WO2021212849A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021212849A1
WO2021212849A1 PCT/CN2020/133868 CN2020133868W WO2021212849A1 WO 2021212849 A1 WO2021212849 A1 WO 2021212849A1 CN 2020133868 W CN2020133868 W CN 2020133868W WO 2021212849 A1 WO2021212849 A1 WO 2021212849A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
laser
optical
hole
area
Prior art date
Application number
PCT/CN2020/133868
Other languages
English (en)
French (fr)
Inventor
于帮雨
董本正
孙祥勋
邵乾
徐发部
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US17/235,367 priority Critical patent/US11828991B2/en
Publication of WO2021212849A1 publication Critical patent/WO2021212849A1/zh
Priority to US18/472,503 priority patent/US20240012210A1/en
Priority to US18/472,563 priority patent/US20240012211A1/en
Priority to US18/472,638 priority patent/US20240012212A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • optical communication technology In cloud computing, mobile Internet, video and other new business and application modes, optical communication technology will be used.
  • the optical module is a tool to realize the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment.
  • the use of silicon optical chips to realize the photoelectric conversion function has become a mainstream solution adopted by high-speed optical modules.
  • the silicon optical chip is arranged on the circuit board and is electrically connected to the circuit board through wire bonding; the silicon optical chip is connected to the optical interface of the optical module through an optical fiber ribbon to realize optical signals entering and exiting the silicon optical chip.
  • the silicon material used in the silicon optical chip is not an ideal luminescent material for the laser chip, and the light-emitting unit cannot be integrated in the silicon optical chip manufacturing process, so the silicon optical chip needs to be provided with light from an external light source.
  • an optical module provided by an embodiment of the present disclosure includes: a circuit board, a base, embedded on the circuit board; a laser component, mounted on the base, for emitting light that does not carry signals; silicon
  • the optical chip is mounted on the base.
  • the silicon optical chip is provided with a third optical hole, which receives the light that does not carry the signal from the laser component through the third optical hole; the upper cover of the laser, the bottom of which is fixedly connected to the base, is used for the cover It is arranged above the laser assembly, and the laser assembly is arranged between the upper cover of the laser and the base.
  • the present disclosure provides an optical module, including: a circuit board; a base arranged on the circuit board; a laser component mounted on the base for emitting light that does not carry signals; a silicon optical chip, Mounted on the base, the silicon optical chip is provided with a third optical hole, through which the third optical hole receives the light that does not carry the signal from the laser component; the upper cover of the laser, the bottom of which is fixed and connected to the base, is used to cover the laser Above the assembly, the laser assembly is arranged between the upper cover of the laser and the base.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the front structure of a circuit board provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of removing a protective cover on a circuit board provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic view 1 of a partial structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic view 2 of a partial structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 9 is an exploded view 1 of a partial structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 10 is an exploded view 2 of a partial structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 11 is a schematic structural diagram of a laser upper cover provided by an embodiment of the disclosure.
  • FIG. 12 is a top view of an upper cover of a laser provided by an embodiment of the disclosure.
  • FIG. 13 is a partial cross-sectional view of the interior of an optical module provided by an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of the reverse structure of a circuit board provided by an embodiment of the disclosure.
  • 15 is a schematic structural diagram of a base provided by an embodiment of the disclosure.
  • 16 is a schematic structural diagram of a protective cover provided by an embodiment of the disclosure.
  • FIG. 17 is a schematic structural diagram of a heat conduction column provided on an upper shell provided by an embodiment of the present disclosure.
  • FIG. 18 is a half cross-sectional view of an optical module provided by an embodiment of the disclosure.
  • Fig. 19 is a partial enlarged view of A in Fig. 18.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between optical signals and electrical signals, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network terminal 100 , The electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal serves as the optical The upper computer of the module monitors the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG 2 is a schematic diagram of the optical network terminal structure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component, a circuit board 203, a protective cover 300, an optical fiber socket 400 and an optical fiber ribbon 401.
  • silicon optical chips, laser components and other devices are arranged under the protective cover 300.
  • the upper housing 201 and the lower housing 202 form a housing with a wrapping cavity.
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings;
  • the outer contour of the wrapping cavity generally presents a square shape, specifically, the lower shell It includes a main board and two side plates located on both sides of the main board and perpendicular to the main board;
  • the upper casing includes a cover plate, which covers the two side plates of the upper casing to form a wrapping cavity;
  • the upper casing also It may include two side walls located on both sides of the cover plate and perpendicular to the cover plate, and the two side walls are combined with the two side plates to realize that the upper shell is covered on the lower shell.
  • fins are provided on the upper housing 201, combined with the upper computer to assist the heat dissipation of the optical module.
  • the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into the upper computer such as the optical network terminal; the other opening is the optical port 205, which is used for external optical fiber access to connect the silicon optical chip inside the optical module; the circuit board 203, protective cover 300, silicon optical chip, laser component and other optoelectronics The device is located in the package cavity.
  • the upper shell and the lower shell are combined to facilitate the installation of the circuit board 203, the protective cover 300 silicon optical chip and other devices into the shell.
  • the upper shell and the lower shell form the outermost package protection of the optical module.
  • Shell The upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integrated part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and Electromagnetic shielding components cannot be installed, and it is not conducive to production automation.
  • the unlocking component is located on the outer wall of the package cavity/lower casing 202, and is used to realize a fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part has an engaging part that matches the cage of the host computer; pulling the end of the unlocking part can make the unlocking part move relative to the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is fixed by the engaging part of the unlocking part In the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed to release the optical module and the host computer. The module is withdrawn from the cage of the host computer.
  • the circuit board 203 is provided with circuit wiring, electronic components (such as capacitors, resistors, transistors, MOS tubes) and chips (such as MCU, clock data recovery CDR, power management chip, data processing chip DSP) and so on.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as MCU, clock data recovery CDR, power management chip, data processing chip DSP
  • the circuit board connects the electrical components in the optical module according to the circuit design through circuit traces to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage, specifically, metal pins/gold fingers are formed on the end surface of one side of the rigid circuit board for connection with the electrical connector; these are all The flexible circuit board is not easy to implement.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver devices.
  • the periphery of the silicon optical chip and the circuit board 203 are connected by a plurality of conductive wires, so the silicon optical chip is generally arranged on the surface of the circuit board 203.
  • the silicon optical chip is arranged on the circuit board 203 and is electrically connected to the circuit board 203, which may be specifically wired connection, for example, a semiconductor bonding alloy wire (Gold Wire Bonding) connection.
  • the wire diameter of the gold wire is small and fragile, the wiring is dense, and the distance between the wires is narrow.
  • a package protective cover 300 is provided, and the protective cover 300 is arranged on the silicon optical chip to protect the bonding of the silicon optical chip.
  • the protective cover 300 is arranged on the circuit board 203, and the protective cover 300 and the circuit board 203 formed on the circuit board 203 form a certain space.
  • the wire wiring area is enclosed in the space formed by the protective cover 300 and the circuit board 203.
  • the package in the embodiment of the present disclosure refers to the space formed by the protective cover 300 and the circuit board 203, where the silicon optical chip, the wiring and wiring area of the silicon optical chip, and other optoelectronic devices and the protective cover 300 achieve clearance fit.
  • the position of the inner surface of the protective cover 300 corresponding to the wiring area is provided with a first recess for avoiding the gold wire. Therefore, the wiring area of the gold wire can be completely protected, and the existing light can be effectively solved.
  • the gold wire is prone to problems such as deformation, damage and collapse, which can avoid short-circuit, open circuit and other defects, thereby ensuring the quality of the optical signal.
  • the silicon optical chip is connected to the optical fiber socket 400 through the optical fiber ribbon 401, and the optical fiber socket 400 is used for coupling and connecting the external optical fiber of the optical module.
  • the optical fiber ribbon 401 includes a first optical fiber ribbon and a second optical fiber ribbon.
  • the first optical fiber ribbon is used to transmit the signal light modulated by the silicon optical chip to the outside of the optical module
  • the second optical fiber ribbon is used Receive the signal light outside the optical module and transmit it to the silicon optical chip.
  • the silicon optical chip receives the light from the laser component, and then modulates the light. Specifically, the signal is loaded on the light and then transmitted to the outside of the optical module through the first optical fiber ribbon; the silicon optical chip receives the light from the second optical fiber ribbon, In turn, the optical signal is converted into an electrical signal.
  • the silicon optical chip includes a number of optical holes, and the plurality of optical holes are used for the silicon optical chip to receive the light transmitted by the laser component, output the modulated signal light and the light receiving module The signal light transmitted from the outside to the silicon optical chip through the optical fiber.
  • the silicon optical chip includes a first optical hole, a second optical hole, and a third optical hole, and the optical hole has a plurality of optical channels.
  • the first optical hole is used to couple and connect the first optical fiber ribbon, and is used to transmit the modulated signal light to the first optical fiber ribbon;
  • the second optical hole is used to couple and connect the second optical fiber ribbon, and is used to receive transmission through the second optical fiber ribbon.
  • the third optical hole is coupled to the laser assembly, and is used to receive the light that does not carry the signal from the light source.
  • the silicon optical chip includes a Mach-Zehnder modulator, which combines the Mach-Zehnder modulator, transimpedance amplifier and laser driver to achieve optical signal modulation.
  • Mach-Zehnder modulator modulation adopts the principle of light interference of the same wavelength.
  • a Mach-Zehnder modulator is equipped with two interference arms, and a beam of light is input to a single interference arm. A total of two beams of the same wavelength need to be provided to one Mach-Zehnder modulator. After being modulated by the Mach-Zehnder modulator, the light on the interference arm will fuse into a beam of light.
  • the laser assembly includes several laser assemblies.
  • the third optical hole includes a plurality of optical channels, and through these optical channels, multiple paths of light of the same wavelength can be input into the silicon optical chip to provide light of the same wavelength for each interference arm of the Mach-Zehnder modulator. Because the luminous power of a single laser chip is limited, superimposing the light of multiple laser chips can increase the optical power of a single wavelength. In the prior art, multiple laser chips generally provide light of different wavelengths, and the optical power of a single wavelength is not superimposed. promote.
  • FIG. 5 is a schematic diagram of the front structure of the circuit board 203 provided by an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of the structure of the circuit board 203 with the protective cover removed.
  • the protective cover 300 is arranged on the circuit board 203, and the laser component and the silicon optical chip 600 are covered in the cavity formed by the protective cover 300 and the circuit board 203.
  • FIG. 7 is a schematic view 1 of a partial structure of an optical module provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic view 2 of a partial structure of an optical module provided by an embodiment of the disclosure
  • FIG. 9 is an exploded view 1 of FIG. 8
  • FIG. 10 is a diagram 8's exploded view two.
  • the structure shown in Figures 7-10 is located in the space formed by the protective cover and the circuit board.
  • the optical module provided by the embodiment of the present disclosure further includes a base 700, a laser upper cover 206, a laser component, and a silicon optical chip 600.
  • the laser assembly and the silicon optical chip 600 are mounted on the base 700, and the bottom of the upper laser cover 206 is fixedly connected to the base 700 for covering the laser assembly, and the laser assembly is arranged between the upper laser cover 206 and the base 700. between.
  • the laser assembly and the silicon optical chip 600 are directly arranged on the base, so that the base can directly dissipate heat from the laser assembly and the silicon optical chip 600, thereby facilitating heat dissipation inside the optical module and avoiding concentrated accumulation of heat inside the optical module.
  • the laser component arranged on the base 700 is directly wrapped by the upper cover of the laser, which saves the packaging of the laser component and facilitates the packaging of the laser component.
  • the laser module and the silicon optical chip 600 are directly mounted on the base 700, so that the laser module and the silicon optical chip 600 are located on the same base, that is, the laser module and the silicon optical chip 600 share the same base.
  • the base 700 is heated and deformed, the effect on the laser component and the silicon optical chip 600 is the same, so that the optical alignment stability of the laser component and the silicon optical chip 600 is relatively good, thereby simplifying the assembly requirements of the laser component and the silicon optical chip.
  • the bottom of the upper laser cover 206 is fixedly connected to the base 700, for example, a fixing glue is used to fix the bottom of the upper laser cover 206 on the base 700.
  • the laser upper cover 206 cooperates with the circuit board and the base 700 to provide a relatively sealed environment for the laser assembly, thereby protecting the components of the laser assembly.
  • the upper surface of the silicon optical chip 600 is provided with a transimpedance amplifier 601 and a laser driver 602.
  • the base 700 is disposed on the circuit board or embedded in the circuit board. In an embodiment of the present disclosure, the base 700 is mounted on a circuit board; or, a through hole is provided on the circuit board, and the base 700 is embedded in the through hole.
  • the laser assembly includes a first laser assembly 501 and a second laser assembly 502, and the first laser assembly 501 and the second laser assembly 502 emit light that does not carry signals.
  • the first laser component 501 and the second laser component 502 are mounted on the base 700.
  • the first laser component 501 and the second laser component 502 are connected to the circuit on the circuit board by wire bonding.
  • the optical module provided by the embodiment of the present disclosure further includes a lens and an isolator.
  • the lens, the isolator, and the laser assembly are in the cavity formed by the upper laser cover 206 and the base 700 together.
  • a lens specifically a focusing lens
  • Two lenses, specifically a collimating lens and a focusing lens The light emitted by the laser chip is transformed into collimated light by the collimating lens.
  • the collimated light can maintain a small optical power attenuation during the long-distance optical transmission process and focus
  • the lens receives the collimated light to converge and couple the light into the silicon optical chip.
  • the isolator is used to prevent the light emitted by the laser chip from returning to the laser chip after emission, so the isolator is arranged in the direction of the laser chip's light output. In the embodiment of the present disclosure, the isolator is arranged in the direction where the lens faces the laser chip, that is, a focusing lens is arranged between the isolator and the laser chip.
  • a first collimator lens, a first condensing isolator, and a focal lens are sequentially arranged along the light exit direction of the first laser assembly 501, and a second collimator lens is sequentially arranged along the light exit direction of the second laser assembly 502.
  • Straight lens, isolator, second focusing lens can share an isolator and a sealed light-transmitting part.
  • the first collimating lens, the first focusing lens, the second collimating lens, the second focusing lens, the isolator and the sealed light-transmitting part are fixedly arranged on the base 700.
  • the top surface of the pedestal 700 includes a pedestal first area 701, a pedestal second area 702, a pedestal third area 703, and a pedestal fourth area 704.
  • the pedestal first area 701, the pedestal second area 702, and the pedestal third area 703 are located at one end of the pedestal 700, and the pedestal fourth area 704 is located at the other end of the pedestal 700.
  • the second area 702 of the pedestal is used to fix and carry the laser component, and the fourth area 704 of the pedestal is used to fix and carry the silicon optical chip 600.
  • the first region 701 of the pedestal is used to support the first optical fiber ribbon
  • the second region 702 of the pedestal is used to support the second optical fiber ribbon.
  • a first gap 705 is provided between the first area of the pedestal 701 and the second area 702 of the pedestal, and a second gap 706 is provided between the second area of the pedestal 702 and the third area 703 of the pedestal.
  • the second gap 706 realizes the installation and fixing of the upper cover 206 of the laser.
  • the bottom of the upper laser cover 206 is clamped in the first gap 705 and the second gap 706 to realize the installation and fixation of the upper laser cover 206.
  • the widths of the first gap 705 and the second gap 706 are slightly larger than the width of the bottom of the upper laser cover 206.
  • the laser assembly generates a large amount of heat during operation and is one of the main heat sources in the optical module, the provision of the first gap 705 and the second gap 706 can effectively reduce the lateral transmission of heat.
  • FIG. 11 is a perspective view of a laser upper cover 206 provided by an embodiment of the disclosure
  • FIG. 12 is a top view of a laser upper cover 206 provided by an embodiment of the disclosure.
  • the upper laser cover 206 includes a top plate 2061, a first side plate 2062, a second side plate 2063, and a third side plate 2064.
  • the first side plate 2062 is provided on one side of the top plate 2061 in the longitudinal direction
  • the second side plate 2063 is provided on the other side of the length direction of the top plate 2061
  • the fourth side plate 2064 is provided on the left end of the top plate 2061.
  • the first side plate 2062, the second side plate 2063, and the third side plate 2064 form a first notch, and the first notch is used to pass through the device; the top plate 2061, the first side plate 2062 and the The second side plate 2063 forms a second notch, and the second notch is used for light transmission.
  • a sealed light-transmitting part is provided at the second notch.
  • the upper cover 206 of the laser can be made of a thermally conductive material that does not transmit light, such as copper alloy.
  • the left end of the upper laser cover 206 is close to the laser assembly, the left end of the top plate 2061 is close to the laser assembly, and the right end of the top plate 2061 is close to the silicon optical chip 600.
  • the sealed light-transmitting member functions to seal the upper cover of the laser and transmit light, forming a side surface of the upper cover of the laser for emitting light.
  • the working environment needs to be sealed to a certain degree to prevent the refraction of water vapor on the device and the light path.
  • the sealed light-transmitting parts play a role in sealing the laser box; at the same time, the light emitted by the laser chip needs to be emitted to the laser.
  • the cover, the sealed light-transmitting part, as a component part arranged on the upper cover of the laser, needs to have light-transmitting properties so that the light generated by the laser assembly can be emitted.
  • the light beam is emitted from the light-emitting surface of the sealed light-transmitting part, and the emitted light beam enters the silicon optical chip.
  • the beam is required to enter at a non-vertical angle
  • the light-incident surface of the silicon optical chip Specifically, the light-receiving waveguide structure in the silicon optical chip and the light incident surface of the silicon optical chip are arranged at an acute angle. This requires that the light beam is refracted on the light incident surface of the silicon optical chip and enters in a direction facing the waveguide structure. It is not consistent with the direction of the laser chip.
  • the second notch of the upper cover of the laser is designed to seal the light-transmitting part, and the light-emitting direction of the laser component is changed by sealing the optical structure of the light-transmitting part to meet the light-incidence requirement of the silicon optical chip.
  • the left end surface of the upper laser cover 206 is inclined, and the left end surface of the upper laser cover 206 is not perpendicular to the longitudinal direction of the first side plate 2062 and the second side plate 2063. side.
  • the length direction of the upper laser cover 206 is not parallel to the third optical hole, that is, the length direction of the upper laser cover 206 is not perpendicular to the surface of the silicon optical chip facing the laser component, which helps to meet the requirements of the silicon optical chip.
  • the light requirements ensure that the light emitted by the laser assembly is incident on the third light hole.
  • the base 700 is a copper alloy heat sink base.
  • a base fixing hole is provided on the circuit board. The base 700 is clamped in the base fixing hole. The thermal conductivity of the material of the base 700 is higher than that of the circuit board material. In this way, the base 700 is used to replace part of the structure of the circuit board, and the thermal conductivity of the place is improved relative to the original circuit board, which is convenient for laser components and silicon optical chips. Diffusion of heat is produced.
  • FIG. 13 is a partial cross-sectional view of the interior of an optical module provided by an embodiment of the disclosure.
  • the laser upper cover 206 covers the first laser assembly 501 and the second laser assembly 502
  • the projection of the top plate 2061 on the base 700 covers the first laser assembly 501 and the second laser assembly 502
  • the first side plate The bottom of 2062 is clamped in the first gap 705, the bottom of the second side plate 2063 is clamped in the second gap 706, and the first side plate 2062 and the second side plate 2063 are combined with the first gap 705 and the second gap 706
  • the upper cover 206 of the laser is installed and fixed.
  • the width of the first gap 705 is greater than the thickness of the bottom of the first side plate 2062
  • the width of the second gap 706 is greater than the thickness of the bottom of the second side plate 2063.
  • FIG. 14 is a schematic diagram of the reverse side structure of a circuit board 203 provided by an embodiment of the disclosure.
  • the circuit board 203 is provided with a base fixing hole 2031, the base fixing hole 2031 penetrates the upper and lower surfaces of the circuit board 203, and the base 700 is clamped in the base fixing hole 2031.
  • the side of the base 700 away from the fixed protective cover 300 contacts the housing, for example, contacts the inner surface of the lower housing of the optical module.
  • the side of the base 700 away from the fixed laser assembly and the silicon optical chip contacts the housing through a thermally conductive pad, for example, through a third thermally conductive pad to contact the housing.
  • FIG. 15 is a schematic structural diagram of a base 700 provided by an embodiment of the disclosure.
  • the pedestal 700 includes a pedestal first area 701, a pedestal second area 702, a pedestal third area 703, and a pedestal fourth area 704.
  • the base first area 701, the base second area 702, and the base third area 703 are arranged side by side
  • a first gap 705 is provided between the base first area 701 and the base second area 702
  • a second gap 706 is provided between the second region 702 and the third region 703 of the pedestal
  • the fourth region 704 of the pedestal is provided at one end of the first region 701 of the pedestal, the second region 702 of the pedestal, and the third region 703 of the pedestal.
  • a first step surface 707 is provided on the sides of the first pedestal area 701, the second pedestal area 702, the third pedestal area 703, and the fourth area 704 of the pedestal.
  • the first step surface 707 is used to support the circuit board.
  • glue is usually used to bond the contact between the base 700 and the circuit board. Therefore, the first step surface 707 facilitates the bonding of the base 700 and the circuit board.
  • FIG. 16 is a schematic structural diagram of a protective cover 300 provided by an embodiment of the disclosure.
  • the protective cover 300 is provided with a first through hole 301 and a second through hole 302.
  • the location of the first through hole 301 corresponds to the location of the laser component
  • the second through hole 302 corresponds to the location of the silicon optical chip. That is, when the protective cover 300 is fixedly arranged on the circuit board, the projection of the first through hole 301 on the circuit board covers the laser assembly, and the projection of the second through hole 302 on the circuit board covers the silicon optical chip.
  • the cross-sectional area of the first through hole 301 near the laser component is relatively small, and the cross-sectional area of the second through hole 302 near the silicon optical chip is relatively small.
  • the cross-sectional area of the first through hole 301 gradually increases from a position close to the laser component to a direction away from the laser component
  • the cross-sectional area of the second through hole 302 gradually increases from a position close to the silicon optical chip to a direction away from the silicon optical chip.
  • the edge of the first through hole 301 is provided with a first inclined surface 3011
  • the cross-sectional area of the first through hole 301 is enlarged by the first inclined surface 3011
  • the edge of the second through hole 302 is provided with a second inclined surface 3021
  • the cross-sectional area of the second through hole 302 is enlarged by the second inclined surface 3021.
  • the protective cover 300 is fixedly connected to the circuit board.
  • the protective cover 300 is glued to the circuit board; or, the protective cover 300 is fixedly connected to the circuit board by at least two fixing pins.
  • a fixing hole is provided on the substrate at a position corresponding to the fixing pin, and the fixing pin is matched with the fixing hole, so that the shell-shaped protective body can be fixed on the circuit board.
  • the specific position of the fixing pin on the shell-shaped protective body can be determined according to the opening position of the circuit board. Generally speaking, if you want to make holes on the circuit board, you need to avoid the circuit and electronic devices such as resistors, capacitors, and inductors on the circuit board.
  • the protective cover 300 may be made of a transparent resin material such as transparent PEI (Polyetherimide) or PC (Polycarbonate).
  • PEI material has strong high temperature stability, high temperature resistance, heat distortion temperature up to 220 °C, and can be used for a long time at a working temperature of -160 to 180 °C.
  • PEI also has good flame retardancy (the combustion rating is UL94-V-0), chemical resistance and electrical insulation properties. And can process thin-walled products.
  • the inner surface and outer surface of the protective cover 300 provided by the embodiments of the present disclosure are both mirror-polished.
  • the protective cover 300 When the gold wire is damaged in the optical module, there is no need to disassemble the protective cover 300 to visually determine the damage of the gold wire. Location, for example, you can directly observe which gold wire breaks.
  • the bottom edge of the first through hole 301 on the protective cover 300 presses the upper laser cover, and the bottom edge of the second through hole 302 presses the silicon optical chip.
  • the edge bottom of the second through hole 302 is pressed against the silicon optical chip by pressing the transimpedance amplifier and the laser driver.
  • a number of heat-conducting pillars are provided on the inner wall of the housing, and the heat-conducting pillars are used to conduct heat inside the housing of the optical module to the housing of the optical module to facilitate internal heat dissipation of the optical module.
  • the heat-conducting pillars are respectively arranged at positions corresponding to the laser component, the silicon optical chip, and the like.
  • the heat-conducting column can be set according to the actual position of the laser assembly, silicon optical chip, etc., such as on the inner wall of the upper shell or the inner wall of the lower shell. Assuming that the laser component, silicon optical chip, etc. are arranged on the side of the circuit board facing the upper casing, the heat-conducting column is arranged on the inner wall of the upper casing.
  • the heat-conducting pillars are all cone-shaped structures.
  • FIG. 17 is a schematic structural diagram of a heat conduction column provided on an upper casing provided by an embodiment of the disclosure.
  • the upper housing 201 is provided with a first heat conduction pillar 2011 and a second heat conduction pillar 2012.
  • the projections of the first heat-conducting pillar 2011 and the second heat-conducting pillar 2012 in the direction of the circuit board 203 cover the base 700.
  • the projection of the first heat-conducting pillar 2011 in the direction of the circuit board 203 covers the upper laser cover 206
  • the projection of the second heat-conducting pillar 2012 in the direction of the circuit board 203 covers the silicon optical chip.
  • the cross-sectional area of the free end of the first heat-conducting column 2011 is smaller than the cross-sectional area of the contact between the first heat-conducting column 2011 and the inner wall of the upper housing 201
  • the cross-sectional area of the free end of the second heat-conducting column 2012 is smaller than the contact area of the second heat-conducting column 2012 and the inner wall of the upper housing 201
  • the cross-sectional area In an embodiment of the present disclosure, the cross-sectional area of the first heat-conducting column 2011 from its free end to the contact point with the inner wall of the upper casing 201 gradually increases, and the second heat-conducting column 2012 extends from its free end to the upper casing 201 The cross-sectional area of the inner wall contact area gradually increases.
  • the first heat-conducting column 2011 and the second heat-conducting column 2012 may be integrally formed with the upper housing 201, or may be independent components, which are assembled and formed with the upper housing 201 after the processing is completed.
  • FIG. 18 is a half cross-sectional view of an optical module provided by an embodiment of the disclosure
  • FIG. 19 is a partial enlarged view of A in FIG. 18.
  • the top of the base 700 is embedded in the base fixing hole 2031 opened on the circuit board 203
  • the top surface of the base 700 is provided with a laser component and a silicon optical chip 600
  • the laser component is covered with a laser.
  • the upper cover 206 and the protective cover 300 are arranged on the circuit board 203 to form a cavity with the circuit board 203.
  • the laser component, the silicon optical chip 600 and the laser upper cover 206 are encapsulated in the protective cover 300 and the circuit board 203 to form a cavity.
  • a third thermal pad 209 is provided on the bottom surface of the base 700 to realize heat dissipation in the direction of the bottom surface of the base 700.
  • the third thermal pad 209 may be formed by thermally conductive glue.
  • the first heat-conducting pillar 2011 passes through the first through hole 301 to contact the upper laser cover 206, and the second heat-conducting pillar 2012 passes through the second through hole 302 to contact the transimpedance amplifier on the top of the silicon optical chip 600. And laser driver.
  • the first inclined surface 3011 expands the cross-sectional area of the first through hole 301 to facilitate the penetration of the first heat-conducting pillar 2011;
  • the second inclined surface 3021 expands the cross-sectional area of the second through hole to facilitate the penetration of the second heat-conducting pillar 2012.
  • a first thermal conductive pad 207 is provided on the side of the laser upper cover 206 away from the laser assembly, and the free end of the first thermal conductive column 2011 contacts and connects to the laser upper cover 206 through the first thermal conductive pad 207, and then the laser
  • the heat generated by the components is transferred to the upper cover 206 of the laser, and then the heat on the upper cover 206 of the laser is transferred to the first heat-conducting pillar 2011 through the first heat-conducting pad 207, and is transferred to the upper housing 201 through the first heat-conducting pillar 2011, and then through the upper housing 201 conducts heat dissipation.
  • the first heat conducting pad 207 is used to ensure the transfer efficiency of the heat on the laser upper cover 206 to the first heat conducting pillar 2011.
  • the first thermal pad 207 may be formed by thermally conductive glue.
  • the transimpedance amplifier and the laser driver on the top of the silicon optical chip 600 are provided with a second thermally conductive pad 208 on the side away from the silicon optical chip 600, and the free end of the second thermally conductive pillar 2012 passes through the second thermally conductive pad. 208 contacts the transimpedance amplifier and the laser driver.
  • the transimpedance amplifier and the laser driver are the main heat sources in the optical module.
  • the second thermal conduction column 2012 contacts the transimpedance amplifier and the laser driver through the second thermal pad 208, the heat generated by the transimpedance amplifier and the laser driver is transferred through the second thermal pad 208 To the second heat-conducting column 2012, it is transferred to the upper housing 201 through the second heat-conducting column 2012, and heat is dissipated through the upper housing 201.
  • the second thermal pad 208 is used to ensure the heat transfer efficiency of the transimpedance amplifier and the laser driver to the second thermal conductive pillar 2012.
  • the second thermal pad 208 may be formed by thermally conductive glue.
  • the laser assembly and the silicon optical chip are arranged on a base, the laser assembly and the silicon optical chip are respectively wired and connected to the circuit board, the laser assembly is covered with a laser cover, and the base is covered with protection
  • the cover, the laser component and the silicon optical chip are packaged in the space formed by the base and the protective cover to realize the wire connection between the laser component and the circuit board and the silicon optical chip and the circuit board through the protective cover.
  • the protective cover is provided with a first through hole and a second through hole. The first through hole corresponds to the position of the laser component, and the second through hole corresponds to the position of the silicon optical chip; the housing of the optical module is provided with a first heat conducting hole.
  • the first heat conduction post corresponds to the position of the first through hole and the first heat conduction post extends into the first through hole
  • the second heat conduction post corresponds to the position of the second through hole and the second heat conduction post extends into The second through hole. Since the first heat conduction pillar and the second heat conduction pillar are good heat conductors, the heat dissipated by the laser component through the first through hole is conducted to the first heat conduction pillar, and the heat dissipated by the silicon optical chip through the second through hole is conducted to the second heat conduction pillar.
  • the heat-conducting pillars are then transferred to the housing of the optical module through the first and second heat-conducting pillars, and then conduct heat to the outside of the optical module, so as to realize the formation of the laser assembly and the silicon light through the first and second heat-conducting pillars
  • the heat conduction path of the chip facilitates the heat dissipation of the laser component and the silicon optical chip under the protective cover, and avoids the concentrated accumulation of heat inside the optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括:电路板(203);基座(700),嵌设在电路板(203)上;激光组件,贴装在基座(700)上,用于发出不携带信号的光;硅光芯片(600),贴装在基座(700)上,硅光芯片(600)上设置有第三光孔,通过第三光孔接收激光组件发出的不携带信号的光;激光器上盖(206),底部固定连接基座(700),用于罩设在激光组件的上方,将激光组件密封在激光器上盖(206)和基座(700)之间。激光组件和硅光芯片(600)设置基座(700)上,激光组件通过激光器上盖(206)密封,实现通过基座(700)直接为激光组件和硅光芯片(600)散热,进而便于实现光模块(200)内部散热,避免光模块(200)内部热量集中堆积,设置在基座(700)上的激光组件直接被激光器上盖(206)包裹,节省激光组件的封装以及便于激光组件的封装。

Description

一种光模块
本公开要求在2020年04月21日提交中国专利局、申请号为202010317005.2、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。而在光通信中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。其中,采用硅光芯片实现光电转换功能已经成为高速光模块采用的一种主流方案。
在硅光光模块中,硅光芯片设置在电路板上,通过打线与电路板实现电连接;硅光芯片通过光纤带与光模块的光接口连接,实现光信号进出硅光芯片。而硅光芯片采用的硅材料不是理想的激光芯片发光材料,不能在硅光芯片制作过程集成发光单元,所以硅光芯片需要由外部光源提供光。
发明内容
第一方面,本公开实施例提供的一种光模块,包括:电路板,基座,嵌设在电路板上;激光组件,贴装在基座上,用于发出不携带信号的光;硅光芯片,贴装在基座上,硅光芯片上设置有第三光孔,通过第三光孔接收激光组件发出的不携带信号的光;激光器上盖,底部固定连接基座,用于罩设在激光组件的上方,将激光组件设置在激光器上盖和基座之间。
第二方面,本公开提供了一种光模块,包括:电路板;基座,设置在电路板上;激光组件,贴装在基座上,用于发出不携带信号的光;硅光芯片,贴装在基座上,硅光芯片上设置有第三光孔,通过第三光孔接收激光组件发出的不携带信号的光;激光器上盖,底部固定连接基座,用于罩设在激光组件的上方,将激光组件设置在激光器上盖和基座之间。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例提供的一种光模块结构示意图;
图4为本公开实施例提供光模块分解结构示意图;
图5为本公开实施例提供的一种电路板的正面结构示意图;
图6为本公开实施例提供的电路板上拆除保护罩的结构示意图;
图7为本公开实施例提供的光模块的局部结构示意视图一;
图8为本公开实施例提供的光模块的局部结构示意视图二;
图9为本公开实施例提供的光模块的局部结构的分解图一;
图10为本公开实施例提供的光模块的局部结构的分解图二;
图11为本公开实施例提供的一种激光器上盖的结构示意图;
图12为本公开实施例提供的一种激光器上盖的俯视图;
图13为本公开实施例提供的光模块内部的局部剖视图;
图14为本公开实施例提供的一种电路板的反面结构示意图;
图15为本公开实施例提供的一种基座的结构示意图;
图16为本公开实施例提供的一种保护罩的结构示意图;
图17为本公开实施例提供的导热柱设置在上壳体上的结构示意图;
图18为本公开实施例提供的一种光模块的半剖视图;
图19为图18中A处的局部放大图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块 内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,具体地,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件、电路板203、保护罩300、光纤插座400和光纤带401。其中,保护罩300的下方设置有硅光芯片、激光组件等器件。
上壳体201和下壳体202形成具有包裹腔体的壳体。在本公开的某一实施例中,上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,具体地,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。在本公开的某一实施例中,上壳体201上设置翅片,结合上位机辅助光模块的散热。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的硅光芯片;电路板203、保护罩300、硅光芯片、激光组件等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板203、保护罩300硅光芯片等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板203上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,具体地,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
硅光芯片的周边与电路板203之间通过多条导电线连接,所以硅光芯片一般设置在电路板203的表面。硅光芯片设置在电路板203上,与电路板203实现电连接,具体可以是打线连接,如通过半导体键合金线(Gold Wire Bonding)连接。然而金线的线径细小脆弱,布线密集、线与线之间间距狭小,在光模块的封装或产品使用过程中,极易发生变形、损坏、坍塌等现象,从而影响光信号质量或者造成短路、断路等不良。为此,设置包保护罩300,保护罩300罩设在硅光芯片上,用于保护硅光芯片的打线。
在本公开的某一实施例中,保护罩300罩设在电路板203上,罩设在电路板203上的保护罩300与电路板203形成一定的空间,硅光芯片以及硅光芯片的打线布线区封装在保护罩300与电路板203形成的空间内。需要说明的是,本公开实施例中的封装是指保护罩300与电路板203形成的空间中,硅光芯片、硅光芯片的打线布线区以及其他光电器件与保护罩300实现间隙配合的一种装配形态。
在本公开的某一实施例中,保护罩300内表面对应布线区域的位置处,设有用于避让金线的第一凹陷,因此可以将金线的布线区域完全保护起来,有效解决已有光模块方案中金线极易发生变形、损坏及坍塌等问题,可以避免造成短路、断路等不良,从而保证光信 号质量。
硅光芯片通过光纤带401连接光纤插座400,光纤插座400用于耦合连接光模块外部光纤。在本公开的某一实施例中光纤带401包括第一光纤带和第二光纤带,第一光纤带用于将硅光芯片调制后的信号光传输至光模块外部,第二光纤带用于接收光模块外部的信号光并传输至硅光芯片。硅光芯片接收来自激光组件的光,进而对光进行调制,具体为将信号加载到光上,然后通过第一光纤带传输至光模块的外部;硅光芯片接收来自第二光纤带的光,进而将光信号转换为电信号。
为便于硅光芯片接收和发射光,在本公开具体实施方式中,硅光芯片包括若干光孔,若干光孔用于硅光芯片接收激光组件传输的光、输出调制后信号光以及接收光模块外部通过光纤传输至硅光芯片的信号光。在本公开的某一实施例中,硅光芯片包括第一光孔、第二光孔及第三光孔,光孔中具有若干个光通道。第一光孔用于耦合连接第一光纤带,用于将调制后的信号光传输至第一光纤带;第二光孔用于耦合连接第二光纤带,用于接收通过第二光纤带传输的信号光;第三光孔与激光组件耦合连接,用于接收光源发出的不携带信号的光。
硅光芯片内部包括马赫曾德调制器,结合马赫增德调制器以及跨阻放大器和激光驱动器等器件实现光信号的调制。马赫曾德调制器调制采用了同波长光干涉原理,一个马赫曾德调制器设置有两个干涉臂,单个干涉臂上输入一束光,一共需要向一个马赫曾德调制器提供两束同波长的光,经马赫曾德调制器调制后,干涉臂上的光会融合为一束光。
在本公开实施例中,激光组件包括若干激光器组件。第三光孔包括多个光通道,进而通过这些光通道可以将多路相同波长的光输入硅光芯片中,为马赫曾德调制器的各个干涉臂提供相同波长的光。因为单个激光芯片的发光功率有限,叠加多个激光器芯片的光可以提升单个波长的光功率,而已有技术中,多个激光器芯片之间一般提供不同波长的光,单个波长的光功率并未叠加提升。
图5为本公开实施例提供的电路板203的正面结构示意图,图6为电路板203上拆除保护罩的结构示意图。如图5和6所示,保护罩300设置在电路板203上,并将激光组件和硅光芯片600等罩设在保护罩300与电路板203形成的空腔内。
图7为本公开实施例提供的光模块的局部结构示意视图一,图8为本公开实施例提供的光模块的局部结构示意视图二,图9为图8的分解图一,图10为图8的分解图二。图7-10中示出的结构位于保护罩与电路板形成的空间内。如图7-10所示,本公开实施例提供的光模块还包括基座700、激光器上盖206、激光组件和硅光芯片600。
激光组件和硅光芯片600贴装在基座700上,激光器上盖206的底部固定连接基座700,用于罩设在激光组件上,将激光组件设置在激光器上盖206和基座700之间。激光组件和硅光芯片600直接设置在基座上,便于实现基座直接为激光组件和硅光芯片600散热,进而便于实现光模块内部散热,避免光模块内部热量集中堆积。同时,设置在基座700上的激光组件直接被激光器上盖包裹,节省激光组件的封装以及便于激光组件的封装。在本公开的某一实施例中,激光组件和硅光芯片600直接贴装在基座700上,使激光组件和硅光芯片600位于同一基座上,即激光组件和硅光芯片600共用基座;当基座700受热 产生形变对激光组件和硅光芯片600的影响相同,使激光组件和硅光芯片600的光对齐稳定性比较好,进而简化激光组件和硅光芯片装配要求。
在本公开的某一实施例中,激光器上盖206的底部固定连接基座700,如使用固定胶将激光器上盖206的底部固定在基座700上。激光器上盖206配合电路板和基座700,用于为激光组件提供相对密封的环境,进而保护激光组件的各器件。硅光芯片600的上表面设有跨阻放大器601和激光驱动器602。
在本公开实施例中,基座700设置在电路板上或者镶嵌在电路板上。在本公开的某一实施例中,基座700贴装在电路板上;或者,电路板上设置通孔,基座700镶嵌在该通孔内。
在本公开实施例中,激光组件包括第一激光器组件501和第二激光器组件502,第一激光器组件501和第二激光器组件502发出不携带信号的光。第一激光器组件501和第二激光器组件502贴装在基座700上。在本公开的某一实施例中,通过第一激光器组件501和第二激光器组件502通过打线连接的方式连接电路板上的电路。
在本公开的某一实施例中,本公开实施例提供的光模块还包括透镜和隔离器。透镜、隔离器和激光器组件共同激光器上盖206与基座700形成的腔体内。如,在激光芯片的出光方向设置一个透镜,具体为聚焦透镜,位于激光芯片及密封透光件之间,用于将激光芯片发出的光汇聚以便后续耦合;或者在激光芯片的出光方向设置两个透镜,具体分别为准直透镜和聚焦透镜,激光芯片发出的光经准直透镜变为准直光,准直光可以在较长距离的光传输过程中保持较小的光功率衰减,聚焦透镜接收准直光,以将光汇聚耦合进硅光芯片中。隔离器用于防止激光芯片发出的光经发射后回到激光芯片中,所以隔离器设置在激光芯片出光方向上。本公开实施例中隔离器设置在透镜朝向激光芯片的方向,即隔离器与激光芯片之间设置有聚焦透镜。
如图9和10所示,沿第一激光器组件501的出光方向依次设置有第一准直透镜、第一聚隔离器和焦透镜,沿第二激光器组件502的出光方向依次设置有第二准直透镜、隔离器、第二聚焦透镜。第一激光器组件501和第二激光器组件502可共用隔离器及密封透光件。第一准直透镜、第一聚焦透镜、第二准直透镜、第二聚焦透镜、隔离器及密封透光件固定设置在基座700。
在本公开的某一实施例中,基座700的顶面上包括基座第一区701、基座第二区702、基座第三区703和基座第四区704。基座第一区701、基座第二区702、基座第三区703位于基座700的一端,基座第四区704位于基座700的另一端。基座第二区702用于固定承载激光组件,基座第四区704用于固定承载硅光芯片600。在本公开的某一实施例中,基座第一区701用于支撑第一光纤带,基座第二区702用于支撑第二光纤带。
基座第一区701和基座第二区702之间设置有第一间隙705,基座第二区702和基座第三区703之间设置有第二间隙706,通过第一间隙705和第二间隙706实现激光器上盖206的安装以及固定。在本公开的某一实施例中,激光器上盖206的底部卡设在第一间隙705和第二间隙706中,进而实现激光器上盖206的安装固定。在本公开的某一实施例中,第一间隙705和第二间隙706宽度比激光器上盖206底部的宽度略大。如此,既方便激光 器上盖206的安装固定,同时减少基座第二区702上激光器组件产生热量向基座第一区701以及基座第三区703传导,实现了基座第二区702与基座第一区701以及基座第三区703之间的隔热。因为激光器组件在工作的过程中将产生大量的热,是光模块中主要热源之一,设置第一间隙705和第二间隙706可有效减少热量的横向传输。
图11为本公开实施例提供的一种激光器上盖206的立体图,图12为本公开实施例提供的一种激光器上盖206的俯视图。如图11和12所示,激光器上盖206包括顶板2061、第一侧板2062、第二侧板2063和第三侧板2064。第一侧板2062设置在顶板2061长度方向的一侧,第二侧板2063设置在顶板2061长度方向的另一侧,第四侧板2064设置在顶板2061左端。
在本公开的某一实施例中,第一侧板2062、第二侧板2063和第三侧板2064形成第一缺口,第一缺口用于穿出器件;顶板2061、第一侧板2062与第二侧板2063形成第二缺口,第二缺口用于透光。当激光器上盖206罩设在激光组件上时,第二缺口处设置密封透光件,通过密封透光件既能使激光器上盖206形成相对密封的空间,同时也可以保证激光组件产生的光正常通过。激光器上盖206可选择不透光的量导热材料制作,如铜合金等。在本公开实施例中,激光器上盖206的左端靠近激光器组件,进而顶板2061的左端靠近激光器组件、顶板2061的右端靠近硅光芯片600。
在本公开实施例中,密封透光件起到密封激光器上盖以及透射光的作用,形成激光器上盖用于出光的侧面。激光组件等光电器件,其工作环境需要一定程度的密封,以防止水汽等对器件以及光路的折射影响,密封透光件起到密封激光盒的作用;同时,激光芯片发出的光需要射出激光器上盖,密封透光件作为设置在激光器上盖的组成部件,需要具有透光性,以让激光组件产生的光射出。
光束从密封透光件的出光面射出,射出后的光束进入硅光芯片中,为了防止光束在进入硅光芯片时产生反射,避免反射带来的光功率损失,要求光束以非垂直角度射入硅光芯片的入光面。具体地,硅光芯片内接收光的波导结构与硅光芯片的入光面呈锐角设置,这要求光束在硅光芯片入光面折射后,以正对波导结构的方向射入,这一方向与激光芯片的出光方向并不一致。本公开实施例在激光器上盖的第二缺口设计密封透光件,通过密封透光件的光学结构改变激光组件的出光方向,以满足硅光芯片的入光要求。
在本公开的某一实施例中,如图12所示,激光器上盖206的左端面倾斜,激光器上盖206的左端面非垂直于第一侧板2062和第二侧板2063长度方向上的侧面。在本公开实施例中,激光器上盖206长度方向与第三光孔不平行,即激光器上盖206长度方向与硅光芯片朝向激光组件的面不垂直,如此有助于满足硅光芯片的入光要求,保证激光组件发出的光入射至第三光孔。
在本公开的某一实施例中,基座700为铜合金热沉基座。在本公开的某一实施例中,电路板上设置基座固定孔。基座700卡设在该基座固定孔内。基座700材料的热导率高于电路板材料的热导率,如此使用基座700代替电路板的部分结构,相对原电路板提升该处的热导率,便于激光组件和硅光芯片所产生热量的扩散。
图13为本公开实施例提供的一种光模块内部的局部剖视图。如图13所示,激光器上 盖206罩设在第一激光器组件501和第二激光器组件502,顶板2061在基座700的投影覆盖第一激光器组件501和第二激光器组件502,第一侧板2062的底部卡设在第一间隙705内,第二侧板2063的底部卡设在第二间隙706内,进而第一侧板2062和第二侧板2063结合第一间隙705和第二间隙706实现激光器上盖206的安装固定。
在本公开的某一实施例中,第一间隙705的宽度大于第一侧板2062底部的厚度,第二间隙706的宽度大于第二侧板2063底部的厚度,进而当第一侧板2062的底部卡设在第一间隙705内以及第二侧板2063的底部卡设在第二间隙706内时,第一间隙705和第二间隙706内均还有孔隙。如此,既方便激光器上盖206的安装固定,同时使基座第二区702上激光器组件产生热量纵向传输,减少基座第二区702上激光器组件产生热量向基座第一区701以及基座第三区703传导,实现了基座第二区702与基座第一区701以及基座第三区703之间的隔热。
图14为本公开实施例提供的一种电路板203的反面结构示意图。如图14所示,电路板203上设置基座固定孔2031,基座固定孔2031贯穿电路板203上下表面,基座700卡设在基座固定孔2031内。在本公开的某一实施例中,基座700背离固定保护罩300的一面接触壳体,如接触光模块下壳体的内表面。在本公开的某一实施例中,基座700背离固定激光组件和硅光芯片的一面通过导热垫接触壳体,如通过第三导热垫接触壳体。
图15为本公开实施例提供的一种基座700的结构示意图。如图15所示,基座700包括基座第一区701、基座第二区702、基座第三区703和基座第四区704。其中,基座第一区701、基座第二区702和基座第三区703并排设置,基座第一区701和基座第二区702之间设置有第一间隙705,基座第二区702和基座第三区703之间设置有第二间隙706,基座第四区704设置在基座第一区701、基座第二区702和基座第三区703的一端。在本公开的某一实施例中,基座第一区701、基座第二区702、基座第三区703和基座第四区704的侧边设置第一台阶面707。当将基座700卡设在电路板上的基座固定孔内时,第一台阶面707用于支撑电路板。同时,为实现基座700与电路板的固定连接通常使用胶水将基座700与电路板的接触处进行粘结,因此第一台阶面707便于实现基座700与电路板的粘结。
图16为本公开实施例提供的一种保护罩300的结构示意图。如图16所示,保护罩300上设置第一通孔301和第二通孔302。第一通孔301的设置位置与激光组件所在位置对应,第二通孔302与硅光芯片所在位置对应。即当保护罩300固定罩设在电路板上时,第一通孔301在电路板上的投影覆盖在激光组件上,第二通孔302在电路板上的投影覆盖在硅光芯片上。
在本公开的某一实施例中,第一通孔301靠近激光组件处的截面积相对较小,第二通孔302靠近硅光芯片处的截面积相对较小。如,第一通孔301的截面积自靠近激光组件处向远离激光组件方向逐渐增大,第二通孔302的截面积自靠近硅光芯片处向远离硅光芯片方向逐渐增大。在本公开的某一实施例中,第一通孔301边缘设置第一斜面3011,通过第一斜面3011扩大第一通孔301的截面积,第二通孔302的边缘设置第二斜面3021,通过第二斜面3021扩大第二通孔302的截面积。
在本公开实施例中,保护罩300与电路板固定连接。在本公开的某一实施例中,保护罩300通过胶水粘结电路板;或者,保护罩300通过至少两个固定销固定连接电路板。如,在基板上对应与固定销的位置处设有固定孔,固定销与固定孔配合,从而使壳状保护体可以固定在电路板上。需要说明的是,固定销在壳状保护体上的具体位置可以根据电路板的可开孔位置确定。一般而言,若要在电路板上开孔,需避让电路板上的电路及电阻、电容、电感等电子器件。
在本公开实施例中,保护罩300可以用透明的PEI(聚醚酰亚胺,Polyetherimide)或PC(聚碳酸酯,Polycarbonate)等透明树脂材料制成。PEI材料具有很强的高温稳定性,耐高温,热变形温度达220℃,可在-160~180℃的工作温度下长期使用。PEI还有良好的阻燃性(燃烧等级为UL94-V-0级)、抗化学反应以及电绝缘特性。且可加工薄壁产品。
另外,本公开实施例提供的保护罩300的内表面和外表面均经过镜面抛光处理,当光模块内出现金线损坏情况时,无需将保护罩300拆解,即可直观确定金线的损坏位置,例如可以直接观察到具体哪根金线断裂。
在本公开实施例中,保护罩300上第一通孔301的边缘底部压紧激光器上盖、第二通孔302的边缘底部压紧硅光芯片。在本公开的某一实施例中,第二通孔302的边缘底部通过压紧跨阻放大器和激光驱动器压紧硅光芯片。
在本公开实施例中,壳体的内壁上设置若干导热柱,导热柱用于将光模块壳体内部的热量传导至光模块的壳体上,便于进行光模块内部散热。在本公开的某一实施例中,导热柱分别设置在与激光组件、硅光芯片等相应的位置。导热柱可根据激光组件、硅光芯片等的实际位置进行设置,如设置在上壳体的内壁上或下壳体的内壁上。假设,激光组件、硅光芯片等设置在电路板朝向上壳体的一面,则导热柱设置在上壳体的内壁上。在本公开的某一实施例中,导热柱均为锥状结构。
图17为本公开实施例提供的一种导热柱设置在上壳体上的结构示意图。如图17所示,上壳体201上设置有第一导热柱2011和第二导热柱2012。第一导热柱2011和第二导热柱2012在电路板203方向的投影覆盖在基座700上。在本公开的某一实施例中,第一导热柱2011在电路板203方向的投影覆盖激光器上盖206,第二导热柱2012在电路板203方向的投影覆盖硅光芯片。第一导热柱2011自由端的截面积小于第一导热柱2011与上壳体201内壁接触处的截面积,第二导热柱2012自由端的截面积小于第二导热柱2012与上壳体201内壁接触处的截面积。在本公开的某一实施例中,第一导热柱2011自其自由端至与上壳体201内壁接触处的截面积逐渐增大,第二导热柱2012自其自由端至与上壳体201内壁接触处的截面积逐渐增大。
在本公开实施例中,第一导热柱2011和第二导热柱2012可与上壳体201一体成型,还可为独立部件,加工完成后与上壳体201组装成型。
图18为本公开实施例提供的一种光模块的半剖视图,图19为图18中A处的局部放大图。如图18和19所示,基座700的顶部镶嵌在电路板203上开设的基座固定孔2031中,基座700的顶面上设置激光组件和硅光芯片600,激光组件上方罩设激光器上盖206,保护罩300罩设在电路板203上、与电路板203形成空腔,激光组件、硅光芯片600和激 光器上盖206封装在保护罩300与电路板203形成空腔的空腔内。基座700的底面设置第三导热垫209,用于实现基座700底面方向的散热。第三导热垫209可通过导热胶形成。
如图18和19所示,第一导热柱2011穿过第一通孔301接触连接激光器上盖206,第二导热柱2012穿过第二通孔302接触连接硅光芯片600顶部的跨阻放大器和激光驱动器。第一斜面3011扩充第一通孔301的截面积,便于穿设第一导热柱2011;第二斜面3021扩充第二通孔的截面积,便于穿设第二导热柱2012。
在本公开的某一实施例中,激光器上盖206背离激光组件的一侧设置第一导热垫207,第一导热柱2011的自由端通过第一导热垫207接触连接激光器上盖206,进而激光组件产生的热量传递至激光器上盖206,然后将激光器上盖206上的热量通过第一导热垫207传递至第一导热柱2011,经第一导热柱2011传递至上壳体201,经上壳体201进行散热。第一导热垫207用于保证激光器上盖206上热量向第一导热柱2011的传递效率。第一导热垫207可通过导热胶形成。
在本公开的某一实施例中,硅光芯片600顶部的跨阻放大器和激光驱动器背离硅光芯片600的一侧设置第二导热垫208,第二导热柱2012的自由端通过第二导热垫208接触连接跨阻放大器和激光驱动器。跨阻放大器和激光驱动器是光模块中主要热源,当第二导热柱2012通过第二导热垫208接触连接跨阻放大器和激光驱动器,跨阻放大器和激光驱动器产生的热量通过第二导热垫208传递至第二导热柱2012,经第二导热柱2012传递至上壳体201,经上壳体201进行散热。第二导热垫208用于保证跨阻放大器和激光驱动器上热量向第二导热柱2012的传递效率。第二导热垫208可通过导热胶形成。
本公开实施例提供的光模块中,激光组件和硅光芯片设置基座上,激光组件和硅光芯片分别与电路板打线连接,激光组件上罩设激光器上盖,基座上罩设保护罩,激光组件和硅光芯片封装在基座与保护罩形成的空间内,实现通过保护罩保护激光组件与电路板的打线连接以及和硅光芯片与电路板的打线连接。另外,保护罩上设置有第一通孔和第二通孔,第一通孔与激光组件所在位置对应,第二通孔与硅光芯片所在位置对应;光模块的壳体上设置第一导热柱和第二导热柱,第一导热柱与第一通孔所在位置对应且第一导热柱伸入第一通孔,第二导热柱与第二通孔所在位置对应且第二导热柱伸入第二通孔。由于第一导热柱和第二导热柱均为热的良导体,激光组件通过第一通孔散出的热传导至第一导热柱传导、硅光芯片通过第二通孔散出的热传导至第二导热柱,然后经过该第一导热柱和第二导热柱传输至光模块的壳体上,进而将热传导至光模块的外部,实现通过第一导热柱和第二导热柱形成激光组件和硅光芯片的导热通路,便于保护罩下激光组件和硅光芯片的散热,避免光模块内部热量集中堆积。
本说明书中实施例之间相同相似的部分互相参见即可。需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    电路板,
    基座,嵌设在所述电路板上;
    激光组件,贴装在所述基座上,用于发出不携带信号的光;
    硅光芯片,贴装在所述基座上,所述硅光芯片上设置有第三光孔,通过所述第三光孔接收所述激光组件发出的不携带信号的光;
    激光器上盖,底部固定连接所述基座,用于罩设在所述激光组件的上方,将所述激光组件设置在所述激光器上盖和基座之间。
  2. 根据权利要求1所述光模块,其特征在于,所述基座上设置第一间隙和第二间隙,所述激光器上盖通过底部伸入所述第一间隙和所述第二间隙固定连接所述基座。
  3. 根据权利要求2所述光模块,其特征在于,所述基座包括基座第一区、基座第二区、基座第三区和基座第四区;所述基座第一区、所述基座第二区和所述基座第三区位于所述基座的左部,所述基座第四区位于所述基座的右部;所述基座第二区与所述基座第一区之间设置所述第一间隙;所述基座第二区与所述基座第三区之间设置所述第二间隙;
    所述激光组件贴装在所述基座第二区,所述硅光芯片贴装在所述基座第四区;
    所述激光器上盖的底部卡设在所述第一间隙和所述第二间隙中。
  4. 根据权利要求1所述光模块,其特征在于,所述激光器上盖包括顶板以及与所述顶板连接的第一侧板、第二侧板和第三侧板;
    所述第一侧板和所述第二侧板分别沿所述顶板长度方向设置;所述第三侧板沿垂直于所述顶板长度方向设置,所述第三侧板设置在所述顶板的左端,且所述第三侧板与所述第一侧板和所述第二侧板形成第一缺口;
    所述顶板与所述第一侧板和所述第二侧板在所述激光器上盖的右端形成第二缺口且所述第二缺口的端面倾斜。
  5. 根据权利要求1所述光模块,其特征在于,所述电路板上设置开设基座固定孔,所述基座嵌设在所述基座固定孔内。
  6. 根据权利要求5所述光模块,其特征在于,所述基座上设置有第一台阶面,所述第一台阶面支撑连接所述电路板以使所述基座的上部嵌设在所述基座固定孔内。
  7. 根据权利要求1所述光模块,其特征在于,所述激光器组件和所述硅光芯片打线连接所述电路板;
    所述光模块还包括保护罩,所述保护罩罩设在所述电路板上,用于保护所述激光器组件和所述硅光芯片的打线。
  8. 根据权利要求7所述光模块,其特征在于,所述保护罩上设置第一通孔和第二通孔所述第一通孔与所述激光器上盖所在位置对应,所述第二通孔与所述硅光芯片所在位置对应;
    所述光模块包括上壳体和下壳体;所述上壳体的内壁上设置第一导热柱和第二导热柱,所述第一导热柱与所述第一通孔所在位置对应且所述第一导热柱伸入所述第一通孔,所述第二导热柱与所述第二通孔所在位置对应且所述第二导热柱伸入所述第二通孔;所述下壳体支撑所述基座。
  9. 根据权利要求8所述的光模块,其特征在于,所述第一通孔内设置有第一斜面,所述第一斜面向所述保护罩的顶面倾斜;所述第二通孔内设置有第二斜面,所述第二斜面面向所述保护罩的顶面倾斜;所述第一导热柱的横截面面积自与所述壳体接触处逐渐减小;所述第二导热柱的横截面面积自与所述壳体接触处逐渐减小。
  10. 一种光模块,其特征在于,包括:
    电路板;
    基座,设置在所述电路板上;
    激光组件,贴装在所述基座上,用于发出不携带信号的光;
    硅光芯片,贴装在所述基座上,所述硅光芯片上设置有第三光孔,通过所述第三光孔接收所述激光组件发出的不携带信号的光;
    激光器上盖,底部固定连接所述基座,用于罩设在所述激光组件的上方,将所述激光组件设置在所述激光器上盖和基座之间。
PCT/CN2020/133868 2019-03-15 2020-12-04 一种光模块 WO2021212849A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/235,367 US11828991B2 (en) 2019-03-15 2021-04-20 Optical module
US18/472,503 US20240012210A1 (en) 2019-03-15 2023-09-22 Optical module
US18/472,563 US20240012211A1 (en) 2019-03-15 2023-09-22 Optical module
US18/472,638 US20240012212A1 (en) 2019-03-15 2023-09-22 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010317005.2 2020-04-21
CN202010317005.2A CN111338039B (zh) 2020-04-21 2020-04-21 一种光模块

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127211 Continuation-In-Part WO2020186862A1 (zh) 2019-03-15 2019-12-20 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/235,367 Continuation-In-Part US11828991B2 (en) 2019-03-15 2021-04-20 Optical module

Publications (1)

Publication Number Publication Date
WO2021212849A1 true WO2021212849A1 (zh) 2021-10-28

Family

ID=71181033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133868 WO2021212849A1 (zh) 2019-03-15 2020-12-04 一种光模块

Country Status (2)

Country Link
CN (1) CN111338039B (zh)
WO (1) WO2021212849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230161121A1 (en) * 2021-11-19 2023-05-25 Dongguan Luxshare Technologies Co., Ltd Optical electrical connector with improved heat dissipation performance

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352192B (zh) * 2018-12-20 2021-08-10 青岛海信宽带多媒体技术有限公司 一种光模块
CN111338039B (zh) * 2020-04-21 2021-11-23 青岛海信宽带多媒体技术有限公司 一种光模块
US11828991B2 (en) 2019-03-15 2023-11-28 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module
CN111610608A (zh) * 2020-06-29 2020-09-01 亨通洛克利科技有限公司 一种光模块灌封结构及方法
CN114063224B (zh) * 2020-07-31 2023-04-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN114488423A (zh) * 2020-10-27 2022-05-13 青岛海信宽带多媒体技术有限公司 一种光模块
CN114488419B (zh) * 2020-10-23 2023-06-20 苏州旭创科技有限公司 一种光模块封装结构
CN112904497A (zh) * 2021-01-14 2021-06-04 众瑞速联(武汉)科技有限公司 一种基于pwb的硅光集成模块
CN112904496A (zh) * 2021-01-14 2021-06-04 众瑞速联(武汉)科技有限公司 一种硅光集成模块
CN117148519A (zh) * 2021-01-28 2023-12-01 青岛海信宽带多媒体技术有限公司 一种光模块
CN114911011B (zh) * 2021-02-08 2023-07-14 青岛海信宽带多媒体技术有限公司 一种光模块
CN115032749B (zh) * 2021-03-04 2023-11-14 青岛海信宽带多媒体技术有限公司 一种光模块
CN115144977A (zh) * 2021-03-31 2022-10-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN113281841B (zh) * 2021-04-16 2022-05-27 武汉联特科技股份有限公司 硅光多通道并行光组件及其耦合方法
WO2022242309A1 (zh) * 2021-05-17 2022-11-24 青岛海信宽带多媒体技术有限公司 光模块
WO2022262551A1 (zh) * 2021-06-17 2022-12-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN113671638A (zh) * 2021-07-12 2021-11-19 武汉英飞光创科技有限公司 一种光模块
WO2023029707A1 (zh) * 2021-08-31 2023-03-09 青岛海信宽带多媒体技术有限公司 光模块
CN113885143B (zh) * 2021-09-24 2023-01-24 青岛海信宽带多媒体技术有限公司 一种光模块
WO2023168927A1 (zh) * 2022-03-07 2023-09-14 青岛海信宽带多媒体技术有限公司 光模块
CN114488439B (zh) * 2022-03-07 2023-09-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN114815089B (zh) * 2022-04-18 2023-10-24 东莞立讯技术有限公司 光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452140B2 (en) * 2003-07-16 2008-11-18 Ibiden Co., Ltd. Protective sealing of optoelectronic modules
CN107479152A (zh) * 2017-09-30 2017-12-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN110376690A (zh) * 2019-07-23 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110388576A (zh) * 2018-04-23 2019-10-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN110488433A (zh) * 2019-08-16 2019-11-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2330424B (en) * 1997-11-21 1999-09-08 Bookham Technology Ltd Apparatus for connecting an optical fibre to an optical device
US20140205248A1 (en) * 2011-09-15 2014-07-24 Nec Corporation Optical transmitter/receiver apparatus and method of manufacturing same
US9213155B2 (en) * 2013-12-26 2015-12-15 Futurewei Technologies, Inc. Light steering for silicon photonic devices
CN206546452U (zh) * 2016-11-25 2017-10-10 颖飞公司 封装发射器装置
CN108508551A (zh) * 2018-03-30 2018-09-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN110954998B (zh) * 2018-09-27 2021-10-01 上海新微技术研发中心有限公司 激光器与硅光芯片集成结构及其制备方法
CN110971304A (zh) * 2019-11-19 2020-04-07 武汉电信器件有限公司 一种基于硅光的光收发组件
CN110888206A (zh) * 2019-12-05 2020-03-17 成都微泰光芯技术有限公司 一种硅光芯片与激光器的封装结构及封装方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452140B2 (en) * 2003-07-16 2008-11-18 Ibiden Co., Ltd. Protective sealing of optoelectronic modules
CN107479152A (zh) * 2017-09-30 2017-12-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN110388576A (zh) * 2018-04-23 2019-10-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN110376690A (zh) * 2019-07-23 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110488433A (zh) * 2019-08-16 2019-11-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230161121A1 (en) * 2021-11-19 2023-05-25 Dongguan Luxshare Technologies Co., Ltd Optical electrical connector with improved heat dissipation performance

Also Published As

Publication number Publication date
CN111338039B (zh) 2021-11-23
CN111338039A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021212849A1 (zh) 一种光模块
WO2021227317A1 (zh) 一种光模块
US11828991B2 (en) Optical module
CN214795314U (zh) 一种光模块
WO2020125784A1 (zh) 一种光模块
WO2021120668A1 (zh) 一种光模块
CN111694112A (zh) 一种光模块
CN111948762A (zh) 一种光模块
US11994726B2 (en) Optical module
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
WO2021232716A1 (zh) 一种光模块
US20230341640A1 (en) Optical module
WO2021103958A1 (zh) 一种光模块
WO2021109776A1 (zh) 一种光模块
US20230116287A1 (en) Optical module
CN214540156U (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
WO2022052527A1 (zh) 一种光模块
WO2020186862A1 (zh) 一种光模块
WO2021244101A1 (zh) 一种光模块
CN215181026U (zh) 一种光模块
CN113009649A (zh) 一种光模块
WO2022262551A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932317

Country of ref document: EP

Kind code of ref document: A1