WO2023029707A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023029707A1
WO2023029707A1 PCT/CN2022/102079 CN2022102079W WO2023029707A1 WO 2023029707 A1 WO2023029707 A1 WO 2023029707A1 CN 2022102079 W CN2022102079 W CN 2022102079W WO 2023029707 A1 WO2023029707 A1 WO 2023029707A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical
circuit board
base
light
Prior art date
Application number
PCT/CN2022/102079
Other languages
English (en)
French (fr)
Inventor
吴涛
金爽
濮宏图
慕建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111015786.0A external-priority patent/CN115728880A/zh
Priority claimed from CN202111015574.2A external-priority patent/CN115728879A/zh
Priority claimed from CN202111015876.XA external-priority patent/CN113721331B/zh
Priority claimed from CN202111015461.2A external-priority patent/CN115728878A/zh
Priority claimed from CN202122085678.2U external-priority patent/CN216013740U/zh
Priority claimed from CN202122085677.8U external-priority patent/CN215813458U/zh
Priority claimed from CN202122076596.1U external-priority patent/CN215641964U/zh
Priority claimed from CN202122087755.8U external-priority patent/CN215895036U/zh
Priority claimed from CN202111012383.0A external-priority patent/CN115728877A/zh
Priority claimed from CN202122087754.3U external-priority patent/CN215895035U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to CN202280050029.3A priority Critical patent/CN117677878A/zh
Publication of WO2023029707A1 publication Critical patent/WO2023029707A1/zh
Priority to US18/473,592 priority patent/US20240027705A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, in particular to an optical module.
  • optical communication technology the optical module is a tool to realize the mutual conversion of photoelectric signals, and is one of the key components in optical communication equipment.
  • the optical module includes a casing, a circuit board and a light emitting device.
  • the housing includes an upper housing and a lower housing; the circuit board is located between the upper housing and the lower housing, and the circuit board has a front side facing the upper housing and a front side facing the lower housing.
  • the circuit board On the back side of the housing, the circuit board includes mounting holes, and the mounting holes pass through the front side and the back side; the light-emitting device is mounted on the circuit board, and the light-emitting device includes a base, a laser, a translation Prisms and fiber couplers.
  • the base is installed on the front side of the circuit board, the base has a mounting surface and a bottom surface opposite to the mounting surface, the mounting surface faces the front surface, and the bottom surface faces the upper case;
  • the laser is mounted on the mounting surface, passes through the mounting hole and protrudes from the back of the circuit board;
  • the translation prism is mounted on the mounting surface, and a part of the translation prism passes through the mounting hole Located on the back side of the circuit board, and another part is located on the front side of the circuit board, the translation prism is configured to translate the laser beam emitted by the laser and located on the back side of the circuit board to the circuit board the front side of the circuit board;
  • the fiber coupler is configured to transmit the laser beam translated by the translation prism to the front side of the circuit board to the outside of the optical module.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Fig. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments.
  • Fig. 4 is an exploded structure diagram of an optical module according to some embodiments.
  • Fig. 5 is a structural diagram of an optical module according to some embodiments without the housing and unlocking components
  • Fig. 6 is a structural diagram of a light-emitting device in an optical module according to some embodiments.
  • Fig. 7 is a partial optical path diagram of a light-emitting device in an optical module according to some embodiments.
  • Fig. 8 is a structural diagram of a circuit board in an optical module according to some embodiments.
  • Fig. 9A is an assembly structure diagram of a circuit board and a light-emitting device in an optical module according to some embodiments.
  • Fig. 9B is an assembly structure diagram of another angle of a circuit board and a light-emitting device in an optical module according to some embodiments.
  • 10A is a side view of an assembly of a circuit board and a light-emitting device in an optical module according to some embodiments;
  • 10B is a cross-sectional view of an assembly of a circuit board and a light-emitting device in an optical module according to some embodiments;
  • Fig. 11A is an electrical connection diagram of a circuit board and a light-emitting device in an optical module according to some embodiments
  • Fig. 11B is another electrical connection diagram of a circuit board and a light-emitting device in an optical module according to some embodiments;
  • Fig. 12A is a structural diagram of a base in an optical module according to some embodiments.
  • Fig. 12B is a structural diagram of another angle of a base in an optical module according to some embodiments.
  • Fig. 13 is a heat dissipation channel diagram of an optical module according to some embodiments.
  • Fig. 14A is a cross-sectional view of a monitoring optical path of an optical detector in an optical module according to some embodiments
  • Fig. 14B is a top view of a monitoring optical path of an optical detector in an optical module according to some embodiments.
  • Fig. 15A is an assembly structure diagram of a circuit board and a light receiving device in an optical module according to some embodiments
  • Fig. 15B is a structural diagram of a light receiving device in an optical module according to some embodiments.
  • Fig. 15C is a partial optical path diagram of an optical receiving device in an optical module according to some embodiments.
  • Fig. 16A is a structural diagram of a light-emitting device in an optical module according to some modification examples
  • Fig. 16B is a structural view of the base in the light-emitting device shown in Fig. 16A;
  • Fig. 17A is a structural diagram of a light-emitting device in an optical module according to some modification examples.
  • FIG. 17B is a structural diagram of a base in the light-emitting device shown in FIG. 17A;
  • Fig. 18A is an assembly structure diagram of a circuit board, a light emitting device and a light receiving device in an optical module according to still some modified examples;
  • FIG. 18B is a structural diagram of the optical module shown in FIG. 18A after omitting the light-emitting device;
  • Fig. 18C is a cross-sectional view of an assembly structure of a circuit board and a light receiving device in an optical module according to some embodiments;
  • Fig. 19A is a structural diagram of a light-emitting device in an optical module according to still some modified examples.
  • Fig. 19B is a structural diagram of the base in the optical module shown in Fig. 19A;
  • FIG. 20A is a structural diagram of a light-emitting device in an optical module according to still some modified examples
  • FIG. 20B is a structural diagram of the base of the optical module shown in FIG. 20A .
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed here are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The acceptable deviation ranges are as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • optical communication technology In optical communication technology, light is used to carry information to be transmitted, and the optical signal carrying information is transmitted to information processing equipment such as a computer through optical fiber or optical waveguide and other information transmission equipment to complete the information transmission. Because optical signals have passive transmission characteristics when they are transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (such as an optical modem) through the electrical port. It is mainly used to realize power supply, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission and grounding, etc.; optical network terminals transmit electrical signals to computers through network cables or wireless fidelity technology (Wi-Fi) and other information processing equipment.
  • I2C Inter-Integrated Circuit
  • Wi-Fi wireless fidelity technology
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • Optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long-distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach thousands of kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: routers, switches, computers, mobile phones, tablet computers, televisions, and so on.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 A two-way electrical signal connection is established.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200, so the optical network terminal 100, as the host computer of the optical module 200, can monitor the optical module 200 jobs.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101; electrical signal connection.
  • the optical module 200 implements mutual conversion between optical signals and electrical signals, so that a connection is established between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input to the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input to the optical fiber 101 . Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the remote server 1000 establishes a two-way signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, a radiator 107 disposed on the cage 106, and an electrical circuit board disposed inside the cage 106.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has a protruding structure such as fins for increasing the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the heat generated by the optical module 200 is conducted to the cage 106 and then diffused through the radiator 107 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical fiber 101 .
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a housing (shell), a circuit board 300 disposed in the housing, a light emitting device 400 and a light receiving device 500 .
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing is generally square.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate and perpendicular to the bottom plate; Two lower side panels 2022 to form the above-mentioned housing.
  • the lower housing 202 includes a bottom plate 2021 and two lower side plates 2022 positioned on both sides of the bottom plate and perpendicular to the bottom plate; The two upper side plates provided are combined with the two lower side plates 2022 so as to cover the upper case 201 on the lower case 202 .
  • the direction of the line connecting the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may not be consistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the gold finger 301 of the circuit board 300 extends from the electrical port 204, and is inserted into a host computer (such as the optical network terminal 100); the opening 205 is an optical port, which is configured to be connected to an external optical fiber 101, so that The optical fiber 101 connects the light emitting device 400 and the light receiving device 500 inside the optical module 200 .
  • the combination of the upper housing 201 and the lower housing 202 is used to facilitate the installation of components such as the circuit board 300, the light emitting device 400 and the light receiving device 500 into the housing, and the upper housing 201 and the lower housing 202 control these devices. Form package protection.
  • components such as the circuit board 300 , the light emitting device 400 and the light receiving device 500 , it is convenient to deploy the positioning components, heat dissipation components and electromagnetic shielding components of these components, which is conducive to automatic production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking part 203 located on the outer wall of its housing, and the unlocking part 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer side of the two lower side plates 2022 of the lower housing 202 , and includes a locking component matching with a cage of the upper computer (for example, the cage 106 of the optical network terminal 100 ).
  • a cage of the upper computer for example, the cage 106 of the optical network terminal 100 .
  • the circuit board 300 includes circuit traces, electronic components and chips, through which the electronic components and chips are connected together according to the circuit design, so as to realize functions such as power supply, electrical signal transmission and grounding.
  • the electronic components may include, for example, capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip can include, for example, a Microcontroller Unit (MCU), a laser driver chip, a transimpedance amplifier (Transimpedance Amplifier, TIA), a limiting amplifier (Limiting Amplifier), a clock data recovery chip (Clock and Data Recovery, CDR), a power supply Management chip (Power Management Chip), digital signal processing (Digital Signal Processing, DSP) chip.
  • MCU Microcontroller Unit
  • TIA Transimpedance Amplifier
  • Limiting Amplifier Low-Voltage Amplifier
  • CDR clock and Data Recovery
  • Power Management Chip Power Management Chip
  • DSP digital signal processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function, such as the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the cage of the host computer in the electrical connector.
  • the circuit board 300 also includes a gold finger 301 formed on the surface of its end, and the gold finger 301 is composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106 , and is conductively connected with the electrical connector in the cage 106 by the gold finger 301 .
  • Gold fingers 301 can be set on only one side of the circuit board 300 (such as the upper surface shown in FIG. 4 ), or can be set on the upper and lower sides of the circuit board 300, so as to meet the occasions where the number of pins is large.
  • the golden finger 301 is configured to establish an electrical connection with a host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • Fig. 5 is a structural diagram of an optical module without a housing and an unlocking component according to some embodiments
  • Fig. 6 is a structural diagram of a light emitting device in an optical module according to some embodiments.
  • the optical module 200 further includes a first optical fiber adapter 600 , a second optical fiber adapter 700 , a first internal optical fiber 800 and a second internal optical fiber 900 .
  • the first fiber adapter 600 is connected to the light emitting device 400 through the first inner fiber 800
  • the second fiber adapter 700 is connected to the light receiving device 500 through the second inner fiber 900 .
  • the first fiber optic adapter 600 includes a first sub-fiber optic adapter 601 and a second sub-fiber optic adapter 602 .
  • the first internal optical fiber 800 includes a first sub-internal optical fiber 801 and a second sub-internal optical fiber 802; the first sub-fiber adapter 601 is connected to the light emitting device 400 through the first sub-internal optical fiber 801, and the second sub-fiber adapter 602 is connected to the light emitting device 400 through the second sub-fiber
  • the inner optical fiber 802 is connected to the light emitting device 400 .
  • the light receiving device 500 includes a first sub-light receiving device 501 and a second sub-light receiving device 502; the second internal optical fiber 900 includes a third sub-internal optical fiber 901 and a fourth sub-internal optical fiber 902; the second optical fiber adapter 700 includes a third sub-internal optical fiber 902; A fiber optic adapter 701 and a fourth sub-fiber optic adapter 702 .
  • the third sub-fiber adapter 701 is connected to the first sub-light receiving device 501 through the third sub-internal fiber 901
  • the fourth sub-fiber adapter 702 is connected to the second sub-light receiving device 502 through the fourth sub-internal fiber 902 .
  • Both the light-emitting device 400 and the light-receiving device 500 are arranged on the surface of the circuit board 300 close to the upper housing 201 (hereinafter, the surface is called the front side, and the surface of the circuit board 300 close to the lower housing 202 is called the back side), And the first sub-light receiving device 501 and the second sub-light receiving device 502 are respectively located on two sides of the light-emitting device 400 .
  • the light-emitting device 400 includes a base 410 and a laser 420 disposed on the base 410, a collimator lens 430, a translation prism 440, optical multiplexers 4510 and 4520, optical isolators 4610 and 4620, fiber couplers 4710 and 4720, and semiconductor refrigeration (Thermo Electric Cooler, TEC) 480.
  • TEC semiconductor refrigeration
  • the base 410 has a mounting surface and a bottom surface.
  • Laser 420 , collimator lens 430 , translation prism 440 , optical multiplexers 4510 and 4520 , optical isolators 4610 and 4620 , fiber couplers 4710 and 4720 , and semiconductor refrigerator 480 are all mounted on the mounting surface of base 410 .
  • the bottom surface of the base 410 is the surface opposite to its mounting surface.
  • the laser 420 includes a laser chip 421 and a spacer 422 .
  • the laser chip 421 has a cathode and an anode
  • the spacer 422 includes an insulating heat conducting layer and a metal layer
  • the metal layer includes a ground wire and a signal wire.
  • the cathode of the laser chip 421 can be fixed on the ground wire by means of welding or conductive glue, so as to be electrically connected to the ground wire.
  • the anode of the laser chip 421 can be electrically connected to the signal line through the connection line. Apply voltage to the cathode and anode of the laser chip 421 through the ground wire and the signal wire respectively, and the laser chip 421 can emit a laser beam parallel to the front surface of the circuit board 300 .
  • the semiconductor cooler 480 is disposed on the mounting surface of the base 410 , and the laser 420 is disposed on a surface of the semiconductor cooler 480 away from the base 410 .
  • the semiconductor cooler 480 is configured to conduct the heat generated by the laser chip 421 to the base 410 , and export the heat to the outside of the optical module 200 through the base 410 and the housing of the optical module 200 .
  • the peltier cooler 480 includes a first heat exchange surface and a second heat exchange surface opposite to each other, and a plurality of heat conducting columns located between the first heat exchange surface and the second heat exchange surface. The first heat exchange surface and the second heat exchange surface are connected by a plurality of heat conduction columns.
  • a plurality of heat conducting columns can be arranged in an array, which can be made of semiconductor material.
  • the first heat exchange surface of the semiconductor refrigerator 480 is disposed on the installation surface of the base 410
  • the laser 420 is disposed on the second heat exchange surface of the semiconductor refrigerator 480 .
  • the peltier cooler 480 can be omitted.
  • the collimator lens 430 can adjust the divergent laser beam generated by the laser chip 421 into a parallel laser beam, that is, a collimated beam. In some embodiments, the collimating lens 430 can also be omitted.
  • the translation prism 440 is a rhombic prism with a first reflective surface 441 and a second reflective surface 442 . Both the first reflective surface 441 and the second reflective surface 442 can change the propagation direction of the laser beam, for example, bend the propagation direction of the laser beam by 90°.
  • the first reflective surface 441 reflects a laser beam parallel to the front of the circuit board 300 emitted by the laser chip 421, so that the laser beam continues to propagate in a direction perpendicular to the front of the circuit board 300;
  • the surface 442 reflects the laser beam perpendicular to the front surface of the circuit board 300 , so that the laser beam propagates in a direction parallel to the front surface of the circuit board 300 again.
  • One laser beam emitted by the laser 420 is converted into a collimated beam through the collimating lens 430 .
  • the collimated beam is reflected twice by the translational prism 440 and then passes through the optical multiplexers 4510 and 4520 and the optical isolators 4610 and 4620 to enter the fiber couplers 4710 and 4720, and the laser beam is coupled to the first
  • the optical fiber adapter 600 realizes the transmission of one optical signal.
  • the optical module 200 is an optical module with a high transmission rate, such as an 800G (signal transmission rate of 800Gbit/s) optical module, it is necessary to package 8 optical signal transmission channels in the housing of the optical module 200, and each optical signal transmission channel The signal transmission rate is 100Gbit/s. Therefore, the light emitting device 400 includes 8 lasers 420 to realize the transmission of 8 optical signals; the light receiving device 500 includes 8 optical receivers to realize the reception of 8 optical signals.
  • the first optical receiving sub-device 501 includes 4 optical receivers to receive 4 optical signals; the second optical receiving sub-device 502 includes 4 optical receivers to receive 4 optical signals.
  • the light emitting device 400 includes 8 lasers 420 , 8 collimating lenses 430 and 1 translation prism 440 .
  • Each laser 420 emits a laser beam
  • each collimating lens 430 converts the laser beam into a collimated beam
  • the collimated beam emitted by each collimating lens 430 is transmitted to the translation prism 440
  • the translation prism 440 aligns the collimated beam Reflect to change the transmission direction and position of the laser beam.
  • the light-emitting device 400 is not limited to include one translation prism 440 , and may also include a plurality of translation prisms 440 , and each translation prism 440 corresponds to one or more collimator lenses 430 .
  • the light-emitting device 400 is not limited to including 8 collimating lenses 430, and may also include 4 (every 2 lasers 420 share 1 collimating lens 430), 2 (every 4 lasers 420 share 1 collimating lens 430) ) or one collimating lens 430 (all lasers 420 share one collimating lens 430).
  • the optical multiplexers 4510 and 4520 include a first optical multiplexer 4510 and a second optical multiplexer 4520
  • the optical isolators 4610 and 4620 include a first optical isolator 4610 and a second optical isolator 4620
  • fiber couplers 4710 and 4720 A first fiber coupler 4710 and a second fiber coupler 4720 are included.
  • the first optical multiplexer 4510 and the second optical multiplexer 4520 can be integrated into an integral optical multiplexer
  • the first optical isolator 4610 and the second optical isolator 4620 can be integrated into an integral Optical isolator.
  • the first optical fiber coupler 4710 and the second optical fiber coupler 4720 can be integrated into an integral optical fiber coupler
  • the first The sub-fiber optic adapter 601 and the second sub-fiber optic adapter 602 can be integrated into an integral fiber optic adapter.
  • the first optical multiplexer 4510 and the second optical multiplexer 4520 are arranged side by side on the installation surface of the base 410 .
  • the first optical multiplexer 4510 and the second optical multiplexer 4520 are arranged side by side on the mounting surface of the base 410 along a direction perpendicular to the light emitting direction of the laser 420 .
  • the optical input ends of the first optical multiplexer 4510 and the second optical multiplexer 4520 face the optical output end of the translation prism 440, so that the 8 laser beams parallel to the front of the circuit board 300 are injected into the first optical multiplexer 4510 and the first optical multiplexer 4510 respectively.
  • the second optical multiplexer 4520 is arranged side by side on the installation surface of the base 410 .
  • the first optical multiplexer 4510 and the second optical multiplexer 4520 are arranged side by side on the mounting surface of the base 410 along a direction perpendicular to the light emitting direction of the laser 420 .
  • 4 laser beams are injected into the first optical multiplexer 4510, and the first optical multiplexer 4510 synthesizes the 4 laser beams into a first composite beam; the remaining 4 laser beams are injected into the second optical multiplexer 4520, The second optical combiner 4520 combines the remaining 4 laser beams into a second composite beam.
  • the first optical multiplexer 4510 includes four light entrances for receiving light of multiple wavelengths, and each light entrance is for receiving light of one wavelength.
  • the light entrance is located at the light input end of the first optical multiplexer 4510 on the side close to the translation prism 440 .
  • the first optical multiplexer 4510 also includes a light outlet for emitting light. The light outlet is located at the light input end of the first optical multiplexer 4510 on the side away from the translation prism 440 .
  • the light with a wavelength of ⁇ 1 enters the first optical multiplexer 4510 through the first optical entrance, and passes through the first optical multiplexer 4510
  • Multiple (for example, 6) different positions in the interior have performed multiple (for example, 6) different reflections to reach the light outlet
  • the light with a wavelength of ⁇ 2 enters the first optical multiplexer 4510 through the second light entrance, and passes through the first optical multiplexer
  • a plurality of (such as 4) different positions in the device 4510 have carried out multiple (such as 4) different reflections to reach the light outlet
  • the light with a wavelength of ⁇ 3 enters the first optical multiplexer 4510 through the third light entrance, and passes through the first
  • a plurality of (such as 2) different positions in the optical multiplexer 4510 have carried out multiple (such as 2) different reflections to reach the light outlet
  • the light with a wavelength of ⁇ 4 enters the first optical multiplexer 4510
  • the first optical entrance is, for example, one of the four optical entrances of the first optical multiplexer 4510 that is farthest from the second optical multiplexer 4520
  • the fourth optical entrance is, for example, the fourth optical entrance of the first optical multiplexer 4510.
  • the second optical multiplexer 4520 includes four light entrances for receiving light of multiple wavelengths, and each light entrance is for receiving light of one wavelength.
  • the light entrance is located at the light input end of the second optical multiplexer 4510 near the side of the translation prism 440 .
  • the second optical multiplexer 4520 also includes a light outlet for emitting light. The light outlet is located at the light input end of the second optical multiplexer 4520 on the side away from the translation prism 440 .
  • the light with a wavelength of ⁇ 5 enters the second optical multiplexer 4520 through the fifth optical entrance, and passes through the second optical multiplexer 4520
  • a plurality of (for example, 6) different positions in the interior have carried out multiple (for example, 6) different reflections to reach the light outlet
  • the light with a wavelength of ⁇ 6 enters the second optical multiplexer 4520 through the sixth light entrance, and passes through the second optical multiplexer
  • a plurality of (such as 4) different positions in the device 4520 have carried out multiple (such as 4 times) different reflections and arrive at the light outlet
  • the light with a wavelength of ⁇ 7 enters the second optical multiplexer 4520 through the seventh light entrance, and passes through the second optical multiplexer 4520.
  • a plurality of (such as 2) different positions in the optical multiplexer 4520 have carried out multiple (such as 2) different reflections to reach the light outlet; the light with a wavelength of ⁇ 8 enters the second optical multiplexer 4520 through the eighth light entrance, and does not After reflection, it directly reaches the light outlet.
  • the second optical multiplexer 4520 realizes that lights of different wavelengths are input through different light inlets and output through the same light outlet, and then the lights of different wavelengths are combined into a second composite light beam.
  • FIG. 7 shows the reflection positions and the number of reflections in the second optical multiplexer 4520 of light of four wavelengths of ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8.
  • the reflection positions and reflection times in the first optical multiplexer 4510 of the four wavelengths of light of ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 can be deduced according to FIG. 7 .
  • the fifth optical port is, for example, one of the four optical ports of the second optical multiplexer 4520 that is farthest from the first optical multiplexer 4510
  • the eighth optical port is, for example, the four of the second optical multiplexer 4520.
  • the wavelength ⁇ 5 may be the same as or different from the wavelength ⁇ 1
  • the wavelength ⁇ 6 may be the same as or different from the wavelength ⁇ 2
  • the wavelength ⁇ 7 may be the same as or different from the wavelength ⁇ 3
  • the wavelength ⁇ 8 may be the same as or different from the wavelength ⁇ 4.
  • the optical input end of the first optical fiber coupler 4710 is optically coupled with the optical output end of the first optical multiplexer 4510, and the optical output end of the first optical fiber coupler 4710 is connected to the first sub-fiber optic adapter 601 through the first sub-internal optical fiber 801 .
  • the first composite beam output by the first optical multiplexer 4510 is coupled to the first sub-internal optical fiber 801 through the first optical fiber coupler 4710, and then transmitted to the first sub-fiber adapter 601 through the first sub-internal optical fiber 801, so as to realize Emission of the first composite beam.
  • the optical input end of the second optical fiber coupler 4720 is optically coupled with the optical output end of the second optical multiplexer 4520, and the optical output end of the second optical fiber coupler 4720 is connected to the second sub-fiber optic adapter 602 through the second sub-internal optical fiber 802 .
  • the second composite light beam output by the second optical multiplexer 4520 is coupled to the second sub-internal optical fiber 802 through the second optical fiber coupler 4720, and then transmitted to the second sub-fiber optic adapter 602 through the second sub-internal optical fiber 802, so as to realize Emission of the second composite beam.
  • the first optical isolator 4610 is arranged between the first optical multiplexer 4510 and the first optical fiber coupler 4710, and the first composite light beam emitted by the first optical multiplexer 4510 passes through the first optical fiber coupler 4710.
  • the first optical isolator 4610 When reflection occurs at the light input end of the laser beam, the first optical isolator 4610 is used to isolate the reflected light beam and prevent the reflected light beam from returning to the laser 420 along the original path. In some embodiments, the first optical isolator 4610 is omitted.
  • the second composite light beam output by the second optical multiplexer 4520 is transmitted to the second optical fiber coupler 4720
  • the second composite light beam is reflected at the optical input end of the second fiber coupler 4720, and the reflected light beam may return to the laser 420 along the original path, affecting the performance of the laser 420.
  • the second optical isolator 4620 is arranged between the second optical multiplexer 4520 and the second optical fiber coupler 4720, and the second composite light beam emitted by the second optical multiplexer 4520 passes through the second optical fiber coupler 4720.
  • the second optical isolator 4620 is used to isolate the reflected light beam and prevent the reflected light beam from returning to the laser 420 along the original path.
  • the second optical isolator 4620 is omitted.
  • the second fiber coupler 4720 includes a sleeve 4721 , a focusing lens 4722 and a single-mode fiber flange 4723 .
  • the sleeve 4721 is set on the outside of the focusing lens 4722 and the single-mode fiber flange 4723
  • the second sub-internal optical fiber 802 is inserted into the single-mode fiber flange 4723
  • the light incident surface of the focusing lens 4722 faces the second optical isolator 4620
  • the second composite light beam output by the second optical multiplexer 4520 is transmitted to the focusing lens 4722 through the second optical isolator 4620
  • the focusing lens 4722 converges the second composite light beam to the single-mode optical fiber Second sub-inner optical fiber 802 within fiber optic flange 4723.
  • the focusing lens 4722 is a cylindrical lens, and the outer diameters of the cylindrical lens and the single-mode fiber flange 4723 are slightly smaller than the inner diameter of the sleeve 4721 to ensure the coupling between the focusing lens 4722 and the single-mode fiber flange 4723 .
  • the focusing lens 4722 and the single-mode fiber flange 4723 are inserted into the casing 4721, in order to improve the coupling degree between the focusing lens 4722 and the single-mode fiber flange 4723, the focusing lens 4722 and the single-mode fiber flange 4723 can only be moved axially , easy to operate.
  • the focusing lens 4722 protrudes outside the casing 4721, reducing the distance between the incident surface of the focusing lens 4722 and the second optical isolator.
  • the distance between the light emitting surfaces of 4620 makes the structure more compact.
  • the first fiber coupler 4710 includes a ferrule 4711 , a focusing lens 4712 and a single-mode fiber flange 4713 .
  • the structure and function of the first optical fiber coupler 4710 are the same as those of the second optical fiber coupler 4720 , and will not be repeated here.
  • an optical combiner is used to combine multiple beams in multiple (for example, 4, 8) optical signal transmission channels into one composite beam, which simplifies the internal structure of the optical module 200 , which is beneficial for the optical module to realize high-speed signal transmission.
  • Fig. 8 is a structural diagram of a circuit board in an optical module according to some embodiments.
  • the circuit board 300 includes a mounting hole 320
  • the base 410 of the light-emitting device 400 is installed on the front of the circuit board 300
  • the mounting surface of the base 410 faces the front of the circuit board 300
  • the laser 420 , the collimator lens 430 and the translation prism 440 are embedded in the installation hole 320 .
  • the circuit board 300 and the light emitting device 400 installed, the laser 420 and the collimating lens 430 are located at the back side of the circuit board 300, and the optical multiplexers 4510 and 4520, the optical isolators 4610 and 4620, and the fiber couplers 4710 and 4720 are located at the circuit board 300.
  • the front side of the circuit board 300 while the translation prism 440 is partly located on the back side of the circuit board 300 and the other part is located on the front side of the circuit board 300 .
  • a plurality of lasers 420 emit laser beams respectively, and these laser beams are parallel to the back surface of the circuit board 300;
  • Straight light beams, multiple collimated light beams are transmitted to the translation prism 440, and the first reflective surface 441 and the second reflective surface 442 of the translation prism 440 reflect the multiple collimated light beams, so that the multiple laser beams located on the back side of the circuit board 300 The light beam is reflected to the front side of the circuit board 300 .
  • the first optical combiner 4510 combines the 4 collimated beams into a first composite beam
  • the second optical combiner 4520 combines the remaining 4 collimated beams into a second composite beam.
  • the first reflective surface 441 of the translation prism 440 faces the plurality of collimating lenses 430, is located on the back side of the circuit board 300, and is configured to reflect a plurality of collimated light beams parallel to the back side of the circuit board 300 to be perpendicular to the circuit board 300 a plurality of collimated light beams;
  • the second reflective surface 442 of the translation prism 440 faces the first reflective surface 441 and is located on the front side of the circuit board 300, and is configured to reflect a plurality of collimated light beams perpendicular to the circuit board 300 to be parallel to A plurality of collimated light beams on the front side of the circuit board 300 .
  • the optical components behind the multiple collimating lenses 430 (optical multiplexers 4510 and 4520, optical isolators 4610 and 4620, fiber couplers 4710 and 4720, etc.) the front side of the circuit board 300 and maintain a proper gap with the front side of the circuit board 300 .
  • the position conflict between these optical components and the circuit board 300 is avoided, thereby the area of the mounting hole 320 in the circuit board 300 can be reduced as much as possible, and the arrangement area of the electronic components on the circuit board 300 is increased, so that Wiring of the circuit board 300 is easier.
  • the mounting surface of the base 410 faces the front of the circuit board 300, and the multiple lasers 420 are installed on the back side of the circuit board 300, so that the bottom surface of the light-emitting device 400 is close to the upper housing 201 and away from the lower housing 202, which This mounting method is called a flip-chip method of the light emitting device 400 .
  • the spacer 422 in the laser 420 is flush with the back side of the circuit board 300, so that the ground wire and the signal line on the spacer 422 are aligned with the back side of the circuit board 300.
  • the connecting lines between the circuit traces are the shortest to ensure excellent high-frequency signal transmission performance.
  • the digital signal processing chip 310 is located on the front side of the circuit board 300 and is configured to transmit a high-frequency signal to the laser 420 of the light emitting device 400 to provide a signal for the laser beam emitted by the laser 420.
  • the laser beam is modulated into an optical signal.
  • the circuit board 300 includes high frequency signal lines 330 and via holes 340 .
  • the via hole 340 is located at the output pad of the digital signal processing chip 310 , and the via hole 340 runs through the front and back of the circuit board 300 .
  • the high-frequency signal line 330 is located in the via hole 340 , and the high-frequency signal line 330 passes through the via hole 340 and is electrically connected to the output pad of the digital signal processing chip 310 to transmit a high-frequency signal.
  • the high-frequency signal line 330 passes through the via hole 340 and is routed along the back side of the circuit board 300, and then electrically connected to the laser 420 through a wire bonding process (wire bonding) connect. That is, one end of the high-frequency signal line 330 is electrically connected to the output pad of the digital signal processing chip 310 , and the other end is located on the back of the circuit board 300 , and is electrically connected to the laser 420 through a wire bonding process.
  • the high-frequency signal transmitted from the golden finger 301 of the circuit board 300 passes through the digital signal processing chip 310 and then is transmitted to the laser 420 through the high-frequency signal line 330 , so that the laser 420 emits an optical signal.
  • the circuit board 300 includes a plurality of via holes 340, and the plurality of via holes 340 are arranged on the side of the mounting hole 320 close to the gold finger 301, and each via hole 340 corresponds to a laser 420, so that the high-frequency signal passing through each via hole 340 Lines 330 are connected to corresponding lasers 420 .
  • the circuit board 300 also includes a DC signal line 302 located on the back of the circuit board 300 .
  • the DC signal line 302 is electrically connected to the laser 420 and transmits a bias current to drive the laser 420 to emit light.
  • the DC signal line 302 can be electrically connected to the laser 420 through the wire bonding process from the side of the mounting hole 320 on the circuit board 300 away from the gold finger 301 , and the laser 420 emits light after receiving the bias current transmitted by the DC signal line 302 .
  • the laser 420 modulates the high-frequency signal into the light beam, so that the laser 420 generates an optical signal.
  • the DC signal line 302 can also be connected to the laser 420 from other sides of the mounting hole 320 , that is, the DC signal line 302 connected to the laser 420 and the high frequency signal line 330 are located on different sides of the mounting hole 320 . In this way, the interference between the high-frequency signal and the DC signal is avoided, and the transmission path of the DC signal is shortened, so as to avoid overcrowded wiring in the circuit board 300 .
  • Fig. 12A is a structural diagram of a base in an optical module according to some embodiments
  • Fig. 12B is a structural diagram of another angle of the base in an optical module according to some embodiments.
  • the installation surface of the base 410 includes a first installation surface 4110, a second installation surface 4120 and a third installation surface 4130 connected in sequence, so as to carry a laser 420, a collimating lens 430, a translation prism 440, a light combining Waveformers 4510 and 4520, optical isolators 4610 and 4620, fiber couplers 4710 and 4720, and semiconductor refrigerator 480.
  • the second installation surface 4120 is recessed from the first installation surface 4110 toward the bottom surface of the base 410
  • the third installation surface 4130 is recessed from the second installation surface 4120 toward the bottom surface of the base 410 .
  • the distance between the third mounting surface 4130 and the bottom surface of the base 410 is smaller than the distance between the second mounting surface 4120 and the bottom surface of the base 410
  • the distance between the second mounting surface 4120 and the bottom surface of the base 410 is smaller than the distance between the first mounting surface 4110 and the bottom surface of the base 410
  • the dimensions are such that the first installation surface 4110 , the second installation surface 4120 and the third installation surface 4130 form a stepped surface.
  • the first installation surface 4110 , the second installation surface 4120 and the third installation surface 4130 are all parallel to the bottom surface of the base 410 .
  • the base 410 also includes two baffles 4111, the two baffles 4111 are respectively located at the two sides of the first installation surface 4110 parallel to the light emitting direction of the laser 420, and the two baffles 4111 face away from the bottom surface of the base 410 Extend so that when the light-emitting device 400 is mounted on the circuit board 300 , the two baffles 4111 abut against the front surface of the circuit board 300 .
  • the laser 420 and the collimating lens 430 are fixed on the first installation surface 4110 .
  • the second mounting surface 4120 is open in a direction perpendicular to the light emitting direction of the laser 420, so as to facilitate fixing the translation prism 440 on the second mounting surface 4120;
  • the third mounting surface 4130 is open in a direction perpendicular to the light emitting direction of the laser 420 , and also open along the light emitting direction of the laser 420, so as to facilitate fixing the optical multiplexers 4510 and 4520, the optical isolators 4610 and 4620, and the fiber couplers 4710 and 4720 on the third installation surface 4130.
  • the installation height of the laser 420 and the collimating lens 430 on the base 410 is greater than that of the translation prism 440, and the installation height of the translation prism 440 is greater than that of the optical multiplexers 4510 and 4520, the optical isolators 4610 and 4620, and the fiber coupler 4710 and an installation height of 4720.
  • the laser 420, the collimating lens 430 and the translation prism 440 are embedded in the mounting hole 320 of the circuit board 300, the laser 420 and the collimating lens 430 are positioned at the back side of the circuit board 300, the optical multiplexers 4510 and 4520, the optical isolation
  • the optical fiber couplers 4610 and 4620 and the fiber couplers 4710 and 4720 are located on the front side of the circuit board 300 , while a part of the translation prism 440 is located on the back side of the circuit board 300 and another part is located on the front side of the circuit board 300 .
  • the semiconductor cooler 480 is placed on the first installation surface 4110 , and multiple lasers 420 are arranged on the semiconductor cooler 480 .
  • the laser 420 includes a laser chip 421 and a spacer 422 , the laser chip 421 is located on the spacer 422 , and the spacer 422 is disposed on the semiconductor cooler 480 .
  • the collimator lens 430 corresponding to each laser 420 is also arranged on the semiconductor refrigerator 480 , and the collimator lens 430 is arranged in the light emitting direction of the laser 420 .
  • the light-emitting device when the light-emitting device includes 8 lasers 420 and 8 collimating lenses 430, the 8 lasers 420 are arranged side by side along the direction perpendicular to their respective light emitting directions, and the 8 collimating lenses 430 are also arranged along the The direction perpendicular to the light output direction of the lasers 420 is arranged side by side, so that the eight lasers 420 emit eight beams of different wavelengths.
  • the dimensions of the eight lasers 420 along their light emitting directions may be the same, so that the dimensions of the sides of the eight collimating lenses 430 away from the first installation surface 4110 away from the second installation surface 4120 are the same. But it is not limited thereto, and the dimensions of the eight lasers 420 along their respective light emitting directions may also be different.
  • a part of the laser 420 (the first laser) extends from the side of the first installation surface 4110 away from the second installation surface 4120, which is less than the distance from the first installation surface 4110 of the other part of the laser 420 (the second laser).
  • the surface 4110 is away from the distance from the side of the second mounting surface 4120, so that the eight lasers 420 are spaced apart from the first laser and the second laser (for example, short, long, short, long, short, long, short, Long setting mode) is fixed on the semiconductor refrigerator 480.
  • the eight lasers 420 are spaced apart from the first laser and the second laser (for example, short, long, short, long, short, long, short, Long setting mode) is fixed on the semiconductor refrigerator 480.
  • the dimensions of the eight collimating lenses 430 away from the first mounting surface 4110 away from the side of the second mounting surface 4120 are also different, so that multiple collimating lenses 430 will not affect each other due to glue flow during assembly. .
  • the distance between the multi-channel collimated beams can be reduced to reduce the outline size of the base 410, especially the size of the base 410 in the direction perpendicular to the light output direction of the laser 420, so that the light emitting device 400 and the light receiving device 500 No conflicts occur at assembly time.
  • the size of the first mounting surface 4110 in the direction perpendicular to the light emitting direction of the laser 420 is slightly larger than the size of the second mounting surface 4120 in this direction, and the size of the second mounting surface 4120 in this direction is It is roughly consistent with the size of the third installation surface 4130 in this direction.
  • the wider first installation surface 4110 can facilitate the placement of a plurality of lasers 420, avoiding a large distance between adjacent lasers 420. Small, so that the crosstalk between the multiple laser beams emitted by the multiple lasers 420 can be avoided.
  • a translation prism 440 is disposed on the second installation surface 4120 .
  • the translation prism 440 is vertically fixed on the second installation surface 4120, and the first reflection surface 441 of the translation prism 440 is away from the second installation surface 4120, and is close to the laser 420; the second reflection surface 442 of the translation prism 440 is close to the second installation surface 4120. In this way, the laser beam on the back side of the circuit board 300 is reflected to the front side of the circuit board 300 by the translation prism 440 .
  • Optical multiplexers 4510 and 4520 , optical isolators 4610 and 4620 , and optical fiber couplers 4710 and 4720 are disposed on the third installation surface 4130 .
  • the first optical multiplexer 4510 and the second optical multiplexer 4520 are arranged side by side along the direction perpendicular to the light output direction of the laser 420, the first optical isolator 4610 and the second optical isolator 4620 are also arranged side by side along this direction, and the first optical fiber coupling
  • the laser 4710 and the second fiber coupler 4720 are also arranged side by side along this direction, and the optical multiplexer, optical isolator and fiber coupler are arranged along the light output direction of the laser 420 .
  • the size of the third mounting surface 4130 in the direction perpendicular to the light emitting direction of the laser 420 is consistent along the light emitting direction of the laser 420, and the third mounting surface 4130 is in the direction perpendicular to the light emitting direction of the laser 420
  • the size above is smaller than the size jointly formed by the first optical multiplexer 4510 and the second optical multiplexer 4520 arranged side by side in this direction, so that the first optical multiplexer 4510 and the second optical multiplexer 4520 are combined with the output of the laser 420
  • the side of the first optical multiplexer 4510 away from the second optical multiplexer 4520 and the side of the second optical multiplexer 4520 away from the first optical multiplexer 4510 Both protrude from the first installation surface 4110, so that the size of the base 410 in the direction perpendicular to the light emitting direction of the laser 420 can be reduced, saving cost.
  • the semiconductor refrigerator 480, the laser 420, the collimating lens 430, the translation prism 440, the optical multiplexers 4510 and 4520, the optical isolator 4610 and 4620, and fiber couplers 4710 and 4720 are fixed on the base 410 to form a gap between the laser 420, the collimator lens 430, the optical multiplexers 4510 and 4520, the optical isolators 4610 and 4620, and the fiber couplers 4710 and 4720 installation height difference, and the laser 420 and the collimator lens 430 with a relatively large installation height are arranged on the back side of the circuit board 300 through the installation hole 320 of the circuit board 300, and the optical multiplexers 4510 and 4520 with a relatively small installation height , the optical isolators 4610 and 4620 , and the fiber couplers 4710 and 4720 are arranged on the front side of the circuit board 300 , so as to reduce the spatial overlapping area between the light emitting device 400 and the circuit board 300 .
  • Active coupling refers to mounting the collimator lens 430 when the laser chip 421 is powered on and emitting light, and at the same time detecting the coupling efficiency in the sub-internal optical fibers 801 and 802 to optimize the position of the collimator lens 430 .
  • the first optical multiplexer 4510, the second optical multiplexer 4520, the first optical isolator 4610, the second optical isolator 4620, the first optical fiber coupler 4710, and the second optical fiber coupler 4720 can also be , the first sub-internal optical fiber 801, the second sub-internal optical fiber 802, the first sub-fiber adapter 601, and the second sub-fiber adapter 602 are assembled into a pre-assembled component.
  • the semiconductor refrigerator 480 First fix the semiconductor refrigerator 480 on the first installation surface 4110, and fix the laser 420 on the semiconductor refrigerator 480; then fix the translation prism 440 on the second installation surface 4120; Three mounting surfaces 4130 ; finally, the collimating lens 430 is fixed on the first mounting surface 4110 in an active coupling manner along the light emitting direction of the laser 420 , and the position of the collimating lens 430 is optimized.
  • the base 410 Mounted on the front side of the circuit board 300 in reverse. That is, the bottom surface of the base 410 faces the upper case 201 , and the first installation surface 4110 , the second installation surface 4120 and the third installation surface 4130 of the base 410 face the front of the circuit board 300 .
  • the base 410 further includes two first support columns 4140 .
  • the two first support columns 4140 are located at an end of the third installation surface 4130 away from the second installation surface 4120 .
  • the distance between the two first support columns 4140 in the direction perpendicular to the light emitting direction of the laser 420 is not greater than the size of the third installation surface 4130 in this direction, such as the opposite sides of the two first support columns 4140 and The sides of the base 410 are flush with each other.
  • Each first support column 4140 extends from the third installation surface 4130 to a direction away from the bottom surface of the base 410 .
  • the base 410 further includes two first positioning pins 4141 , and the two first positioning pins 4141 are respectively located on end surfaces of the two first supporting columns 4140 facing away from the third installation surface 4130 .
  • the circuit board 300 includes a first positioning hole 360 , and the first positioning hole 360 is arranged corresponding to the first positioning pin 4141 .
  • the base 410 further includes a positioning block 4150 , and the positioning block 4150 is located at the end of the first installation surface 4110 away from the sub-fiber adapters 601 and 602 .
  • the positioning block 4150 extends away from the bottom surface of the base 410 and protrudes from the first installation surface 4110 .
  • the base 410 further includes two positioning protrusions 4151 , the two positioning protrusions 4151 are located on the end surface of the positioning block 4150 facing away from the first installation surface 4110 .
  • the circuit board 300 includes a second positioning hole 370 , and the second positioning hole 370 is disposed corresponding to the positioning protrusion 4151 .
  • the base 410 When the base 410 is reversely installed on the front of the circuit board 300, the first support column 4140 and the positioning block 4150 of the base 410 are in contact with the front of the circuit board 300, and the first positioning pin 4141 on the first support column 4140 is inserted into the circuit board In the first positioning hole 360 on the circuit board 300 , the positioning protrusion 4151 on the positioning block 4150 is inserted into the second positioning hole 370 on the circuit board 300 .
  • the base 410 is fixed on the circuit board 300, and the laser 420 and the collimating lens 430 arranged on the first installation surface 4110 and the translation prism 440 arranged on the second installation surface 4120 are inserted into the installation hole 320 of the circuit board 300 Inside.
  • Fig. 13 is a diagram of a heat dissipation channel of an optical module according to some embodiments.
  • the bottom surface of the base 410 in the light-emitting device 400 faces the upper housing 201 and contacts the upper housing 201 .
  • the laser 420 in the light-emitting device 400 is connected to the digital signal processing chip 310 on the front of the circuit board 300 through the high-frequency signal line 330, the laser 420 generates an optical signal under the drive of the bias current and the high-frequency signal, so that the laser 420 will Generate heat.
  • the light emitting performance of the laser 420 is easily affected by temperature, so the laser 420 needs to work within a certain fixed temperature range. Placing it on the semiconductor cooler 480 can ensure the working temperature of the laser 420, but in this case heat will be transferred from the laser 420 to the semiconductor cooler 480, and the heat needs to be conducted out to ensure the cooling efficiency of the semiconductor cooler 480.
  • the base 410 can be made of tungsten copper or other metal materials with good thermal conductivity, and the quality of the base 410 and the area of its bottom surface can be appropriately increased, so that the heat generated by the laser 420 can pass through the base 410 Conducted to the upper housing 201 , effectively improving the heat dissipation effect of the laser 420 .
  • the laser 420 is arranged on the first installation surface 4110 of the base 410 through the semiconductor cooler 480.
  • the installation area of the laser 420 on the base 410 is smaller than the contact area between the base 410 and the upper casing 201, which can improve the heat dissipation efficiency of the laser 420.
  • the quality of the base 410 and the contact area between the base 410 and the upper housing 201 are increased in some embodiments, so that the contact area between the base 410 and the upper housing 201 is larger than that of the laser 420 on the base 410 the installation area.
  • the heat generated by the laser 420 is transferred to the semiconductor cooler 480, and the semiconductor cooler 480 transfers the heat to the base 410, and the base 410 transfers the heat to the upper housing 201, thereby transferring the heat generated by the laser 420 to the outside of the optical module 200.
  • the optical module 200 also includes a first thermal pad.
  • a first heat conducting pad is arranged between the bottom surface of the base 410 and the inner surface of the upper casing 201 .
  • the first thermal pad is thermally conductive glue.
  • the base 410 can be pasted on the inner surface of the upper case 201 through the thermally conductive adhesive, and the heat of the base 410 can be conducted to the upper case 201 .
  • the main heat source of the optical module includes the digital signal processing chip 310 in addition to the laser 420 .
  • the side of the digital signal processing chip 310 facing away from the circuit board 300 is in contact with the upper casing 201 . In this way, the heat generated by the digital signal processing chip 310 can be conducted to the upper housing 201 , so as to transfer the heat generated by the digital signal processing chip 310 to the outside of the optical module 200 .
  • the optical module 200 also includes a second thermal pad.
  • the second heat conduction gasket is disposed between the digital signal processing chip 310 and the inner surface of the upper housing 201 . In this way, the heat generated by the digital signal processing chip 310 is conducted to the second heat conduction pad, and the second heat conduction pad conducts the heat to the upper case 201 to effectively improve the heat dissipation effect.
  • Fig. 14A is a cross-sectional view of a monitoring optical path of an optical detector in an optical module according to some embodiments
  • Fig. 14B is a top view of a monitoring optical path of an optical detector in an optical module according to some embodiments.
  • the laser 420 emits a laser beam driven by the bias current and high-frequency signal transmitted by the circuit board 300.
  • the circuit board 300 also includes a photodetector 350.
  • the detector 350 is disposed on the back of the circuit board 300 .
  • the photodetector 350 is located on a side of the mounting hole 320 away from the golden finger 301 , and the photosensitive surface of the photodetector 350 faces the light emitting direction of the laser 420 .
  • the light detector 350 is configured to collect the forward light emitted by the laser 420 and send the collected data to the circuit board 300 to monitor the forward light output power of the laser 420 .
  • the photosensitive surface of the photodetector 350 can be flush with the inner side wall of the mounting hole 320, so as to facilitate the positioning of the photodetector 350;
  • the photosensitive surface of the photodetector 350 can also be protruded from the inner sidewall of the mounting hole 320 to reduce the distance between the photosensitive surface of the photodetector 350 and the first reflective surface 441, so that the photodetector 350 can be as much as possible
  • the laser beam passing through the first reflective surface 441 is collected.
  • a small part of the collimated light beam leaks through the first reflective surface 441 and is directed to the photosensitive surface of the photodetector 350, so that the photodetector 350 can receive part of the light beam, so as to obtain the emitted light power of the laser 420 .
  • the first reflective surface 441 of the translating prism 440 faces the light output direction of the laser 420 and is configured to split the laser beam generated by the laser 420 into two beams, one beam (usually accounting for 95% of the total power of the laser) by the first One reflective surface 441 is reflected to the second reflective surface 442, so that the laser beam is reflected from the back side of the circuit board 300 to the front side of the circuit board 300, and the other beam of light passes through the first reflective surface 441 and enters the light detector 350.
  • the photosensitive surface receives the laser beam emitted by the laser 420 through the photosensitive surface.
  • the central axis of the photosensitive surface in the photodetector 350 can be made to coincide with the central axis of the laser 420, and the photodetector 350 can be assembled by surface mount technology (Surface Mounted Technology, SMT) is installed on the back of the circuit board 300, so that the light beam passing through the first reflective surface 441 enters the light detector 350 as much as possible.
  • SMT Surface Mounted Technology
  • the circuit board 300 includes 8 photodetectors 350 , and each photodetector 350 is arranged correspondingly to a laser 420 . In this way, each photodetector 350 collects a part of the laser beam emitted by a laser 420 that passes through the first reflective surface 441 , and measures the forward light output power of the corresponding laser 420 .
  • the light detector 350 receives parallel light with a certain area, so the assembly position accuracy of the light detector 350 is low, and the assembly is easier. After the light transmission range of the first reflective surface 441 in the translational prism 440 is aligned with the photosensitive surface of the photodetector 350 , the photodetector 350 can collect the laser beam passing through the first reflective surface 441 .
  • Photodetector 350 has a cathode and an anode.
  • the cathode can be fixed on the ground metal layer of the circuit board 300 by means of welding or conductive adhesive.
  • the anode and cathode of the photodetector 350 are arranged opposite to each other, and the anode is electrically connected to the circuit board 300 through a wire bonding process, thereby realizing the electrical connection between the photodetector 350 and the circuit board 300 .
  • Fig. 15A is an assembly structure diagram of a circuit board and a light receiving device in an optical module according to some embodiments.
  • the light receiving device 500 of the 800G (signal transmission rate is 800Gbit/s) optical module in some embodiments of the present disclosure includes two sub-light receiving devices 501 and 502, the first sub-light receiving device 501
  • the second sub-light receiving device 502 may be symmetrically arranged on both sides of the mounting hole 320 of the circuit board 300 in a direction perpendicular to the light emitting direction of the laser 420 .
  • the first sub-optical receiving device 501 is connected to the third sub-fiber optic adapter 701 through the third internal optical fiber 901, and the optical signal received by the third sub-fiber optic adapter 701 from outside the optical module 200 is transmitted to the first sub-optical module 200 through the third internal optical fiber
  • the light receiving device 501 is used to realize the reception of the third composite light beam
  • the second sub-light receiving device 502 is connected to the fourth sub-fiber optic adapter 702 through the fourth internal optical fiber 902, and the fourth sub-fiber optic adapter 702 receives light from the optical module 200
  • the external optical signal is transmitted to the second sub-light receiving device 502 through the fourth internal optical fiber 902, so as to realize the reception of the fourth composite light beam.
  • Fig. 15B is a structural diagram of a light receiving device in an optical module according to some embodiments
  • Fig. 15C is a partial optical path diagram of a light receiving device in an optical module according to some embodiments.
  • the first sub-light receiving device 501 has the same structure as the second sub-light receiving device 502, and the second sub-light receiving device 502 includes a support plate 5021 and a light collimator arranged on the support plate 5021 5022 , optical splitter 5023 , lens array 5024 and reflective prism 5025 .
  • the combination formed by the optical collimator 5022 , the optical splitter 5023 , the lens array 5024 and the reflective prism 5025 may also be referred to as the aforementioned optical receiver.
  • the fourth internal optical fiber 902 connected to the fourth sub-fiber adapter 702 is inserted into the optical collimator 5022, and the optical signal from the outside of the optical module 200 is transmitted to the optical splitter 5023 through the optical collimator 5022, and then passed through the optical splitter.
  • the device 5023 demultiplexes the fourth composite beam into 4 laser beams; the 4 laser beams are respectively converged to the reflective prism 5025 through the lens array 5024; the 4 laser beams are reflected at the reflective surface of the reflective prism 5025, and will be parallel
  • the laser beam on the front of the circuit board 300 is reflected as a laser beam perpendicular to the front of the circuit board 300 , and the reflected laser beam enters the receiving detector 380 on the circuit board 300 to realize light reception.
  • the optical collimator 5022 includes a sleeve 50221 , a single-mode fiber flange 50222 and a collimating lens 50223 , and the single-mode fiber flange 50222 and the collimating lens 50223 are inserted into the sleeve 50221 .
  • the fourth internal optical fiber 902 is inserted into the flange 50222 of the single-mode optical fiber, and is set opposite to the collimating lens 50223 .
  • the collimating lens 50223 is configured to convert the light beam transmitted by the fourth inner optical fiber 902 from outside the optical module 200 into a collimated light beam.
  • the light incident surface of the optical splitter 5023 faces the light exit surface of the collimator lens 50223, and is configured to demultiplex one collimated light beam output by the collimator lens 50223 into four laser beams, so that light beams containing multiple different wavelengths separate.
  • the optical splitter 5023 outputs 4 beams of different wavelengths, and the 4 beams of different wavelengths are respectively injected into corresponding lenses in the lens array 5024 to converge the 4 beams of different wavelengths onto the reflective surface of the reflective prism 5025 .
  • the reflective prism 5025 is arranged directly above the receiving detector 380 of the circuit board 300, and the reflecting prism 5025 reflects 4 beams of different wavelengths to the corresponding receiving detector 380, and the optical signal is converted into an electrical signal by the receiving detector 380 .
  • the transimpedance amplifier of the circuit board 300 is connected to the receiving detector 380 through circuit wiring, and the receiving detector 380 first converts the received optical signal into a high-frequency current signal, and then transmits the high-frequency current signal to the transimpedance amplifier;
  • the transimpedance amplifier converts the high-frequency current signal into a high-frequency voltage signal, amplifies the high-frequency voltage signal, and transmits the high-frequency voltage signal to the digital signal processing chip 310 via the high-frequency signal line 330 .
  • the digital signal processing chip 310 extracts data from the high-frequency voltage signal, and then transmits the data to the optical network terminal 100 via the golden finger 301 .
  • one end of the transimpedance amplifier is connected to the receiving detector 380 through a circuit trace, and the other end is connected to the digital signal processing chip 310 through a high-frequency signal line 330 .
  • the high-frequency current signal converted by the receiving detector 380 is converted into a high-frequency voltage signal by the transimpedance amplifier and amplified, and then transmitted to the digital signal processing chip 310 via the high-frequency signal line 330 for processing.
  • the light-receiving device may also use an optical demultiplexing device based on Arrayed Waveguide Grating (AWG) technology to achieve the same optical demultiplexing effect.
  • AWG Arrayed Waveguide Grating
  • the installation method of the first sub-light receiving device 501 and the second sub-light receiving device 502 are the same, and the installation method of the second sub-light receiving device 502 is taken as an example for illustration.
  • the optical collimator 5022 , the optical splitter 5023 , the lens array 5024 and the reflective prism 5025 are fixedly installed on the support plate 5021 in sequence to form a pre-assembled part. Then the pre-assembly is fixed on the circuit board 300 in an active coupling manner, so as to ensure that the reflective prism 5025 in the pre-assembly couples the multi-channel optical signals into the receiving detector 380 .
  • the first sub-light receiving device 501 and the second sub-light receiving device 502 are mounted on the front side of the circuit board 300 in a symmetrical structure, so that the optical module 200 forms a complementary structure in layout, avoiding positional conflicts between the devices , making the overall structure compact and easy to install.
  • the use of translational prisms reduces the area of the mounting hole in the circuit board, making it easier to design the layout of the circuit board; in addition, the use of integrated optical components, such as optical multiplexers, Optical isolators, fiber optic couplers, etc. simplify the assembly of optical components; the light-emitting device adopts a flip-chip assembly structure, which reduces the overall size of the light-emitting device and greatly improves the heat dissipation characteristics of the light-emitting device; The spaced arrangement of multiple lasers with different sizes in the emitting device greatly reduces the distance between adjacent lasers and reduces the size of the light emitting device in the light emitting direction of the lasers.
  • Fig. 16A is a structural diagram of a light-emitting device in an optical module according to some modification examples
  • Fig. 16B is a structural diagram of a base of the light-emitting device shown in Fig. 16A.
  • the light emitting device 400 includes a laser 420 , a collimator lens 430 , a translation prism 440 , a convergence lens 490 , an optical isolator 460 , a fiber coupler 470 and a semiconductor refrigerator 480 .
  • the optical transmitting device 400 omits the optical multiplexers 4510 and 4520 , and 8 optical signals are transmitted to the outside of the optical module 200 through 8 internal optical fibers 800 .
  • the converging lens 490 converges the collimated beam passing through the translating prism 440 to form a converging beam.
  • the converging light beam can be better launched into the fiber coupler 470 .
  • the base 410 in order to fix the base 410 on the front surface of the circuit board 300 , the base 410 omits the first support 4140 , but includes two second support columns 4160 .
  • the two second support columns 4160 are located at an end of the third installation surface 4130 away from the second installation surface 4120 .
  • the distance between the two second support columns 4160 in the direction perpendicular to the light emitting direction of the laser 420 is greater than the size of the third installation surface 4130 in this direction, so as to facilitate the passage of the eight internal optical fibers 800 through the opening.
  • each second support column 4160 extends from the third mounting surface 4130 to a direction away from the bottom surface of the base 410 .
  • the base 410 further includes two second positioning pins 4161 , and the two second positioning pins 4161 are respectively located on end surfaces of the two second supporting columns 4160 facing away from the third installation surface 4130 .
  • the circuit board 300 includes a first positioning hole 360 , and the first positioning hole 360 is arranged corresponding to the second positioning pin 4161 .
  • the base 410 When the base 410 is reversely installed on the front of the circuit board 300, the second support column 4160 and the positioning block 4150 of the base 410 are in contact with the front of the circuit board 300, and the second positioning pin 4161 on the second support column 4160 is inserted into the circuit board In the first positioning hole 360 on the circuit board 300 , the positioning protrusion 4151 on the positioning block 4150 is inserted into the second positioning hole 370 on the circuit board 300 .
  • the base 410 is fixed on the circuit board 300, and the laser 420 and the collimating lens 430 arranged on the first installation surface 4110 and the translation prism 440 arranged on the second installation surface 4120 are inserted into the installation hole 320 of the circuit board 300 Inside.
  • Fig. 17A is a structural diagram of a light-emitting device in an optical module according to other modification examples
  • Fig. 17B is a structural diagram of a base of the light-emitting device shown in Fig. 17A.
  • the base 410 in order to fix the base 410 on the front surface of the circuit board 300 , the base 410 omits the first support column 4140 , but includes a support block 4170 .
  • the supporting block 4170 extends from the third installation surface 4130 to a direction away from the bottom surface of the base 410 .
  • the support block 4170 is located at an end of the third installation surface 4130 away from the second installation surface 4120 , and the side of the support block 4170 away from the second installation surface 4120 is flush with the side of the base 410 away from the first installation surface 4110 .
  • the support block 4170 has two through holes 4171 , and the two through holes 4171 are arranged side by side in a direction perpendicular to the light emitting direction of the laser 420 , and penetrate the support block 4170 along the light emitting direction of the laser 420 .
  • the first fiber coupler 4710 and the second fiber coupler 4720 are inserted into the two through holes 4171 on the support block 4170 to fix the first fiber coupler 4710 and the second fiber coupler 4720 on the base 410 through the support block 4170 superior.
  • the size of the support block 4170 in the direction perpendicular to the light emitting direction of the laser 420 is not larger than the size of the third installation surface 4130 in this direction, so that the base 410 is easy to process and saves manufacturing costs.
  • the support block 4170 and the positioning block 4150 of the base 410 are in contact with the front of the circuit board 300, and the positioning protrusion 4151 on the positioning block 4150 is inserted into the second position on the circuit board 300.
  • the base 410 is fixed on the circuit board 300, and the laser 420 and the collimating lens 430 arranged on the first installation surface 4110 and the translation prism 440 arranged on the second installation surface 4120 are inserted into the installation hole 320 of the circuit board 300 Inside.
  • Fig. 18A is an assembly structure diagram of a circuit board, a light-emitting device and a light-receiving device in an optical module according to still some modified examples
  • Fig. 18B is a structural diagram of the optical module shown in Fig. 18A omitting the light-emitting device.
  • the light emitting device 400 can be reversely assembled on the front of the circuit board 300, and the first sub-light receiving The device 501 is installed on the front of the circuit board 300, and is located on one side of the light emitting device 400, and the second sub-light receiving device 502 is installed on the back side of the circuit board 300, and the first sub-light receiving device 501 and the second sub-light The receiving devices 502 are arranged symmetrically.
  • the third optical fiber adapter 701 and the fourth optical fiber adapter 702 are also arranged side by side along the thickness direction of the base 410, and the third optical fiber adapter 701 is connected to the first sub-light receiving device 501 through the third internal optical fiber 901, so as to Realize the reception of the third composite light beam.
  • the fourth optical fiber adapter 702 is connected to the second sub-light receiving device 502 through the fourth internal optical fiber 902 to realize the reception of the fourth composite light beam.
  • Fig. 18C is a cross-sectional view of an assembly structure of a circuit board and a light receiving device in an optical module according to some embodiments.
  • the first sub-light receiving device 501 and the second sub-light receiving device 502 are arranged symmetrically on the front and back of the circuit board 300 .
  • the first sub-light receiving device 501 arranged on the front side of the circuit board 300 is connected to the third sub-fiber adapter 701 through the third internal optical fiber 901, so that the light beam from the outside of the optical module 200 is transmitted to the first sub-light receiving device through the third internal optical fiber 901
  • the device 501 demultiplexes the third composite light beam into 4 light beams through the optical demultiplexer 5023 .
  • the 4-way light beams are reflected by the reflective prism 5025 to the receiving detector 380 provided on the front of the circuit board 300, and the optical signal is converted into a high-frequency current signal by the receiving detector 380, and the high-frequency current signal is transmitted to the transimpedance amplifier 390, and passed through The transimpedance amplifier 390 converts the high-frequency voltage signal into a high-frequency voltage signal and transmits it to the digital signal processing chip 310 , and then the digital signal processing chip 310 extracts data from the high-frequency voltage signal.
  • the second photon light-receiving device 502 arranged on the back of the circuit board 300 is connected to the fourth sub-fiber adapter 702 through the fourth internal optical fiber 902, so that the light beam from the outside of the optical module 200 is transmitted to the second sub-light receiving device through the fourth internal optical fiber 902
  • the device 502 demultiplexes the fourth composite beam into 4 beams via the optical demultiplexer 5023 .
  • the 4-way light beams are reflected by the reflective prism 5025 to the receiving detector 380 provided on the back of the circuit board 300, and the optical signal is converted into a high-frequency current signal by the receiving detector 380, and the high-frequency current signal is transmitted to the transimpedance amplifier 390, and passed through The transimpedance amplifier 390 converts the high-frequency voltage signal into a high-frequency voltage signal and transmits it to the digital signal processing chip 310 , and then the digital signal processing chip 310 extracts data from the high-frequency voltage signal.
  • a via hole is provided at the input pad of the digital signal processing chip 310, and the via hole runs through the front and back of the circuit board 300.
  • the high-frequency signal line connected to the input pad of the digital signal processing chip 310 extends to the back side of the circuit board 300 through the via hole, and is connected with the transimpedance amplifier 390 to transfer the high-frequency signal on the circuit board 300 from the circuit board 300
  • the front side is transmitted to the back side, so that the high frequency signal is transmitted to the transimpedance amplifier 390 located on the back side of the circuit board 300 .
  • Fig. 19A is a structural diagram of a light-emitting device in an optical module according to still some modified examples
  • Fig. 19B is a structural diagram of a base in the optical module shown in Fig. 19A.
  • the 400G optical module encapsulates 4 optical signal transmission channels in its housing, and the signal transmission rate of each optical signal transmission channel is 100Gbit/s.
  • the 400G optical module can achieve excellent high-frequency performance, optical performance, and heat dissipation characteristics in a small space, and has low structural complexity and high productivity. Therefore, the 400G optical module can achieve the goal of mass production and cost reduction.
  • the light-emitting device 400 in the 400G optical module includes a semiconductor cooler 480, 4 lasers 420, 4 collimating lenses 430, 1 translation prism 440, 1 An optical multiplexer 450 , an optical isolator 460 and an optical fiber coupler 470 . It should be noted that the number of optical multiplexers 450 , optical isolators 460 and fiber couplers 470 is just an example and does not constitute a limitation to the present disclosure.
  • the four lasers 420 are arranged in one-to-one correspondence with the four collimating lenses 430, each laser 420 emits a laser beam, and each collimating lens 430 converts a laser beam into a collimated beam.
  • the collimated beam emitted by each collimating lens 430 is transmitted to the translation prism 440, and the collimated beam is reflected by the translation prism 440 to change the transmission direction of the laser beam.
  • the light emitting device 400 is reverse-mounted on the front side of the circuit board 300 .
  • the semiconductor cooler 480 is fixed on the base 410
  • the four lasers 420 and the four collimating lenses 430 are fixed on the semiconductor cooler 480 , and are located on the back side of the circuit board 300 through the mounting hole 320 .
  • a part of the translation prism 440 is located on the rear side of the circuit board 300 through the mounting hole 320
  • another part of the translation prism 440 is located on the front side of the circuit board 300 .
  • the optical multiplexer 450 , the optical isolator 460 and the fiber coupler 470 are all located on the front side of the circuit board 300 .
  • the 4 lasers 420 emit 4 laser beams respectively, and the 4 laser beams are all parallel to the back of the circuit board 300; the 4 laser beams are respectively converted into 4 collimated beams through the 4 collimating lenses 430, and the 4 collimated beams are respectively converted into 4 collimated beams.
  • the straight beams are transmitted to the translation prism 440 ; the translation prism 440 reflects the 4 laser beams located on the back side of the circuit board 300 to the front side of the circuit board 300 .
  • the base 410 has a boss 4180 extending from the third mounting surface 4130 to a direction away from the bottom surface of the base 410 .
  • the first mounting surface 4110 and the second mounting surface 4120 are disposed on the boss 4180 .
  • the first installation surface 4110 is recessed from the surface of the boss 4180 away from the bottom surface of the base 410 to the bottom surface of the base 410, so as to facilitate fixing the semiconductor refrigerator 480 on the first installation surface 4110, and then install the laser 420 On the semiconductor refrigerator 480.
  • the second installation surface 4120 is recessed from the surface of the boss 4180 away from the bottom surface of the base 410 to the bottom surface of the base 410, and is closer to the bottom surface of the base 410 than the first installation surface 4110, so as to facilitate fixing the translation prism 440 on the second installation surface 4120 .
  • the first reflection surface 441 of the translation prism 440 is away from the second installation surface 4120 and is close to the laser 420
  • the second reflection surface 442 of the translation prism 440 is close to the second installation surface 4120 . In this way, the laser beam located on the back side of the circuit board 300 is reflected to the front side of the circuit board 300 by the translational prism 440 .
  • the optical multiplexer 450 , the optical isolator 460 and the fiber coupler 470 are sequentially disposed on the third installation surface 4130 .
  • the size of the first installation surface 4110 in the direction perpendicular to the light emitting direction of the laser 420 is slightly larger than the size of the second installation surface 4120 in this direction, so as to facilitate the four lasers 420 along with the laser 420.
  • the directions perpendicular to the light emitting direction are arranged side by side on the first installation surface 4110 .
  • the size of the third mounting surface 4130 in the direction perpendicular to the light emitting direction of the laser 420 is consistent with the size of the boss 4180 in this direction.
  • the dimension of the optical multiplexer 450 in a direction perpendicular to the light emitting direction of the lasers 420 is smaller than the dimension of the third mounting surface 4130 in this direction.
  • the base 410 further includes two third support columns 4190 , and the two third support columns 4190 are located at an end of the third installation surface 4130 away from the second installation surface 4120 . There is an opening between the two third support columns 4190, through which the fiber coupler 470 is connected to the corresponding fiber adapter.
  • the distance between the two third support columns 4190 in the direction perpendicular to the light emitting direction of the laser 420 is not greater than the size of the third installation surface 4130 in this direction, such as the opposite sides of the two third support columns 4190 and The sides of the base 410 are flush with each other.
  • Each third support column 4190 extends from the third mounting surface 4130 to a direction away from the bottom surface of the base 410 .
  • the base 410 further includes two third positioning pins 4191 , and the two third positioning pins 4191 are respectively located on end surfaces of the two third support columns 4190 facing away from the third installation surface 4130 .
  • the third positioning pin 4191 is arranged corresponding to the first positioning hole 360 on the circuit board 300 .
  • the base 410 further includes two fourth positioning pins 4181 .
  • the two fourth positioning pins 4181 are located on the end surface of the boss 4180 facing away from the first installation surface 4110 .
  • the fourth positioning pin 4181 is arranged corresponding to the second positioning hole 370 on the circuit board 300 .
  • the boss 4180 and the two third support posts 4190 of the base 410 are in contact with the front surface of the circuit board 300 .
  • the two fourth positioning pins on the boss 4180 are inserted into the two second positioning holes 370 of the circuit board 300 respectively, and the two third positioning pins 4191 on the two third support columns 4190 are inserted into the two positioning holes on the circuit board 300 respectively.
  • Fig. 20A is a structural diagram of a light-emitting device in an optical module according to still some modified examples
  • Fig. 20B is a structural diagram of a base in the optical module shown in Fig. 20A.
  • the base 410 is a square base including grooves 41010 .
  • the groove 41010 is recessed toward the bottom surface of the base 410 to form a first installation surface 4110 , a second installation surface 4120 and a third installation surface 4130 .
  • the base 410 also includes a fixing hole 41011 , and the fixing hole 41011 extends toward the direction of the optical fiber adapter to pass through the groove 41010 .
  • the fiber coupler 470 is inserted into the fixing hole 41011 .
  • the semiconductor refrigerator 480 is arranged on the first installation surface 4130 in the groove 41010, the four lasers 420 are arranged on the semiconductor refrigerator 480, and the four collimating lenses 430 corresponding to the four lasers 420 are also arranged on the semiconductor refrigerator 480 , and the collimating lens 430 is disposed in the light emitting direction of the laser 420 .
  • the translation prism 440 is arranged on the second mounting surface 4120 in the groove 41010, and the first reflection surface 441 of the translation prism 440 is away from the second installation surface 4120 and close to the laser 420; the second reflection surface 442 of the translation prism 440 is close to the first Two mounting surfaces 4120. In this way, the translation prism 440 reflects the laser beam on the back side of the circuit board 300 to the front side of the circuit board 300 .
  • the optical multiplexer 450 and the optical isolator 460 are sequentially arranged on the third installation surface 4130 in the groove 41010, and the four laser beams reflected by the translational prism 440 are synthesized into one composite beam through the optical multiplexer 450, and the composite beam passes through the light
  • the isolator 460 injects into the fiber coupler 470 for light emission.
  • the size of the first installation surface 4110 in the direction perpendicular to the light emitting direction of the laser 420 is slightly larger than the size of the second installation surface 4120 in this direction, so as to facilitate the four lasers 420 along with the laser 420.
  • the directions perpendicular to the light emitting direction are arranged side by side on the first installation surface 4110 .
  • the size of the third installation surface 4130 in the direction perpendicular to the light emitting direction of the laser 420 is consistent with the size of the second installation surface 4120 in this direction.
  • the dimensions of the base 410 in a direction perpendicular to the light emitting direction of the laser 420 are consistent.
  • the size of the third installation surface 4130 in the direction perpendicular to the light emitting direction of the laser 420 is the same as the size of the groove 41010 in this direction, and the optical multiplexer 450 is embedded in the groove 41010, so the optical multiplexer 450 is in contact with the laser 420
  • the dimension in the direction perpendicular to the light emitting direction may be consistent with the dimension of the third installation surface 4130 in this direction.
  • the light-emitting device 400 is assembled reversely on the circuit board 300, so that the pad 422 in the laser 420 is flush with the back of the circuit board 300, so that the ground on the pad 422
  • the connecting wires between wires and signal wires and the circuit traces on the back of the circuit board 300 are the shortest to ensure excellent high-frequency signal transmission performance.
  • such an arrangement can also reduce the size of the installation hole 320 of the circuit board 300 , so as to increase the layout area of the electronic components of the circuit board 300 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括壳体、电路板(300)和光发射器件(400)。壳体包括上壳体(201)和下壳体(202);电路板(300)包括正面和背面且包括安装孔(320),安装孔(320)贯通正面和背面;光发射器件(400)安装于电路板(300)上,且包括底座(410)、激光器(420)、平移棱镜(440)和光纤耦合器(4710,4720,470)。底座(410)安装在正面上,且具有相对的安装面和底面,安装面朝向正面,底面朝向上壳体(201);激光器(420)安装在安装面上,穿过安装孔(320)并伸出电路板(300)的背面;平移棱镜(440)安装在安装面上,并被配置为将激光器(420)发出的位于电路板(300)的背面侧的激光光束平移至电路板(300)的正面侧;光纤耦合器(4710,4720)被配置为将平移棱镜(440)平移至电路板(300)的正面侧的激光光束传输至光模块(200)的外部。

Description

光模块
本申请要求于2021年8月31日提交的、申请号为202111012383.0的中国专利申请的优先权,2021年8月31日提交的、申请号为202111015876.X的中国专利申请的优先权,2021年8月31日提交的、申请号为202111015574.2的中国专利申请的优先权,2021年8月31日提交的、申请号为202111015786.0的中国专利申请的优先权,2021年8月31日提交的、申请号为202111015461.2的中国专利申请的优先权,2021年8月31日提交的、申请号为202122087755.8的中国专利申请的优先权,2021年8月31日提交的、申请号为202122085678.2的中国专利申请的优先权,2021年8月31日提交的、申请号为202122085677.8的中国专利申请的优先权,2021年8月31日提交的、申请号为202122087754.3的中国专利申请的优先权和2021年8月31日提交的、申请号为202122076596.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频会议等新型业务和应用模式的发展,光通信技术的发展进步变得愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。
发明内容
本公开一些实施例提供一种光模块。所述光模块包括壳体、电路板和光发射器件。所述壳体包括上壳体和下壳体;所述电路板位于所述上壳体和所述下壳体之间,所述电路板具有朝向所述上壳体的正面和朝向所述下壳体的背面,所述电路板包括安装孔,所述安装孔贯通所述正面和所述背面;所述光发射器件安装于所述电路板上,所述光发射器件包括底座、激光器、平移棱镜和光纤耦合器。所述底座安装在所述电路板的正面上,所述底座具有安装面和与所述安装面相对的底面,所述安装面朝向所述正面,所述底面朝向所述上壳体;所述激光器安装在所述安装面上,穿过所述安装孔并伸出所述电路板的背面;所述平移棱镜安装在所述安装面上,所述平移棱镜穿过所述安装孔使其一部分位于所述电路板的背面侧、另一部分位于所述电路板的正面侧,所述平移棱镜被配置为将所述激光器发出的位于所述电路板的背面侧的激光光束平移至所述电路板的正面侧;所述光纤耦合器被配置为将所述平移棱镜平移至所述电路板的正面侧的激光光束传输至所述光模块的外部。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解结构图;
图5为根据一些实施例的一种光模块去除壳体与解锁部件后的结构图;
图6为根据一些实施例的一种光模块中光发射器件的结构图;
图7为根据一些实施例的一种光模块中光发射器件的局部光路图;
图8为根据一些实施例的一种光模块中电路板的结构图;
图9A为根据一些实施例的一种光模块中电路板和光发射器件的组装结构图;
图9B为根据一些实施例的一种光模块中电路板和光发射器件另一角度的组装结构图;
图10A为根据一些实施例的一种光模块中电路板和光发射器件装配的侧视图;
图10B为根据一些实施例的一种光模块中电路板和光发射器件装配的剖视图;
图11A为根据一些实施例的一种光模块中电路板和光发射器件的电连接图;
图11B为根据一些实施例的一种光模块中电路板和光发射器件的另一电连接图;
图12A为根据一些实施例的一种光模块中底座的结构图;
图12B为根据一些实施例的一种光模块中底座的另一角度的结构图;
图13为根据一些实施例的一种光模块的散热通道图;
图14A为根据一些实施例的一种光模块中光探测器的监控光路剖视图;
图14B为根据一些实施例的一种光模块中光探测器的监控光路俯视图;
图15A为根据一些实施例的一种光模块中电路板与光接收器件的组装结构图;
图15B为根据一些实施例的一种光模块中光接收器件的结构图;
图15C为根据一些实施例的一种光模块中光接收器件的局部光路图;
图16A为根据一些变形例的一种光模块中光发射器件的结构图;
图16B为图16A所示光发射器件中底座的结构图;
图17A为根据一些变形例的一种光模块中光发射器件的结构图;
图17B为图17A所示光发射器件中底座的结构图;
图18A为根据又一些变形例的一种光模块中电路板、光发射器件和光接收器件的组装结构图;
图18B为图18A所示光模块中省略光发射器件后的结构图;
图18C为根据一些实施例的一种光模块中电路板与光接收器件组装结构的剖视图;
图19A为根据又一些变形例的一种光模块中光发射器件的结构图;
图19B为图19A所示光模块中底座的结构图;
图20A为根据又一些变形例的一种光模块中光发射器件的结构图;
图20B为图20A所示光模块中底座的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公 开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、二线制同步串行(Inter-Integrated Circuit,I2C)信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光网络终端100包括大致呈长方体的壳体(housing),以及设置于壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线 103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图。为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置于电路板105的表面的笼子106,设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有用于增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而使得光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解结构图。如图3和图4所示,光模块200包括壳体(shell)、设置于壳体中的电路板300、光发射器件400以及光接收器件500。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板两侧、与底板垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板两侧、与底板垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,被配置为接入外部的光纤101,以使光纤101连接光模块200内部的光发射器件400和光接收器件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射器件400和光接收器件500等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、光发射器件400和光接收器件500等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固 定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外侧,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里时,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(Limiting Amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片(Power Management Chip)、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机的笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置于电路板300一侧的表面(例如图4所示的上表面),也可以设置于电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5为根据一些实施例的一种光模块去除壳体与解锁部件后的结构图,图6为根据一些实施例的一种光模块中光发射器件的结构图。如图5和图6所示,光模块200还包括第一光纤适配器600、第二光纤适配器700、第一内部光纤800和第二内部光纤900。第一光纤适配器600通过第一内部光纤800与光发射器件400连接,第二光纤适配器700通过第二内部光纤900与光接收器件500连接。
在一些实施例中,第一光纤适配器600包括第一子光纤适配器601和第二子光纤适配器602。第一内部光纤800包括第一子内部光纤801和第二子内部光纤802;第一子光纤适配器601通过第一子内部光纤801与光发射器件400连接,第二子光纤适配器602通过第二子内部光纤802与光发射器件400连接。
光接收器件500包括第一子光接收器件501和第二子光接收器件502;第二内部光纤900包括第三子内部光纤901和第四子内部光纤902;第二光纤适配器700包括第三子光纤适配器701和第四子光纤适配器702。第三子光纤适配器701通过第三子内部光纤901与第一子光接收器件501连接,第四子光纤适配器702通过第四子内部光纤902与第二子光接收器件502连接。
光发射器件400和光接收器件500均设于电路板300靠近上壳体201的表面(下文中,将该表面称为正面,并将电路板300靠近下壳体202的表面称为背面)上,且第一子光接收器件501和第二子光接收器件502分别位于光发射器件400的两侧。
光发射器件400包括底座410及设置在底座410上的激光器420、准直透镜430、平移棱镜440、光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720、以及半导体制冷器(Thermo Electric Cooler,TEC)480。
底座410具有安装面和底面。激光器420、准直透镜430、平移棱镜440、光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720、以及半导体制冷器480均安装在底座410的安装面上。底座410的底面为与其安装面相对的表面。
激光器420包括激光芯片421和垫片422。激光芯片421具有阴极和阳极,垫片422包括绝缘导热层和金属层,金属层包括地线和信号线。激光芯片421的阴极可以通过焊接 或导电胶水等方式固定在地线上,从而与地线电连接。激光芯片421的阳极可以通过连接线与信号线电连接。通过地线和信号线分别为激光芯片421的阴极和阳极施加电压,激光芯片421可以发出平行于电路板300的正面的一路激光光束。
半导体制冷器480设置在底座410的安装面上,激光器420设置在半导体制冷器480远离底座410的表面上。半导体制冷器480被配置为将激光芯片421产生的热量传导至底座410,通过底座410和光模块200的壳体向光模块200外部导出。在一些实施例中,半导体制冷器480包括相对设置的第一热交换面和第二热交换面,以及位于第一热交换面和第二热交换面之间的多个导热柱。第一热交换面和第二热交换面通过多个导热柱连接。在一些实施例中,多个导热柱可以成阵列排布,其可以采用半导体材料制成。例如,半导体制冷器480的第一热交换面设置在底座410的安装面上,激光器420设置在半导体制冷器480的第二热交换面上。但在一些实施例中,半导体制冷器480是可以省略的。
准直透镜430能够将激光芯片421产生的、发散的激光光束调整为平行的激光光束,即,准直光束。在一些实施例中,准直透镜430也是可以省略的。
平移棱镜440是一种斜方棱镜,具有第一反射面441和第二反射面442。第一反射面441和第二反射面442均能够使激光光束的传播方向发生改变,例如使激光光束的传播方向转折90°。在一些实施例中,第一反射面441反射激光芯片421发出的平行于电路板300的正面的一路激光光束,使该路激光光束沿与电路板300的正面垂直的方向继续传播;第二反射面442反射垂直于电路板300的正面的该路激光光束,使该路激光光束再次沿与电路板300的正面平行的方向传播。
激光器420发射的一路激光光束经由准直透镜430转换为准直光束。准直光束经由平移棱镜440进行两次反射后依次经过光合波器4510和4520和光隔离器4610和4620而进入光纤耦合器4710和4720中,经由光纤耦合器4710和4720将激光光束耦合至第一光纤适配器600,实现一路光信号的发射。
当光模块200为高传输速率的光模块,如800G(信号传输速率为800Gbit/s)光模块时,需要在光模块200的壳体中封装8路光信号传输通道,每个光信号传输通道的信号传输速率为100Gbit/s。因此光发射器件400包括8个激光器420,以实现8路光信号的发射;光接收器件500包括8个光接收器,以实现8路光信号的接收。例如,第一子光接收器件501包括4个光接收器,以实现4路光信号的接收;第二子光接收器件502包括4个光接收器,以实现4路光信号的接收。
基于此,光发射器件400包括8个激光器420、8个准直透镜430和1个平移棱镜440。激光器420和准直透镜430一一对应。每个激光器420发射一路激光光束,每个准直透镜430将该路激光光束转换为准直光束,每个准直透镜430射出的准直光束传输至平移棱镜440,平移棱镜440对准直光束进行反射以改变激光光束的传输方向及位置。需要说明的是,光发射器件400不限于包括1个平移棱镜440,也可以包括多个平移棱镜440,每个平移棱镜440对应一个或多个准直透镜430。光发射器件400也不限于包括8个准直透镜430,也可以包括4个(每2个激光器420共用1个准直透镜430)、2个(每4个激光器420共用1个准直透镜430)或1个准直透镜430(全部激光器420共用1个准直透镜430)。
此外,光合波器4510和4520包括第一光合波器4510和第二光合波器4520,光隔离器4610和4620包括第一光隔离器4610和第二光隔离器4620,光纤耦合器4710和4720包括第一光纤耦合器4710和第二光纤耦合器4720。但也并不局限于此,第一光合波器4510和第二光合波器4520可以集成为一个整体的光合波器,第一光隔离器4610和第二光隔离器4620可以集成为一个整体的光隔离器。当第一光合波器4510和第二光合波器4520集成为一个整体的光合波器时,第一光纤耦合器4710和第二光纤耦合器4720可以集成为一个整体的光纤耦合器,且第一子光纤适配器601和第二子光纤适配器602可以集成为一个整体的光纤适配器。
第一光合波器4510与第二光合波器4520并排设置在底座410的安装面上。例如,第一光合波器4510与第二光合波器4520沿与激光器420的出光方向垂直的方向并排设置在底座410的安装面上。第一光合波器4510与第二光合波器4520的光输入端朝向平移棱镜 440的光输出端,以将平行于电路板300的正面的8路激光光束分别射入第一光合波器4510和第二光合波器4520。例如,4路激光光束射入第一光合波器4510,第一光合波器4510将该4路激光光束合成为第一束复合光束;剩余4路激光光束射入第二光合波器4520内,第二光合波器4520将该剩余的4路激光光束合成为第二束复合光束。
第一光合波器4510包括4个用于接收多种波长的光的入光口,每一入光口用于接收一种波长的光。所述入光口位于第一光合波器4510靠近平移棱镜440一侧的光输入端处。第一光合波器4510还包括1个用于出射光的出光口。所述出光口位于第一光合波器4510远离平移棱镜440一侧的光输入端处。
以第一光合波器4510接收λ1、λ2、λ3和λ4这4种波长的光为例,波长为λ1的光通过第一入光口进入第一光合波器4510,经过第一光合波器4510内多个(例如6个)不同位置进行了多次(例如6次)不同的反射到达出光口;波长为λ2的光通过第二入光口进入第一光合波器4510,经过第一光合波器4510内多个(例如4个)不同位置进行了多次(例如4次)不同的反射到达出光口;波长为λ3的光通过第三入光口进入第一光合波器4510,经过第一光合波器4510内多个(例如2个)不同位置进行了多次(例如2次)不同的反射到达出光口;波长为λ4的光通过第四入光口进入第一光合波器4510,未经过反射直接到达出光口。如此,通过第一光合波器4510实现不同波长的光经不同入光口输入、经同一出光口输出,进而将不同波长的光复合成第一束复合光束。
第一入光口例如为第一光合波器4510的4个入光口中距离第二光合波器4520最远的一个入光口,而第四入光口例如为第一光合波器4510的4个入光口中距离第二光合波器4520最近的一个入光口。
第二光合波器4520包括4个用于接收多种波长的光的入光口,每一入光口用于接收一种波长的光。所述入光口位于第二光合波器4510靠近平移棱镜440一侧的光输入端处。第二光合波器4520还包括1个用于出射光的出光口。所述出光口位于第二光合波器4520远离平移棱镜440一侧的光输入端处。
以第二光合波器4520接收λ5、λ6、λ7和λ8这4种波长的光为例,波长为λ5的光通过第五入光口进入第二光合波器4520,经过第二光合波器4520内多个(例如6个)不同位置进行了多次(例如6次)不同的反射到达出光口;波长为λ6的光通过第六入光口进入第二光合波器4520,经过第二光合波器4520内多个(例如4个)不同位置进行了多次(例如4次)不同的反射到达出光口;波长为λ7的光通过第七入光口进入第二光合波器4520,经过第二光合波器4520内多个(例如2个)不同位置进行了多次(例如2次)不同的反射到达出光口;波长为λ8的光通过第八入光口进入第二光合波器4520,未经过反射直接到达出光口。如此,通过第二光合波器4520实现不同波长的光经不同入光口输入、经同一出光口输出,进而将不同波长的光复合成第二束复合光束。
图7示出了λ5、λ6、λ7和λ8这4种波长的光第二光合波器4520内的反射位置和反射次数。类似地,可以依据图7推导λ1、λ2、λ3和λ4这4种波长的光第一光合波器4510内的反射位置和反射次数。
第五入光口例如为第二光合波器4520的4个入光口中距离第一光合波器4510最远的一个入光口,而第八光口例如为第二光合波器4520的4个入光口中距离第一光合波器4510最近的一个入光口。
波长λ5可以与波长λ1相同或不同,波长λ6可以与波长λ2相同或不同,波长λ7可以与波长λ3相同或不同,波长λ8可以与波长λ4相同或不同。
第一光纤耦合器4710的光输入端与第一光合波器4510的光输出端光耦合,第一光纤耦合器4710的光输出端通过第一子内部光纤801与第一子光纤适配器601相连接。如此,第一光合波器4510输出的第一束复合光束通过第一光纤耦合器4710耦合至第一子内部光纤801,再通过第一子内部光纤801传输至第一子光纤适配器601,以实现第一束复合光束的发射。
第二光纤耦合器4720的光输入端与第二光合波器4520的光输出端光耦合,第二光纤耦合器4720的光输出端通过第二子内部光纤802与第二子光纤适配器602相连接。如此, 第二光合波器4520输出的第二束复合光束通过第二光纤耦合器4720耦合至第二子内部光纤802,再通过第二子内部光纤802传输至第二子光纤适配器602,以实现第二束复合光束的发射。
第一光合波器4510的光输出端与第一光纤耦合器4710的光输入端之间存在间隙,第一光合波器4510输出的第一束复合光束传输至第一光纤耦合器4710的光输入端时,第一束复合光束在第一光纤耦合器4710的光输入端处发生反射,反射光束可能会按照原路返回至激光器420,影响激光器420的性能。为了避免这一问题,第一光隔离器4610设置在第一光合波器4510与第一光纤耦合器4710之间,第一光合波器4510射出的第一束复合光束在第一光纤耦合器4710的光输入端处发生反射时,第一光隔离器4610用于将反射光束隔离出去,防止反射光束沿原路返回激光器420。在一些实施例中,第一光隔离器4610被省略。
同理,第二光合波器4520的光输出端与第二光纤耦合器4720的光输入端之间存在间隙,第二光合波器4520输出的第二束复合光束传输至第二光纤耦合器4720的光输入端时,第二束复合光束在第二光纤耦合器4720的光输入端处发生反射,反射光束可能会按照原路返回至激光器420,影响激光器420的性能。为了避免这一问题,第二光隔离器4620设置在第二光合波器4520与第二光纤耦合器4720之间,第二光合波器4520射出的第二束复合光束在第二光纤耦合器4720的光输入端处发生反射时,第二光隔离器4620用于将反射光束隔离出去,防止反射光束沿原路返回激光器420。在一些实施例中,第二光隔离器4620被省略。
如图7所示,在一些实施例中,第二光纤耦合器4720包括套管4721、聚焦透镜4722与单模光纤法兰4723。套管4721套在聚焦透镜4722与单模光纤法兰4723的外侧,第二子内部光纤802插在单模光纤法兰4723内,聚焦透镜4722的入光面朝向第二光隔离器4620、出光面朝向单模光纤法兰4723,第二光合波器4520输出的第二束复合光束经过第二光隔离器4620传输至聚焦透镜4722,聚焦透镜4722将第二束复合光束会聚至插在单模光纤法兰4723内的第二子内部光纤802。
聚焦透镜4722为圆柱形透镜,圆柱形透镜与单模光纤法兰4723的外径尺寸均略小于套管4721的内径尺寸,以保证聚焦透镜4722与单模光纤法兰4723的耦合度。将聚焦透镜4722与单模光纤法兰4723插在套管4721内时,为提高聚焦透镜4722与单模光纤法兰4723的耦合度,可仅轴向移动聚焦透镜4722与单模光纤法兰4723,操作方便。
为方便使透过第二光隔离器4620的第二束复合光束射入聚焦透镜4722内,聚焦透镜4722突出于套管4721外,减小了聚焦透镜4722的入光面与第二光隔离器4620的出光面之间的距离,使得结构更紧凑。
如图10A和10B所示,第一光纤耦合器4710包括套管4711、聚焦透镜4712与单模光纤法兰4713。第一光纤耦合器4710的结构和功能与第二光纤耦合器4720的结构和功能相同,不再赘述。
随着光模块的体积越来越小,信号传输速率越高,要求光模块内部的结构尽量简洁,以便合理布局光学元器件和电子元器件。在本公开一些实施例中的光模块200中,使用光合波器将多路(例如4路、8路)光信号传输通道中的多路光束复合成一路复合光束,简化了光模块200内部结构,有利于光模块实现高速的信号传输。
图8为根据一些实施例的一种光模块中电路板的结构图。如图8、9A和9B所示,电路板300包括安装孔320,光发射器件400的底座410安装在电路板300的正面,底座410的安装面朝向电路板300的正面,光发射器件400中的激光器420、准直透镜430和平移棱镜440嵌入在该安装孔320内。这使得电路板300与光发射器件400安装后,激光器420和准直透镜430位于电路板300的背面侧,光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720位于电路板300的正面侧,而平移棱镜440则是一部分位于电路板300的背面侧、另一部分位于电路板300的正面侧。
如图10A和10B所示,多个激光器420分别发射激光光束,这些激光光束平行 于电路板300的背面;多个准直透镜430将多个激光器420发射的多个激光光束转换为多个准直光束,多个准直光束传输至平移棱镜440,平移棱镜440的第一反射面441和第二反射面442对多个准直光束进行反射,从而将位于电路板300背面侧的多个激光光束反射至电路板300的正面侧。之后,第一光合波器4510将4路准直光束合成为第一束复合光束,第二光合波器4520将该剩余的4路准直光束合成为第二束复合光束。
平移棱镜440的第一反射面441朝向多个准直透镜430,位于电路板300的背面侧,被配置为将平行于电路板300的背面侧的多个准直光束反射为垂直于电路板300的多个准直光束;平移棱镜440的第二反射面442朝向第一反射面441,位于电路板300的正面侧,被配置为将垂直于电路板300的多个准直光束反射为平行于电路板300正面侧的多个准直光束。
通过平移棱镜440对多个准直光束的平移作用,多个准直透镜430后面的光学元器件(光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720等)均位于电路板300的正面侧,并与电路板300的正面保持适当间隙。这样就避免了这些光学元器件与电路板300之间的位置冲突,从而可以尽可能地减小电路板300中安装孔320的面积,增加了电路板300上电子元器件的排布面积,使得电路板300的布线更加容易。
将底座410的安装面朝向电路板300的正面,并使多个激光器420位于电路板300的背面侧的安装方式,使得光发射器件400的底面靠近上壳体201而远离下壳体202,这种安装方式被称为光发射器件400的倒装方式。将光发射器件400倒装在电路板300的正面上时,激光器420中的垫片422与电路板300的背面平齐,从而使垫片422上的地线和信号线与电路板300背面上的电路走线之间的连接线最短,以保证优良的高频信号传输性能。
图11A和图11B为根据一些实施例的一种光模块中电路板和光发射器件的电连接图。如图11A和图11B所示,数字信号处理芯片310位于电路板300的正面,被配置为将高频信号传输至光发射器件400的激光器420,为激光器420发射的激光光束提供信号,将该激光光束调制为光信号。为此目的,电路板300包括高频信号线330和过孔340。过孔340位于数字信号处理芯片310的输出焊盘处,该过孔340贯穿电路板300的正面与背面。高频信号线330位于过孔340内,该高频信号线330穿过过孔340与数字信号处理芯片310的输出焊盘电连接,以传输高频信号。
由于激光器420中的垫片422与电路板300的背面平齐,因此高频信号线330穿过过孔340后沿电路板300的背面布线,再通过打线工艺(wire bonding)与激光器420电连接。即,该高频信号线330的一端与数字信号处理芯片310的输出焊盘电连接、另一端位于电路板300的背面上,并通过打线工艺与激光器420电连接。从电路板300的金手指301传输过来的高频信号经过数字信号处理芯片310后,再经由高频信号线330传输至激光器420,使得激光器420发射光信号。
电路板300包括多个过孔340,多个过孔340设置在安装孔320靠近金手指301的一侧,每个过孔340对应一个激光器420,使得穿过每个过孔340的高频信号线330与对应的激光器420连接。
电路板300还包括直流信号线302,直流信号线302位于电路板300的背面。直流信号线302与激光器420电连接,传输偏置电流以驱动激光器420发光。直流信号线302可从电路板300上安装孔320的远离金手指301的一侧通过打线工艺与激光器420电连接,激光器420接收到直流信号线302传输的偏置电流后发光。而经高频信号线330传输的高频信号被传输到激光器420后,激光器420将高频信号调制至光束中,使得激光器420产生光信号。
直流信号线302还可从安装孔320的其它侧连接至激光器420,即连接激光器420的直流信号线302与高频信号线330位于安装孔320的不同侧。这样既避免了高频信号与直流信号之间的干扰,也使直流信号的传输路径更短,避免电路板300 中布线过度拥挤。
图12A为根据一些实施例的一种光模块中底座的结构图,图12B为根据一些实施例的一种光模块中底座的另一角度的结构图。如图12A和12B所示,底座410的安装面包括依次连接的第一安装面4110、第二安装面4120和第三安装面4130,以便承载激光器420、准直透镜430、平移棱镜440、光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720、以及半导体制冷器480。第二安装面4120从第一安装面4110朝向底座410的底面凹陷,第三安装面4130从第二安装面4120朝向底座410的底面凹陷。第三安装面4130距离底座410的底面的尺寸小于第二安装面4120距离底座410的底面的尺寸,第二安装面4120距离底座410的底面的尺寸小于第一安装面4110距离底座410的底面的尺寸,使得第一安装面4110、第二安装面4120与第三安装面4130形成台阶面。
在一些实施例中,第一安装面4110、第二安装面4120与第三安装面4130均平行于底座410的底面。底座410还包括两个挡板4111,两个挡板4111分别位于第一安装面4110与激光器420的出光方向平行的两个侧边处,该两个挡板4111朝远离底座410的底面的方向延伸,以便在将光发射器件400安装在电路板300上时,该两个挡板4111与电路板300的正面相抵接。激光器420和准直透镜430固定在第一安装面4110上。第二安装面4120在与激光器420的出光方向垂直的方向上敞开,以方便将平移棱镜440固定在第二安装面4120上;第三安装面4130在与激光器420的出光方向垂直的方向上敞开、并且在顺着激光器420的出光方向上也敞开,以方便将光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720固定在第三安装面4130上。
如此,激光器420和准直透镜430在底座410上的安装高度大于平移棱镜440的安装高度,平移棱镜440的安装高度大于光合波器4510和4520、光隔离器4610和4620、以及光纤耦合器4710和4720的安装高度。在将激光器420、准直透镜430和平移棱镜440嵌入在电路板300的安装孔320内后,使得激光器420和准直透镜430位于电路板300的背面侧,光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720位于电路板300的正面侧,而平移棱镜440的一部分位于电路板300的背面侧、另一部分位于电路板300的正面侧。
半导体制冷器480放置在第一安装面4110上,多个激光器420设置在半导体制冷器480上。激光器420包括激光芯片421和垫片422,激光芯片421位于垫片422上,垫片422设置在半导体制冷器480上。与每个激光器420对应的准直透镜430也设置在半导体制冷器480上,且准直透镜430设置在激光器420的出光方向上。
在一些实施例中,当光发射器件包括8个激光器420和8个准直透镜430时,8个激光器420沿着与各自的出光方向垂直的方向并排设置,8个准直透镜430也沿着与激光器420的出光方向垂直的方向并排设置,使得8个激光器420发射8路不同波长的光束。
8个激光器420沿各自的出光方向的尺寸可以相同,使得8个准直透镜430距离第一安装面4110远离第二安装面4120的侧边的尺寸相同。但并不局限于此,8个激光器420沿各自的出光方向的尺寸也可以不相同。在激光器420的出光方向上,一部分激光器420(第一激光器)自第一安装面4110远离第二安装面4120的侧边开始延伸的距离,小于另一部分激光器420(第二激光器)自第一安装面4110远离第二安装面4120的侧边开始延伸的距离,从而将8个激光器420按照第一激光器和第二激光器间隔的方式(例如,短、长、短、长、短、长、短、长的设置方式)固定于半导体制冷器480上。
在此情况下,8个准直透镜430距离第一安装面4110远离第二安装面4120的侧边的尺寸也不相同,以便多个准直透镜430在装配时不会因为胶水流动而相互影响。如此,能够减小多路准直光束的间距,以减小底座410的轮廓尺寸,尤其是底 座410在与激光器420的出光方向垂直的方向上的尺寸,以便光发射器件400与光接收器件500在装配时不发生冲突。
在一些实施例中,第一安装面4110在与激光器420的出光方向垂直的方向上的尺寸略大于第二安装面4120在该方向上的尺寸,而第二安装面4120在该方向上的尺寸与第三安装面4130在该方向上的尺寸大致一致。在将多个激光器420沿与各自的出光方向垂直的方向并排固定于第一安装面4110时,较宽的第一安装面4110可便于放置多个激光器420,避免相邻激光器420之间距离较小,从而可避免多个激光器420发射的多个激光光束之间的串扰。
第二安装面4120上设置有平移棱镜440。该平移棱镜440垂直固定于第二安装面4120上,且平移棱镜440的第一反射面441远离第二安装面4120,并靠近激光器420;平移棱镜440的第二反射面442靠近第二安装面4120。如此,通过平移棱镜440将位于电路板300背面侧的激光光束反射至电路板300正面侧。
第三安装面4130上设置有光合波器4510和4520、光隔离器4610和4620、以及光纤耦合器4710和4720。第一光合波器4510与第二光合波器4520沿与激光器420的出光方向垂直的方向并排设置,第一光隔离器4610与第二光隔离器4620也沿该方向并排设置,第一光纤耦合器4710与第二光纤耦合器4720同样沿该方向并排设置,且光合波器、光隔离器与光纤耦合器沿着激光器420的出光方向排布。
在一些实施例中,第三安装面4130在与激光器420的出光方向垂直的方向上的尺寸沿着激光器420的出光方向均一致,且第三安装面4130在与激光器420的出光方向垂直的方向上的尺寸小于在该方向上并排设置的第一光合波器4510与第二光合波器4520共同形成的尺寸,如此将第一光合波器4510与第二光合波器4520在与激光器420的出光方向垂直的方向上并排设置在第三安装面4130上时,第一光合波器4510远离第二光合波器4520的一侧、以及第二光合波器4520远离第一光合波器4510的一侧均突出于第一安装面4110,如此可减小底座410在与激光器420的出光方向垂直的方向上的尺寸,节约成本。
通过呈台阶状的第一安装面4110、第二安装面4120与第三安装面4130将半导体制冷器480、激光器420、准直透镜430、平移棱镜440、光合波器4510和4520、光隔离器4610和4620、以及光纤耦合器4710和4720固定在底座410上,以形成激光器420、准直透镜430与光合波器4510和4520、光隔离器4610和4620、以及光纤耦合器4710和4720之间的安装高度差,并将安装高度相对较大的激光器420与准直透镜430通过电路板300的安装孔320设置在电路板300的背面侧,将安装高度相对较小的光合波器4510和4520、光隔离器4610和4620、以及光纤耦合器4710和4720设置在电路板300的正面侧,如此可减小光发射器件400与电路板300在空间上的重叠区域。
在装配光发射器件400时,首先将半导体制冷器480安装在第一安装面4110上,并将激光器420固定在半导体制冷器480上;然后将平移棱镜440固定在第二安装面4120上;之后将光合波器4510和4520、光隔离器4610和4620、光纤耦合器4710和4720按照激光器420的出光方向独立地固定在第三安装面4130上;最后将准直透镜430沿激光器420的出光方向以有源耦合的方式固定在第一安装面4110上。有源耦合指的是在激光芯片421通电且发光的状态下,对准直透镜430进行贴装,同时检测子内部光纤801和802中的耦合效率,优化准直透镜430的位置。
为减少装配工作量,也可以将第一光合波器4510、第二光合波器4520、第一光隔离器4610、第二光隔离器4620、第一光纤耦合器4710、第二光纤耦合器4720、第一子内部光纤801、第二子内部光纤802、第一子光纤适配器601、以及第二子光纤适配器602组装为一个预装配件。先将半导体制冷器480固定在第一安装面4110上,并将激光器420固定在半导体制冷器480上;然后将平移棱镜440固定在第二安装面4120上;之后将该预装配件固定在第三安装面4130上;最后将准直透镜430沿激光器420的出光方向以有源耦合的方式固定在第一安装面4110上,优化准直 透镜430的位置。
在将半导体制冷器480、激光器420、准直透镜430、平移棱镜440、光合波器4510和4520、光隔离器4610和4620、以及光纤耦合器4710和4720固定在底座410上后,将底座410反向安装在电路板300的正面上。即,底座410的底面朝向上壳体201,底座410的第一安装面4110、第二安装面4120与第三安装面4130朝向电路板300的正面。
为将底座410固定在电路板300的正面上,底座410还包括两个第一支撑柱4140。两个第一支撑柱4140位于第三安装面4130远离第二安装面4120的一端。两个第一支撑柱4140之间具有开口,分别与第一光纤耦合器4710和第二光纤耦合器4720连接的两根子内部光纤801和802穿过该开口与相应的子光纤适配器601和602相连接。两个第一支撑柱4140之间在与激光器420的出光方向垂直的方向上的距离不大于第三安装面4130在该方向上的尺寸,如两个第一支撑柱4140相背向的侧面与底座410的侧面相平齐。
每个第一支撑柱4140由第三安装面4130向远离底座410底面的方向延伸。底座410还包括两个第一定位销4141,该两个第一定位销4141分别位于两个第一支撑柱4140背向第三安装面4130的端面上。电路板300包括第一定位孔360,第一定位孔360与第一定位销4141相对应设置。
在一些实施例中,底座410还包括定位块4150,定位块4150位于第一安装面4110远离子光纤适配器601和602的一端。定位块4150沿远离底座410底面的方向延伸,且突出于第一安装面4110。底座410还包括两个定位凸起4151,该两个定位凸起4151位于定位块4150背向第一安装面4110的端面上。电路板300包括第二定位孔370,第二定位孔370与定位凸起4151相对应设置。
将底座410反向安装至电路板300正面上时,底座410的第一支撑柱4140和定位块4150与电路板300的正面相接触,第一支撑柱4140上的第一定位销4141插入电路板300上的第一定位孔360内,定位块4150上的定位凸起4151插入电路板300上的第二定位孔370内。从而将底座410固定在电路板300上,并将设置在第一安装面4110上的激光器420和准直透镜430及设置在第二安装面4120上的平移棱镜440嵌入电路板300的安装孔320内。
图13为根据一些实施例的一种光模块的散热通道图。如图13所示,将光发射器件400反向安装至电路板300的正面后,光发射器件400中底座410的底面朝向上壳体201,并与上壳体201接触。将光发射器件400中的激光器420通过高频信号线330与电路板300正面的数字信号处理芯片310连接后,激光器420在偏置电流和高频信号的驱动下产生光信号,如此激光器420会产生热量。但是,激光器420的发光性能容易受到温度的影响,因此激光器420需在某一固定温度范围内工作。将放置在半导体制冷器480上,可以保证激光器420的工作温度,但这样的话热量会从激光器420转移至半导体制冷器480,需要将这些热量传导出去,以保证半导体制冷器480的制冷效率。
激光器420产生的热量会通过半导体制冷器480传导至底座410上,以保持激光器420的温度。为提高光模块的散热性能,底座410可采用钨铜或其他具有良好导热性的金属材料制成,并适当增加底座410的质量以及其底面的面积,如此激光器420工作产生的热量可通过底座410传导至上壳体201,有效改善激光器420的散热效果。
激光器420通过半导体制冷器480设置在底座410的第一安装面4110上,激光器420在底座410上的安装面积小于底座410与上壳体201的接触面积,能够提高激光器420的散热效率。
为保证激光器工作在某一固定温度,一些实施例中增加了底座410的质量和底座410与上壳体201的接触面积,使得底座410与上壳体201的接触面积大于激光器420在底座410上的安装面积。如此激光器420产生的热量传导至半导体制冷器 480,半导体制冷器480将热量传导至底座410,底座410将热量传导至上壳体201,从而将激光器420产生的热量传导至光模块200的外部。
光模块200还包括第一导热垫片。为方便将底座410的热量传导至上壳体201,将第一导热垫片设置在底座410的底面与上壳体201内侧面之间。如此,底座410的热量可以传导至第一导热垫片,第一导热垫片将热量传导至上壳体201,以有效改善散热效果。在一些实施例中,第一导热垫片为导热胶。通过导热胶,既能将底座410粘贴于上壳体201的内侧面,又能将底座410的热量传导至所述上壳体201。
在一些实施例中,光模块的主要热源除了激光器420外,还有数字信号处理芯片310。该数字信号处理芯片310背向电路板300的侧面与上壳体201相接触。如此,数字信号处理芯片310工作产生的热量可被传导至上壳体201,以将数字信号处理芯片310产生的热量传导至光模块200的外部。
光模块200还包括第二导热垫片。为方便将数字信号处理芯片310的热量传导至上壳体201,第二导热垫片设置在数字信号处理芯片310与上壳体201内侧面之间。如此,数字信号处理芯片310产生的热量被传导至第二导热垫片,第二导热垫片将热量传导至上壳体201,以有效改善散热效果。
图14A为根据一些实施例的一种光模块中光探测器的监控光路剖视图,图14B为根据一些实施例的一种光模块中光探测器的监控光路俯视图。如图14A和14B所示,激光器420在电路板300传输的偏置电流、高频信号的驱动下发射激光光束,为监测激光器420的发射光功率,电路板300还包括光探测器350,光探测器350设置在电路板300的背面。光探测器350位于安装孔320远离金手指301的一侧,且该光探测器350的光敏面朝向激光器420的出光方向。光探测器350被配置为采集激光器420发射的前向光,并将采集到的数据发送至电路板300,来实现对激光器420前向出光功率的监控。
将光探测器350贴装在安装孔320远离金手指301的一侧时,可使光探测器350的光敏面与安装孔320的内侧壁相平齐,以方便对光探测器350进行定位;也可使光探测器350的光敏面突出于安装孔320的内侧壁,以减小光探测器350的光敏面与第一反射面441之间的距离,使得光探测器350能够尽可能多地采集透过第一反射面441的激光光束。
在一些实施例中,利用平移棱镜440的第一反射面441的透光特性,使少部分准直光束漏过第一反射面441,并射向光探测器350的光敏面,使得光探测器350能够接收到部分光束,从而得到激光器420的发射光功率。
例如,平移棱镜440的第一反射面441朝向激光器420的出光方向,被配置为将激光器420产生的一路激光光束分裂为两束光,一束光(通常占激光器总功率的95%)被第一反射面441反射至第二反射面442,以将激光光束由电路板300的背面侧反射至电路板300的正面侧,另一束光透过第一反射面441射入光探测器350的光敏面,通过该光敏面接收激光器420发射的激光光束。
光探测器350设置在电路板300的背面上时,可使光探测器350中光敏面的中心轴线与激光器420的中心轴线相重合,并将光探测器350通过表面组装技术(Surface Mounted Technology,SMT)安装于电路板300的背面,使得透过第一反射面441的光束尽可能地射入光探测器350内。
在一些实施例中,电路板300包括8个光探测器350,每个光探测器350与一个激光器420对应设置。如此,每个光探测器350采集一个激光器420发射的激光光束中透过第一反射面441的部分光束,并测得相应激光器420的前向出光功率。
光探测器350接收的是有一定面积的平行光,因此光探测器350的装配位置精度要求低,装配更加容易。将平移棱镜440中第一反射面441的透光范围与光探测器350的光敏面对齐后,即可使得光探测器350能够采集到透过第一反射面441的激光光束。
光探测器350具有阴极和阳极。将光探测器350固定在电路板300的背面上时, 阴极可以通过焊接或者导电胶粘接等方式固定在电路板300的接地金属层上。光探测器350的阳极与阴极相对设置,阳极通过打线工艺与电路板300电连接,进而实现光探测器350与电路板300的电连接。
图15A为根据一些实施例的一种光模块中电路板与光接收器件的组装结构图。如图15A和图5所示,本公开一些实施例中的800G(信号传输速率为800Gbit/s)光模块的光接收器件500包括两个子光接收器件501和502,第一子光接收器件501与第二子光接收器件502可在与激光器420的出光方向垂直的方向上对称设置在电路板300的安装孔320的两侧。第一子光接收器件501与第三子光纤适配器701通过第三内部光纤901相连接,第三子光纤适配器701接收的来自光模块200外部的光信号通过第三内部光纤901传输至第一子光接收器件501,以实现第三束复合光束的接收;第二子光接收器件502与第四子光纤适配器702通过第四内部光纤902相连接,第四子光纤适配器702接收的来自光模块200外部的光信号通过第四内部光纤902传输至第二子光接收器件502,以实现第四束复合光束的接收。
图15B为根据一些实施例的一种光模块中光接收器件的结构图,图15C为根据一些实施例的一种光模块中光接收器件的局部光路图。如图15B和15C所示,第一子光接收器件501与第二子光接收器件502的结构相同,第二子光接收器件502包括支撑板5021以及设置在支撑板5021上的光准直器5022、光分波器5023、透镜阵列5024与反射棱镜5025。光准直器5022、光分波器5023、透镜阵列5024与反射棱镜5025形成的组合也可以被称为前文所述的光接收器。与第四子光纤适配器702连接的第四内部光纤902插入光准直器5022内,通过光准直器5022将来自光模块200外部的光信号传输至光分波器5023,再通过光分波器5023将第四束复合光束解复用为4路激光光束;4路激光光束通过透镜阵列5024分别会聚至反射棱镜5025;4路激光光束在反射棱镜5025的反射面处发生反射,将平行于电路板300正面的激光光束反射为垂直于电路板300正面的激光光束,并使得反射后的激光光束射入电路板300上的接收探测器380,以实现光的接收。
光准直器5022包括套管50221、单模光纤法兰50222与准直透镜50223,单模光纤法兰50222和准直透镜50223插入在套管50221内。第四内部光纤902插入在单模光纤法兰50222内,并与准直透镜50223相对设置。准直透镜50223被配置为将第四内部光纤902传输的来自光模块200外部的光束转换为准直光束。
光分波器5023的入光面朝向准直透镜50223的出光面,被配置为将准直透镜50223输出的一路准直光束解复用为4路激光光束,从而将包含多个不同波长的光束分开。光分波器5023输出4路不同波长的光束,该4路不同波长的光束分别射入透镜阵列5024中的相应透镜内,以将4路不同波长的光束会聚至反射棱镜5025的反射面上。反射棱镜5025设置在电路板300的接收探测器380的正上方,反射棱镜5025将4路不同波长的光束分别反射至相应的接收探测器380内,通过接收探测器380将光信号转换为电信号。
电路板300的跨阻放大器通过电路走线与接收探测器380相连接,接收探测器380首先将接收到的光信号转换为高频电流信号,然后将该高频电流信号传输给跨阻放大器;跨阻放大器将该高频电流信号转换为高频电压信号,并对高频电压信号进行放大,再经由高频信号线330将高频电压信号传输给数字信号处理芯片310。数字信号处理芯片310提取高频电压信号中的数据,再将该数据经由金手指301传送至光网络终端100。
在本公开一些实施例中,所述跨阻放大器的一端通过电路走线与接收探测器380连接、另一端通过高频信号线330与数字信号处理芯片310连接。由接收探测器380转换得到的高频电流信号经跨阻放大器转化为高频电压信号并放大后,经由高频信号线330传输给数字信号处理芯片310进行处理。
在一些实施例中,光接收器件也可采用基于阵列波导光栅(Arrayed Waveguide Grating,AWG)技术的光分波器件以实现相同的光分波效果。
在一些实施例中,第一子光接收器件501与第二子光接收器件502的安装方式相同,以第二子光接收器件502的安装方式为例进行说明。将光准直器5022、光分波器5023透镜阵列5024与反射棱镜5025依次固定安装在支撑板5021上,组装成一个预装配件。然后将该预装配件以有源耦合的方式固定在电路板300上,从而保证预装配件中的反射棱镜5025将多路光信号耦合进入接收探测器380。
将第二子光接收器件502固定在电路板300上时,使用胶水填充支撑板5021与电路板300之间的间隙。从而使得安装完成后,第二子光接收器件502中的光准直器5022、光分波器5023、透镜阵列5024、反射棱镜5025与电路板300的接收探测器380之间存在高度差。
上述第一子光接收器件501与第二子光接收器件502采用对称结构安装在电路板300的正面上,使得光模块200在布局上形成一种互补的结构,避免各器件之间的位置冲突,使得总体结构紧凑,而且便于安装。
在本公开一些实施例提供的光模块中,采用平移棱镜减小了电路板中安装孔的面积,更易于电路板的布板设计;此外,采用集成化的光学元器件,例如光合波器、光隔离器、光纤耦合器等,简化了光学元器件装配难度;光发射器件采用倒装的装配结构,减小了光发射器件的整体尺寸,同时极大地改善了光发射器件的散热特性;光发射器件中多个尺寸不同的激光器的间隔设置,极大地减小了相邻激光器之间的距离,减小了光发射器件在激光器的出光方向上的尺寸。
需要说明的是,本公开并不限于上文所记载的示例。即,也可以对上文中的示例进行适当改变。下面将对代表性的变形例进行说明。在以下的变形例的说明中,仅对与上述示例不同的部分进行说明。另外,在上述示例和变形例中,对彼此相同或等同的部件标注相同的附图标记。因此,在以下对变形例的说明中,关于具有与上述示例相同的附图标记的构成要素,只要不存在技术上的矛盾或特别的追加说明,均可相应援引上述示例中的说明。
图16A为根据一些变形例的一种光模块中光发射器件的结构图,图16B为图16A所示光发射器件中底座的结构图。如图16A所示,光发射器件400包括激光器420、准直透镜430、平移棱镜440、会聚透镜490、光隔离器460、光纤耦合器470和半导体制冷器480。光发射器件400省略了光合波器4510和4520,8路光信号通过8根内部光纤800传输至光模块200的外部。会聚透镜490对经过平移棱镜440的准直光束进行会聚,以形成会聚光束。会聚光束能够更好地射入光纤耦合器470中。
如图16A和16B所示,为将底座410固定在电路板300的正面上,底座410省略了第一支撑住4140,而是包括两个第二支撑柱4160。两个第二支撑柱4160位于第三安装面4130远离第二安装面4120的一端。两个第二支撑柱4160之间具有开口,与光纤耦合器470连接的8根内部光纤800穿过该开口与相应的光纤适配器相连接。两个第二支撑柱4160之间在与激光器420的出光方向垂直的方向上的距离大于第三安装面4130在该方向上的尺寸,以方便8根内部光纤800穿过上述开口。
如图16A所示,每个第二支撑柱4160由第三安装面4130向远离底座410底面的方向延伸。底座410还包括两个第二定位销4161,该两个第二定位销4161分别位于两个第二支撑柱4160背向第三安装面4130的端面上。电路板300包括第一定位孔360,第一定位孔360与第二定位销4161相对应设置。
将底座410反向安装至电路板300正面上时,底座410的第二支撑柱4160和定位块4150与电路板300的正面相接触,第二支撑柱4160上的第二定位销4161插入电路板300上的第一定位孔360内,定位块4150上的定位凸起4151插入电路板300上的第二定位孔370内。从而将底座410固定在电路板300上,并将设置在第一安装面4110上的激光器420和准直透镜430及设置在第二安装面4120上的平移棱镜440嵌入电路板300的安装孔320内。
图17A为根据另一些变形例的一种光模块中光发射器件的结构图,图17B为图17A所示光发射器件中底座的结构图。如图17A和17B所示,为将底座410固定在电路板300的正面上,底座410省略了第一支撑柱4140,而是包括支撑块4170。支撑块4170由第三安装面4130向远离底座410底面的方向延伸。支撑块4170位于第三安装面4130远离第二安装面4120的一端,且支撑块4170远离第二安装面4120的侧面的与底座410远离第一安装面4110的侧面相平齐。
支撑块4170具有两个通孔4171,两个通孔4171在与激光器420的出光方向垂直的方向上并排设置,且沿着激光器420的出光方向贯穿支撑块4170。第一光纤耦合器4710与第二光纤耦合器4720插在支撑块4170上的两个通孔4171内,以通过支撑块4170将第一光纤耦合器4710、第二光纤耦合器4720固定在底座410上。
在一些实施例中,支撑块4170在与激光器420的出光方向垂直的方向上的尺寸不大于第三安装面4130在该方向上的尺寸,使得底座410方便加工,节省制作成本。
将底座410反向安装至电路板300正面上时,底座410的支撑块4170和定位块4150与电路板300的正面相接触,定位块4150上的定位凸起4151插入电路板300上的第二定位孔370内。从而将底座410固定在电路板300上,并将设置在第一安装面4110上的激光器420和准直透镜430及设置在第二安装面4120上的平移棱镜440嵌入电路板300的安装孔320内。
图18A为根据又一些变形例的一种光模块中电路板、光发射器件和光接收器件的组装结构图,图18B为图18A所示光模块中省略光发射器件后的结构图。如图18A和18B所示,为了减小电路板300在与激光器420的出光方向垂直的方向上的尺寸,可将光发射器件400反向装配在电路板300的正面,将第一子光接收器件501安装在电路板300的正面,且位于光发射器件400的一侧,并将第二子光接收器件502安装在电路板300的背面,且第一子光接收器件501与第二子光接收器件502对称设置。
在此情况下,第三光纤适配器701和第四光纤适配器702也沿着底座410的厚度方向并列设置,第三光纤适配器701通过第三内部光纤901与第一子光接收器件501相连接,以实现第三束复合光束的接收。第四光纤适配器702通过第四内部光纤902与第二子光接收器件502相连接,以实现第四束复合光束的接收。
图18C为根据一些实施例的一种光模块中电路板与光接收器件组装结构的剖视图。如图18C所示,第一子光接收器件501与第二子光接收器件502对称设置在电路板300的正面和背面。设置在电路板300正面的第一子光接收器件501通过第三内部光纤901与第三子光纤适配器701连接,如此来自光模块200外部的光束通过第三内部光纤901传输至第一子光接收器件501,经由光分波器5023将第三束复合光束解复用为4路光束。4路光束经由反射棱镜5025反射至电路板300正面上设置的接收探测器380,通过接收探测器380将光信号转换为高频电流信号,高频电流信号被传输至跨阻放大器390,并经由跨阻放大器390转换为高频电压信号后传输至数字信号处理芯片310,再由数字信号处理芯片310提取高频电压信号中的数据。
设置在电路板300背面的第二光子光接收器件502通过第四内部光纤902与第四子光纤适配器702连接,如此来自光模块200外部的光束通过第四内部光纤902传输至第二子光接收器件502,经由光分波器5023将第四束复合光束解复用为4路光束。4路光束经由反射棱镜5025反射至电路板300背面上设置的接收探测器380,通过接收探测器380将光信号转换为高频电流信号,高频电流信号被传输至跨阻放大器390,并经由跨阻放大器390转换为高频电压信号后传输至数字信号处理芯片310,再由数字信号处理芯片310提取高频电压信号中的数据。
在一些实施例中,第二子光接收器件502设置在电路板300的背面上后,在数字信号处理芯片310的输入焊盘处设置有过孔,该过孔贯穿电路板300的正面与背面。与数字信号处理芯片310的输入焊盘连接的高频信号线通过该过孔延伸到电路 板300的背面,并与跨阻放大器390连接,以将电路板300上的高频信号从电路板300正面传输到背面,使得高频信号传输至位于电路板300背面的跨阻放大器390。
图19A为根据又一些变形例的一种光模块中光发射器件的结构图,图19B为图19A所示光模块中底座的结构图。需要说明的是,前文所述的光发射器件400和光接收器件500不仅适用于800G光模块,也适用于400G(信号传输速率为400Gbit/s)光模块。400G光模块在其壳体中封装4路光信号传输通道,每个光信号传输通道的信号传输速率为100Gbit/s。该400G光模块可在狭小的空间中实现优良的高频性能,光学性能,散热特性,并且结构复杂性低,可生产性高。因此,该400G光模块可以实现批量生产,降低成本的目标。
如图19A和19B所示,在一些实施例中,该400G光模块中的光发射器件400包括半导体制冷器480、4个激光器420、4个准直透镜430、1个平移棱镜440、1个光合波器450、1个光隔离器460和1个光纤耦合器470。需要说明的是,光合波器450、光隔离器460和光纤耦合器470的数量仅仅是一种示例,并不构成对本公开的限制。
4个激光器420与4个准直透镜430一一对应设置,每个激光器420发射一路激光光束,每个准直透镜430将一路激光光束转换为准直光束。每个准直透镜430射出的准直光束传输至平移棱镜440,通过平移棱镜440对准直光束进行反射,以改变激光光束的传输方向。
光发射器件400反向安装在电路板300的正面。半导体制冷器480固定在底座410上,4个激光器420、4个准直透镜430固定在半导体制冷器480上,并通过安装孔320位于电路板300的背面侧。平移棱镜440的一部分通过安装孔320位于电路板300的背面侧,平移棱镜440的另一部分位于电路板300的正面侧。光合波器450、光隔离器460与光纤耦合器470均位于电路板300的正面侧。
4个激光器420分别发射4路激光光束,该4路激光光束均平行于电路板300的背面;经由4个准直透镜430分别将该4路激光光束转换为4路准直光束,4路准直光束传输至平移棱镜440;平移棱镜440将位于电路板300背面侧的4路激光光束反射至电路板300的正面侧。
底座410具有凸台4180,该凸台4180由第三安装面4130向远离底座410底面的方向延伸。第一安装面4110和第二安装面4120设置在凸台4180上。在一些实施例中,第一安装面4110自凸台4180远离底座410底面的表面向底座410的底面凹陷,以方便将半导体制冷器480固定在第一安装面4110上,然后再将激光器420安装在半导体制冷器480上。
第二安装面4120自凸台4180远离底座410底面的表面向底座410的底面凹陷,且比第一安装面4110更靠近底座410的底面,以方便将平移棱镜440固定在第二安装面4120上。平移棱镜440的第一反射面441远离第二安装面4120、且靠近激光器420,平移棱镜440的第二反射面442靠近第二安装面4120。如此,通过平移棱镜440将位于电路板300背面侧的激光光束反射至电路板300的正面侧。
光合波器450、光隔离器460与光纤耦合器470依次设置在第三安装面4130上。
在一些实施例中,第一安装面4110在与激光器420的出光方向垂直的方向上的尺寸略大于第二安装面4120在该方向上的尺寸,以方便将4个激光器420沿与激光器420的出光方向垂直的方向并排设置在第一安装面4110上。第三安装面4130在与激光器420的出光方向垂直的方向上的尺寸与凸台4180在该方向上的尺寸一致。为了匹配第一安装面4110上的4个激光器420,光合波器450在与激光器420的出光方向垂直的方向上的尺寸小于第三安装面4130在该方向上的尺寸。
在一些实施例中,底座410还包括两个第三支撑柱4190,两个第三支撑柱4190位于第三安装面4130远离第二安装面4120的一端。两个第三支撑柱4190之间具有开口,光纤耦合器470穿过该开口与相应的光纤适配器连接。两个第三支撑柱4190之间在与激光器420的出光方向垂直的方向上的距离不大于第三安装面4130在该 方向上的尺寸,如两个第三支撑柱4190相背向的侧面与底座410的侧面相平齐。
每个第三支撑柱4190由第三安装面4130向远离底座410底面的方向延伸。底座410还包括两个第三定位销4191,该两个第三定位销4191分别位于两个第三支撑柱4190背向第三安装面4130的端面上。第三定位销4191与电路板300上的第一定位孔360相对应设置。
为方便将底座410安装在电路板300上,底座410还包括两个第四定位销4181。该两个第四定位销4181位于凸台4180背向第一安装面4110的端面上。第四定位销4181与电路板300上的第二定位孔370相对应设置。
在电路板300上反向安装底座410时,底座410的凸台4180和两个第三支撑柱4190与电路板300的正面相接触。凸台4180上的两个第四定位销分别插入电路板300的两个第二定位孔370内,两个第三支撑柱4190上的两个第三定位销4191分别插入电路板300上的两个第一定位孔360内。
图20A为根据又一些变形例的一种光模块中光发射器件的结构图,图20B为图20A所示光模块中底座的结构图。如图20A和20B所示,底座410为方形底座,包括凹槽41010。该凹槽41010朝向底座410的底面凹陷,以形成第一安装面4110、第二安装面4120和第三安装面4130。底座410还包括固定孔41011,固定孔41011朝向光纤适配器的方向延伸,以贯通凹槽41010。光纤耦合器470插入固定孔41011内。
半导体制冷器480设置在凹槽41010内的第一安装面4130上,4个激光器420设置在半导体制冷器480上,与4个激光器420对应的4个准直透镜430也设置在半导体制冷器480上,且准直透镜430设置在激光器420的出光方向上。
平移棱镜440设置在凹槽41010内的第二安装面4120上,且平移棱镜440的第一反射面441远离第二安装面4120、并靠近激光器420;平移棱镜440的第二反射面442靠近第二安装面4120。如此,平移棱镜440将位于电路板300背面侧的激光光束反射至电路板300的正面侧。
光合波器450和光隔离器460依次设置在凹槽41010内的第三安装面4130上,通过光合波器450将平移棱镜440反射的4路激光光束合成为一路复合光束,该复合光束透过光隔离器460射入光纤耦合器470内,以实现光的发射。
在一些实施例中,第一安装面4110在与激光器420的出光方向垂直的方向上的尺寸略大于第二安装面4120在该方向上的尺寸,以方便将4个激光器420沿与激光器420的出光方向垂直的方向并排设置在第一安装面4110上。第三安装面4130在与激光器420的出光方向垂直的方向上的尺寸与第二安装面4120在该方向上的尺寸一致。沿激光器420的出光方向,底座410在与激光器420的出光方向垂直的方向上的尺寸一致。
第三安装面4130在与激光器420的出光方向垂直的方向上的尺寸与凹槽41010在该方向上的尺寸相同,光合波器450嵌在凹槽41010内,因此光合波器450在与激光器420的出光方向垂直的方向上的尺寸可与第三安装面4130在该方向上的尺寸一致。
在本公开一些实施例提供的光模块中,光发射器件400反向装配在电路板300上,使得激光器420中的垫片422与电路板300的背面平齐,从而使垫片422上的地线和信号线与电路板300背面上的电路走线之间的连接线最短,以保证优良的高频信号传输性能。此外,这样的设置还能够减小电路板300的安装孔320的尺寸,以便于增加电路板300的电子元器件的排布面积。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光模块,包括:
    壳体,所述壳体包括上壳体和下壳体;
    电路板,位于所述上壳体和所述下壳体之间,所述电路板具有朝向所述上壳体的正面和朝向所述下壳体的背面,所述电路板包括安装孔,所述安装孔贯通所述正面和所述背面;
    光发射器件,安装于所述电路板上,所述光发射器件包括:
    底座,安装在所述电路板的正面上,所述底座具有安装面和与所述安装面相对的底面,所述安装面朝向所述正面,所述底面朝向所述上壳体;
    激光器,安装在所述安装面上,穿过所述安装孔并伸出所述电路板的背面;
    平移棱镜,安装在所述安装面上,所述平移棱镜穿过所述安装孔使其一部分位于所述电路板的背面侧、另一部分位于所述电路板的正面侧,所述平移棱镜被配置为将所述激光器发出的位于所述电路板的背面侧的激光光束平移至所述电路板的正面侧;
    光纤耦合器,被配置为将所述平移棱镜平移至所述电路板的正面侧的激光光束传输至所述光模块的外部。
  2. 根据权利要求1所述的光模块,其中,所述平移棱镜包括:
    第一反射面,远离所述安装面,且朝向所述激光器,所述第一反射面被配置为反射所述激光器发出的平行于所述电路板的背面的激光光束,使该路激光光束沿与所述电路板的正面及背面均垂直的方向传播;
    第二反射面,靠近所述安装面,且朝向所述光纤耦合器,所述第二反射面被配置为反射与所述电路板的正面及背面均垂直的激光光束,使所述激光光束沿与所述电路板的正面平行的方向传播。
  3. 根据权利要求1或2所述的光模块,其中,所述底座的安装面包括:
    第一安装面,所述激光器安装在所述第一安装面上;
    第二安装面,自所述第一安装面朝向所述底座的底面凹陷,所述平移棱镜安装在所述第二安装面上;
    第三安装面,自所述第二安装面朝向所述底座的底面凹陷,所述光纤耦合器安装在所述第三安装面上。
  4. 根据权利要求1至3任一项所述的光模块,其中,所述光发射器件包括多个激光器,每个激光器发出一路激光光束,所述多个激光器沿与所述多个激光器的出光方向垂直的方向并排设置;
    所述光发射器件还包括至少一个光合波器,所述至少一个光合波器安装在所述底座的安装面上且位于所述平移棱镜和所述光纤耦合器之间,被配置为将所述平移棱镜反射的多路激光光束复合成至少一束复合光束,并将所述至少一束复合光束传输至所述光纤耦合器。
  5. 根据权利要求4所述的光模块,其中,所述多个激光器被配置为发射多路不同波长的激光光束;所述光发射器件还包括:
    第一光合波器,被配置为将所述平移棱镜反射的多路激光光束中的一部分激光光束复合成第一束复合光束;
    第二光合波器,沿与所述多个激光器的出光方向垂直的方向与所述第一光合波器并排设置,被配置为将所述平移棱镜反射的多路激光光束中的剩余激光光束复合成第二束复合光束;
    第一光纤耦合器,与所述第一光合波器光耦合,被配置为将所述第一束复合光束通过第一子内部光纤耦合至第一子光纤适配器;
    第二光纤耦合器,与所述第二光合波器光耦合,且沿与所述多个激光器的出光方向垂直的方向与所述第一光纤耦合器并排设置,被配置为将所述第二束复合光束通过第二子内部光纤耦合至第二子光纤适配器。
  6. 根据权利要求4或5所述的光模块,其中,所述多个激光器包括至少一个 第一激光器和至少一个第二激光器;
    在所述多个激光器的出光方向上,所述第一激光器自所述底座的靠近所述多个激光器的侧边开始延伸的距离,小于所述第二激光器自同一侧边开始延伸的距离;
    所述多个激光器在与所述多个激光器的出光方向垂直的方向上按照第一激光器和第二激光器间隔的方式并排设置。
  7. 根据权利要求1所述的光模块,其中,所述激光器包括激光芯片和承载所述激光芯片的垫片;将所述光发射器件安装在所述电路板的正面上后,所述垫片与电路板的背面平齐。
  8. 根据权利要求7所述的光模块,其中,所述电路板还包括:数字处理芯片、高频信号线和过孔;
    数字处理芯片,固定在所述电路板的正面上,且位于所述安装孔的一侧;
    过孔,位于所述数字处理芯片的输出焊盘处,并贯穿所述电路板的正面与背面;
    高频信号线,位于所述过孔内,且所述高频信号线的一端穿过所述过孔与所述数字处理芯片的输出焊盘电连接,所述高频信号线的另一端沿所述电路板的背面与所述激光器电连接。
  9. 根据权利要求8所述的光模块,其中,所述电路板还包括直流信号线;所述直流信号线位于所述电路板的背面,且与激光器电连接;
    所述直流信号线与所述高频信号线位于所述安装孔的不同侧。
  10. 根据权利要求8所述的光模块,其中,所述电路板还包括光探测器,所述光探测器设置在所述电路板的背面,并位于所述安装孔远离所述数字处理芯片的一侧,所述光探测器的光敏面朝向所述激光器的出光方向;
    所述激光器发出的激光光束中的一部分光透过所述平移棱镜,并射向所述光探测器的光敏面,使得所述光探测器能够监测所述激光器的发射光功率。
  11. 根据权利要求1至6任一项所述的光模块,还包括光接收器件,所述光接收器件包括第一子光接收器件和第二子光接收器件;
    与第三子光纤适配器连接的第三子内部光纤将来自所述光模块外部的第三束复合光束传输至所述第一子光接收器件,与第四子光纤适配器连接的第四子内部光纤将来自所述光模块外部的第四束复合光束传输至所述第二子光接收器件;
    所述第一子光接收器件或所述第二子光接收器件包括光分波器,所述光分波器将所述第三束复合光束或所述第四束复合光束解复用为多路激光光束,并使所述多路激光光束射入所述电路板上的接收探测器。
  12. 根据权利要求11所述的光模块,其中,
    所述第一子光接收器件和所述第二子光接收器件安装于所述电路板的正面上,且在与所述激光器的出光方向垂直的方向上分别位于所述光发射器件的两侧;或者,
    所述第一子光接收器件安装于所述电路板的正面上,所述第二子光接收器件安装于所述电路板的背面上。
  13. 根据权利要求1至6任一项所述的光模块,其中,所述底座的底面与所述上壳体导热接触。
  14. 根据权利要求1至6任一项所述的光模块,其中,所述底座还包括第一支撑柱及第一定位销,或者,所述底座还包括第二支撑柱及第二定位销;
    所述第一支撑柱位于所述底座的安装面上远离所述激光器的一端,且沿远离所述底座的底面的方向延伸;所述第一定位销位于所述第一支撑柱远离所述底座的底面的端面上;
    所述第二支撑柱位于所述底座的安装面上远离所述激光器的一端,且沿远离所述底座的底面的方向延伸;所述第二定位销位于所述第二支撑柱远离所述底座的底面的端面上;
    所述电路板还包括第一定位孔,所述第一定位孔与所述第一定位销或所述第二定位销相对应设置。
  15. 根据权利要求14所述的光模块,其中,
    所述底座包括两个所述第一支撑柱,两个所述第一支撑柱之间具有开口,与所述光纤耦合器连接的内部光纤穿过所述开口与光纤适配器相连接;两个所述第一支撑柱之间在与所述激光器的出光方向垂直的方向上的距离不大于所述底座在该方向上的尺寸,以使两个所述第一支撑柱相背向的侧面与所述底座的相应侧面平齐;或者,
    所述底座包括两个所述第二支撑柱,两个所述第二支撑柱之间具有开口,与所述光纤耦合器连接的内部光纤穿过所述开口与光纤适配器相连接;两个所述第一支撑柱之间在与所述激光器的出光方向垂直的方向上的距离大于所述底座在该方向上的尺寸。
  16. 根据权利要求14所述的光模块,其中,
    所述底座还包括:
    定位块,位于所述底座的安装面上靠近所述激光器的一端,且沿远离所述底座的底面的方向延伸;和
    定位凸起,位于所述定位块远离所述底座的底面的端面上;
    所述电路板还包括第二定位孔,所述第二定位孔与所述定位凸起相对应设置。
  17. 根据权利要求1至6任一项所述的光模块,其中,
    所述底座还包括:
    支撑块,位于所述底座的安装面上远离所述激光器的一端,且沿远离所述底座的底面的方向延伸;
    通孔,贯穿所述支撑块,所述光纤耦合器插入在所述通孔内;
    定位块,位于所述底座的安装面上靠近所述激光器的一端,且沿远离所述底座的底面的方向延伸;和
    定位凸起,位于所述定位块远离所述底座的底面的端面上;
    所述电路板还包括第二定位孔,所述第二定位孔与所述定位凸起相对应设置。
  18. 根据权利要求1至6任一项所述的光模块,其中,
    所述底座还包括:
    第三支撑柱,位于所述底座的安装面上远离所述激光器的一端,且沿远离所述底座的底面的方向延伸;
    第三定位销,位于所述第三支撑柱远离所述底座的底面的端面上;
    凸台,位于所述底座的安装面上靠近所述激光器的一端,且沿远离所述底座的底面的方向延伸;以及
    第四定位销,位于所述凸台远离所述底座的底面的端面上;
    所述电路板还包括:
    第一定位孔,与所述第三定位销相对应设置;以及
    第二定位孔,与所述第四定位销相对应设置。
  19. 根据权利要求1至6任一项所述的光模块,其中,
    所述底座还包括:
    凹槽,朝向所述底座的底面凹陷,
    固定孔,贯穿所述凹槽的侧壁,所述光纤耦合器插入在所述固定孔内;
    第三定位销,位于所述凹槽远离所述激光器且远离所述底座的底面的端面上;
    第四定位销,位于所述凹槽靠近所述激光器且远离所述底座的底面的端面上;
    所述电路板还包括:
    第一定位孔,与所述第三定位销相对应设置;以及
    第二定位孔,与所述第四定位销相对应设置。
  20. 根据权利要求1所述的光模块,其中,所述光模块为信号传输速率为 800Gbit/s的光模块,或者,所述光模块为信号传输速率为400Gbit/s的光模块。
PCT/CN2022/102079 2021-08-31 2022-06-28 光模块 WO2023029707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280050029.3A CN117677878A (zh) 2021-08-31 2022-06-28 光模块
US18/473,592 US20240027705A1 (en) 2021-08-31 2023-09-25 Optical module

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
CN202111015461.2 2021-08-31
CN202122085678.2U CN216013740U (zh) 2021-08-31 2021-08-31 一种光模块
CN202122085677.8U CN215813458U (zh) 2021-08-31 2021-08-31 一种光模块
CN202122087755.8 2021-08-31
CN202122085677.8 2021-08-31
CN202122087754.3 2021-08-31
CN202111015574.2 2021-08-31
CN202111015574.2A CN115728879A (zh) 2021-08-31 2021-08-31 一种光模块
CN202122085678.2 2021-08-31
CN202122087755.8U CN215895036U (zh) 2021-08-31 2021-08-31 一种光模块
CN202122087754.3U CN215895035U (zh) 2021-08-31 2021-08-31 一种光模块
CN202122076596.1 2021-08-31
CN202111015786.0A CN115728880A (zh) 2021-08-31 2021-08-31 一种光模块
CN202111015876.X 2021-08-31
CN202111012383.0A CN115728877A (zh) 2021-08-31 2021-08-31 一种光模块
CN202122076596.1U CN215641964U (zh) 2021-08-31 2021-08-31 一种光模块
CN202111012383.0 2021-08-31
CN202111015461.2A CN115728878A (zh) 2021-08-31 2021-08-31 一种光模块
CN202111015876.XA CN113721331B (zh) 2021-08-31 2021-08-31 一种光模块
CN202111015786.0 2021-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/473,592 Continuation US20240027705A1 (en) 2021-08-31 2023-09-25 Optical module

Publications (1)

Publication Number Publication Date
WO2023029707A1 true WO2023029707A1 (zh) 2023-03-09

Family

ID=85413187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102079 WO2023029707A1 (zh) 2021-08-31 2022-06-28 光模块

Country Status (2)

Country Link
US (1) US20240027705A1 (zh)
WO (1) WO2023029707A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152336A1 (en) * 2002-02-12 2003-08-14 Igor Gurevich Optical module for high-speed bidirectional transceiver
CN111313969A (zh) * 2019-12-10 2020-06-19 长飞光纤光缆股份有限公司 一种光模块
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块
CN212160161U (zh) * 2020-05-07 2020-12-15 苏州旭创科技有限公司 光模块
CN112929092A (zh) * 2021-03-09 2021-06-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN112965190A (zh) * 2021-04-12 2021-06-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN113219601A (zh) * 2021-04-23 2021-08-06 武汉英飞光创科技有限公司 一种器件壳体和模块壳体一体化的光模块及光模块外壳
CN113721331A (zh) * 2021-08-31 2021-11-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN215641964U (zh) * 2021-08-31 2022-01-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895036U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895035U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN216013740U (zh) * 2021-08-31 2022-03-11 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152336A1 (en) * 2002-02-12 2003-08-14 Igor Gurevich Optical module for high-speed bidirectional transceiver
CN111313969A (zh) * 2019-12-10 2020-06-19 长飞光纤光缆股份有限公司 一种光模块
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块
CN212160161U (zh) * 2020-05-07 2020-12-15 苏州旭创科技有限公司 光模块
CN112929092A (zh) * 2021-03-09 2021-06-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN112965190A (zh) * 2021-04-12 2021-06-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN113219601A (zh) * 2021-04-23 2021-08-06 武汉英飞光创科技有限公司 一种器件壳体和模块壳体一体化的光模块及光模块外壳
CN113721331A (zh) * 2021-08-31 2021-11-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN215641964U (zh) * 2021-08-31 2022-01-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895036U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN215895035U (zh) * 2021-08-31 2022-02-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN216013740U (zh) * 2021-08-31 2022-03-11 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
US20240027705A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CN114035285B (zh) 一种光模块
CN214174689U (zh) 一种光模块
CN215895036U (zh) 一种光模块
CN215813458U (zh) 一种光模块
CN113721331B (zh) 一种光模块
CN216013740U (zh) 一种光模块
CN215895035U (zh) 一种光模块
CN114675383A (zh) 一种光模块
CN114624829B (zh) 一种光模块
WO2023185220A1 (zh) 一种光模块
WO2023035711A1 (zh) 光模块
CN218350566U (zh) 一种光模块
CN218547061U (zh) 一种光模块
WO2023109210A1 (zh) 光模块
WO2023029707A1 (zh) 光模块
CN115016074B (zh) 一种光模块
WO2023093130A1 (zh) 光模块
CN117677878A (zh) 光模块
CN218272816U (zh) 光模块
WO2023184906A1 (zh) 光模块
WO2024016602A1 (zh) 光模块
WO2023045423A1 (zh) 光模块
CN115032749B (zh) 一种光模块
CN217543461U (zh) 一种光模块
WO2022193933A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280050029.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE