WO2020125784A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2020125784A1
WO2020125784A1 PCT/CN2019/127213 CN2019127213W WO2020125784A1 WO 2020125784 A1 WO2020125784 A1 WO 2020125784A1 CN 2019127213 W CN2019127213 W CN 2019127213W WO 2020125784 A1 WO2020125784 A1 WO 2020125784A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
laser
silicon optical
circuit board
optical chip
Prior art date
Application number
PCT/CN2019/127213
Other languages
English (en)
French (fr)
Inventor
杜光超
唐永正
吴涛
慕建伟
隋少帅
韩继弘
陈思涛
邵乾
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811592719.3A external-priority patent/CN110388576B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US16/892,032 priority Critical patent/US11631960B2/en
Publication of WO2020125784A1 publication Critical patent/WO2020125784A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/237Details of housings or cases, i.e. the parts between the light-generating element and the bases; Arrangement of components within housings or cases
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2018Presence of a frame in a printed circuit or printed circuit assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components

Definitions

  • This application relates to the field of optical fiber communications, and in particular to an optical module.
  • the silicon optical chip is arranged on the surface of the circuit board, and is electrically connected to the circuit board by wire bonding; the silicon optical chip is connected to the optical interface of the optical module through the optical fiber ribbon to realize the optical signal entering and exiting the silicon optical chip. Since the silicon material used for the silicon light chip is not an ideal laser chip luminescent material, the light emitting unit cannot be integrated in the manufacturing process of the silicon light chip, so the silicon light chip needs to be provided with light by an external light source.
  • An existing method of providing a light source is a Laser Box, which encapsulates the laser chip in a box and guides the light emitted by the laser chip to the silicon optical chip.
  • the laser box is placed on the surface of the silicon light chip.
  • the laser box and the silicon light chip will generate a lot of heat during the working process.
  • the thermal conductivity of the circuit board is very weak and cannot meet the heat dissipation requirements.
  • Embodiments of the present application provide an optical module that meets the heat dissipation requirements of silicon optical chips and laser boxes.
  • an embodiment of the present application provides an optical module, including an upper case, a lower case, and a laser box and a silicon optical chip enclosed by the upper case and the lower case; the laser box is disposed on the surface of the silicon optical chip , The top surface of the laser box, the side wall of the laser box and the surface of the silicon optical chip form a closed cavity; the side of the top surface located in the closed cavity is provided with a laser chip, and the side of the top surface located outside the closed cavity is in heat dissipation contact with the upper casing;
  • the enclosed cavity includes a focusing lens and a light reflecting surface, and the light emitted by the laser chip is directed to the light reflecting surface through the focusing lens.
  • the circuit board also includes a circuit board and a thermally conductive substrate, the circuit board has a notch penetrating the lower surface of the circuit board, the silicon optical chip is disposed in the notch, and the thermally conductive substrate is disposed on the silicon optical chip And the lower case.
  • the thermally conductive substrate is in the shape of a boss, a silicon optical chip is provided at a protrusion of the thermally conductive substrate, and a recessed portion of the thermally conductive substrate supports the circuit board.
  • the laser box further includes an isolator, the isolator, the focusing lens and the light reflecting surface are respectively disposed on the top surface, the isolator is located on the light reflecting surface and the focusing Between the lenses.
  • an embodiment of the present application provides an optical module, including an upper case and a lower case, and a laser box and a silicon optical chip enclosed by the upper case and the lower case;
  • the laser box includes a top surface and a side wall And the substrate; the side of the top surface facing the substrate is provided with a laser chip, and the side of the top surface facing away from the substrate is in thermal contact with the upper casing;
  • the upper surface of the substrate is provided with accommodating grooves for accommodating the laser chip, focusing lens and light reflecting surface.
  • the light emitted by the laser chip is directed to the light reflecting surface through the focusing lens; the lower surface of the substrate is in contact with the surface of the silicon optical chip.
  • the circuit board also includes a circuit board and a thermally conductive substrate, the circuit board has a notch penetrating the lower surface of the circuit board, the silicon optical chip is disposed in the notch, and the thermally conductive substrate is disposed on the silicon optical chip And the lower case.
  • the thermally conductive substrate is in the shape of a boss, a silicon optical chip is provided at a protrusion of the thermally conductive substrate, and a recessed portion of the thermally conductive substrate supports the circuit board.
  • the laser box further includes an isolator, the isolator, the focusing lens and the light reflecting surface are respectively disposed on the top surface, the isolator is located on the light reflecting surface and the focusing Between the lenses.
  • the optical module provided by the embodiment of the present application is composed of a laser box and a silicon optical chip enclosed by an upper casing and a lower casing.
  • the laser box is located on the surface of the silicon optical chip, and the laser chip is provided on the top surface of the laser box, the top surface and the upper casing
  • the heat dissipation contact facilitates the heat generated by the laser chip to be transmitted to the upper case through the top surface, and contacts the surface of the silicon optical chip through the side wall or the base, so that the heat generated by the laser chip is not dissipated through the silicon optical chip, and the light emitted by the laser chip is focused
  • the lens is directed toward the light reflecting surface to provide light to the silicon light chip.
  • an embodiment of the present application provides an optical module, including an upper case, a lower case, an electrical connection board, a laser chip, a circuit board, and a laser box and silicon light enclosed by the upper case and the lower case Chips and circuit boards;
  • the laser box is arranged on the surface of the silicon optical chip, the top surface of the laser box, the side wall of the laser box and the surface of the silicon optical chip form a cavity; the electrical connection plate extends into the cavity; the electrical connection plate is provided with a laser chip toward the surface of the silicon optical chip The surface of the electrical connection plate facing away from the silicon photochip is mounted on the top surface; the end of the electrical connection plate located outside the cavity is electrically connected to the circuit board.
  • the surface of the electrical connection board facing the silicon optical chip is provided with a circuit; the surface of the electrical connection board facing away from the silicon optical chip and located outside the cavity is provided with a pad; the circuit The pad is electrically connected to the pad through a via, and the pad is electrically connected to the circuit board.
  • the surface of the electrical connection board facing the silicon optical chip is provided with a circuit; the surface of the electrical connection board facing away from the silicon optical chip and located outside the cavity is provided with a pad; the electrical The connection board has an electrical connection layer on the side of the end outside the cavity to connect the circuit and the pad; the pad is electrically connected to the circuit board.
  • it further includes a blocking member, which is located between the top surface and the surface of the silicon optical chip, and clamps the electrical connection board together with the top surface.
  • the silicon optical chip is disposed on the circuit board.
  • the pad and the circuit board are electrically connected by wire bonding or a flexible board.
  • the upper case and the lower case enclose and encapsulate the laser box, the silicon optical chip and the circuit board.
  • the top surface of the laser box, the side wall of the laser box and the surface of the silicon optical chip form a cavity, extending
  • a laser chip is arranged on the surface of the silicon optical chip toward the surface of the silicon optical chip, and the surface of the electrical connection plate facing away from the silicon optical chip is mounted on the top surface to realize the electrical connection of the laser chip and the electrical connection plate through the electrical connection plate
  • the power supply of the laser chip is guided to the outside of the cavity, and the end of the electrical connection plate located outside the cavity is electrically connected to the circuit board, so that the circuit board supplies power to the laser chip.
  • FIG. 1 is a schematic structural diagram of an optical module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an assembly structure of a silicon optical chip and a laser box according to an embodiment of the invention
  • FIG. 3 is a schematic structural diagram of a silicon optical chip provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an optical module circuit board provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an assembly structure of a circuit board, a silicon optical chip and a lower case in an optical module provided by an embodiment of the present invention
  • 6-1 is a schematic diagram of the structure of the laser box in the embodiment of the present invention.
  • 6-2 is a schematic structural diagram of another laser box in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another laser box provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another electrical connection structure of a laser box provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a protective cover assembly structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of a protective cover protecting a gold wire provided by an embodiment of the present application.
  • FIG. 11 is a second schematic diagram of a protective cover protecting a gold wire provided by an embodiment of the present application.
  • Optical fiber communication technology as a data transmission technology in the new generation of information technology, meets the needs of modern information technology with its advantages of large capacity, high speed, and low cost. It has developed into a modern technology that supports broadband Internet, data center, cloud computing, big data, etc. Basic technology of information technology.
  • One of the core links of optical fiber communication is the conversion of photoelectric signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides. The passive characteristics of the optical transmission process can be used to realize low-cost and low-loss information transmission.
  • information processing equipment such as computers use electrical signals as data sources, which requires the mutual conversion of electrical signals and optical signals during signal transmission.
  • electrical signals are converted into optical signals to realize data transmission using optical fibers; on the other hand, optical signals are converted into electrical signals to provide electrical signal data sources for information processing equipment.
  • the optical module is used to realize the above-mentioned photoelectric conversion function in the field of optical fiber communication technology, and the mutual conversion of the optical signal and the electrical signal is also the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on the circuit board.
  • the main electrical connections include power supply, I2C signal, data transmission, and grounding.
  • This electrical connection method has become the standard method in the optical module industry.
  • the circuit board is an essential technical feature in most optical modules.
  • the packaging of the optical chip and the electrical connection between the packaging and the circuit board are the two main development directions of the optical module.
  • the packaging method of silicon-based optoelectronic chips has gradually matured in the optical module industry. It combines silicon-based integrated circuit technology and optical waveguide technology to produce chips with integrated photoelectric conversion functions and electro-optical conversion functions through a chip growth manufacturing process.
  • a chip made by this packaging method will generate a lot of heat during signal transmission and conversion. If the generated heat accumulates inside the optical module, it will cause the temperature inside the optical module to rise and affect the working efficiency of the chip.
  • the present application provides an optical module that is conducive to heat dissipation.
  • FIG. 1 is a schematic structural diagram of an optical module according to an embodiment of the present invention.
  • the optical module provided by the embodiment of the present application includes an upper casing 101, a lower casing 102, an unlocking handle 103, a circuit board 104, an optical fiber ribbon 106, and an optical fiber interface 105, and a silicon optical chip 107 is fixed on the circuit board 104 surface.
  • the upper case 101 and the lower case 102 are combined to form a cavity that encapsulates the circuit board 104, the optical fiber ribbon 106, and the optical fiber interface 105.
  • the upper case 101 and the lower case 102 are assembled to facilitate the assembly of the circuit board 104 and other devices Install into the housing. Compared with the object of the integrated structure, it can facilitate the automatic assembly of circuit boards and other devices, and also facilitate the installation of positioning components, heat dissipation, and electromagnetic shielding structures.
  • the unlocking handle 103 is located on the outer wall of the cavity/lower housing 102.
  • the unlocking handle 103 is engaged with the cage of the host computer to achieve the fixation between the optical module and the host computer; the light can be released by pulling the unlocking handle 103 The clamping relationship between the module and the host computer, so that the optical module can be withdrawn from the cage of the host computer.
  • a silicon optical chip 107 is provided on the circuit board 104, and a laser box 108 and an optical hole 1070 are provided on the surface of the silicon optical chip 107.
  • One end of the optical fiber ribbon 106 is connected to the optical fiber interface 105, and the other end is connected to the optical hole of the silicon optical chip 107.
  • FIG. 2 is a schematic diagram of an assembly structure of a silicon optical chip and a laser box according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the structure of a silicon optical chip provided by an embodiment of the present invention.
  • the upper surface of the silicon optical chip 107 is provided with a light hole 1070.
  • the light hole 1070 is used for docking with the optical fiber ribbon 106 for optical connection.
  • the light hole 1070 is divided into a light inlet hole 1071 and a light outlet hole 1072 In the figure, four light entrance holes 1071 and four light exit holes 1072 are exemplarily shown.
  • the laser box 108 is disposed on the upper surface of the silicon optical chip 107.
  • the laser light generated by the laser box 108 is incident on the silicon optical chip 107, enters the optical fiber ribbon 106 through the light exit hole 1072 of the silicon optical chip 107, and is finally transmitted to the optical fiber interface 105 to Outside the optical module.
  • the light from the outside can enter the optical module through the optical fiber interface 105, and enter the light inlet 1071 of the silicon optical chip 107 by the optical fiber ribbon 106, thereby entering the silicon optical chip 107.
  • the laser box 108 generates light with constant optical power, which does not carry data information. During optical communication, the laser box 108 generates light of a single wavelength.
  • the laser box 108 has the ability to generate multi-wavelength light, but only emits light of a single wavelength at the same time, and can emit light of different wavelengths at different times.
  • the silicon optical chip 107 After the light with constant optical power enters the silicon optical chip 107, the silicon optical chip 107 realizes signal modulation on the light, changes the optical power to load data information into the light, and sequentially passes through the light outlet 1072, the optical fiber ribbon 106 and the optical fiber interface 105 is transmitted to the outside of the optical module.
  • the silicon optical chip 107 has an optical modulation unit, and light with a constant power is transmitted to the optical modulation unit through the optical waveguide inside the silicon optical chip 107, and is modulated by the optical modulation unit and then transmitted to the optical hole 1070 through the optical waveguide inside the silicon optical chip 107.
  • the optional optical modulation unit is a Mach-Zehnder modulator.
  • the received light that enters the silicon optical chip 107 through the light entrance hole 1071 realizes the conversion of the optical signal into the electrical signal inside the silicon optical chip 107, and finally the silicon optical chip 107 transmits the electrical signal to the circuit board 104 of the optical module.
  • the silicon optical chip 107 integrates a light receiving unit to convert the optical signal into a photocurrent; the silicon optical chip 107 integrates a transimpedance amplifier unit to convert the photocurrent to a photovoltage; the silicon optical chip 107 integrates a limiting amplifier unit, Realize the conversion of optical voltage into electrical signal.
  • the laser box 108 provides the emitted light to the silicon optical chip 107
  • the optical fiber ribbon 106 provides the received light to the silicon optical chip 107
  • the circuit board 104 supplies the silicon
  • the optical chip 107 provides electricity, wherein the supplied electricity mainly includes power supply, data electrical signals, monitoring electrical signals, control electrical signals, and the like.
  • the circuit board 104 has metal traces.
  • the metal traces are distributed on the surface and inner layers of the circuit board 104.
  • the metal traces are used to realize the electrical connection between the electrical devices, the gold fingers and the electrical devices.
  • the optional electrical devices include Microprocessor MCU, power management chip (set according to the needs of the optical module), clock data recovery chip CDR (set according to the needs of the optical module), capacitors, resistors, etc., electrical devices can also be connected by wire bonding, such as circuit boards Wire bonding may be used between 104 and the silicon optical chip 107.
  • Wire bonding pads are distributed on the edge of the silicon optical chip 107, and there are wire bonding pads corresponding to the circuit board 104.
  • the connection between the silicon optical chip 107 and the circuit board 104 is achieved by wire bonding.
  • the optical module serves as a photoelectric conversion tool, and the signal it emits originates from the host computer.
  • the gold finger of the circuit board of the optical module has a signal input pin, and the signal input through the signal input pin is transmitted to the bonding pad through the metal trace of the circuit board 104, and is connected to the bonding pad of the silicon optical chip 107 by bonding
  • the silicon optical chip 107 modulates the optical signal according to the transmission signal.
  • the silicon optical chip 107 converts the received optical signal into an electrical signal, and the electrical signal is conducted to the metal trace of the circuit board 104 through the wiring, and is transmitted to the signal output pin of the circuit board 104 through the metal trace, and is transmitted to the signal output pin through the signal output pin. Host computer.
  • the silicon optical chip 107 generates a lot of heat during the photoelectric conversion process, especially when the silicon optical chip 107 is used in high-speed signal transmission scenarios, such as 40G, 100G or even 400G rate signal transmission, the heat generated is very large, and the silicon light Semiconductor materials such as chip 107 are very sensitive to heat. If the heat is not conducted out in time, the performance of the silicon optical chip 107 will be significantly affected, resulting in problems such as signal errors and optical power drop.
  • the material of the circuit board 104 is also not a good thermal conduction material.
  • the silicon optical chip 107 is directly mounted on the surface of the circuit board 104. This method is not conducive to heat conduction. The heat of the silicon optical chip 107 is absorbed by the circuit board 104 relatively little. Moreover, the efficiency of the heat dissipation of the circuit board 104 to the outside is very low, and eventually a large amount of heat is still accumulated in the silicon optical chip 107.
  • an embodiment of the present application provides an optical module, as shown in FIGS. 2-6, including an upper case 101 and a lower case The body 102, and the laser box 108 and the silicon optical chip 107 enclosed by the upper casing 101 and the lower casing 102; the laser box 108 is disposed on the surface of the silicon optical chip 107, the top surface 1081 of the laser box 108, and the The side wall 1088 and the surface of the silicon optical chip 107 form a closed cavity; the side of the top surface 1081 located in the closed cavity is provided with a laser chip 1082, and the side of the top surface 1081 located outside the closed cavity is in thermal contact with the upper casing 101; the closed cavity Including the focusing lens 1083 and the light reflecting surface 1085, the light emitted by the laser chip 1082 is directed to the light reflecting surface 1085 through the focusing lens 1083.
  • an embodiment of the present application provides another optical module, as shown in FIGS. 2-5 and 7, which includes an upper case 101 and a lower case 102, and is enclosed and enclosed by the upper case 101 and the lower case 102
  • the laser box 108 includes a top surface 1001, a side wall and a base 1090;
  • the side of the top surface 1001 facing the base 1090 is provided with a laser chip 1082, and the top surface 1001 faces away from the side of the base 1090 and the upper case
  • the body 101 is in heat dissipation contact;
  • the upper surface of the base 1090 is provided with an accommodating groove 1093 for accommodating the laser chip 1082, the focusing lens 1083 and the light reflecting surface 1085, and the light emitted by the laser chip 1082 is directed to the light reflecting surface 1085 through the focusing lens 1083;
  • the lower surface of the substrate 1090 is in contact with the surface of the silicon photochip 107.
  • the optical module provided in the embodiment of the present application is enclosed by an upper case 101 and a lower case 102 that encapsulate a laser box 108 and a silicon optical chip 107.
  • the laser box 108 is located on the surface of the silicon optical chip 107, and the laser chip 1082 is provided on the top of the laser box 108
  • the top surface is in heat dissipation contact with the upper housing 101, so that the heat generated by the laser chip 1082 is conducted to the upper housing 101 through the top surface, and contacts the surface of the silicon photochip 107 through the side wall 1088 or the base 1090, and the light emitted by the laser chip 1082 passes through
  • the focusing lens 1083 is directed toward the light reflecting surface 1085 to provide light to the silicon optical chip 107.
  • the circuit board 104 provided by the embodiment of the present application has a notch 1041 penetrating through the upper and lower surfaces of the circuit board 104, and the silicon optical chip 107 is disposed in the notch 1041.
  • the circuit board 104 has a notch 1041.
  • the notch 1041 may be disposed in the middle of the circuit board 104, and the notch 1041 is surrounded by the circuit board 104; the notch 1041 may also be disposed on the edge of the circuit board 104, that is, one side of the notch 1041 is an open mouth, and the other of the notch 1041 The side is surrounded by the circuit board 104.
  • FIG. 5 is a schematic diagram of an assembly structure of a circuit board, a silicon optical chip and a lower case in an optical module provided by an embodiment of the present invention.
  • the silicon optical chip 107 is disposed in the notch 1041, and the lower surface of the silicon optical chip 107 is in direct contact with the lower housing 102 of the optical module through the thermal conductive structure 109, which may be the silicon optical chip 107 and the lower housing 102
  • the thermally conductive substrate connected in between may also be a thermally conductive column protruding upward from the lower case 102.
  • the heat conducting structure 109 shown in FIG. 5 is a boss-type heat conducting substrate.
  • the boss carries the silicon optical chip 107, and the base of the boss supports the circuit board 104.
  • the lower housing 102 shown in FIG. 5 has thermally conductive protrusions 1021 that are in contact with the thermally conductive structure 109.
  • a thermally conductive adhesive or thermally conductive foam may be placed between the two.
  • the silicon optical chip 107 achieves thermal conduction contact with the lower case 102 through the thermally conductive structure 109, and can quickly conduct heat generated during operation to the lower case 102.
  • the silicon optical chip 107 can be in thermal contact with the lower case 102 located on the lower surface of the circuit board 104 through the heat conducting structure 109 to achieve thermal conduction.
  • the contact between the silicon optical chip 107 and the thermal conductive structure 109 may be direct contact, or indirect thermal contact through adhesives such as thermal conductive adhesive.
  • the silicon optical chip 107 may be partially located in the notch of the circuit board. For example, a part of the silicon optical chip 107 is located in the notch, and the other part protrudes from the upper or lower surface of the circuit board 104. The silicon optical chip 107 is in contact with the heat conducting structure 109 through the notch of the circuit board 104 to realize heat conduction.
  • the silicon optical chip 107 is wire-connected to the upper surface of the circuit board 104.
  • the upper surface of the silicon optical chip 107 is at least partially flush with the upper surface of the circuit board 104, and the silicon optical chip 107 and the circuit on the circuit board 104 are connected by wire bonding.
  • at least a portion of the upper surface of the silicon optical chip 107 that is flush with the upper surface of the circuit board 104 and the circuit on the circuit board 104 are connected by wire bonding, so that the wire bonding length can be shortened as much as possible to improve signal stability.
  • the heat generated by the silicon optical chip 107 can be dissipated through the lower housing 102, and in the optical module, the other source of heat is the laser box 108, and the main heating element in the laser box 108 is the laser
  • the embodiment of the present application provides a heat dissipation design of the laser box 108 based on the heat dissipation design of the silicon optical chip 107.
  • the laser box 108 (Laser Box) is located on the upper surface of the silicon light chip 107.
  • the laser box 108 has optical devices such as a laser chip 1082 (which may be a laser diode), a focusing lens 1083, an isolator 1084, and a light reflecting surface 1085.
  • the light emitted by the laser chip 1082 passes through the focusing lens 1083 and the isolator 1084 to be reflected by the light In the surface 1085, the light reflecting surface 1085 reflects the light into the silicon optical chip 107.
  • the laser chip 1082 During the operation of the laser chip 1082, a large amount of heat is also generated.
  • the heat generated by the laser chip 1082 is not conducive to diffusion through the silicon light chip 107. Due to the limited heat dissipation efficiency of the silicon optical chip 107, it is difficult to increase the heat dissipation efficiency of the silicon optical chip 107 significantly by conventional structural design or material changes. The diffusion of heat through the silicon optical chip 107 will increase the heat dissipation burden of the silicon optical chip 107.
  • the heat of the laser box 108 can be diffused through the silicon optical chip 107, but for high-speed signal transmission products, the heat of the laser box 108 is diffused through the silicon optical chip 107
  • the design is not desirable.
  • the laser chip 1082 is the main heat dissipating element in the laser box 108.
  • the ambient temperature where the optical module is located is high, the heat of the laser chip 1082 is difficult to spread out, which affects the output power of the laser chip 1082.
  • the output power of the laser chip 1082 at 75°C will decrease by 2 to 3 dB compared to the output power at 25°C. For this reason, it is usually necessary to increase the input current to maintain the stability of the laser chip 1082 under high temperature conditions.
  • optical modules usually have strict power consumption limits (generally within 3.5W), and it is easy to exceed the specified power consumption by increasing the input current.
  • Figure 6-1 is a schematic diagram of the structure of the laser box in the embodiment of the present invention.
  • the laser box 108 provided by the embodiment of the present invention includes a top surface 1081, a side wall 1088, an electrical connection plate, a sealing member 1087, a laser chip 1082, a focusing lens 1083, an isolator 1084, and a light reflecting surface 1085.
  • the blocking member 1087 is located between the top surface 1081 and the surface of the silicon optical chip 107, and clamps the electrical connection plate together with the top surface 1081; the electrical connection plate may be a metallized ceramic 1086, and a via 1089 may be provided therein.
  • the main function of the laser box 108 is to provide light to the silicon light chip 107. The provided light comes from the laser chip 1082, and the laser box 108 provides a packaging and electrical connection structure for the laser chip 1082.
  • the laser box 108 encapsulating the laser chip 1082 needs to meet the airtight sealing requirements.
  • the laser box 108 includes a top surface 1081 and a side wall 1088.
  • the side wall 1088 forms a cavity with a bottom opening around the top surface 1081, and the laser chip 1082 is disposed in the cavity.
  • a feasible sealing method is that the laser box 108 is placed on the surface of the silicon optical chip 107, and the bottom surface of the laser box 108 is filled with the surface of the silicon optical chip 107 to form a sealed cavity together with the laser box 108 body.
  • glue can be used for fixing the laser box 108 and the silicon optical chip 107. Glue is dispensed on the outside of the side surface of the laser box 108. After the glue is solidified, glue is attached to the outside of the side surface of the laser box 108, and glue may be attached to the bottom surface of the side wall facing the silicon light chip 107.
  • the light emitted by the laser chip 1082 is reflected by the light reflecting surface 1085 and is directed to the surface of the silicon optical chip 107.
  • the position where the light is received on the surface of the silicon optical chip 107 cannot have glue, because the glue is not outside the area where the side wall contacts the silicon optical chip 107.
  • the pressed state adheres to the surface of the silicon optical chip 107.
  • the glue is solidified, a convex structure with an uneven thickness will be formed when the glue is solidified. Different positions of the convex structure will reflect and refract light to different degrees, reducing the optical power entering the silicon optical chip 107.
  • the laser chip 1082 is fixed on the top surface 1081 of the laser box 108.
  • the focusing lens 1083 and the isolator 1084 are also fixed on the top surface 1081 of the laser box 108.
  • the light reflecting surface 1085 may be an independent prism fixed on the top surface 1081 or the top surface 1081 of the laser box 108 Bevel. Therefore, the heat generated by the laser chip 1082 can be diffused upward through the top surface 1081 of the laser box 108, and the silicon optical chip 107 is located below the top surface 1081 of the laser box 108.
  • the main thermal conduction path of the laser chip 1082 and the silicon optical chip 107 The main heat conduction paths are separated from each other, the heat of the laser chip 1082 is conducted upward, and the heat of the silicon optical chip 107 is conducted downward. This not only expands the area of thermal conduction, but also relieves the heat conduction burden of the silicon optical chip 107 due to the heat of the laser box 108.
  • the upper housing 101 of the optical module may be provided with a thermally conductive column protruding downward.
  • the thermally conductive column is in contact with the top surface of the laser box 108.
  • the heat generated by the laser chip 1082 is transmitted to the upper housing 101 through the top surface 1081 of the laser box 108.
  • the casing 101 diffuses out.
  • the laser box 108 includes a base 1090, and a cavity for sealing the laser chip 1082 is formed by the base 1090, the side walls, and the top surface 1001.
  • the surface of the substrate 1090 and the silicon light chip 107 is fixed by glue, and the substrate 1090 applies pressure to the glue to make the thickness of the glue uniform after solidification, and does not affect the power of light passing through the glue.
  • the laser chip 1082 is fixed on the top surface 1001 of the laser box 108.
  • the focusing lens 1083 and the isolator 1084 are also fixed on the top surface 1001 of the laser box 108.
  • the light reflecting surface 1085 may be an independent prism fixed on the top surface 1001, or may be a bevel design on the top surface of the laser box 108. Therefore, the heat generated by the laser chip 1082 can be diffused upward through the top surface 1001 of the laser box 108, and the silicon optical chip 107 is located below the top surface 1001 of the laser box 108.
  • the main thermal conduction path of the laser chip 1082 and the silicon optical chip 107 The main heat conduction paths are separated from each other, the heat of the laser chip 1082 is conducted upward, and the heat of the silicon optical chip 107 is conducted downward. This not only expands the area of thermal conduction, but also relieves the heat conduction burden of the silicon optical chip 107 due to the heat of the laser box 108.
  • the upper housing 101 of the optical module may be provided with a thermally conductive column protruding downward. The thermally conductive column is in contact with the top surface of the laser box 108. The heat generated by the laser chip 1082 is transmitted to the upper housing 101 through the top surface 1001 of the laser box 108. It diffuses out through the upper casing 101.
  • the wire bonding process can only achieve the connection of two connection surfaces with the same orientation.
  • the laser chip 1082 is fixed on the top surface of the laser box 108, and the bonding surface of the laser chip 1082 is facing downward, while the connecting surface outside the laser box 108 is facing upward.
  • the requirements of the bonding technology make it difficult to achieve this opposite orientation relationship.
  • the optical module provided by the embodiment of the present application further provides an external electrical connection structure of the laser box.
  • the laser chip 1082 is mounted on the surface of the metallized ceramic 1086, and the metallized ceramic 1086 is fixed on the top surface, thereby realizing the fixing of the laser chip 1082 and the top surface of the laser box 108.
  • the metallized ceramic 1086 is formed by laying metal on the surface of the ceramic to form a circuit and an electrical connection area.
  • the metallized ceramic 1086 has a metal area that is attached to the cathode of the bottom surface of the laser chip 1082 to realize the cathode grounding of the laser chip 1082.
  • the metallized ceramic 1086 also has A pad connected to the anode surface of the laser chip 1082, and a circuit on the surface of the metallized ceramic 1086 is connected to the pad, so as to extend the electrical connection point of the anode of the laser chip 1082 to the outside of the laser box 108.
  • an embodiment of the present application provides an optical module, including an upper casing 101, a lower casing 102, an electrical connection board, a laser chip 1082, a circuit board 104, and an upper casing 101
  • the laser box 108, the silicon optical chip 107 and the circuit board 104 are enclosed with the lower case 102; the laser box 108 is disposed on the surface of the silicon optical chip 107, the top surface 1081 of the laser box 108, the side wall 1088 of the laser box 108 and the silicon
  • a cavity is formed on the surface of the optical chip 107; an electrical connection plate extends into the cavity; the electrical connection plate is provided with a laser chip 1082 toward the surface of the silicon optical chip 107, and the surface of the electrical connection plate facing away from the silicon optical chip 107 is mounted on the top surface 1081;
  • the end of the electrical connection plate located outside the cavity is electrically connected to the circuit board 104.
  • the electrical connection between the laser chip and the electrical connection board is realized, and the power supply of the laser chip is guided to the outside of the cavity through the electrical connection board.
  • the end of the electrical connection board located outside the cavity is electrically connected to the circuit board, so that the circuit board supplies power to the laser chip.
  • the electrical connection board may be a metallized ceramic 1086.
  • the metallized ceramic 1086 extends from the outside of the laser box 108 into the inside of the laser box 108.
  • the laser chip 1082 is mounted on the surface of the metallized ceramic 1086.
  • the anode of the laser chip 1082 is wired. It is connected to a circuit on the surface of the metallized ceramic 1086, which extends to the outside of the laser box 108.
  • the circuit extends from the bottom surface of the metallized ceramic 1086 along the side to the top surface, and the pads on the top surface of the metallized ceramic 1086 are electrically connected to the circuit board 104 by wire bonding; that is, The surface of the electrical connection board facing the silicon optical chip 107 is provided with a circuit; the surface of the electrical connection board facing away from the silicon optical chip 107 and located outside the cavity is provided with a pad; in addition, it can also be metallized ceramic 1086 A via hole is provided at the end outside the laser box 108 to conduct the circuit on the bottom surface to the top surface. The pad on the top surface of the metallized ceramic 1086 is electrically connected to the circuit board by wire bonding.
  • the laser chip 1082 is mounted on the surface of the metallized ceramic 1086, the metallized ceramic 1086 is located inside the laser box 108, and the other metallized ceramic 1086 extends from the outside of the laser box 108 Inside the laser box 108, and the metallized ceramic 1086 with the laser chip 1082 fixed by wire bonding; at the end of the metallized ceramic 1086 located outside the laser box 108, the circuit is formed by the bottom surface of the metallized ceramic 1086 along the side (the side can be electrically connected Layer 1094) extends to the top surface, and the pad on the top surface of the metallized ceramic 1086 is electrically connected to the circuit board 104 by wire bonding; that is, the electrical connection board is provided with a circuit toward the surface of the silicon optical chip 107; the electrical connection board back A pad is provided toward the surface of the silicon optical chip 107 outside the cavity.
  • a via hole may be provided at the end of the metallized ceramic 1086 outside the laser box 108 to conduct the circuit on the bottom surface to the top surface, and the pad on the top surface of the metallized ceramic 1086 and the circuit board are electrically connected by wire bonding.
  • connection methods are only two exemplary connection methods, and other feasible connection methods are not described here one by one.
  • FIG. 8 is a schematic diagram of another laser box electrical connection structure provided by an embodiment of the present invention.
  • the top surface 1001 of the laser box is in contact with the upper housing 101 of the optical module.
  • the laser box 108 is Thermal conductive glue may also be provided between the upper housing 101.
  • the thermally conductive glue can improve the thermal conductivity of the laser box 108 and facilitate the heat transfer of the laser box 108 to the upper casing 101.
  • the thermal conductive adhesive usually has elasticity, the connection strength between the upper casing 101 and the laser box 108 can also be enhanced.
  • the laser chip 1082 in the laser box 108 is fixed on the top surface 1001, and the heat generated by the laser chip 1082 can be conducted to the top surface 1001. Since there are no other strong heat dissipation elements above the top surface 1001, it is beneficial to improve the heat dissipation effect of the laser chip 1082.
  • the accommodating groove 1093 provided in the base 1090 makes the contact area between the base 1090 and the top surface 1001 smaller, which is beneficial to reduce the heat dissipation of the silicon optical chip 107 upward, and relieve the heat dissipation pressure caused by the silicon optical chip 107 on the laser chip 1082. Further improve the heat dissipation effect of the laser chip 1082.
  • the traces of the laser chip 1082 can be directly electrically connected to other functional components through the pad pins on the substrate 1090.
  • the laser chip 1082 is disposed on the top surface 1001. Therefore, the corresponding pad pins need to be disposed on the top surface 1001, and the laser chip 1082 is electrically connected to the corresponding wiring through the connection between the pad pins.
  • FIG. 8 is a schematic diagram of a laser box according to an embodiment of the present application.
  • the first pad pin 1092 is provided on the top surface 1001
  • the second pin 1091 is provided on the base 1090
  • the laser chip 1082 is electrically connected to the first pad pin 1092
  • the first pad pin Bit 1092 is electrically connected to the second pad pin 1091
  • the second pad pin 1091 is electrically connected to the PCB pin by wire bonding.
  • the first pad pin 1092 and the second pad pin 1091 can be electrically connected by eutectic welding.
  • the first pad pin 1092 and the second pad pin 1091 are provided at the assembly junction of the top surface 1001 and the base 1090, so that when the top surface 1001 and the base 1090 are assembled, the first pad pin 1092 and the second pad pin 1091 are electrically connected Connected to turn on the laser chip 1082 and other functional components.
  • the silicon optical chip 107 is located on the surface of the circuit board 104, and the edge pads of the silicon optical chip 107 are connected to the pads on the surface of the circuit board 104 by wire bonding.
  • the bonding wires may be metal wires or wires made of other materials, which are used for signal transmission between the silicon optical chip 107 and the circuit board 104. Due to the large number of edge pads of the silicon optical chip 107, the number of bonding wires is large; and the small size of the silicon optical chip 107, the edge pads are densely arranged, so the bonding wires are also densely arranged and the diameter of the bonding wires is very slim, making The thread is very soft. The problem with this is that, without external protection during assembly or use, these bonding wires are extremely vulnerable to damage. Therefore, in this embodiment of the present application, the protective cover 1010 is used to protect the wire-breaker from damage caused by crushing or touching it.
  • the protective cover 1010 is a hard shell structure. Referring to FIGS. 9 and 10, the shell structure includes an inner surface 1011 and an outer surface 1012. The protective cover 1010 is fixed on the circuit board 104, the inner surface 1011 faces the circuit board 104, and the inner surface 1011 covers the area 1073 where the silicon optical chip 107 is bonded. By wrapping the wire bonding in the internal space of the shell structure, the wire bonding is protected.
  • the inner surface 1011 of the protective cover 1010 can further cover the edge pads of the silicon optical chip 107 and the pads on the surface of the circuit board 104. Therefore, the protective cover 1010 has no contact with the edge pads of the silicon optical chip 107 and the pads on the surface of the circuit board 104. Therefore, when the protective cover 1010 is made of metal, the signal between the pads will not be accidentally conducted. Moreover, the internal space of the protective cover 1010 is enlarged, and the difficulty of assembling the protective cover 1010 is reduced.
  • the inner surface 1011 of the protective cover 1010 may have no contact with the area 1073 where the wire is punched, so as to reserve space for the deformation of the protective cover 1010. In this way, when the outer surface 1012 of the protective cover 1010 is deformed by the external pressure, the inner surface 1011 of the protective cover 1010 still does not touch the threading, further improving the protective effect of the threading.
  • the optical module provided by the embodiment of the present application covers the protective cover 1010 outside the area where the wire bonding is located.
  • the protective cover 1010 is a shell structure and can protect the wire bonding in multiple directions. Compared with the rubber coating on the wire bonding, its hardness is higher. Even if the protective cover 1010 is deformed by extrusion, it can still protect the wire bonding area from damage, thereby protecting the wire bonding in the optical module .
  • the protective cover 1010 may include a support portion 1013 and a cover portion 1014.
  • the support portion 1013 is in contact with the circuit board 104.
  • the inner surface of the cover portion 1014 covers the area where the wire is bonded.
  • the wire height of the bonding wire may be one hundred to several hundred micrometers higher than that of the circuit board 104 or the pad of the silicon optical chip 107, the length of the bonding wire may be several hundred to several thousand micrometers. Therefore, the height of the support portion 1013 is greater than the wire height of the wire, and the width of the covering portion 1014 is greater than the long span of the wire.
  • the corresponding area of the inner wall of the protective cover 1010 is a hollow structure, so that sufficient space can be left without hitting the area 1073 where the wire is punched.
  • the protective cover 1010 may further include a positioning hole 1015.
  • the positioning hole 1015 is used to install the protective cover 1010 to a predetermined position on the circuit board 104 through a jig.
  • the number of positioning holes 1015 is greater than or equal to two, in order to determine the position and direction of the protective cover 1010.
  • the embodiment of the present application does not limit the position of the positioning hole 1015, for example, it may be symmetrically arranged along the central axis of the protective cover 1010.
  • the positioning hole 1015 may be located on the covering portion 1014 or the supporting portion 1013 as shown in FIG. 3.
  • the protective cover 1010 is installed into the jig through the protective cover 1010 and the positioning holes or pins on the jig, and then the jig is mounted on the circuit board 104 through the jig and the positioning pin/hole on the circuit board 104.
  • the protective cover 1010 can be attached to the circuit board 104 and cover the area 1073 where the bonding wire is located.
  • Glue (such as epoxy glue) can be fixed on the outside of the protective cover 1010 where it contacts the circuit board 104.
  • the protective cover 1010 remains on the circuit board 104 and covers the area 1073 where the bonding wire is located.
  • the fixing glue may be cured by ultraviolet (UV) curing or baking curing, and finally the fixing of the protective cover 1010 is completed.
  • the optical module is enclosed in the housing, a large amount of heat generated by the silicon optical chip 107 during operation is limited in the housing, which is not conducive to heat dissipation. Therefore, at the opening 1016, the non-bonded area of the silicon optical chip 107 can be brought into contact with the optical module housing through the thermal conductive adhesive, so as to dissipate the silicon optical chip 107 through the optical module housing.
  • the protective cover 1010 may be a transparent material or a partially transparent material in order to observe the protected wire bonding. On the one hand, it is possible to avoid touching the wire bonding during assembly. On the other hand, the protective cover 1010 may not be removed during use to observe the internal protection. Whether the wire is damaged.
  • the protective cover 1010 may also be a polymer material, a metal material (such as copper), or other hard materials to increase the strength of the protective cover 1010.
  • the protective cover 1010 is in contact with the circuit board 104. Therefore, it is possible to isolate the contact damage of the foreign body to the wire.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)

Abstract

一种光模块,涉及光通信领域。光模块包括上壳体(101)和下壳体(102)合围封装的激光盒(108)和硅光芯片(107),激光盒(108)位于硅光芯片(107)表面,激光芯片(1082)设置于激光盒(108)的顶面(1081),顶面(1081)与上壳体(101)散热接触,便于激光芯片(1082)产生的热量通过顶面(1081)传导至上壳体(101),通过侧壁(1088)或基底(1090)与硅光芯片(107)表面接触,使激光芯片(1082)产生的热量不通过硅光芯片(107)散出去,激光芯片(1082)发出的光经聚焦透镜(1083)射向光反射面(1085),以向硅光芯片(107)提供光。

Description

一种光模块
本申请要求在2018年12月20日提交中国专利局、申请号为201811592719.3、发明名称为“一种光模块”,以及2018年12月20日提交中国专利局、申请号为201811563574.4发明名称为“一种光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信领域,尤其涉及一种光模块。
背景技术
采用硅光芯片实现光电转换功能目前已经成为高速光模块采用的一种主流方案。在硅光光模块中,硅光芯片设置在电路板表面,通过打线与电路板实现电连接;硅光芯片通过光纤带与光模块的光接口连接,实现光信号进出硅光芯片。由于硅光芯片采用的硅材料不是理想的激光芯片发光材料,不能在硅光芯片制作过程集成发光单元,所以硅光芯片需要由外部光源提供光。一种已有的提供光源方式为激光盒Laser Box,将激光芯片封装在一个盒子中,将激光芯片发出的光引导至硅光芯片。这种提供光源的方式,激光盒放置在硅光芯片的表面,然而激光盒以及硅光芯片在工作过程中会产生大量的热,电路板的导热性能很弱,无法满足散热要求。
发明内容
本申请实施例提供一种光模块,满足了硅光芯片及激光盒的散热需求。
为了实现上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种光模块,包括上壳体、下壳体,以及由上壳体和下壳体合围封装的激光盒和硅光芯片;激光盒设置于硅光芯片表面,激光盒的顶面、激光盒的侧壁以及硅光芯片表面形成封闭腔体;顶面位于封闭腔体内的侧面设置有激光芯片,顶面位于封闭腔体外的侧面与上壳体散热接触;封闭腔体中包括聚焦透镜以及光反射面,激光芯片发出的光经聚焦透镜射向光反射面。
可选的,还包括电路板及导热衬底,所述电路板具有贯通电路板上下表面的缺口,所述硅光芯片设置于所述缺口中,所述导热衬底设置在所述硅光芯片及所述下壳体之间。
可选的,所述导热衬底为凸台形,所述导热衬底的凸起处设置硅光芯片,所述导热衬底的凹陷处承托所述电路板。
可选的,所述激光盒还包括隔离器,所述隔离器、所述聚焦透镜及所述光反射面分别设置于所述顶面,所述隔离器位于所述光反射面及所述聚焦透镜之间。
第二方面,本申请实施例提供一种光模块,包括上壳体、下壳体,以及由上壳体和下壳体合围封装的激光盒和硅光芯片;激光盒包括顶面、侧壁及基底;顶面朝向基底的侧面设置有激光芯片,顶面背向基底的侧面与上壳体散热接触;
基底的上表面设置有容纳凹槽,用于容纳激光芯片、聚焦透镜及光反射面,激光芯片 发出的光经聚焦透镜射向光反射面;基底的下表面与硅光芯片表面接触。
可选的,还包括电路板及导热衬底,所述电路板具有贯通电路板上下表面的缺口,所述硅光芯片设置于所述缺口中,所述导热衬底设置在所述硅光芯片及所述下壳体之间。
可选的,所述导热衬底为凸台形,所述导热衬底的凸起处设置硅光芯片,所述导热衬底的凹陷处承托所述电路板。
可选的,所述激光盒还包括隔离器,所述隔离器、所述聚焦透镜及所述光反射面分别设置于所述顶面,所述隔离器位于所述光反射面及所述聚焦透镜之间。
本申请实施例提供的光模块,由上壳体和下壳体合围封装的激光盒和硅光芯片,激光盒位于硅光芯片表面,激光芯片设置激光盒的顶面,顶面与上壳体散热接触,便于激光芯片产生的热量通过顶面传导至上壳体,通过侧壁或基底与硅光芯片表面接触,使激光芯片产生的热量不通过硅光芯片散出去,激光芯片发出的光经聚焦透镜射向光反射面,以向硅光芯片提供光。
第三方面,本申请实施例提供一种光模块,包括上壳体、下壳体、电连接板、激光芯片、电路板、以及由上壳体和下壳体合围封装的激光盒、硅光芯片及电路板;
激光盒设置于硅光芯片表面,激光盒的顶面、激光盒的侧壁以及硅光芯片表面形成腔体;电连接板伸入腔体中;电连接板朝向硅光芯片的表面设置激光芯片,电连接板背向硅光芯片的表面贴装于顶面;电连接板位于腔体外的端部与电路板电连接。
可选的,所述电连接板朝向所述硅光芯片的表面设置有电路;所述电连接板背向所述硅光芯片、位于所述腔体外的表面,设置有焊盘;所述电路与所述焊盘通过过孔实现电连接,所述焊盘与所述电路板电连接。
可选的,所述电连接板朝向所述硅光芯片的表面设置有电路;所述电连接板背向所述硅光芯片、位于所述腔体外的表面,设置有焊盘;所述电连接板位于所述腔体外的端部侧面具有电连接层,以连接所述电路及所述焊盘;所述焊盘与所述电路板电连接。
可选的,还包括封堵件,位于所述顶面及所述硅光芯片表面之间,与所述顶面一起夹持所述电连接板。
可选的,所述硅光芯片设置于所述电路板。
可选的,所述焊盘与所述电路板通过打线或柔性板电连接。
本申请实施例提供的光模块,上壳体和下壳体合围封装的激光盒、硅光芯片及电路板,激光盒的顶面、激光盒的侧壁以及硅光芯片表面形成腔体,伸入腔体中的电连接板朝向硅光芯片的表面设置激光芯片,电连接板背向硅光芯片的表面贴装于顶面,实现了将激光芯片与电连接板电连接,通过电连接板将激光芯片的供电引导至腔体外,电连接板位于腔体外的端部与电路板电连接,从而实现了电路板为激光芯片供电。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种光模块结构示意图;
图2为本发明实施例硅光芯片及激光盒装配结构示意图;
图3为本发明实施例提供的硅光芯片结构示意图;
图4为本发明实施例提供的光模块电路板结构示意图;
图5为本发明实施例提供的光模块中电路板、硅光芯片及下壳体装配结构示意图;
图6-1为本发明实施例中激光盒结构示意图;
图6-2为本发明实施例中另一种激光盒结构示意图;
图7为本发明实施例提供的另一种激光盒结构示意图;
图8为本发明实施例提供的另一种激光盒电连接结构示意图;
图9为本申请的实施例提供的一种保护罩装配结构示意图;
图10为本申请的实施例提供的一种保护罩保护金线的示意图一;
图11为本申请的实施例提供的一种保护罩保护金线的示意图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
光纤通信技术作为新一代信息技术中的数据传输技术,以其大容量、高速率、低成本等优势契合现代信息技术的需要,已经发展成为支持宽带互联网、数据中心、云计算、大数据等现代信息技术的基础技术。
光纤通信的核心环节之一是光电信号的转换。光纤通信使用携带信息的光信号在光纤/光波导中传输,利用光传输过程中的无源特性可以实现低成本低损耗的信息传输。而计算机等信息处理设备以电信号为数据源,这就需要在信号传输过程中实现电信号与光信号的相互转换。一方面,通过电信号转化为光信号,实现利用光纤进行数据传输,另一方面,通过光信号转化为电信号,实现为信息处理设备提供电信号数据源。
光模块用于在光纤通信技术领域中实现上述光电转换功能,光信号与电信号的相互转换也是光模块的核心功能。光模块通过电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、传输数据信号以及接地等,这种电连接方式已经成为光模块行业的标准方式,以此为基础,电路板是大部分光模块中必备的技术特征。在此基础上,光芯片的封装、封装与电路板的电连接是光模块的两个主要研发方向。
硅基光电芯片的封装方式在光模块行业逐渐成熟,其将硅基集成电路技术与光波导技术结合到一起,以芯片生长制作工艺制作出集成光电转换功能及电光转换功能的芯片。但是,采用此封装方式制成的芯片在信号的传输和转化过程中,会产生大量的热量,如果产生的热量在光模块内部积累,会导致光模块内部的温度上升,影响芯片的工作效率。为了对芯片产生的热量进行散发,避免光模块内部的温度过高,本申请提供一种有利于散热的光模块。
图1为本发明实施例提供的一种光模块结构示意图。如图所示,本申请实施例提供的光模块包括上壳体101、下壳体102、解锁手柄103、电路板104、光纤带106及光纤接口105,硅光芯片107固定在电路板104的表面。
上壳体101及下壳体102结合,可形成封装电路板104、光纤带106及光纤接口105 的腔体,采用上壳体101、下壳体102装配的方式,便于将电路板104等器件安装到壳体中。相对于一体结构的客体,可便于实现电路板等器件的自动化装配,也便于安装定位部件、散热以及电磁屏蔽结构。
解锁手柄103位于腔体/下壳体102的外壁,光模块插入上位机时解锁手柄103与上位机的笼子卡合,实现光模块与上位机之间的固定;通过拉动解锁手柄103可以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板104上设置有硅光芯片107,硅光芯片107的表面设置有激光盒108及光孔1070。
光纤带106的一端与光纤接口105连接,另一端与硅光芯片107的光孔连接,光孔有多个,根据光进出的方向不同,可以分为进光孔1071及出光孔1072。
光模块在进行光通信时,可以通过内部的硅光芯片和激光盒生成和转化光信号,以发送或接收光信号。图2为本发明实施例硅光芯片及激光盒装配结构示意图,图3为本发明实施例提供的硅光芯片结构示意图。如图2、图3所示,硅光芯片107的上表面设置有光孔1070,光孔1070用于与光纤带106对接以实现光连接,光孔1070分为进光孔1071及出光孔1072,图中示例性的展示了4个进光孔1071及4个出光孔1072。激光盒108设置在硅光芯片107的上表面,激光盒108产生的激光射入硅光芯片107中,通过硅光芯片107的出光孔1072射入光纤带106中,最终通过光纤接口105传输至光模块外部。来自外部的光可通过光纤接口105进入光模块,由光纤带106射入硅光芯片107的进光孔1071,从而进入硅光芯片107中。
在某些实施例中,激光盒108产生光功率恒定的光,光功率恒定的光不携带数据信息。在进行光通信时,激光盒108产生单一波长的光。激光盒108具有产生多波长光的能力,但同一时刻仅发出单一波长的光,不同时刻可以发出不同波长的光。
光功率恒定的光进入硅光芯片107后,由硅光芯片107对光实现信号调制,通过对光功率的改变以将数据信息加载到光中,依次通过出光孔1072、光纤带106及光纤接口105传至光模块外部。
硅光芯片107中具有光调制单元,功率恒定的光经硅光芯片107内部的光波导传输至光调制单元,由光调制单元调制后经硅光芯片107内部的光波导传输至光孔1070,可选的光调制单元为马赫-曾德尔调制器。
由进光孔1071进入硅光芯片107的接收光,在硅光芯片107内部实现光信号转化为电信号,最终由硅光芯片107将电信号传输至光模块的电路板104。
硅光芯片107内部集成光接收单元,实现将光信号转换为光电流;硅光芯片107内部集成跨阻放大单元,实现将光电流转化为光电压;硅光芯片107内部集成限幅放大单元,实现将光电压转换为电信号。
为实现上述光电转换功能,需要向硅光芯片107提供光及电,例如由激光盒108向硅光芯片107提供发射光,由光纤带106向硅光芯片107提供接收光,电路板104向硅光芯片107提供电,其中,所提供的电主要包括供电、数据电信号、监测电信号、控制电信号等。
电路板104中具有金属走线,金属走线分布在电路板104的表层及内层,通过金属走线实现电器件之间、金手指与电器件之间的电连接,可选的电器件包括微处理器MCU、电源管理芯片(根据光模块的需要设置)、时钟数据恢复芯片CDR(根据光模块的需要设置)、 电容、电阻等,电器件之间还可以通过打线连接,如电路板104与硅光芯片107之间可以采用打线连接。
硅光芯片107的边缘分布有打线焊盘,电路板104与之对应有打线焊盘,通过打线连接的方式,实现硅光芯片107与电路板104之间的连接。
光模块作为光电转换工具,其发射出的信号源自上位机。光模块的电路板金手指具有信号输入引脚,通过信号输入引脚输入的信号通过电路板104的金属走线传输至打线焊盘,通过打线与硅光芯片107的打线焊盘连接,实现发射信号输出值硅光芯片107中,由硅光芯片107根据发射信号调制光信号。
硅光芯片107将接收光信号转换成电信号,电信号通过打线传导至电路板104的金属走线,通过金属走线传导至电路板104的信号输出引脚,通过信号输出引脚传递给上位机。硅光芯片107在进行光电转换过程会产生大量的热量,尤其硅光芯片107应用于高速信号传输场景,例如用于40G、100G甚至400G速率信号的传输时,产生的热量很大,而且硅光芯片107这类半导体材料对热很敏感,若不及时将热量传导出去,硅光芯片107的性能会受到明显的影响,导致出现信号误码、光功率跌落等问题。电路板104的材质也不是良好的热传导材料,一般将硅光芯片107直接贴装在电路板104表面这种方式不利于热量的传导,硅光芯片107的热量被电路板104吸收的比较少,而且电路板104向外散热的效率很低,最终仍有大量的热量聚集在硅光芯片107中。
为了将硅光芯片107的热量快速散出去,提高硅光芯片107的散热效率,一方面,本申请实施例提供一种光模块,如图2-6所示,包括上壳体101、下壳体102,以及由上壳体101和下壳体102合围封装的激光盒108和硅光芯片107;激光盒108设置于硅光芯片107的表面,激光盒108的顶面1081、激光盒108的侧壁1088以及硅光芯片107表面形成封闭腔体;顶面1081位于封闭腔体内的侧面设置有激光芯片1082,顶面1081位于封闭腔体外的侧面与上壳体101散热接触;封闭腔体中包括聚焦透镜1083以及光反射面1085,激光芯片1082发出的光经聚焦透镜1083射向光反射面1085。
另一方面,本申请实施例提供另一种光模块,如图2-5以及图7所示,包括上壳体101、下壳体102,以及由上壳体101和下壳体102合围封装的激光盒108和硅光芯片107;激光盒108包括顶面1001、侧壁及基底1090;顶面1001朝向基底1090的侧面设置有激光芯片1082,顶面1001背向基底1090的侧面与上壳体101散热接触;基底1090的上表面设置有容纳凹槽1093,用于容纳激光芯片1082、聚焦透镜1083及光反射面1085,激光芯片1082发出的光经聚焦透镜1083射向光反射面1085;基底1090的下表面与硅光芯片107表面接触。
本申请实施例提供的光模块,由上壳体101和下壳体102合围封装的激光盒108和硅光芯片107,激光盒108位于硅光芯片107表面,激光芯片1082设置激光盒108的顶面,顶面与上壳体101散热接触,便于激光芯片1082产生的热量通过顶面传导至上壳体101,通过侧壁1088或基底1090与硅光芯片107表面接触,激光芯片1082发出的光经聚焦透镜1083射向光反射面1085,以向硅光芯片107提供光。
本申请实施例提供的电路板104上,具有贯通电路板104上下表面的缺口1041,硅光芯片107设置在缺口1041中。
图4为本发明实施例提供的光模块电路板结构示意图。如图4所示,电路板104具有 缺口1041。该缺口1041可以设置在电路板104的中部,缺口1041的周围被电路板104围绕;该缺口1041也可以设置在电路板104的边缘,即缺口1041的一侧为敞开的口,缺口1041的其他侧被电路板104围绕。
图5为本发明实施例提供的光模块中电路板、硅光芯片及下壳体装配结构示意图。如图5所示,硅光芯片107设置在缺口1041中,硅光芯片107的下表面通过导热结构109与光模块的下壳体102直接接触,可以是硅光芯片107与下壳体102之间垫接的导热衬底,也可以是下壳体102向上凸出的导热柱。
图5示出的导热结构109为一种凸台型的导热衬底,凸台承载硅光芯片107,凸台的基座承托电路板104。图5示出的下壳体102具有导热凸起1021,导热凸起1021与导热结构109接触,当然也可以在两者中间垫设导热胶或导热泡棉。硅光芯片107通过导热结构109与下壳体102实现热传导接触,可以将工作时产生的热量快速传导至下壳体102。
由于设置电路板104缺口,硅光芯片107可以与位于电路板104下表面的下壳体102通过导热结构109热接触,实现热传导。硅光芯片107与导热结构109的接触,可以是直接接触,也可以是通过导热胶等粘接等形式间接导热接触。
在某些实施例中,硅光芯片107可以部分位于电路板的缺口中。例如硅光芯片107有一部分位于缺口中,另一部分突出于电路板104的上表面或者下表面。硅光芯片107通过电路板104的缺口与导热结构109接触,实现热传导。
硅光芯片107与电路板104的上表面进行打线连接。在某些实施例中,如图5所示,硅光芯片107的上表面至少部分与电路板104上表面平齐,硅光芯片107与电路板104上的电路通过打线连接。特别的,硅光芯片107的至少部分与电路板104上表面平齐的上表面与7与电路板104上的电路通过打线连接,可以尽量缩短打线长度,提高信号的稳定性。
图5所示的实现方式中,硅光芯片107产生的热量可以通过下壳体102进行散发,而光模块中,热量的另一个来源为激光盒108,激光盒108中的主要发热元件为激光芯片1082,因此为了获得更好的散热效果,本申请实施例在硅光芯片107散热设计的基础上,提供了一种激光盒108的散热设计。
激光盒108(Laser Box)位于硅光芯片107的上表面。激光盒108内具有激光芯片1082(可以是激光二极管)、聚焦透镜1083、隔离器1084及光反射面1085等光学器件,激光芯片1082发出的光经聚焦透镜1083及隔离器1084后射至光反射面1085,由光反射面1085将光反射向硅光芯片107中。
激光芯片1082工作过程中同样产生大量的热,激光芯片1082产生的热量不利于通过硅光芯片107进行扩散。由于硅光芯片107的散热效率有限,常规的结构设计或材料变化难以显著提升硅光芯片107的散热效率。热量通过硅光芯片107扩散会加重硅光芯片107的散热负担。根据硅光芯片107的散热能力,在进行相对低速信号传输过程中,可以将激光盒108的热量通过硅光芯片107扩散,但对于高速信号传输产品,激光盒108的热量通过硅光芯片107扩散的设计并不可取。激光芯片1082为激光盒108内的主要散热元件,当光模块所在的环境温度较高时,激光芯片1082的热量难以向外扩散,影响激光芯片1082的输出功率。例如,激光芯片1082在75℃下的输出功率较25℃下的输出功率会下降2~3dB。为此,通常需要增加输入电流,以维持激光芯片1082在高温条件下的稳定性。但是,光模块通常有严格的功耗限制(一般在3.5W以内),通过增加输入电流的方式很容易超出规 定功耗。
图6-1为本发明实施例中激光盒结构示意图。如图6-1所示,本发明实施例提供的激光盒108包括顶面1081、侧壁1088、电连接板、封堵件1087、激光芯片1082、聚焦透镜1083、隔离器1084及光反射面1085。
其中,封堵件1087位于顶面1081及硅光芯片107的表面之间,与顶面1081一起夹持所述电连接板;电连接板可以是金属化陶瓷1086,其中可以设置过孔1089。激光盒108的主要作用为向硅光芯片107提供光,提供的光来源于激光芯片1082,激光盒108为激光芯片1082提供封装及电连接结构。
由于水汽会折射光,破坏预设的光学路径,导致激光芯片1082对水汽比较敏感,因此封装激光芯片1082的激光盒108需要满足气密性密封要求。为了提供密封空间,激光盒108包括顶面1081及侧壁1088,侧壁1088围绕顶面1081形成底面开口的腔体,激光芯片1082设置在腔体中。
对于激光盒108底面的密封,一种可行的密封方式为,激光盒108放置在硅光芯片107的表面,由硅光芯片107的表面填补激光盒108的底面,与激光盒108一起形成密封腔体。对于激光盒108与硅光芯片107的固定,可采用胶水粘合。在激光盒108侧面的外侧点胶,胶水凝固后,激光盒108侧面的外侧附着有胶水,侧壁朝向硅光芯片107的底面可以附着有胶水。
激光芯片1082发出的光经光反射面1085反射后射向硅光芯片107的表面,硅光芯片107表面接收光的位置不能有胶水,因为侧壁与硅光芯片107接触区域之外,胶水不受压力的状态附着在硅光芯片107的表面。在不受压力状态下,胶水凝固时会形成厚度不均匀的凸起结构,在凸起结构的不同位置将会对光产生不同程度的反射及折射,降低进入硅光芯片107的光功率。
在此种密封方式中,为了便于激光芯片1082散热,激光芯片1082固定在激光盒108的顶面1081。为了光路实现的便利,聚焦透镜1083、隔离器1084同样固定在激光盒108的顶面1081,光反射面1085可以为固定在顶面1081的独立棱镜,也可以为激光盒108的顶面1081上的斜面。由此,激光芯片1082产生的热量可以经激光盒108的顶面1081向上扩散,而硅光芯片107位于激光盒108的顶面1081的下方,激光芯片1082的主要热传导路径与硅光芯片107的主要热传导路径相互分离,激光芯片1082的热量向上传导,硅光芯片107的热量向下传导。这样不仅扩展热传导的面积,也缓解激光盒108的热量增加硅光芯片107的热传导负担。
光模块的上壳体101可以设置向下凸起的导热柱,导热柱与激光盒108的顶面接触,激光芯片1082产生的热量通过激光盒108的顶面1081传导至上壳体101,通过上壳体101扩散出去。
对于激光盒108底面的密封,另一种可选的密封方式可以如图7所示,激光盒108包括基底1090,由基底1090、侧壁及顶面1001一起形成密封激光芯片1082的腔体。基底1090与硅光芯片107的表面通过胶水固定,基底1090对胶水施加压力使胶水凝固后厚度均匀,不会影响通过胶水的光的功率。
在此种密封方式中,为了便于激光芯片1082散热,激光芯片1082固定在激光盒108的顶面1001,为了光路实现的便利,聚焦透镜1083、隔离器1084同样固定在激光盒108 的顶面1001,光反射面1085可以为固定在顶面1001的独立棱镜,也可以为激光盒108顶面的斜面设计。由此,激光芯片1082产生的热量可以经激光盒108的顶面1001向上扩散,而硅光芯片107位于激光盒108的顶面1001的下方,激光芯片1082的主要热传导路径与硅光芯片107的主要热传导路径相互分离,激光芯片1082的热量向上传导,硅光芯片107的热量向下传导。这样不仅扩展热传导的面积,也缓解激光盒108的热量增加硅光芯片107的热传导负担。同样,光模块的上壳体101可以设置向下凸起的导热柱,导热柱与激光盒108的顶面接触,激光芯片1082产生的热量通过激光盒108的顶面1001传导至上壳体101,通过上壳体101扩散出去。
激光盒108的电连接虽然可以通过打线工艺实现,但打线工艺仅能实现同一朝向的两个连接面的连接。激光芯片1082固定在激光盒108的顶面,激光芯片1082的打线连接面朝下,而激光盒108外部的连接面朝上,打线连接工艺的要求导致难以实现这种相反的朝向关系。
对此,本申请实施例提供的光模块中,还提供一种激光盒对外的电连接结构。具体地,激光芯片1082贴装在金属化陶瓷1086的表面,金属化陶瓷1086固定在顶面,从而实现激光芯片1082与激光盒108顶面的固定。
金属化陶瓷1086为在陶瓷表面通过铺设金属,形成电路及电连接区域,金属化陶瓷1086具有与激光芯片1082底面阴极贴合的金属区域,实现激光芯片1082的阴极接地,金属化陶瓷1086还具有与激光芯片1082表面阳极打线连接的焊盘,金属化陶瓷1086表面的电路与该焊盘连接,实现将激光芯片1082阳极的电连接点向激光盒108外延伸。
对激光盒108内激光芯片1082与激光盒108外的电连接,本申请实施例提供两种具体的电连接方式。如图6-1、图6-2示出的两种连接方式:
在一种可行的电连接实现方式中,本申请实施例提供一种光模块,包括上壳体101、下壳体102、电连接板、激光芯片1082、电路板104、以及由上壳体101和下壳体102合围封装的激光盒108、硅光芯片107及电路板104;激光盒108设置于硅光芯片107的表面,激光盒108的顶面1081、激光盒108的侧壁1088以及硅光芯片107表面形成腔体;电连接板伸入腔体中;电连接板朝向硅光芯片107的表面设置激光芯片1082,电连接板背向硅光芯片107的表面贴装于顶面1081;电连接板位于腔体外的端部与电路板104电连接。实现将激光芯片与电连接板电连接,通过电连接板将激光芯片的供电引导至腔体外,电连接板位于腔体外的端部与电路板电连接,从而实现了电路板为激光芯片供电。
上述电连接板可以是金属化陶瓷1086,金属化陶瓷1086由激光盒108的外部伸入激光盒108的内部,激光芯片1082贴装在金属化陶瓷1086的表面,激光芯片1082的阳极通过打线与金属化陶瓷1086的表面的电路连接,该电路延伸至激光盒108的外部。
在金属化陶瓷1086位于激光盒108外部的末端,电路由金属化陶瓷1086的底面沿侧面延伸至顶面,由金属化陶瓷1086顶面的焊盘与电路板104采用打线实现电连接;即电连接板朝向所述硅光芯片107的表面设置有电路;电连接板背向所述硅光芯片107、位于所述腔体外的表面,设置有焊盘;此外,还可以在金属化陶瓷1086位于激光盒108外部的末端设置过孔,将位于底面的电路传导至顶面,由金属化陶瓷1086顶面的焊盘与电路板采用打线实现电连接。
在另一种可行的电连接实现方式中,激光芯片1082贴装在金属化陶瓷1086的表面, 金属化陶瓷1086位于激光盒108的内部,另一金属化陶瓷1086由激光盒108的外部伸入激光盒108内部,并与固定激光芯片1082的金属化陶瓷1086采用打线连接;在金属化陶瓷1086位于激光盒108外部的末端,电路由金属化陶瓷1086的底面沿侧面(侧面可以是电连接层1094)延伸至顶面,由金属化陶瓷1086顶面的焊盘与电路板104采用打线实现电连接;即电连接板朝向所述硅光芯片107的表面设置有电路;电连接板背向所述硅光芯片107、位于所述腔体外的表面,设置有焊盘。此外,还可以在金属化陶瓷1086位于激光盒108外部的末端设置过孔,将位于底面的电路传导至顶面,由金属化陶瓷1086顶面的焊盘与电路板采用打线实现电连接。
需要说明的是,以上仅为两种示例性的连接方式,其他可行的连接方式在此就不再一一说明。
图8为本发明实施例提供的另一种激光盒电连接结构示意图。在图7、图8中展示的实施例中,激光盒的顶面1001与光模块的上壳体101相接触,为了进一步增强激光盒108的散热性能,本申请实施例中,激光盒108与上壳体101之间还可以设有导热胶。导热胶能够提高激光盒108的热导效率,有利于激光盒108的热量传导至上壳体101。另外,由于导热胶通常具有弹性,因此还能够增强上壳体101与激光盒108的连接强度。
本实施例中,将激光盒108中激光芯片1082固定于顶面1001上,激光芯片1082产生的热量可传导至顶面1001。由于顶面1001上方不存在其他强放热元件,有利于提高激光芯片1082的散热效果。另外,基底1090设置的容纳凹槽1093使得基底1090与顶面1001的接触面积较小,有利于降低硅光芯片107向上方的散热量,缓解硅光芯片107对激光芯片1082造成的散热压力,进一步提高激光芯片1082的散热效果。
由于激光芯片1082与对应走线均设置在基底1090上,激光芯片1082的走线能够直接通过基底1090上的pad脚位与其他功能组件电连接。本申请中,激光芯片1082设置在顶面1001上,因此,需要在顶面1001上设置对应的pad脚位,并通过pad脚位之间的连通,将激光芯片1082与对应走线电连接。
请参考图8,为本申请实施例提供的一种激光盒的拆分示意图。由图8可见,本实施例中,顶面1001上设有第一pad脚位1092,基底1090设有第二脚位1091,激光芯片1082与第一pad脚位1092电连接,第一pad脚位1092与第二pad脚位1091电连接,第二pad脚位1091通过打线的方式与PCB脚位电连接。第一pad脚位1092与第二pad脚位1091可以通过共晶焊的方式电连接。第一pad脚位1092和第二pad脚位1091设置于顶面1001和基底1090的装配交接处,以便装配顶面1001和基底1090时,第一pad脚位1092和第二pad脚位1091电连接,从而导通激光芯片1082与其他功能组件。
硅光芯片107位于电路板104表面,硅光芯片107的边缘焊盘通过打线与电路板104表面的焊盘连接。打线可以为金属线或其他材质的线,用于硅光芯片107与电路板104之间的信号传输。由于硅光芯片107的边缘焊盘数量较多,使得打线数量较多;并且硅光芯片107体积很小,边缘焊盘密集布置,因此打线也密集布置并且打线的直径非常纤细,使得打线非常柔软。由此带来的问题是,在装配或使用过程中如果没有外部保护的情况下,这些打线极易受到损坏。因此本申请实施例通过保护罩1010对打线进行保护,避免对其挤压或触碰导致的损坏。
保护罩1010为硬质的壳体结构,参照图9和图10中所示,壳体结构包括内表面1011 和外表面1012。保护罩1010固定于电路板104上,内表面1011朝向电路板104,内表面1011覆盖硅光芯片107的打线所在区域1073。通过将打线包裹在壳体结构的内部空间内,以保护打线。
需要说明的是,保护罩1010的内表面1011进一步可以覆盖硅光芯片107的边缘焊盘以及电路板104表面的焊盘。使得保护罩1010与硅光芯片107的边缘焊盘以及电路板104表面的焊盘均无接触。以便在保护罩1010为金属材质时,不会引起焊盘之间信号意外导通。并且,扩大保护罩1010的内部空间,降低装配保护罩1010的难度。
另外,保护罩1010的内表面1011可以与打线所在区域1073无接触,以便为保护罩1010的形变预留空间。这样当保护罩1010的外表面1012受到外部压力产生形变时,保护罩1010的内表面1011仍然不会触碰打线,进一步提高对打线的保护效果。
本申请实施例提供的光模块,在打线所在区域外覆盖保护罩1010,保护罩1010为壳体结构,可以在多个方向对打线进行保护。相比在打线上覆胶而言,其硬度更高,即使保护罩1010受挤压有一定形变,仍能起到保护打线所在区域不受损坏的作用,从而保护光模块中的打线。
参照图9中所示,保护罩1010可以包括支撑部1013和覆盖部1014,支撑部1013与电路板104贴合接触,覆盖部1014的内表面覆盖打线所在区域。
由于打线的线高可能高出电路板104或硅光芯片107焊盘一百至几百微米,打线线长跨度可能为几百至几千微米。因此,支撑部1013高度大于打线的线高,覆盖部1014的宽度大于打线线长跨度。保护罩1010内壁的对应区域为镂空结构,从而能留够充分空间而不会碰到打线所在区域1073。
参照图11中所示,保护罩1010还可以包括定位孔1015,定位孔1015用于通过夹具将保护罩1010安装至电路板104上的预设位置处。定位孔1015的数目大于等于2个,以便确定保护罩1010的位置和方向。本申请实施例不限定定位孔1015的位置,例如可以沿保护罩1010的中轴线对称布置。定位孔1015可以如图3中所示位于覆盖部1014上,或者位于支撑部1013上。
例如,通过保护罩1010以及夹具上的定位孔或定位销,将保护罩1010装入夹具内,然后通过夹具以及电路板104上的定位销/孔将夹具装到电路板104上。此时,保护罩1010可贴合电路板104并覆盖打线所在区域1073。可以在保护罩1010的外侧与电路板104接触处点固定胶水(例如环氧胶),脱开夹具后,保护罩1010便留在了电路板104上,并覆盖住了打线所在区域1073。后续可以通过紫外线(ultraviolet,UV)固化或烘烤固化的方式使固定胶水固化,最终完成保护罩1010的固定。
考虑到光模块封闭在外壳中,硅光芯片107在工作过程中产生的大量热量被限制在外壳中,不利于散热。因此在开口1016处,可以通过导热胶将硅光芯片107的非打线所在区域与光模块外壳接触,以便通过光模块外壳对硅光芯片107进行散热。
保护罩1010可以为透明材质或部分透明材质,以便观察所保护的打线,一方面可以在装配时避免触碰打线,另一方面,在使用过程中可以不拆除保护罩1010观察内部受保护的打线是否有损坏。保护罩1010也可以为高分子材质、金属材质(例如铜)或其他硬材质,以提高保护罩1010的强度。
保护罩1010与电路板104贴合接触。从而能够隔绝外部异物对打线的触碰损伤。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (14)

  1. 一种光模块,包括上壳体、下壳体,以及由所述上壳体和所述下壳体合围封装的激光盒和硅光芯片;
    所述激光盒设置于所述硅光芯片表面,所述激光盒的顶面、所述激光盒的侧壁以及所述硅光芯片表面形成封闭腔体;
    所述顶面位于所述封闭腔体内的侧面设置有激光芯片,所述顶面位于所述封闭腔体外的侧面与所述上壳体散热接触;
    所述封闭腔体中包括聚焦透镜以及光反射面,所述激光芯片发出的光经所述聚焦透镜射向所述光反射面。
  2. 如权利要求1所述的光模块,其中,还包括电路板及导热衬底,所述电路板具有贯通电路板上下表面的缺口,所述硅光芯片设置于所述缺口中,所述导热衬底设置在所述硅光芯片及所述下壳体之间。
  3. 如权利要求2所述的光模块,其中,所述导热衬底为凸台形,所述导热衬底的凸起处设置硅光芯片,所述导热衬底的凹陷处承托所述电路板。
  4. 如权利要求1至3任一所述的光模块,其中,所述激光盒还包括隔离器,所述隔离器、所述聚焦透镜及所述光反射面分别设置于所述顶面,所述隔离器位于所述光反射面及所述聚焦透镜之间。
  5. 一种光模块,包括上壳体、下壳体,以及由所述上壳体和所述下壳体合围封装的激光盒和硅光芯片;
    所述激光盒包括顶面、侧壁及基底;
    所述顶面朝向所述基底的侧面设置有激光芯片,所述顶面背向所述基底的侧面与所述上壳体散热接触;
    所述基底的上表面设置有容纳凹槽,用于容纳所述激光芯片、聚焦透镜及光反射面,所述激光芯片发出的光经所述聚焦透镜射向所述光反射面;
    所述基底的下表面与所述硅光芯片表面接触。
  6. 如权利要求5所述的光模块,其中,还包括电路板及导热衬底,所述电路板具有贯通电路板上下表面的缺口,所述硅光芯片设置于所述缺口中,所述导热衬底设置在所述硅光芯片及所述下壳体之间。
  7. 如权利要求6所述的光模块,其中,所述导热衬底为凸台形,所述导热衬底的凸起处设置硅光芯片,所述导热衬底的凹陷处承托所述电路板。
  8. 如权利要求5至7任一所述的光模块,其中,所述激光盒还包括隔离器,所述隔离器、所述聚焦透镜及所述光反射面分别设置于所述顶面,所述隔离器位于所述光 反射面及所述聚焦透镜之间。
  9. 一种光模块,包括上壳体、下壳体、电连接板、激光芯片、以及由所述上壳体和所述下壳体合围封装的激光盒、硅光芯片及电路板;
    所述激光盒设置于所述硅光芯片表面,所述激光盒的顶面、所述激光盒的侧壁以及所述硅光芯片表面形成腔体;
    所述电连接板伸入所述腔体中;
    所述电连接板朝向所述硅光芯片的表面设置所述激光芯片,所述电连接板背向所述硅光芯片的表面贴装于所述顶面;
    所述电连接板位于所述腔体外的端部与所述电路板电连接。
  10. 如权利要求9所述的光模块,其中,所述电连接板朝向所述硅光芯片的表面设置有电路;
    所述电连接板背向所述硅光芯片、位于所述腔体外的表面,设置有焊盘;
    所述电路与所述焊盘通过过孔实现电连接,所述焊盘与所述电路板电连接。
  11. 如权利要求9所述的光模块,其中,所述电连接板朝向所述硅光芯片的表面设置有电路;
    所述电连接板背向所述硅光芯片、位于所述腔体外的表面,设置有焊盘;
    所述电连接板位于所述腔体外的端部侧面具有电连接层,以连接所述电路及所述焊盘;
    所述焊盘与所述电路板电连接。
  12. 如权利要求9至11任一所述的光模块,其中,还包括封堵件,位于所述顶面及所述硅光芯片表面之间,与所述顶面一起夹持所述电连接板。
  13. 如权利要求9至11任一所述的光模块,其中,所述硅光芯片设置于所述电路板。
  14. 如权利要求13所述的光模块,其中,焊盘与所述电路板通过打线或柔性板电连接。
PCT/CN2019/127213 2018-12-20 2019-12-20 一种光模块 WO2020125784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/892,032 US11631960B2 (en) 2018-12-20 2020-06-03 Optical module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811563574.4A CN111352192B (zh) 2018-12-20 2018-12-20 一种光模块
CN201811563574.4 2018-12-20
CN201811592719.3 2018-12-20
CN201811592719.3A CN110388576B (zh) 2018-04-23 2018-12-20 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/892,032 Continuation US11631960B2 (en) 2018-12-20 2020-06-03 Optical module

Publications (1)

Publication Number Publication Date
WO2020125784A1 true WO2020125784A1 (zh) 2020-06-25

Family

ID=71100949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127213 WO2020125784A1 (zh) 2018-12-20 2019-12-20 一种光模块

Country Status (3)

Country Link
US (1) US11631960B2 (zh)
CN (1) CN111352192B (zh)
WO (1) WO2020125784A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828991B2 (en) 2019-03-15 2023-11-28 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module
CN111292716A (zh) * 2020-02-13 2020-06-16 百度在线网络技术(北京)有限公司 语音芯片和电子设备
CN113759472B (zh) * 2020-06-03 2023-01-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN114063224B (zh) * 2020-07-31 2023-04-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN114911011B (zh) * 2021-02-08 2023-07-14 青岛海信宽带多媒体技术有限公司 一种光模块
CN113671638A (zh) * 2021-07-12 2021-11-19 武汉英飞光创科技有限公司 一种光模块
CN114815089B (zh) * 2022-04-18 2023-10-24 东莞立讯技术有限公司 光模块
JP7264320B1 (ja) * 2022-07-19 2023-04-25 三菱電機株式会社 半導体レーザ光源装置
CN115327702B (zh) * 2022-08-01 2023-07-11 三序光学科技(苏州)有限公司 多个激光器芯片与硅光芯片端面耦合封装结构及耦合方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254537A1 (en) * 2004-05-17 2005-11-17 Eins Oe-Tech Co., Ltd. High power semiconductor laser lighting device
CN103915402A (zh) * 2013-01-04 2014-07-09 矽品精密工业股份有限公司 光电模块结构
CN107436466A (zh) * 2017-09-25 2017-12-05 中航海信光电技术有限公司 一种并行光收发模块及其封装方法
CN107664796A (zh) * 2017-10-31 2018-02-06 武汉电信器件有限公司 一种高速光模块的散热结构
CN107861201A (zh) * 2017-12-05 2018-03-30 青岛海信宽带多媒体技术有限公司 一种光学次模块及光模块
CN108267821A (zh) * 2018-03-12 2018-07-10 四川新易盛通信技术有限公司 一种盒式光器件结构件及使用该光器件结构件的光器件、光模块
CN108548102A (zh) * 2018-04-23 2018-09-18 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360631A (ja) * 1986-08-22 1988-03-16 レイケム・コ−ポレイション ひずみを有する分配光ファイバ通信システム
EP0548440A1 (en) * 1991-12-23 1993-06-30 International Business Machines Corporation Bilithic composite for optoelectronic integration
US5432878A (en) * 1994-03-03 1995-07-11 Cts Corporation Silicon carrier for testing and alignment of optoelectronic devices and method of assembling same
JP3472660B2 (ja) * 1995-06-22 2003-12-02 日本オプネクスト株式会社 光半導体アレイモジュ−ルとその組み立て方法、及び外部基板実装構造
DE19823691A1 (de) * 1998-05-27 1999-12-02 Siemens Ag Gehäuseanordnung für Lasermodul
JP3459787B2 (ja) * 1999-04-02 2003-10-27 Nec化合物デバイス株式会社 光半導体モジュール及びその製造方法
US6586678B1 (en) * 2002-02-14 2003-07-01 Finisar Corporation Ceramic header assembly
US6703561B1 (en) * 2001-09-06 2004-03-09 Finisar Corporation Header assembly having integrated cooling device
US6563696B1 (en) * 2001-10-17 2003-05-13 Ciena Corporation Solderless laser assembly
US6867368B2 (en) * 2002-02-14 2005-03-15 Finisar Corporation Multi-layer ceramic feedthrough structure in a transmitter optical subassembly
US6786654B2 (en) * 2002-08-21 2004-09-07 Hymite A/S Encapsulated optical fiber end-coupled device
US6793407B2 (en) * 2002-09-25 2004-09-21 International Business Machines Corporation Manufacturable optical connection assemblies
US6969204B2 (en) * 2002-11-26 2005-11-29 Hymite A/S Optical package with an integrated lens and optical assemblies incorporating the package
US7039083B2 (en) * 2003-03-12 2006-05-02 Opnext, Inc. High speed optical transmission assembly
US6856717B2 (en) * 2003-03-24 2005-02-15 Hymite A/S Package with a light emitting device
US6940723B2 (en) * 2003-07-08 2005-09-06 Finisar Corporation Heat spreader for optical transceiver components
US6950314B2 (en) * 2004-02-27 2005-09-27 Infineon Technologies Ag Arrangement for the electrical connection of an optoelectronic component to an electrical component
US20050265650A1 (en) * 2004-05-27 2005-12-01 Sunil Priyadarshi Small profile, pluggable optical transceiver subassembly
US8168939B2 (en) * 2008-07-09 2012-05-01 Luxtera, Inc. Method and system for a light source assembly supporting direct coupling to an integrated circuit
US20100038670A1 (en) * 2008-08-18 2010-02-18 Luminus Devices, Inc. Illumination assembly including chip-scale packaged light-emitting device
JP5271141B2 (ja) * 2009-04-06 2013-08-21 日東電工株式会社 光電気混載モジュールの製造方法およびそれによって得られた光電気混載モジュール
CN102386557A (zh) * 2010-08-25 2012-03-21 Agx技术股份有限公司 内部冷却的热封闭模块式激光器封装系统
EP2428828B1 (en) * 2010-09-13 2016-06-29 Tyco Electronics Svenska Holdings AB Miniaturized high speed optical module
KR101430634B1 (ko) * 2010-11-19 2014-08-18 한국전자통신연구원 광 모듈
WO2013077199A1 (ja) * 2011-11-21 2013-05-30 京セラ株式会社 電子部品収納用パッケージおよび電子装置
JP2013153136A (ja) * 2011-12-27 2013-08-08 Sumitomo Electric Ind Ltd 発光モジュール及び光トランシーバ
US9570883B2 (en) * 2011-12-28 2017-02-14 Intel Corporation Photonic package architecture
CN102569431B (zh) 2011-12-29 2014-03-19 青岛海信宽带多媒体技术有限公司 光电芯片组件及封装方法
US9507086B2 (en) * 2011-12-30 2016-11-29 Intel Corporation Optical I/O system using planar light-wave integrated circuit
DE102012205513B4 (de) * 2012-04-04 2021-12-09 Osram Gmbh Verfahren zum Herstellen einer Strahlungsanordnung und Strahlungsanordnung
DE102013201931B4 (de) * 2013-02-06 2022-03-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laserbauelement und Verfahren zu seiner Herstellung
US9588307B2 (en) 2014-06-21 2017-03-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Parallel optical transceiver with top and bottom lenses
WO2016069620A1 (en) * 2014-10-27 2016-05-06 Coriant Advanced Technology, LLC Photonic interface for electronic circuit
US9608731B2 (en) * 2014-11-05 2017-03-28 Innovative Micro Technology Microfabricated optical apparatus
US20170237228A1 (en) * 2014-11-05 2017-08-17 Innovative Micro Technology Microfabricated optical apparatus
TWM517941U (zh) * 2015-03-31 2016-02-21 李後傑 用於雷射二極體之封裝結構
JP6576665B2 (ja) * 2015-04-01 2019-09-18 新光電気工業株式会社 光素子用パッケージ及び光素子装置
EP3091380B1 (en) 2015-05-05 2021-07-07 Huawei Technologies Co., Ltd. Optical coupling arrangement
US9548817B1 (en) * 2015-06-19 2017-01-17 Inphi Corporation Small form factor transmitting device
US20170017050A1 (en) * 2015-07-15 2017-01-19 Lumentum Operations Llc Optical transmitter assembly for vertical coupling
JP6739154B2 (ja) * 2015-08-21 2020-08-12 日本ルメンタム株式会社 光モジュール
JP6631138B2 (ja) * 2015-10-01 2020-01-15 住友電気工業株式会社 光学装置、プリント回路基板
JP6225976B2 (ja) * 2015-10-30 2017-11-08 日亜化学工業株式会社 発光装置
JP6489001B2 (ja) * 2015-12-09 2019-03-27 住友電気工業株式会社 光モジュール、光モジュールを作製する方法、及び光学装置
CN205232234U (zh) 2015-12-24 2016-05-11 中航海信光电技术有限公司 一种光模块
CN106019496B (zh) 2016-05-31 2018-05-08 武汉光迅科技股份有限公司 一种光源封装结构及其定位、耦合方法
US10050409B2 (en) * 2016-09-22 2018-08-14 Innovative Micro Technology Microfabricated optical apparatus with grounded metal layer
US10242976B2 (en) * 2016-12-31 2019-03-26 Intel Corporation In-package photonics integration and assembly architecture
US10193302B2 (en) * 2017-05-10 2019-01-29 Applied Optoelectronics, Inc. Light engine with integrated turning mirror for direct coupling to photonically-enabled complementary metal-oxide semiconductor (CMOS) die
CN207488553U (zh) * 2017-08-24 2018-06-12 绵阳思迈光联通信技术有限公司 一种激光器耦合裸纤夹持组件
CN107546568A (zh) 2017-08-31 2018-01-05 新华三技术有限公司 Pcb板组件和光发射组件
CN111338039B (zh) * 2020-04-21 2021-11-23 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254537A1 (en) * 2004-05-17 2005-11-17 Eins Oe-Tech Co., Ltd. High power semiconductor laser lighting device
CN103915402A (zh) * 2013-01-04 2014-07-09 矽品精密工业股份有限公司 光电模块结构
CN107436466A (zh) * 2017-09-25 2017-12-05 中航海信光电技术有限公司 一种并行光收发模块及其封装方法
CN107664796A (zh) * 2017-10-31 2018-02-06 武汉电信器件有限公司 一种高速光模块的散热结构
CN107861201A (zh) * 2017-12-05 2018-03-30 青岛海信宽带多媒体技术有限公司 一种光学次模块及光模块
CN108267821A (zh) * 2018-03-12 2018-07-10 四川新易盛通信技术有限公司 一种盒式光器件结构件及使用该光器件结构件的光器件、光模块
CN108548102A (zh) * 2018-04-23 2018-09-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN110388576A (zh) * 2018-04-23 2019-10-29 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN111352192B (zh) 2021-08-10
US11631960B2 (en) 2023-04-18
CN111352192A (zh) 2020-06-30
US20200295528A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
CN110388576B (zh) 一种光模块
WO2020125784A1 (zh) 一种光模块
CN111338039B (zh) 一种光模块
US6425695B1 (en) Optical module and method of manufacturing the same
CN214795314U (zh) 一种光模块
CN214795313U (zh) 一种光模块
CN111694112A (zh) 一种光模块
JP6590161B2 (ja) アクティブ光ケーブルの製造方法
CN113009646B (zh) 一种光模块
CN113009648B (zh) 一种光模块
CN114035287B (zh) 一种光模块
CN111948762A (zh) 一种光模块
CN111694113A (zh) 一种光模块
CN114035288B (zh) 一种光模块
CN114035286B (zh) 一种光模块
JP4845333B2 (ja) 光電変換素子パッケージ、その作製方法及び光コネクタ
US20230341640A1 (en) Optical module
CN113009649B (zh) 一种光模块
US20230116287A1 (en) Optical module
CN214540156U (zh) 一种光模块
CN112987193A (zh) 一种光模块
JPWO2009001822A1 (ja) 光モジュール
CN113009647B (zh) 一种光模块
CN215181026U (zh) 一种光模块
CN115373087B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898050

Country of ref document: EP

Kind code of ref document: A1