical fiber adapter; A square tube body with a first nozzle, a second nozzle, and a third nozzle on the surface; the light transmitter is embedded in the first nozzle to send out light signals; the optical receiver is embedded in the second nozzle for Receiving optical signals; an optical fiber adapter, embedded in the third nozzle, including a tube shell and an optical fiber ferrule; an optical fiber ferrule, arranged in the tube shell, including an optical fiber; an optical fiber, the first end of the glass sheet is refracted Rate matching glue bonding.
  • an embodiment of the present disclosure provides an optical module, including: a circuit board; a light emission sub-module, which is arranged on the circuit board and is used to transmit optical signals; an optical fiber adapter, which is connected to the light emission sub-module, includes a tube case and Optical fiber ferrule; optical fiber ferrule, arranged in the tube shell, the first end and the first end of the glass sheet are bonded by refractive index matching glue.
  • an optical module including: a circuit board; an optical transceiver sub-module, which is electrically connected to the circuit board, and includes a square tube body, an optical transmitter, an optical receiver, and an optical fiber adapter; a circular square tube Body, the surface is provided with a first nozzle, a second nozzle and a third nozzle; a light emitter, embedded in the first nozzle, used to send out light signals; a light receiver, embedded in the second nozzle, used to receive light Signal; an optical fiber adapter, embedded in the third nozzle, including a tube shell and an optical fiber ferrule; an optical fiber ferrule, arranged in the tube shell, the first end and the first end of the glass sheet are bonded by refractive index matching glue.
  • an embodiment of the present disclosure provides an optical module, including: a circuit board; a light emission sub-module, which is arranged on the circuit board and is used to transmit optical signals; an optical fiber adapter, which is connected to the light emission sub-module, includes a tube case and The ferrule; the optical fiber ferrule, which is arranged in the tube shell, includes an optical fiber; the optical fiber, the first end and the first end of the glass sheet are bonded by a refractive index matching glue.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided in an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided in an embodiment of the disclosure.
  • FIG. 5 is a perspective view of an optical transceiver sub-module provided in an embodiment of the disclosure.
  • FIG. 6 is a schematic cross-sectional structure diagram of an optical fiber adapter provided in an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of another optical module provided in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of an exploded structure of another optical module provided in an embodiment of the disclosure.
  • FIG. 9 is a cross-sectional structure diagram of another optical fiber adapter provided in an embodiment of the disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between the optical signal and the electrical signal, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; in an embodiment of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module It is input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical Module, the optical network terminal is used as the upper computer of the optical module to monitor the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG 2 is a schematic diagram of the optical network terminal structure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into an optical network terminal.
  • the electrical port of the optical module is inserted into an electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300, and an optical transceiver module 400;
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower shell includes a main board and Two side plates located at the edge of the main board and perpendicular to the main board;
  • the upper casing includes a cover plate, and the cover plate covers the two side plates of the upper casing to form a wrapping cavity;
  • the upper casing may also include a cover located on the The edge of the plate and the two side walls arranged perpendicular to the cover plate are combined by the two side walls and the two side plates, so that the upper shell is covered on the lower shell.
  • the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into the upper computer such as the optical network terminal; the other opening is the optical port 205, which is used for external optical fiber access to connect the optical transceiver module 400 inside the optical module; the circuit board 300, the optical transceiver module 400 and other optoelectronic devices are located in the package In the cavity.
  • the upper shell and the lower shell are combined to facilitate the installation of the circuit board 300, the optical transceiver module 400 and other components into the shell.
  • the upper shell and the lower shell form the outermost packaging protective shell of the optical module.
  • the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic The shielding component cannot be installed, and it is not conducive to production automation.
  • the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize a fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking component 203 has an engaging component that matches the cage of the host computer; pulling the end of the unlocking component can make the unlocking component move relatively on the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging component of the unlocking component Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed, so as to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with circuit wiring, electronic components (such as capacitors, resistors, transistors, MOS tubes) and chips (such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP) and so on.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP
  • the circuit board connects the electrical components in the optical module according to the circuit design through circuit traces to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver module is located on the circuit board, the rigid circuit board can also Provide a stable load; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • a metal pin/gold finger is formed on one end surface of the rigid circuit board for Connect with electrical connectors; these are not easy to implement with flexible circuit boards.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver sub-modules.
  • the optical transceiver module 400 provided by the embodiment of the present disclosure is used to transmit and receive optical signals, so as to implement the optical module 200 to transmit and receive optical signals.
  • FIG. 5 is a perspective view of an optical transceiver sub-module provided by an embodiment of the disclosure.
  • the optical transceiver sub-module 400 provided by the embodiment of the present disclosure includes a rectangular tube body 500, an optical transmitter 600, an optical receiver 700 and an optical fiber adapter 800.
  • the optical transceiver sub-module 400 provided by the embodiment of the present disclosure includes a rectangular tube body 500, an optical transmitter 600, an optical receiver 700 and an optical fiber adapter 800.
  • the circular square tube body 500 is provided with a first nozzle and a second nozzle on the surface, and is used to carry and fix the light transmitter 600 and the light receiver 700.
  • the first nozzle and the second nozzle are respectively arranged on adjacent side walls of the circular square tube body 500.
  • the first nozzle is arranged on the side wall of the circular square tube 500 in the length direction
  • the second nozzle is arranged on the side wall of the circular square tube 500 in the width direction.
  • the light transmitter 600 is embedded in the first nozzle
  • the light receiver 700 is embedded in the second nozzle.
  • the circular square tube 500 is generally made of a metal material, which is beneficial to realize the electromagnetic shielding and heat dissipation of the light transmitter 600 and the light receiver 700.
  • the optical transmitter 600 and the optical receiver 700 are directly press-fitted into the rectangular tube 500, and the rectangular tube 500 is in contact with the optical transmitter 600 and the optical receiver 700 directly or through a thermally conductive medium. .
  • the square tube body 500 can be used for the heat dissipation of the light transmitter 600 and the light receiver 700 to ensure the heat dissipation effect of the light transmitter 600 and the light receiver 700.
  • the circular square tube body 500 is further provided with an optical assembly 900 inside, and a third nozzle is also provided on the surface.
  • the optical component 900 is used to adjust the optical signal emitted by the optical transmitter 600 and adjust the optical signal incident to the optical receiver 700.
  • the light transmitter 600 is used to emit light signals.
  • the optical receiver 700 is used to receive optical signals.
  • the first end is embedded in the third nozzle, and the second end is connected to an external optical fiber for connecting the optical fiber to the optical transceiver module.
  • the optical fiber adapter 800 is embedded in the third nozzle, and the optical transmitter 600 and the optical receiver 700 establish optical connections with the optical fiber adapter 800 respectively.
  • the light emitted and received in the optical transceiver submodule are both Transmission is carried out via the same optical fiber in the optical fiber adapter 800, that is, the same optical fiber in the optical fiber adapter 800 is a transmission channel for the optical transceiver module to enter and exit the light, and the optical transceiver module 400 implements a single-fiber bidirectional optical transmission mode.
  • the optical component 900 is disposed in the inner cavity of the rectangular tube 500, and the optical component 900 is used to adjust the laser light emitted by the light emitter 600 and adjust the laser light incident to the light receiver 700.
  • the optical component 900 usually includes an optical lens (such as an optical collimator lens, an optical coupling lens), a multiplexer/demultiplexer, etc., which are used to collimate the optical path and adjust the optical path, optimize the fiber coupling state, and improve Coupling efficiency.
  • FIG. 6 is a schematic cross-sectional structure diagram of an optical fiber adapter provided by an embodiment of the disclosure.
  • the optical fiber adapter 800 provided by the embodiment of the present disclosure includes a tube case 801 and an optical fiber ferrule 802.
  • the optical fiber ferrule 802 is disposed in the tube shell 801.
  • the optical fiber ferrule 802 is inserted into the first end of the optical fiber adapter 800, and the external optical fiber is inserted into the second end of the optical fiber adapter 800.
  • the first end of the optical fiber ferrule 802 is inserted into the tube shell 801, and the second end of the optical fiber ferrule 802 is placed outside the tube shell 801.
  • the optical fiber ferrule 802 Since the optical fiber 803 is soft, it is not easy to fix the position with the optical transceiver module 400 with high precision, so the optical fiber ferrule 802 is designed. There is a hard material that can realize high-precision processing to wrap the optical fiber, and the fixing of the material realizes the fixing of the optical fiber. As shown in FIG. 6, in the embodiment of the present disclosure, the optical fiber ferrule 802 includes a coating layer and an optical fiber 803. In an embodiment of the present disclosure,
  • the coating layer generally a ceramic material, is used to wrap the optical fiber 803. Ceramic materials have high machining accuracy and can achieve high-precision position alignment. Since the optical fiber 803 and the ceramic material are combined with the optical fiber ferrule 802, the fixing of the optical fiber 802 is realized by fixing the ceramic material.
  • the ceramic material restricts the fixing direction of the optical fiber 803 in the optical fiber ferrule 802
  • the ceramic material is generally processed into a cylinder, a linear through hole is set in the center of the ceramic cylinder, and the optical fiber 803 is inserted into the through hole of the ceramic cylinder to achieve Fixed, so the optical fiber is fixed straight in the ceramic cylinder.
  • the optical fiber 803 includes a cladding layer and a core layer, and the core layer is wrapped in the cladding layer. Because the refractive index of the cladding layer and the core layer are different, the optical signal is totally reflected at the interface between the core layer and the cladding layer, thereby restricting the transmission of the optical signal along the core layer.
  • the first end and the first end of the glass sheet 804 are bonded by a refractive index matching glue 805, and the second end is connected to an external optical fiber.
  • the first end of the optical fiber 803 is used to receive the optical signal transmitted by the optical transmitter 600 and adjusted by the optical component 900, and the second end of the optical fiber 803 is used to receive the optical signal from an external optical fiber.
  • the refractive index matching glue 805 has a first end bonded to the first end of the optical fiber 803, and a second end bonded to the first end of the glass sheet 804 for bonding the optical fiber 803 and the glass sheet 804.
  • the refractive index of the refractive index matching glue 805 is similar to the refractive index of the core layer of the optical fiber 803, so that when the optical signal enters the glass sheet 804 from the optical fiber 803, no refraction occurs as much as possible, so that the optical signal can be transmitted to the glass sheet 804 as much as possible.
  • the refractive index of the refractive index matching glue 805 is equal to the refractive index of the core layer of the optical fiber 803.
  • the refractive index of the refractive index matching glue 805 is equal to the refractive index of the core layer of the optical fiber 803, the core layer of the optical fiber 803 and the refractive index matching glue 805 cannot form two sections with different refractive indexes, and the optical signal matches the refractive index of the core layer of the optical fiber 803.
  • the refractive index of the refractive index matching glue 805 is close to the refractive index of the glass sheet 804.
  • the refractive index of the glass sheet 804 and the refractive index of the refractive index matching glue 805 are equal. Since the refractive index of the glass sheet 804 is equal to the refractive index of the refractive index matching glue 805, the glass sheet 804 and the refractive index matching glue 805 cannot form two different refractive index sections, and the optical signal is in the refractive index matching glue 805 and the glass sheet 804. During transmission between, no refraction occurs, so that the optical signal is transmitted to the glass sheet 804 as much as possible.
  • the glass sheet 804 is used to diverge the optical signal incident on the glass sheet 804 from the core layer of the optical fiber 803.
  • the binding force of the glass sheet 804 on the optical signal is less than the binding force of the core layer on the optical signal.
  • the first end of the optical fiber 803 is bonded with a glass sheet 804.
  • the gap between the first end of the optical fiber 803 and the second end of the glass sheet 804 is increased.
  • the distance is equivalent to increasing the distance between the incident light and the reflecting surface (the second end of the glass sheet).
  • the second end of the glass sheet 804 and the first end of the glass sheet 804 may be parallel or non-parallel. In an embodiment of the present disclosure,
  • the second end of the glass sheet 804 is parallel to the first end of the glass sheet 804, it is equivalent to bonding a parallel glass sheet to the first end of the optical fiber 803.
  • the existence of parallel glass sheets increases the distance between the first end of the optical fiber 803 and the second end of the glass sheet 804, and increases the distance from the incident light to the reflecting surface.
  • the incident light is reflected to the reflective surface, the reflected light is directed to the edge of the glass sheet, so that the reflected light cannot return to the original path, which can effectively reduce the light return loss.
  • the second end of the glass sheet 804 is not parallel to the first end of the glass sheet 804, it is equivalent to a beveled glass sheet bonded to the first end of the optical fiber 803.
  • the presence of the beveled glass sheet increases the distance between the first end of the optical fiber 803 and the second end of the glass sheet 804, and increases the distance between the incident light and the reflective surface, compared with parallel glass.
  • the incident light is emitted to the reflective surface for reflection, the reflected light is directed to the edge of the glass sheet, so that the reflected light cannot return to the original path, which can effectively reduce the light return loss in an embodiment of the present disclosure.
  • the inclination angle between the second end of the glass sheet 804 and the first end of the glass sheet 804 is 1° to 1.5°.
  • the thickness of the glass sheet 804 determines the focus of the reflected beam waist, the greater the thickness, the greater the defocus, and the smaller the light return loss. Also, because the second end of the glass sheet and the first end of the glass sheet can be parallel or It may not be parallel. In the present disclosure, the thickness of the center line between the first end of the glass sheet 804 and the second end of the glass sheet is 300 microns.
  • the second end of the glass sheet 804 may not be plated with any dielectric, and may be plated with an anti-reflection film 806.
  • an anti-reflection film 806 In an embodiment of the present disclosure,
  • the second end of the glass sheet 804 When the second end of the glass sheet 804 is not coated with any medium, part of the incident light diverging from the glass sheet 804 will be refracted at the second end of the glass sheet 804, and the refracted light will be directed into the air; the other part of the incident light will be on the glass.
  • the second end of the sheet 804 is reflected, and the reflected light is directed toward the edge of the glass sheet 804. Since the reflected light is directed to the edge of the glass sheet 804, the refracted light will not return to the glass sheet 804, effectively reducing light return loss.
  • the antireflection film 806 is a transparent dielectric film used to reduce reflection loss.
  • the incident light diverges in the glass sheet 804, a part is reflected to the edge of the glass sheet 804 through the anti-reflection coating 806, and the other part is refracted into the air through the anti-reflection coating 806 to reduce light reflection.
  • the return of the light path is reduced, thereby effectively reducing the light return loss.
  • the second end of the glass sheet 804 is coated with an anti-reflection coating 806, part of the incident light diverging from the glass sheet 804 is refracted through one side of the anti-reflection coating 806, and the refracted light is emitted into the air; the other part is in the anti-reflection coating The other side of 806 is reflected, and the reflected light is directed toward the edge of the glass sheet 804. Since the function of the anti-reflection film 806 is to transmit incident light, the incident light passes through the anti-reflection film 804 as much as possible to be refracted, and the refracted light is emitted into the air. Since the refracted light does not return to the glass sheet 804, the light return loss is effectively reduced.
  • the shape of the glass sheet 804 is the same as the cross-sectional shape of the optical fiber 803. At this time, the shape of the glass sheet 804 is a cylinder, and the radius of the glass sheet 804 is equal to the radius of the optical fiber 803.
  • the focal point of the reflected light and the incident light will be misaligned, and the reflected light will not enter the light emitter 600. Achieve the effect of smaller return loss.
  • the optical fiber adapter 800 When the optical fiber adapter 800 receives the optical signal transmitted by the external optical fiber, it enters the optical fiber 803. Since the glass sheet 804 and the optical fiber 803 have different binding forces on the optical signal, when the incident light enters the first end of the glass sheet 804, the incident light is emitted and cannot be transmitted in the horizontal direction. The first end of the optical fiber 803 is bonded to the glass sheet 804, which is equivalent to increasing the distance from the incident light to the reflecting surface. When the incident light that cannot be transmitted in the horizontal direction is reflected at the second end of the glass sheet 804, the reflected light is directed to the glass. The edge of the sheet 804 prevents the reflected light from returning to the original path, which can effectively reduce the optical return loss. Since only a glass sheet 804 needs to be glued to the first end of the optical fiber 803, there is no need to make special arrangements for the optical path, which effectively reduces the complexity of the optical system and mechanical structure.
  • the first end of the optical fiber 803 and the first end of the glass sheet 804 can be bonded by refractive index matching glue; It is also possible to bond the first end of the optical fiber ferrule 802 and the first end of the glass sheet 804 through a refractive index matching glue. At this time, the radius length of the glass sheet 804 is equal to the radius length of the optical fiber ferrule 802.
  • FIG. 7 is a schematic structural diagram of another optical module provided in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of an exploded structure of another optical module provided in an embodiment of the disclosure.
  • the optical module 200' includes an upper casing 201', a lower casing 202', an unlocking component 203', a circuit board 300' and a light emitting sub-module 400', and a light receiving sub-module.
  • the upper casing 201' is covered on the lower casing 202' to form a wrapping cavity with two openings.
  • the unlocking component 203' is located on the outer wall of the wrapping cavity/lower casing 202', and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • a circuit board 300', a light emitting sub-module 400' and a light receiving sub-module 500' are arranged in the package cavity.
  • the light emitting sub-module 400' is used to emit light signals.
  • the optical receiving sub-module 500' is used for receiving optical signals.
  • the fiber optic adapter 600' is connected to the light emitting sub-module 400'.
  • one end of the optical fiber adapter 600' is inserted into the light emitting sub-module 400', and the other end is connected to the optical fiber socket 800' through the optical fiber 700'.
  • FIG. 9 is a cross-sectional structure diagram of another optical fiber adapter provided in an embodiment of the disclosure.
  • the optical fiber adapter 600' includes a tube shell 601', an optical fiber ferrule 602', and an isolator 603'.
  • the optical fiber ferrule 602' and the isolator 603' are respectively disposed in the tube shell 601', and the optical fiber ferrule 602 'Connect with fiber 700'.
  • the isolator 603' allows light to pass through in a single direction and is blocked in the opposite direction to prevent reflected light from returning to the laser chip. Of course, the cut-off capability of the isolator 603' cannot realize that all light is blocked.
  • the first end of the optical fiber ferrule 602 ′ and the first end of the glass sheet 605 ′ are bonded by a refractive index matching glue 604 ′, and the second end of the glass sheet 605 ′ is coated with an anti-reflection film 606 ′.
  • the first end of the optical fiber 700' is inserted into the second end of the optical fiber ferrule 602', and the second end of the optical fiber 700' is connected to the optical fiber socket 800'.
  • the radius length of the glass sheet 605' is equal to the radius length of the optical fiber ferrule 602'.
  • the focal point of the reflected light and the incident light will be misaligned, and the reflected light will not enter the light emission sub-module 400', reaching a smaller return. Loss effect.
  • the first end of the optical fiber ferrule 602' and the first end of the glass sheet 605' can be refracted Rate-matching glue bonding; the first end of the optical fiber 700' and the first end of the glass sheet 605' can also be bonded by the index-matching glue.
  • the radius length of the glass sheet 605' is equal to the radius length of the optical fiber 700'.
  • the present disclosure provides an optical module, which includes a circuit board and an optical transceiver sub-module electrically connected to the circuit board.
  • the optical transceiver module includes a round tube body, an optical transmitter, an optical receiver, and an optical fiber adapter.
  • a first nozzle, a second nozzle, and a third nozzle are arranged on the surface of the circular square pipe body.
  • the light transmitter is embedded in the first nozzle, the light receiver is embedded in the second nozzle, and the optical fiber adapter is embedded in the third nozzle.
  • the light transmitter is used to send out light signals.
  • the optical receiver is used to receive optical signals.
  • the optical fiber adapter includes a tube shell and an optical fiber ferrule.
  • the optical fiber ferrule is arranged in the tube shell.
  • the optical fiber ferrule includes an optical fiber.
  • the first end of the optical fiber and the first end of the glass sheet are bonded by a refractive index matching glue.
  • the optical fiber adapter receives the optical signal transmitted by the external optical fiber and enters the optical fiber.
  • the binding force of the glass sheet and the optical fiber to the optical signal is different.
  • the incident light enters the first end of the glass sheet, the incident light is emitted and cannot be transmitted along the horizontal direction.
  • the first end of the optical fiber is bonded to the glass sheet, which is equivalent to increasing the distance from the incident light to the reflecting surface.
  • the reflected light is directed to the edge of the glass sheet , So that the reflected light cannot return to the original path, which can effectively reduce the optical return loss.
  • the present disclosure since only one glass sheet needs to be bonded to the first end of the optical fiber, no special arrangement of the optical path is required, which effectively reduces the complexity of the optical system and the mechanical structure.

Abstract

一种光模块(200),包括电路板(105)和与电路板(105)电连接的光收发次模块(400)。光收发次模块(400)包括圆方管体(500)和嵌入圆方管体(500)的光发射器(600)、光接收器(700)与光纤适配器(800)。光纤适配器(800)包括管壳(801)和设置于管壳(801)中的光纤插芯(802)。光纤插芯(802)包括光纤(803)。光纤(803)的第一端与玻璃片(804)的第一端通过折射率匹配胶(805)粘接。玻璃片(804)与光纤(803)对光信号的约束力不同,当入射光射入玻璃片(804)的第一端时,入射光发射开。光纤(803)的第一端粘接有玻璃片(804),相当于增加了入射光到反射面的距离,入射光在玻璃片(804)的第二端发生反射时,反射光射向玻璃片(804)的边缘,使得反射光不能原路返回,可以有效减少光回损。由于只需在光纤(803)第一端粘接一个玻璃片(804),无需对光路做特殊安排,有效减少了光学系统和机械结构的复杂性。

Description

一种光模块
本公开要求在2020年04月27日提交中国专利局、申请号为202010345782.8、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在高速光通信产品中,光回损是一个关键指标,随着通信速率的提高,对光回损(ORL)的要求也越来越高。对于传输速率为25G以上的光收发次模块,光回损的要求已达到-26dB。
为了满足光回损的要求,传统光模块中光纤适配器的光纤端面抛光为4°至8°角。光纤适配器内的光纤包括芯层和包层,且光信号在光纤的芯层传输。由于光纤端面与光纤不是相互垂直,当入射光从光纤进入光纤端面时,入射光在光纤端面发生反射,反射光射向光纤的包层,不能沿着光纤的中心反射光不能沿着原路返回至光纤。
发明内容
第一方面,本公开实施例提供一种光模块,包括:电路板;光收发次模块,与所述电路板电连接,包括圆方管体、光发射器、光接收器和光纤适配器;圆方管体,表面设置有第一管口、第二管口和第三管口;光发射器,嵌入第一管口,用于发出光信号;光接收器,嵌入第二管口,用于接收光信号;光纤适配器,嵌入第三管口,包括管壳和光纤插芯;光纤插芯,设置于所述管壳中,包括光纤;光纤,第一端与玻璃片的第一端通过折射率匹配胶粘接。
第二方面,本公开实施例提供一种光模块,包括:电路板;光发射次模块,设置于电路板上,用于发射光信号;光纤适配器,与光发射次模块连接,包括管壳和光纤插芯;光纤插芯,设置于管壳中,第一端与玻璃片的第一端通过折射率匹配胶粘接。
第三方面,本公开实施例提供一种光模块,包括:电路板;光收发次模块,与电路板电连接,包括圆方管体、光发射器、光接收器和光纤适配器;圆方管体,表面设置有第一管口、第二管口和第三管口;光发射器,嵌入第一管口,用于发出光信号;光接收器,嵌入第二管口,用于接收光信号;光纤适配器,嵌入第三管口,包括管壳和光纤插芯;光纤插芯,设置于管壳中,第一端与玻璃片的第一端通过折射率匹配胶粘接。
第四方面,本公开实施例提供一种光模块,包括:电路板;光发射次模块,设置于电路板上,用于发射光信号;光纤适配器,与光发射次模块连接,包括管壳和插芯;所述光纤插芯,设置于管壳中,包括光纤;所述光纤,第一端与玻璃片的第一端通过折射率匹配胶粘接。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例中提供的一种光模块的结构示意图;
图4为本公开实施例中提供的一种光模块的分解结构示意图;
图5为本公开实施例中提供的一种光收发次模块的立体图;
图6为本公开实施例中提供的一种光纤适配器的剖面结构示意图;
图7为本公开实施例中提供的另一种光模块的结构示意图;
图8为本公开实施例中提供的另一种光模块的分解结构示意图;
图9为本公开实施例中提供的另一种光纤适配器的剖面结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接; 在本公开的某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本公开的某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,在本公开的某一实施例中光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
实施例1
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300及光收发次模块400;
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开的某一实施例中,下壳体包括主板以及位于主板边缘、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板边缘、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光收发次模块400;电路板300、光收发次模块400等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光收发次模块400等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件, 这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发次模块位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开的某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发次模块之间可以采用柔性电路板连接。
本公开实施例提供的光收发次模块400用于发射光信号和接收光信号,进而实现光模块200发射和接收光信号。
图5为本公开实施例提供的一种光收发次模块的立体图。如图5所示,本公开实施例提供的光收发次模块400包括圆方管体500、光发射器600、光接收器700和光纤适配器800。在本公开的某一实施例中,
圆方管体500,表面设置有第一管口和第二管口,用于承载固定光发射器600和光接收器700。在本公开的某一实施例中,第一管口和第二管口分别设置在圆方管体500上相邻的侧壁上。第一管口设置在圆方管体500长度方向的侧壁上,第二管口设置在圆方管体500宽度方向的侧壁上。光发射器600嵌入第一管口,光接收器700嵌入第二管口。
圆方管体500,一般为金属材料,有利于实现光发射器600和光接收器700的电磁屏蔽以及散热。在本公开的某一实施例中,光发射器600和光接收器700直接压配到圆方管体500中,圆方管体500分别与光发射器600和光接收器700直接或通过导热介质接触。如此圆方管体500可用于光发射器600和光接收器700的散热,保证光发射器600和光接收器700的散热效果。
圆方管体500,内还设置有光学组件900,表面还设置有第三管口。光学组件900用于调整光发射器600发射的光信号以及调整入射至光接收器700的光信号。
光发射器600用于发出光信号。光接收器700用于接收光信号。
光纤适配器800,第一端嵌入第三管口,第二端连接外部光纤,用于光收发次模块连接光纤。在本公开的某一实施例中,光纤适配器800镶嵌入第三管口,光发射器600和光接收器700分别与光纤适配器800建立光连接,光收发次模块中发出的光及接收的光均经由光纤适配器800中的同一根光纤进行传输,即光纤适配器800中的同一根光纤是光收发次模块进出光的传输通道,光收发次模块400实现单纤双向的光传输模式。
光学组件900设置于圆方管体500的内腔,光学组件900用于调整光发射器600发射的激光以及调整入射至光接收器700的激光。在本公开实施例中,光学组件900通常包括光学透镜(如光准直透镜、光耦合透镜)、合波器/分波器等,用于准直光路和调整光路,优化光纤耦合状态,提高耦合效率。
图6为本公开实施例提供的一种光纤适配器的剖面结构示意图。如图6所示,本公开实施例提供的光纤适配器800包括管壳801和光纤插芯802。光纤插芯802设置于管壳801中。在本公开的某一实施例中,光纤插芯802插入光纤适配器800的第一端,外部光纤插入光纤适配器800的第二端。光纤插芯802的第一端插入管壳801中,光纤插芯802的第二端置于管壳801外。
由于光纤803柔软,不易与光收发次模块400进行高精度的位置固定,因此设计了光纤插芯802。有一种较硬、可实现高精度加工的材料包裹光纤,对该材料的固定即实现了对光纤的固定。如图6所示,本公开实施例中,光纤插芯802包括包裹层和光纤803。在本公开的某一实施例中,
包裹层,一般为陶瓷材料,用于包裹光纤803。陶瓷材料具有较高的加工精度,可以实现高精度的位置对齐。由于光纤803与陶瓷材料合成光纤插芯802,通过对陶瓷材料的固定实现了对光纤802的固定。
由于陶瓷材料限制了光纤803在光纤插芯802中的固定方向,一般将陶瓷材料加工成圆柱体,在陶瓷柱体中心设置直线型通孔,将光纤803插入陶瓷柱体的通孔中以实现固定,所以光纤笔直的固定于陶瓷柱体中。
光纤803包括包层和芯层,芯层包裹于包层内。由于包层与芯层的折射率不同,光信号在芯层与包层的交界面发生全反射,从而约束光信号沿着芯层进行传输。
光纤803,第一端与玻璃片804的第一端通过折射率匹配胶805粘接,第二端连接外部光纤。光纤803的第一端用于接收来自由光发射器600发射、经光学组件900调整的光信号,光纤803的第二端用于接收来自外部光纤的光信号。
折射率匹配胶805,第一端粘接于光纤803的第一端,第二端粘接于玻璃片804的第一端,用于粘接光纤803和玻璃片804。折射率匹配胶805的折射率和光纤803芯层的折射率相近,可以使光信号从光纤803进入玻璃片804时,尽可能不发生折射,使光信号尽可能传输至玻璃片804中。本公开实施例中,折射率匹配胶805的折射率和光纤803芯层的折射率相等。折射率匹配胶805的折射率和光纤803芯层的折射率相等,则光纤803芯层和折射率匹配胶805不能形成两个不同折射率的截面,光信号在光纤803芯层和折射率匹配胶805之间传输时,不会发生折射,使光信号尽可能的传输至玻璃片804中。为了在 本公开的某一实施例中减少传输过程中光信号发生折射,折射率匹配胶805的折射率与玻璃片804的折射率相近。本公开中,玻璃片804的折射率和折射率匹配胶805的折射率相等。由于玻璃片804的折射率和折射率匹配胶805的折射率相等,则玻璃片804和折射率匹配胶805不能形成两个不同折射率的截面,光信号在折射率匹配胶805和玻璃片804之间传输时,不会发生折射,使光信号尽可能的传输至玻璃片804中。
玻璃片804,用于发散从光纤803芯层入射至玻璃片804的光信号。在本公开的某一实施例中,虽然玻璃片804与光纤803芯层折射率相近甚至相等,但是玻璃片804对光信号的约束力小于芯层对光信号的约束力,当光信号从光纤803芯层入射至玻璃片804时,光信号发散开,使得光信号不能原路返回,可以有效减少光回损。
本公开中,光纤803的第一端粘接有玻璃片804,相对于直接在光纤的第一端不镀任何介质,增加了光纤803的第一端与玻璃片804的第二端之间的距离,相当于增加了入射光至反射面(玻璃片的第二端)之间的距离。当入射光发射至反射面发生反射时,反射光射向玻璃片的边缘,使得反射光不能原路返回,可以有效减少光回损。
玻璃片804的第二端与玻璃片804的第一端可以平行或者不平行。在本公开的某一实施例中,
当玻璃片804的第二端与玻璃片804的第一端平行时,相当于在光纤803的第一端粘接有一个平行玻璃片。平行玻璃片的存在,增加了光纤803的第一端与玻璃片804的第二端之间的距离,增加了入射光至反射面之间的距离。当入射光反射至反射面发生反射时,反射光射向玻璃片的边缘,使得反射光不能原路返回,可以有效减少光回损。
当玻璃片804的第二端与玻璃片804的第一端不平行时,相当于在光纤803的第一端粘接有一个斜面玻璃片。斜面玻璃片的存在,相对于平行玻璃,增加了光纤803的第一端与玻璃片804的第二端之间的距离,增加了入射光至反射面之间的距离。入射光发射至反射面发生反射时,反射光射向玻璃片的边缘,使得反射光不能原路返回,可以在本公开的某一实施例中有效减少光回损。
由于当玻璃片804的第二端相对于玻璃片的第一端存在倾斜夹角,对于正入射光,将会造成至少0.6dB额外耦合损耗,而且,随着倾斜夹角的增大,额外耦合损耗会迅速增。为了减少入射角失配引起的损耗,本公开中,玻璃片804的第二端与玻璃片804的第一端之间的倾斜夹角为1°至1.5°。
由于玻璃片804的厚度决定了反射光束腰的聚焦程度,厚度越大,离焦越大,光回损越小,又由于玻璃片的第二端与玻璃片的第一端既可以平行也可以不平行,本公开中,玻璃片804的第一端与玻璃片的第二端之间的中心线的厚度为300微米。
玻璃片804的第二端可以不镀有任何介质,可以镀有增透膜806。在本公开的某一实施例中,
当玻璃片804的第二端不镀任何介质时,在玻璃片804发散的入射光,一部分入射光在玻璃片804的第二端发生折射,折射光射向空气中;另一部分入射光在玻璃片804的第二端发生反射,反射光射向玻璃片804的边缘。由于反射光射向玻璃片804的边缘,折射光不会返回玻璃片804,有效减少光回损。
增透膜806,为透明介质膜,用于减少反射损失。在本公开的某一实施例中,入射光在玻璃片804中发散,一部分经过增透膜806反射至玻璃片804的边缘,另一部分透过增透膜806折射到空气中,减少光反射,在本公开的某一实施例中减少光原路返回,进而有效减少光回损。
当玻璃片804的第二端镀有增透膜806时,在玻璃片804发散的入射光,一部分透过增透膜806的一面发生折射,折射光射向空气中;另一部分在增透膜806的另一面发生反射,反射光射向玻璃片804的边缘。由于增透膜806的作用是透过入射光,入射光尽可能的透过增透膜804发生折射,折射光射向空气中。由于折射光不会返回玻璃片804,有效减少光回损。
本公开实施例中,玻璃片804的形状与光纤803的截面形状相同。此时,玻璃片804的形状为圆柱体,玻璃片804的半径长度等于光纤803的半径长度。
当光发射器600发出的光信号经过光学处理后耦合到玻璃片804的第二端的增透膜806上时,反射光与入射光焦点会产生错位,反射光不会进入光发射器600中,达到较小回损的效果。
当光纤适配器800接收到外部光纤传输的光信号进入光纤803内。由于玻璃片804与光纤803对光信号的约束力不同,当入射光射入玻璃片804的第一端时,入射光发射开,不能沿着水平方向传输。光纤803的第一端粘接玻璃片804,相当于增加了入射光到反射面的距离,不能沿着水平方向传输的入射光在玻璃片804的第二端发生反射时,反射光射向玻璃片804的边缘,使得反射光不能原路返回,可以有效减少光回损。由于只需在光纤803第一端粘接一个玻璃片804,无需对光路做特殊安排,有效减少了光学系统和机械结构的复杂性。
由于光信号只在光纤803的芯层与玻璃片804之间传输,本公开中,上述内容中,可以将光纤803的第一端与玻璃片804的第一端通过折射率匹配胶粘接;还可以将光纤插芯802的第一端与玻璃片804的第一端通过折射率匹配胶粘接。此时,玻璃片804的半径长度等于光纤插芯802的半径长度。
本公开中的结构不仅应用于上述光模块中,还可以应用于另一种光模块。图7为本公开实施例中提供的另一种光模块的结构示意图。图8为本公开实施例中提供的另一种光模块的分解结构示意图。如图7和8所示,本公开实施例中,光模块200'包括上壳体201'、下壳体202'、解锁部件203'、电路板300'和光发射次模块400'、光接收次模块500'和光纤适配器600'。在本公开的某一实施例中,
上壳体201'盖合在下壳体202'上,以形成具有两个开口的包裹腔体。解锁部件203'位于包裹腔体/下壳体202'的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。该包裹腔体内设置有电路板300'、光发射次模块400'和光接收次模块500'。光发射次模块400'用于发射光信号。光接收次模块500'用于接收光信号。
光纤适配器600'与光发射次模块400'连接。在本公开的某一实施例中,光纤适配器600'的一端插入光发射次模块400'中,另一端通过光纤700'连接光纤插座800'。
图9为本公开实施例中提供的另一种光纤适配器的剖面结构图。如图9所示,光纤适 配器600'包括管壳601'、光纤插芯602'和隔离器603',光纤插芯602'和隔离器603'分别设置于管壳601'中,光纤插芯602'与光纤700'连接。隔离器603'允许光单方向通过,反方向被阻拦,用于防止反射光回到激光芯片中。当然,隔离器603'的截止能力无法实现所有光均被阻拦。
如图9所示,光纤插芯602'的第一端与玻璃片605'的第一端通过折射率匹配胶604'粘接,玻璃片605'的第二端镀有增透膜606'。光纤700'的第一端插入光纤插芯602'的第二端,光纤700'的第二端连接光纤插座800'。此时,玻璃片605'的半径长度等于光纤插芯602'的半径长度。
当光发射次模块400'发出的光信号耦合到玻璃片605'的第二端时,反射光与入射光焦点会产生错位,反射光不会进入光发射次模块400'中,达到较小回损的效果。
由于光信号只在光纤700'的芯层与玻璃片605'之间传输,本公开中,上述内容中,可以将光纤插芯602'的第一端与玻璃片605'的第一端通过折射率匹配胶粘接;还可以将光纤700'的第一端与玻璃片605'的第一端通过折射率匹配胶粘接。此时,玻璃片605'的半径长度等于光纤700'的半径长度。
本公开提供了一种光模块,包括电路板和与电路板电连接的光收发次模块。光收发次模块包括圆方管体、光发射器、光接收器和光纤适配器。圆方管体表面设置有第一管口、第二管口和第三管口。光发射器嵌入第一管口,光接收器嵌入第二管口,光纤适配器嵌入第三管口。光发射器用于发出光信号。光接收器用于接收光信号。光纤适配器包括管壳和光纤插芯。光纤插芯设置于管壳中。光纤插芯包括光纤。光纤的第一端与玻璃片的第一端通过折射率匹配胶粘接。光纤适配器接收到外部光纤传输的光信号进入光纤内。本公开中,玻璃片与光纤对光信号的约束力不同,当入射光射入玻璃片的第一端时,入射光发射开,不能沿着水平方向传输。光纤的第一端粘接玻璃片,相当于增加了入射光到反射面的距离,不能沿着水平方向传输的入射光在玻璃片的第二端发生反射时,反射光射向玻璃片的边缘,使得反射光不能原路返回,可以有效减少光回损。本公开中,由于只需在光纤第一端粘接一个玻璃片,无需对光路做特殊安排,有效减少了光学系统和机械结构的复杂性。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (9)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光收发次模块,与所述电路板电连接,包括圆方管体、光发射器、光接收器和光纤适配器;
    所述圆方管体,表面设置有第一管口、第二管口和第三管口;
    所述光发射器,嵌入所述第一管口,用于发出光信号;
    所述光接收器,嵌入所述第二管口,用于接收光信号;
    所述光纤适配器,嵌入所述第三管口,包括管壳和光纤插芯;
    所述光纤插芯,设置于所述管壳中,包括光纤;
    所述光纤,第一端与玻璃片的第一端通过折射率匹配胶粘接。
  2. 根据权利要求1所述的光模块,其特征在于,所述玻璃片的第二端镀有增透膜。
  3. 根据权利要求1所述的光模块,其特征在于,所述玻璃片的第二端与所述玻璃片的第一端不平行。
  4. 根据权利要求2所述的光模块,其特征在于,所述玻璃片的第二端与所述玻璃片的第二端之间的倾斜夹角为1°至1.5°。
  5. 根据权利要求1所述的光模块,其特征在于,所述玻璃片的第一端与所述玻璃片的第二端之间的中心线的厚度为300微米。
  6. 根据权利要求1所述的光模块,其特征在于,所述折射率匹配胶和所述光纤的芯层的折射率相等。
  7. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,设置于所述电路板上,用于发射光信号;
    光纤适配器,与所述光发射次模块连接,包括管壳和光纤插芯;
    所述光纤插芯,设置于所述管壳中,第一端与玻璃片的第一端通过折射率匹配胶粘接。
  8. 一种光模块,其特征在于,包括:
    电路板;
    光收发次模块,与所述电路板电连接,包括圆方管体、光发射器、光接收器和光纤适配器;
    所述圆方管体,表面设置有第一管口、第二管口和第三管口;
    所述光发射器,嵌入所述第一管口,用于发出光信号;
    所述光接收器,嵌入所述第二管口,用于接收光信号;
    所述光纤适配器,嵌入所述第三管口,包括管壳和光纤插芯;
    所述光纤插芯,设置于所述管壳中,第一端与玻璃片的第一端通过折射率匹配胶粘接。
  9. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,设置于所述电路板上,用于发射光信号;
    光纤适配器,与所述光发射次模块连接,包括管壳和插芯;
    所述光纤插芯,设置于所述管壳中,包括光纤;
    所述光纤,第一端与玻璃片的第一端通过折射率匹配胶粘接。
PCT/CN2021/080964 2020-04-27 2021-03-16 一种光模块 WO2021218462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010345782.8A CN113640924A (zh) 2020-04-27 2020-04-27 一种光模块
CN202010345782.8 2020-04-27

Publications (1)

Publication Number Publication Date
WO2021218462A1 true WO2021218462A1 (zh) 2021-11-04

Family

ID=78332301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080964 WO2021218462A1 (zh) 2020-04-27 2021-03-16 一种光模块

Country Status (2)

Country Link
CN (1) CN113640924A (zh)
WO (1) WO2021218462A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134293A1 (zh) * 2022-01-13 2023-07-20 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331196A1 (en) * 2014-05-13 2015-11-19 Advanced Fiber Products, LLC Smart ar coated grin lens design collimator
WO2017031376A1 (en) * 2015-08-20 2017-02-23 Commscope Technologies Llc Ferrule assembly with sacrificial optical fiber
CN209215628U (zh) * 2018-11-28 2019-08-06 福州高意光学有限公司 一种改善光隔离器回波损耗性能的结构
CN110692002A (zh) * 2017-06-02 2020-01-14 古河电气工业株式会社 光连接器以及光连接器连接结构
CN110727064A (zh) * 2019-10-31 2020-01-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN110794523A (zh) * 2018-08-03 2020-02-14 朗美通经营有限责任公司 波导装置和光纤插芯之间的耦合

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833895B2 (ja) * 1998-03-30 2006-10-18 シーゲイト テクノロジー エルエルシー スプリアス反射からの雑音を低減する手段を備えた光データ記憶システム
CN203025388U (zh) * 2013-01-25 2013-06-26 青岛海信宽带多媒体技术有限公司 具有反射功能的光纤适配器及光纤传输设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331196A1 (en) * 2014-05-13 2015-11-19 Advanced Fiber Products, LLC Smart ar coated grin lens design collimator
WO2017031376A1 (en) * 2015-08-20 2017-02-23 Commscope Technologies Llc Ferrule assembly with sacrificial optical fiber
CN110692002A (zh) * 2017-06-02 2020-01-14 古河电气工业株式会社 光连接器以及光连接器连接结构
CN110794523A (zh) * 2018-08-03 2020-02-14 朗美通经营有限责任公司 波导装置和光纤插芯之间的耦合
CN209215628U (zh) * 2018-11-28 2019-08-06 福州高意光学有限公司 一种改善光隔离器回波损耗性能的结构
CN110727064A (zh) * 2019-10-31 2020-01-24 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN113640924A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2021227317A1 (zh) 一种光模块
WO2021212849A1 (zh) 一种光模块
CN112444923A (zh) 一种光模块
CN212083740U (zh) 一种光模块
WO2020224644A1 (zh) 一种光模块
CN111061019A (zh) 一种光模块
WO2022057621A1 (zh) 一种光模块
CN214704104U (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
WO2021223448A1 (zh) 一种光模块
WO2021103958A1 (zh) 一种光模块
WO2020248642A1 (zh) 光模块
CN217587686U (zh) 一种光模块
CN214795316U (zh) 一种光模块
WO2023035711A1 (zh) 光模块
WO2021232862A1 (zh) 一种光模块
WO2021109776A1 (zh) 一种光模块
CN113484960A (zh) 一种光模块
CN113568112A (zh) 一种光模块
CN111983759A (zh) 一种光模块
CN113703102A (zh) 一种光模块
WO2021037085A1 (zh) 一种光模块
CN112099159A (zh) 一种光模块
CN214795317U (zh) 一种光模块
CN214540151U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797751

Country of ref document: EP

Kind code of ref document: A1