WO2023109210A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023109210A1
WO2023109210A1 PCT/CN2022/118090 CN2022118090W WO2023109210A1 WO 2023109210 A1 WO2023109210 A1 WO 2023109210A1 CN 2022118090 W CN2022118090 W CN 2022118090W WO 2023109210 A1 WO2023109210 A1 WO 2023109210A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
shielding block
light
optical
connecting arm
Prior art date
Application number
PCT/CN2022/118090
Other languages
English (en)
French (fr)
Inventor
张加傲
王欣南
邵宇辰
慕建伟
刘鹏飞
杨冰
蔚永军
张晓廓
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123204713.4U external-priority patent/CN216351387U/zh
Priority claimed from CN202123201227.7U external-priority patent/CN216351386U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023109210A1 publication Critical patent/WO2023109210A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, in particular to an optical module.
  • optical communication technology the optical module is a tool to realize the mutual conversion of photoelectric signals, and is one of the key components in optical communication equipment.
  • the optical module includes a housing, a circuit board and a light emitting component. Both the circuit board and the light emitting assembly are located in the housing; the light emitting assembly is electrically connected to the circuit board and is configured to convert electrical signals from the circuit board into optical signals, and convert the The optical signal is transmitted to the outside of the optical module.
  • the light emitting assembly includes a first tube base, a first tube cap, a pin, a base and a light emitter;
  • the first tube base includes a first surface and a second surface oppositely arranged;
  • the first tube cap is provided On the first surface of the first tube base, it is configured to form a first cavity together with the first tube base;
  • the pins include positive pins, and the positive pins pass through the
  • the first tube seat protrudes from the first surface and the second surface respectively;
  • the base protrudes from the first surface of the first tube seat and is set in the first cavity, including A conductive body and a first shielding block, one end of the first shielding block is connected to the conductor body and the first shielding block has a curved corner;
  • the light emitter is arranged on the base close to the positive pin
  • One side has a positive pin; wherein, the positive pin is arranged in the curved corner of the first shielding block and is electrically connected to the positive pin.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Fig. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments.
  • Fig. 4A is an exploded structure diagram of an optical module according to some embodiments.
  • Fig. 4B is an exploded structure diagram of another optical module according to some embodiments.
  • Fig. 5 is a structural diagram of a light emitting component in an optical module according to some embodiments.
  • Fig. 6A is a partial structural diagram of a light emitting component in an optical module according to some embodiments.
  • Figure 6B is a top view of Figure 6A
  • Fig. 7 is another partial structural diagram of a light emitting component in an optical module according to some embodiments.
  • FIG. 8A is a partial structural diagram of FIG. 4B
  • Fig. 8B is another partial structural diagram of Fig. 4B;
  • Fig. 9 is a structural diagram of a light receiving component in an optical module according to some embodiments.
  • Fig. 10 is an internal structural diagram of the light receiving assembly shown in Fig. 9;
  • FIG. 11A is a structural diagram of the light-receiving component shown in FIG. 8A;
  • Fig. 11B is a structural diagram of the light-receiving component shown in Fig. 8B;
  • Fig. 12 is a structural diagram of another angle of the light receiving assembly shown in Fig. 8A;
  • Fig. 13A is an exploded structural view of the light receiving assembly shown in Fig. 8A;
  • Fig. 13B is an exploded structural view of the light receiving assembly shown in Fig. 8B;
  • Fig. 14A is a cross-sectional structure diagram of the filter holder in the light receiving assembly shown in Fig. 8A;
  • Fig. 14B is a cross-sectional structure diagram of the filter holder in the light receiving assembly shown in Fig. 8B;
  • FIG. 15A is a cross-sectional structure diagram of the light-receiving component shown in FIG. 8A;
  • FIG. 15B is a cross-sectional structure diagram of the light receiving component shown in FIG. 8B .
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • optical communication technology In optical communication technology, light is used to carry information to be transmitted, and the optical signal carrying information is transmitted to information processing equipment such as a computer through optical fiber or optical waveguide and other information transmission equipment to complete the information transmission. Because optical signals have passive transmission characteristics when they are transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (such as an optical modem) through the electrical port. It is mainly used to realize power supply, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission and grounding, etc.; optical network terminals transmit electrical signals to computers through network cables or wireless fidelity technology (Wi-Fi) and other information processing equipment.
  • I2C Inter-Integrated Circuit
  • Wi-Fi wireless fidelity technology
  • Fig. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • Optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long-distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach thousands of kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: routers, switches, computers, mobile phones, tablet computers, televisions, and so on.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing (housing), and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 A two-way electrical signal connection is established.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200, so the optical network terminal 100, as the host computer of the optical module 200, can monitor the optical module 200 jobs.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101; electrical signal connection.
  • the optical module 200 implements mutual conversion between optical signals and electrical signals, so that a connection is established between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input to the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input to the optical fiber 101 . Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the remote server 1000 establishes a two-way signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, a radiator 107 disposed on the cage 106, and an electrical circuit board disposed inside the cage 106.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has a protruding structure such as fins for increasing the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the heat generated by the optical module 200 is conducted to the cage 106 and then diffused through the radiator 107 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101 .
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4A is an exploded structural diagram of an optical module according to some embodiments
  • Fig. 4B is an exploded structural diagram of another optical module according to some embodiments .
  • the optical module 200 includes a housing (shell), a circuit board 300 disposed in the housing, a Transmitter Optical Subassembly (TOSA) 400 and a Receiver Optical Subassembly (Receiver Optical Subassembly) , ROSA) 500.
  • the optical module 200 includes the light emitting component 400 but does not include the light receiving component 500
  • the optical module 200 includes the light receiving component 500 but does not include the light emitting component 400 .
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing is generally square.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 covers the lower case 202 on the two lower side panels 2022 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the two upper side plates perpendicular to the cover plate 2011 are combined with the two lower side plates 2022 to cover the upper case 201 on the lower case 202 .
  • the direction of the line connecting the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may not be consistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger of the circuit board 300 extends from the electrical port 204, and is inserted into the upper computer (for example, the optical network terminal 100); the opening 205 is an optical port, which is configured to be connected to an external optical fiber 101, so that The optical fiber 101 connects the light emitting component 400 and the light receiving component 500 inside the optical module 200 .
  • the combination of the upper housing 201 and the lower housing 202 is used to facilitate the installation of components such as the circuit board 300, the light emitting assembly 400, and the light receiving assembly 500 into the housing, and the upper housing 201 and the lower housing 202 support these device form package protection.
  • the upper housing 201 and the lower housing 202 support these device form package protection.
  • it when assembling devices such as the circuit board 300 , the light-emitting component 400 and the light-receiving component 500 , it facilitates the deployment of positioning components, heat dissipation components, and electromagnetic shielding components of these components, and facilitates automatic production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking part 203 located on the outer wall of its housing, and the unlocking part 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer walls of the two lower side panels 2022 of the lower housing 202 , and includes an engaging component matching a cage of the upper computer (eg, the cage 106 of the optical network terminal 100 ).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, and then Change the connection relationship between the engaging component and the host computer to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, through which the electronic components and chips are connected together according to the circuit design, so as to realize functions such as power supply, electrical signal transmission and grounding.
  • the electronic components may include, for example, capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip can include, for example, a Microcontroller Unit (MCU), a laser driver chip, a transimpedance amplifier (Transimpedance Amplifier, TIA), a limiting amplifier (Limiting amplifier), a clock data recovery chip (Clock and Data Recovery, CDR), a power supply Management chip (Power Management Chip), digital signal processing (Digital Signal Processing, DSP) chip.
  • MCU Microcontroller Unit
  • TIA Transimpedance Amplifier
  • Limiting amplifier a limiting amplifier
  • CDR clock and Data Recovery
  • Power Management Chip Digital Signal Processing, DSP
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function, such as the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the cage of the host computer in the electrical connector.
  • the circuit board 300 also includes a gold finger 301 formed on the surface of its end, and the gold finger 301 is composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106 , and is conductively connected with the electrical connector in the cage 106 by the gold finger 301 .
  • the gold fingers 301 can be arranged only on the surface of one side of the circuit board 300 (for example, the upper surface shown in FIG. 4A and FIG. 4B ), or can be arranged on the surfaces of the upper and lower sides of the circuit board 300, so as to adapt to occasions where the number of pins is large.
  • the golden finger 301 is configured to establish an electrical connection with a host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • the optical module 200 further includes a fiber optic adapter 600 .
  • One end of the fiber optic adapter 600 is connected to the light emitting assembly 400 and the light receiving assembly 500, and the other end is connected to the external optical fiber 101.
  • the light signal is transmitted to the light receiving component 500.
  • the optical fiber adapter 600 can be omitted, or can be replaced with other connecting devices, as long as the optical signal transmission between the optical fiber 101 and the light emitting component 400 and the light receiving component 500 can be realized.
  • the light emitting component 400 and the light receiving component 500 are provided independently.
  • the light emitting component 400 and the light receiving component 500 are arranged side by side on the front side of the circuit board 300 ;
  • the light emitting component 400 and the light receiving component 500 may also be stacked and arranged on the upper and lower sides of the circuit board 300 .
  • the light-emitting component 400 is arranged on the front side of the circuit board 300, and the light-receiving component 500 is arranged on the back side of the circuit board 300, and is arranged opposite to the light-emitting component 400; the surface of the circuit board 300 close to the lower housing 202 is called the back side of the circuit board 300 .
  • the fiber optic adapter 600 includes a first sub-fiber optic adapter 601 and a second sub-fiber optic adapter 602 .
  • One end of the first sub-fiber optic adapter 601 is connected to one end of the light emitting assembly 400 , the other end is connected to the external optical fiber 101 , and the other end of the light emitting assembly 400 is connected to the end of the circuit board 300 away from the golden finger 301 .
  • the optical signal emitted by the optical transmitting component 400 is transmitted to the optical fiber 101 through the first sub-fiber adapter 601, so as to realize the emission of the optical signal.
  • One end of the second sub-fiber optic adapter 602 is connected to one end of the light receiving assembly 500 , the other end is connected to the external optical fiber 101 , and the other end of the light receiving assembly 500 is connected to the end of the circuit board 300 away from the golden finger 301 .
  • the external optical signal from the optical fiber 101 is transmitted to the optical receiving component 500 through the second sub-fiber optic adapter 602, so as to receive the optical signal.
  • the optical module 200 further includes a support plate 700 , and the support plate 700 is fixed between the upper housing 201 and the lower housing 202 .
  • the support plate 700 has two through holes, and the first sub-fiber adapter 601 and the second sub-fiber adapter 602 are respectively passed through the two through holes.
  • the support plate 700 can limit the displacement of the first fiber optic sub-adapter 601 and the second fiber optic sub-adapter 602 , and support the first fiber optic sub-adapter 601 and the second fiber optic sub-adapter 602 .
  • the light emitting component 400 is assembled with the light receiving component 500 .
  • the optical module 200 further includes a tube body 800 located on the front side of the circuit board 300 ; the light emitting component 400 and the light receiving component 500 are assembled on the same tube body 800 .
  • the light emitting component 400 and the light receiving component 500 are embedded on the tube body 800 .
  • the fiber optic adapter 600 is also embedded on the tube body 800, and is connected to the light emitting assembly 400 and the light receiving assembly 500 through the same internal optical fiber.
  • the optical signal emitted by the optical transmitting assembly 400 is transmitted through the internal optical fiber and the optical fiber adapter 600 to realize the emission of the optical signal; the external optical signal is transmitted to the optical receiving assembly 500 through the optical fiber adapter 600 and the internal optical fiber to realize the reception of the optical signal .
  • a bidirectional transmission mode in which the light transmitting signal and the light receiving signal share a single optical fiber is realized.
  • Fig. 5 is a structural diagram of a light emitting component in an optical module according to some embodiments
  • Fig. 6A is a partial structural diagram of a light emitting component in an optical module according to some embodiments
  • Fig. 6B is a top view of Fig. 6A.
  • the light emitting assembly 400 includes a light emitter 405 .
  • the light emitter 405 includes at least one light outlet, and the light output direction of the light emitter 405 is parallel to the front surface of the circuit board 300 .
  • the light transmitter 405 may be a semiconductor laser (Laster Diode, LD) chip, or may be an electro-absorption modulated laser (Electro-absorption Modulated Laser, EML) chip.
  • EML electro-absorption modulated Laser
  • the light emitting assembly 400 further includes a first lens and a light detector.
  • the first lens and the light detector are respectively located on opposite sides of the light emitter 405 along its light emitting direction.
  • the light emitter 405 has two oppositely disposed light outlets; one light outlet is located on the side of the light emitter 405 facing the first lens; the other light outlet is located on the side of the light emitter 405 facing the photodetector.
  • the first lens is configured to converge the light beam emitted by the light emitter 405 towards the light outlet of the first lens, so that the light beam emitted by the light emitter 405 is converging light, so as to facilitate coupling the converging light into the external optical fiber 101 .
  • the light detector is configured to receive the light beam emitted by the light emitter 405 toward the light outlet of the light detector, so as to detect the optical power of the light emitter.
  • the light emitted by the light emitter 405 enters the optical fiber 101 after being converged by the first lens, and at the same time, the light detector detects the luminous power of the light emitter 405 to ensure the consistency of the emitted light power of the light emitter 405 .
  • the type of the photodetector is not limited.
  • the light detectors may be photodiodes. But in some embodiments, both the first lens and the light detector can be omitted.
  • the light emitting component 400 adopts a transistor outline (Transistor Outline, TO) package, which is also called a coaxial package. But not limited thereto, the light emitting component 400 may also adopt a chip on board (Chip On Board, COB) package, a box type (BOX) package, and the like.
  • TO Transistor Outline
  • COB Chip On Board
  • BOX box type
  • the light emitting component 400 also includes a first tube cap 401 , a first tube base 402 and pins 403 arranged in sequence.
  • the first stem 402 has a first surface 4021 and a second surface 4022 opposite to each other.
  • the first tube cap 401 covers the first surface 4021 of the first tube base 402 and is configured to form a sealed first cavity together with the first tube base 402 .
  • Photoelectric devices such as the light emitter 405 are disposed on the first surface 4021 of the first stem 402 and located in the sealed first cavity formed by the first stem 402 and the first cap 401 .
  • the first cap 401 includes a light window 4011 ; the light window 4011 is disposed on the surface of the first cap 401 away from the first stem 402 and is configured to allow the light emitted by the light emitter 405 to pass through.
  • the pin 403 passes through the first socket 402 and protrudes from the first surface 4021 and the second surface 4022 of the first socket 402 , and the pin 403 is configured to electrically connect the light emitter 405 to the circuit board 300 .
  • the part of the pin 403 located in the first socket 402 is covered by glass to realize the insulation between the pin 403 and the first socket 402; the part of the pin 403 located outside the first socket 402 Partially exposed.
  • One end of the pin 403 protruding from the first surface 4021 is electrically connected to the light emitter 405, and one end of the pin 403 protruding from the second surface 4022 is electrically connected to the circuit board 300, thereby realizing the connection between the light emitter 405 and the circuit board 300 electrical connection between.
  • the light emitting assembly 400 further includes a base 404 (eg, a metal base 404 ).
  • the metal base 404 is disposed on the first surface 4021 of the first socket 402 and protrudes from the first surface 4021 of the first socket 402 .
  • the metal base 404 and the first socket 402 can be an integral structure, or can be a separate structure. For example, when the metal base 404 and the first tube base 402 are separate structures, the metal base 404 and the first tube base 402 are connected by conductive silver glue.
  • the materials of the metal base 404 and the first stem 402 are not limited, as long as they can facilitate the heat dissipation of optoelectronic devices such as the light emitter 405 .
  • the materials of the metal base 404 and the first stem 402 include but are not limited to tungsten copper, Kovar alloy (Kovar Alloy, iron-nickel-cobalt alloy), cold-rolled carbon steel (Steel Plate Cold rolled Commercial, SPCC), copper, etc. .
  • the pins 403 include a positive pin 4031 , a negative pin 4032 and a signal pin 4033 .
  • One end of the positive pin 4031 passes through the first base 402 and protrudes from the first surface 4021 of the first base 402 .
  • One end of the negative pin 4032 passes through the first socket 402 and is electrically connected to the metal base 404 .
  • One end of the signal pin 4033 passes through the first socket 402 and protrudes from the first surface 4021 of the first socket 402 .
  • the metal base 404 includes a conductive body 4040 and a boss 4041 (eg, a metal boss 4041 ).
  • the metal boss 4041 is located on a side of the conductive body 4040 close to the positive pin 4031 , and protrudes from the first surface 4021 along the conductive body 4040 toward the positive pin 4031 .
  • the light emitter 405 is disposed on the surface of the metal boss 4041 near the positive pin 4031 .
  • light emitter 405 includes a positive pin 4051 .
  • the positive pin 4051 is electrically connected to the positive pin 4031 through wire bonding.
  • the anode pin 4051 of the light emitter 405 is electrically connected to the anode pin 4031 through a gold wire.
  • the surface of the metal boss 4041 near the positive pin 4031 protrudes from the conductive body 4040, thereby shortening the distance from the positive pin 4051 to the positive pin 4031 for bonding wires (for example, gold wires).
  • the gold wire distance between the emitter 405 and the positive pin 4031 is used to reduce the generation of parasitic capacitance in the pin 403 .
  • Light emitter 405 also includes a negative pin 4052 .
  • the negative pin 4052 is electrically connected to the negative pin 4032 through a wire bonding process.
  • the negative electrode pin 4052 when the negative electrode pin 4032 is electrically connected to the metal base 404 (for example, electrically connected to the conductive body 4040), the negative electrode pin 4052 is also electrically connected to the metal base 404, that is, the negative electrode pin 4052 is electrically connected to the metal base 404 through the wire bonding process. It is electrically connected with the metal base 404 .
  • the cathode pin 4052 of the light emitter 405 is electrically connected to the metal base 404 through a gold wire.
  • the negative pin 4052 can be connected with the conductive body 4040 through a gold wire. In this way, the length of the gold wire between the negative pin 4052 and the conductive body 4040 can be made as short as possible, thereby reducing the generation of parasitic capacitance in the pin 403 .
  • the metal base 404 also includes a first shielding block 4042 .
  • the first shielding block 4042 is a curved structure with curved corners. One end of the first shielding block 4042 is connected to the metal boss 4041 .
  • the anode pin 4031 is disposed inside the curved corner of the first shielding block 4042 .
  • the first shielding block 4042 is close to but not connected to the positive pin 4031 . In this way, by setting the first shielding block 4042, the surface area of the metal base 404 can be increased, and the heat dissipation efficiency of the metal base 404 can also be improved.
  • the anode pin 4031 under the control of the high-frequency signal, the anode pin 4031 has a strong inductance effect and will be stimulated to radiate, causing strong electromagnetic interference.
  • the anode pin 4031 is surrounded by the inside of the first shielding block 4042 ( That is, the first shielding block 4042 is used to form a semi-surrounding structure of the positive electrode pin 4031), so that the curved structure of the first shielding block 4042 realizes electromagnetic shielding for the positive electrode pin 4031 inside it, so that most of the radiation energy can be confined in Between the positive pin 4031 and the first shielding block 4042, the generation of radiation is alleviated; furthermore, the high-frequency performance of the positive pin 4031 and the gold wire is improved, the sudden change in impedance is reduced, and the positive pin 4031 plays a good role in signal transmission.
  • the first shielding block 4042 serves as a high-frequency signal ground, so that the negative pin 4052 of the light emitter 405 can be electrically connected to the metal base 404 through a wire bonding process.
  • the first shielding block 4042 is directly used as the reference ground of the optical transmitter 405, so that the signal return path is shortened, and compared with the technical solution of ceramics under the high-frequency signal ground in the related art, the situation of excessive signal ground impedance is alleviated.
  • the metal base 404 further includes a second shielding block 4043 .
  • the second shielding block 4043 is a curved structure with curved corners. One end of the second shielding block 4043 is connected to the metal boss 4041 . At least one signal pin 4033 among the pins 403 is disposed inside the curved corner of the second shield block 4043 .
  • the second shielding block 4043 is close to but not connected to the signal pin 4033 . In this way, by disposing the second shielding block 4043 , the surface area of the metal base 404 can also be increased and the heat dissipation efficiency of the metal base 404 can be improved.
  • the signal pin 4033 under the control of high-frequency signals, the signal pin 4033 also has a strong inductance effect, which will be stimulated to radiate, causing strong electromagnetic interference. Therefore, the signal pin 4033 is surrounded by the second shielding block 4043 (That is, the second shielding block 4043 is used to form a semi-surrounding structure of other pins in the pins 403), so that the curved structure of the second shielding block 4043 realizes electromagnetic shielding for the signal pins 4033 inside it, so that large Part of the radiated energy is bound between the signal pin 4033 and the second shielding block 4043 to alleviate the generation of radiation; furthermore, the high-frequency performance of the signal pin 4033 and the gold wire is improved, the impedance mutation is reduced, and the signal pin 4033 plays a good role. signal transmission.
  • the second shielding block 4043 can also serve as a high-frequency signal ground, so that the negative pin 4052 of the light transmitter 405 can be electrically connected to the metal base 404 through a wire bonding process.
  • the second shielding block 4043 is directly used as the reference ground of the optical transmitter 405, so that the return path is shortened, and compared with the technical solution of ceramics under the ground of the high-frequency signal in the related art, the situation of excessively high impedance of the signal ground is alleviated.
  • the first shielding block 4042 and the second shielding block 4043 are respectively disposed at opposite ends of the conductive body 4040 and have substantially the same structure.
  • the conductive body 4040, the boss 4041, the first shielding block 4042 and the second shielding block 4043 are integrally structured, so in FIG. 6A and FIG. 6B, the conductive body 4040, the boss 4041, the second A shielding block 4042 and a second shielding block 4043 .
  • the positive pin 4031 and at least one signal pin 4033 are arranged on the first shielding block 4042, the second shielding block 4043, and the connecting wires at the end of the first shielding block 4042 and the end of the second shielding block 4043 (for example, in FIG. 6B within the range defined by the dotted line).
  • the first shielding block 4042 includes a first connecting arm 40421 , a second connecting arm 40422 and a third connecting arm 40423 connected in sequence.
  • the first end of the first connecting arm 40421 is connected to the first side wall of the conductive body 4040 , and the first side wall is adjacent to the side wall of the conductive body 4040 provided with the metal boss 4041 .
  • the second end of the first connecting arm 40421 is connected to the first end of the second connecting arm 40422 , and there is a certain angle between the first connecting arm 4042 and the second connecting arm 40422 .
  • the second end of the second connecting arm 40422 is connected to the first end of the third connecting arm 40423, there is a certain angle between the second connecting arm 40422 and the third connecting arm 40423, and the second connecting arm 40422 is arranged on the third The inside of the angle formed by the connecting arm 40423 and the first connecting arm 40421 .
  • the positive pin 4031 is disposed inside the curved corner of the first shielding block 4042 , and the first shielding block 4042 forms a non-contact half covering for the positive pin 4031 . In this way, most of the radiant energy can be confined between the positive electrode pin 4031 and the first shielding block 4042 to alleviate the generation of internal radiation.
  • the second shielding block 4043 includes a fourth connecting arm 40431, a fifth connecting arm 40432 and a sixth connecting arm 40433 connected in sequence.
  • the first end of the fourth connecting arm 40431 is connected to the second side wall of the conductive body 4040 , and the second side wall is adjacent to the side wall of the conductive body 4040 provided with the metal boss 4041 .
  • the second end of the fourth connecting arm 40431 is connected to the first end of the fifth connecting arm 40432 , and there is a certain angle between the fourth connecting arm 40431 and the fifth connecting arm 40432 .
  • the second end of the fifth connecting arm 40432 is connected to the first end of the sixth connecting arm 40433, there is a certain angle between the fifth connecting arm 40432 and the sixth connecting arm 40433, and the fifth connecting arm 40432 is arranged on the sixth The inside of the angle formed by the connecting arm 40433 and the fourth connecting arm 40431 .
  • At least one signal pin 4033 is disposed inside the curved corner of the second shielding block 4043 , and the second shielding block 4043 forms a non-contact half covering for the at least one signal pin 4033 . In this way, most of the radiated energy can be confined between the at least one signal pin 4033 and the second shielding block 4043, so as to alleviate the generation of internal radiation.
  • Fig. 7 is another partial structural diagram of a light emitting component in an optical module according to some embodiments. As shown in FIG. 7 , in some embodiments, the first shielding block 4042 and the second shielding block 4043 are arranged in an arc shape.
  • the first shielding block 4042 is an arc-shaped shielding block.
  • the positive pin 4031 is disposed inside the curved corner of the first shielding block 4042 , and the first shielding block 4042 forms a non-contact half covering for the positive pin 4031 . In this way, most of the radiation energy can be bound between the positive pin 4031 and the first shielding block 4042 to alleviate the generation of radiation.
  • the second shielding block 4043 is also an arc-shaped shielding block, at least one signal pin 4033 is arranged on the inner side of the curved corner of the second shielding block 4043, and the second shielding block 4043 forms a non-contact half of the at least one signal pin 4033. clad. In this way, most of the radiation energy can be confined between the at least one signal pin 4033 and the second shielding block 4043, so as to alleviate the generation of radiation.
  • the first shielding block 4042 and the positive pin 4031 have a concentric structure, so that the structure formed by the first shielding block 4042 and the positive pin 4031 is similar to a coaxial cable, so the first shielding block 4042 can shield external interference signals , so that the positive pin 4031 plays a good role in signal transmission.
  • the second shielding block 4043 and at least one signal pin 4033 are also in a concentric circle structure, so that the structure formed by the second shielding block 4043 and at least one signal pin 4033 is similar to a coaxial cable, so the second shielding block 4043 can shield the external
  • the interference signal makes at least one signal pin 4033 play a good role in signal transmission.
  • FIG. 8A is a partial structural diagram of FIG. 4B;
  • FIG. 8B is another partial structural diagram of FIG. 4B.
  • the tube body 800 includes a first nozzle 801 and a third nozzle 803 disposed opposite to each other.
  • the light emitting component 400 is embedded in the first nozzle 801
  • the fiber adapter 600 is embedded in the third nozzle 803 .
  • the tube body 800 also includes a second nozzle 802 .
  • the second nozzle 802 is disposed on the surface of the tube body 800 adjacent to the surface where the first nozzle 801 is located, and the second nozzle 802 is embedded with the light receiving component 500 .
  • the tube body 800 is configured to carry the light emitting assembly 400 and the light receiving assembly 500 .
  • the tube body 800 is made of metal material and is configured to dissipate heat from the light emitting component 400 and the light receiving component 500 .
  • the light emitting component 400 contacts the tube body 800 through the first nozzle 801 and the light receiving component 500 contacts the tube body 800 through the second nozzle 802 to realize electromagnetic shielding and heat dissipation.
  • the light emitting component 400 and the light receiving component 500 are directly press-fitted into the tube body 800 , and the tube body 800 is in contact with the light emitting component 400 and the light receiving component 500 directly or through a heat conducting medium, respectively. In this way, the heat dissipation effect of the light emitting component 400 and the light receiving component 500 can be ensured.
  • Fig. 9 is a structural diagram of a light receiving component in an optical module according to some embodiments
  • Fig. 10 is an internal structural diagram of the light receiving component shown in Fig. 9 .
  • the light receiving component 500 includes a second cap 501 , a second lens 502 , a groove 503 , a light receiving chip 504 , a transimpedance amplifier 505 and a second stem 506 .
  • the second tube cap 501 is disposed on the second tube seat 506 to form a sealed second cavity.
  • the second lens 502 is disposed on a side of the second tube cap 501 away from the second tube seat 506 and protrudes from the surface of the second tube cap 501 on this side.
  • the second lens 502 is a converging lens configured to converge the external optical signal from the optical fiber 101 to the inside of the tube body 800 .
  • the groove 503 is located on the side of the second tube cap 501 away from the second tube base 506, and is arranged around the second lens 502, and is configured to collect and bond the second tube cap 501 and the filter holder 508 (described below) ) and other components, to prevent excess glue from affecting the optical path. Therefore, the groove 503 is also called a glue overflow groove.
  • the light receiving chip 504 and the transimpedance amplifier 505 are disposed on the surface of the second stem 506 facing the second cap 501 .
  • the light receiving chip 504 is configured to receive the light signal from the second lens 502 and convert the light signal from the second lens 502 into a current signal.
  • Common light receiving chips are PIN photodiodes or avalanche photodiodes (Avalanche Photon Diode, APD).
  • APD Avalanche Photon Diode
  • the circuit board 300 includes a limiting amplifier chip and a clock data recovery chip.
  • the output pin of the transimpedance amplifier 505 is electrically connected to the high frequency signal input pin of the limiting amplifier chip, and the limiting amplifier chip is used to amplify the voltage signal output by the transimpedance amplifier 505 .
  • the input pin of the clock data recovery chip is electrically connected to the high-frequency signal output pin of the limiting amplifier chip, and the clock data recovery chip is used to shape the voltage signal output by the limiting amplifier chip; the output pin of the clock data recovery chip is connected to the Gold finger 301 is electrically connected.
  • the golden finger 301 is electrically connected to the host computer, and then the signal received by the light receiving component 500 can be sent to the host computer.
  • optical signals with different wavelengths there will be multiple optical paths for optical signals with different wavelengths in the tube body 800 .
  • optical signals of different wavelengths are transmitted according to the set optical path, so that the optical receiving component 500 receiving an optical signal of a certain wavelength can only receive the optical signal of this wavelength.
  • stray light of other wavelengths may also be transmitted to the light receiving component 500, so that the light receiving component 500 receives stray light of other wavelengths, and the light received by the light receiving component 500
  • the signal generates interference, and when the interference reaches a certain level, the quality of the optical signal received by the optical receiving component 500 will be affected, resulting in poor performance of the optical module.
  • the light receiving component 500 further includes a filter and a filter holder.
  • the filter is disposed in the second cavity formed by the second tube cap 501 and the second tube seat 506 of the light receiving component 500 .
  • the filter holder is also disposed inside the second cavity, and is configured to support the filter and prevent light of other wavelengths except the optical signal from entering the light receiving component 500 .
  • disposing the filter inside the second cavity will cause the angle between the incident light and the filter 507 to become larger, which in turn will cause the isolation of the optical module 200 to light of other wavelengths to deteriorate, which cannot reach required isolation. Therefore, the above-mentioned method in the related art is not suitable for the optical module 200 products that require high isolation.
  • the optical module 200 includes a filter and two filter holders.
  • the filter is disposed in the tube body 800 and outside the second cavity formed by the second tube cap 501 and the second tube seat 506 .
  • the two filter holders are respectively arranged at two ends of the filter.
  • the filter is arranged on the receiving light path outside the light receiving component 500 .
  • the filter will be combined with the light receiving component 500 and so on interfere.
  • the light receiving component 500 further includes a filter 507 and a filter holder 508 .
  • the filter holder 508 is disposed on a side of the second tube cap 501 away from the second tube seat 506 .
  • the filter 507 is disposed on a side of the second lens 502 away from the second stem 506 , and embedded in the filter holder 508 .
  • the filter 507 is located in the filter holder 508 .
  • the filter 507 is configured to transmit the optical signal to be received and filter out stray light.
  • the filter 507 transmits the optical signal from the optical fiber 101 and filters out the stray light
  • the optical signal passing through the filter 507 is transmitted to the light receiving chip 504 in the second tube cap 501
  • the light receiving chip 504 receives the light signal transmitted to it
  • An optical signal at a specific wavelength or a specific wavelength range In this way, by arranging the filter 507 and the filter holder 508, stray light can be prevented from entering the inside of the sealed second cavity formed by the second tube cap 501 and the second stem 506, thereby avoiding the impact of stray light on the light receiving chip 504.
  • Received optical signals form interference.
  • Fig. 13A is an exploded structure diagram of the light receiving assembly shown in Fig. 8A;
  • Fig. 14A is a cross-sectional structure diagram of a filter holder in the light receiving assembly shown in Fig. 8A;
  • Fig. 15A is a cross-sectional structure of the light receiving assembly shown in Fig. 8A picture.
  • the filter holder 508 includes a holder base 5081 and a boss portion 5082 .
  • the support base 5081 is disposed on the surface of the second tube cap 501 away from the second tube seat 506
  • the boss portion 5082 is disposed on the side of the support base 5081 away from the second tube cap 501 .
  • the filter holder 508 has a first through hole 5087 that allows the optical signal from the optical fiber 101 to pass through and transmit to the surface of the second lens 502 .
  • the bracket base 5081 and the boss portion 5082 are integrally formed.
  • the present disclosure does not limit the shape of the bracket base 5081 .
  • the support base 5081 is cylindrical, so that the support base 5081 has a larger contact area with the surface of the second cap 501 and can be better stabilized on the surface of the second cap 501 .
  • the present disclosure does not limit the shape of the boss portion 5082 either.
  • the boss portion 5082 is circular.
  • the present disclosure does not limit the connection manner between the bracket base 5081 and the second cap 501 .
  • the bracket base 5081 is pasted on the surface of the second tube cap 501 away from the second tube seat 506 by glue.
  • the filter holder 508 further includes a support partition 5083 , and the support partition 5083 is disposed in the first through hole 5087 of the filter holder 508 .
  • the support partition 5083 includes a second through hole 50831 , and the second through hole 50831 communicates with the first through hole 5087 .
  • the second through hole 50831 is configured such that an external optical signal from the optical fiber 101 passes through and is transmitted to the surface of the second lens 502 .
  • the filter holder 508 also includes a cavity 5084 and an accommodating cavity 5085 disposed opposite to each other.
  • the cavity 5084 and the receiving cavity 5085 are respectively located on two sides of the supporting partition 5083 , and the cavity 5084 and the receiving cavity 5085 are respectively a part of the first through hole 5087 .
  • the cavity 5084 is located on a side of the supporting partition 5083 away from the second cap 501 and is configured to accommodate the filter 507 .
  • the accommodating cavity 5085 is located on a side of the supporting partition 5083 close to the second tube cap 501 , and is configured to wrap and accommodate the second lens 502 .
  • the diameter of the second through hole 50831 is smaller than the diameter of the first through hole 5087 .
  • the filter 507 is a square filter, and the side length of the square filter 507 is larger than the diameter of the second through hole 50831 to ensure that the filter 507 is better clamped on the supporting partition 5083 .
  • the light receiving component 500 includes a second tube base 506, a second tube cap 501, a second lens 502 and a filter holder 508; the second lens 502 is arranged on the second tube cap 501 The side away from the second socket 506 protrudes from the side surface; the filter holder 508 has a support partition 5083 for supporting and carrying the filter 507 .
  • the filter holder 508 is arranged on the side of the second tube cap 501 away from the second tube base 506, that is, the filter 507 is arranged outside the second tube cap 501, compared to the receiving filter 507 arranged outside the light receiving assembly 500 On the optical path, the filtering of stray light can be realized under the premise of occupying less space; and compared with the filter 507, it is arranged in the sealed second cavity formed by the second tube cap 501 and the second tube base 506 ( That is, the filter 507 is arranged inside the second cap 501 ), which can ensure the isolation requirement of the optical module 200 product.
  • Fig. 13B is an exploded structure diagram of the light receiving assembly shown in Fig. 8B;
  • Fig. 14B is a cross-sectional structure diagram of the filter holder in the light receiving assembly shown in Fig. 8B;
  • Fig. 15B is a cross-sectional structure of the light receiving assembly shown in Fig. 8B picture.
  • the filter holder 508 of the light-receiving assembly 500 is replaced with a structure composed of a holder base 5081 and a boss portion 5082 .
  • the filter holder 508 includes a post portion 5086 .
  • the present disclosure does not limit the shape of the cylinder portion 5086 .
  • the cylindrical portion 5086 has a cylindrical shape.
  • One end of the cylindrical portion 5086 close to the second cap 501 is disposed in the glue overflow groove 503 (ie, the groove 503 ). It should be noted that, the present disclosure does not limit the connection mode between the cylinder portion 5086 and the overflow groove 503 .
  • the end of the cylinder part 5086 close to the second cap 501 is pasted in the overflow groove 503 by glue.
  • the filter holder 508 also has a first through hole 5087 .
  • the shape of the first through hole 5087 matches the shape of the cylinder portion 5086 .
  • the filter holder 508 further includes a support partition 5083 , and the support partition 5083 is disposed in the first through hole 5087 of the filter holder 508 .
  • the supporting partition 5083 includes a second through hole 50831 communicating with the first through hole 5087 .
  • the diameter of the second through hole 50831 is smaller than the diameter of the first through hole 5087 .
  • the filter holder 508 also includes a cavity 5084 and an accommodating cavity 5085 disposed opposite to each other.
  • the cavity 5084 and the receiving cavity 5085 are respectively located on two sides of the supporting partition 5083 , and the cavity 5084 and the receiving cavity 5085 are respectively a part of the first through hole 5087 . It should be noted that the arrangement and functions of the cavity 5084 and the receiving cavity 5085 of the filter holder 508 are the same as those described above, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括壳体、电路板(300)和光发射组件(400)。光发射组件(400)包括管脚(403)、底座(404)和光发射器(405);管脚(403)包括正极管脚(4031)、负极管脚(4032)和信号管脚(4033),底座(404)包括导电本体(4040)和第一屏蔽块(4042)。第一屏蔽块(4042)的一端与导电本体(4040)连接且第一屏蔽块(4042)具有弯曲拐角;光发射器(405)设置于底座(404)靠近正极管脚(4031)的一侧,具有正极引脚(4051);正极管脚(4031)设置在第一屏蔽块(4042)的弯曲拐角内,且与正极引脚(4051)电连接。

Description

光模块
本申请要求于2021年12月17日提交的、申请号为202123201227.7的中国专利申请的优先权和2021年12月17日提交的、申请号为202123204713.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频会议等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。
发明内容
本公开一些实施例提供一种光模块。所述光模块包括壳体、电路板和光发射组件。所述电路板和所述光发射组件均位于所述壳体内;所述光发射组件与所述电路板电连接,被配置为将来自所述电路板的电信号转换成光信号,并将所述光信号传输至所述光模块的外部。所述光发射组件包括第一管座、第一管帽、管脚、底座和光发射器;所述第一管座包括相对设置的第一表面和第二表面;所述第一管帽罩设于所述第一管座的所述第一表面上,被配置为与所述第一管座一起形成第一腔体;所述管脚包括正极管脚,所述正极管脚穿过所述第一管座并分别凸出于所述第一表面和所述第二表面设置;所述底座凸出于所述第一管座的所述第一表面设置于所述第一腔体内,包括导电本体和第一屏蔽块,所述第一屏蔽块的一端与所述导本体连接且所述第一屏蔽块具有弯曲拐角;所述光发射器设置于所述底座靠近所述正极管脚的一侧,具有正极引脚;其中,所述正极管脚设置在所述第一屏蔽块的弯曲拐角内,且与所述正极引脚电连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4A为根据一些实施例的一种光模块的分解结构图;
图4B为根据一些实施例的另一种光模块的分解结构图;
图5为根据一些实施例的一种光模块中光发射组件的结构图;
图6A为根据一些实施例的一种光模块中光发射组件的局部结构图;
图6B为图6A的俯视图;
图7为根据一些实施例的一种光模块中光发射组件的另一局部结构图;
图8A为图4B的一局部结构图;
图8B为图4B的另一局部结构图;
图9为根据一些实施例的一种光模块中光接收组件的结构图;
图10为图9所示光接收组件的内部结构图;
图11A为图8A所示的光接收组件的结构图;
图11B为图8B所示的光接收组件的结构图;
图12为图8A所示的光接收组件另一角度的结构图;
图13A为图8A所示的光接收组件的分解结构图;
图13B为图8B所示的光接收组件的分解结构图;
图14A为图8A所示的光接收组件中滤波片支架的剖面结构图;
图14B为图8B所示的光接收组件中滤波片支架的剖面结构图;
图15A为图8A所示的光接收组件的剖面结构图;
图15B为图8B所示的光接收组件的剖面结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备 之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、二线制同步串行(Inter-Integrated Circuit,I2C)信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图。为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105、设置于电路板105的表面的笼子106、设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有用于增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4A为根据一些实施例的一种光模块的分解结构图,图4B为根据一些实施例的另一种光模块的分解结构图。如图3、图4A和图4B所示,光模块200包括壳体(shell)、设置于壳体内的电路板300、光发射组件(Transmitter Optical Subassembly,TOSA)400以及光接收组件(Receiver Optical Subassembly,ROSA)500。但并不局限于此,在一些实施例中,光模块200包括光发射组件400但不包括光接收组件500,或者,光模块200包括光接收组件500但不包括光发射组件400。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指从电口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部的光纤101,以使光纤101连接光模块200内部的光发射组件400和光接收组件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射组件400、光接收组件500等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、光发射组件400和光接收组件500等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里时,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(Limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片(Power Management Chip)、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机的笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。 金手指301可以仅设置在电路板300一侧的表面(例如图4A和图4B所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
如图4A和图4B所示,在一些实施例中,光模块200还包括光纤适配器600。光纤适配器600的一端与光发射组件400和光接收组件500连接、另一端与外部的光纤101连接,光纤适配器600被配置为将光发射组件400发出的光信号传输至光纤101,并将来自光纤101的光信号传输至光接收组件500。但在一些实施例中,光纤适配器600可以被省略,也可以替换为其他的连接器件,只要能够实现光纤101与光发射组件400和光接收组件500之间的光信号传输即可。
需要说明的是,对光发射组件400与光接收组件500之间的设置方式不做限定。
在一些实施例中,光发射组件400与光接收组件500独立设置。示例地,如图4A所示,光发射组件400和光接收组件500并列排布在电路板300的正面侧;电路板300靠近上壳体201的表面被称为电路板300的正面。但不局限于此,光发射组件400和光接收组件500还可以堆叠排布在电路板300的上下两侧。例如,光发射组件400设置在电路板300的正面侧,光接收组件500设置在电路板300的背面侧,且与光发射组件400相对设置;电路板300靠近下壳体202的表面被称为电路板300的背面。
如图4A所示,在一些实施例中,光纤适配器600包括第一子光纤适配器601与第二子光纤适配器602。第一子光纤适配器601的一端与光发射组件400的一端连接、另一端与外部的光纤101连接,光发射组件400的另一端与电路板300远离金手指301的一端连接。这样,光发射组件400发射的光信号通过第一子光纤适配器601传输至光纤101,以实现光信号的发射。第二子光纤适配器602的一端与光接收组件500的一端连接、另一端与外部的光纤101连接,光接收组件500的另一端与电路板300远离金手指301的一端连接。这样,来自光纤101的外部光信号通过第二子光纤适配器602传输至光接收组件500,以实现光信号的接收。
如图4A所示,在一些实施例中,光模块200还包括支撑板700,支撑板700固定于上壳体201及下壳体202之间。支撑板700具有两个通孔,第一子光纤适配器601和第二子光纤适配器602分别穿设在两个通孔中。支撑板700能够限制第一子光纤适配器601和第二子光纤适配器602的位移,并对第一子光纤适配器601和第二子光纤适配器602起到支撑作用。
在一些实施例中,光发射组件400与光接收组件500装配在一起。示例地,如图4B所示,光模块200还包括管体800,该管体800位于电路板300的正面侧;光发射组件400与光接收组件500装配到同一管体800上。
如图4B所示,在一些实施例中,光发射组件400和光接收组件500嵌设在管体800上。光纤适配器600也嵌设在管体800上,并通过同一内部光纤与光发射组件400和光接收组件500连接。这样,光发射组件400发射的光信号通过内部光纤与光纤适配器600传输出去,以实现光信号的发射;外部光信号通过光纤适配器600与内部光纤传输至光接收组件500,以实现光信号的接收。如此,实现了光发射信号和光接收信号共享单根光纤的双向传输模式。
图5为根据一些实施例的一种光模块中光发射组件的结构图,图6A为根据一些实施例的一种光模块中光发射组件的局部结构图,图6B为图6A的俯视图。如图5、图6A和图6B所示,光发射组件400包括光发射器405。光发射器405包括至少一个出光口,光发射器405的出光方向平行于电路板300的正面。需要说明的是,对光发射器405的类型不做限定。光发射器405可以为半导体激光器(Laster Diode,LD)芯片,或者,可以为电吸收调制激光器(Electro-absorption Modulated Laser,EML)芯片。
在一些实施例中,光发射组件400还包括第一透镜和光探测器。第一透镜和光探测器分别位于光发射器405沿其出光方向的相对两侧。此时,光发射器405具有两个相对设置 的出光口;一个出光口位于光发射器405朝向第一透镜的一侧;另一个出光口位于光发射器405朝向光探测器的一侧。第一透镜被配置为会聚光发射器405的朝向第一透镜的出光口发射的光束,使得光发射器405射出的光束为会聚光,以方便将该会聚光耦合至外部的光纤101内。光探测器被配置为接收光发射器405的朝向光探测器的出光口发射的光束,以检测光发射器的光功率。示例地,光发射器405发出的光经第一透镜会聚后进入光纤101内,同时光探测器检测光发射器405的发光功率,以保证光发射器405发射光功率的恒定性。需要说明的是,对光探测器的类型不做限定。光探测器可以为光电二极管。但在一些实施例中,第一透镜和光探测器均是可以省略的。
在一些实施例中,光发射组件400采用晶体管外形(Transistor Outline,TO)封装,该TO封装又称为同轴封装。但不局限于此,光发射组件400还可以采用板上芯片(Chip On Board,COB)封装、盒型(BOX)封装等形式。
光发射组件400还包括依次设置的第一管帽401、第一管座402和管脚403。
第一管座402具有相对设置的第一表面4021和第二表面4022。第一管帽401罩设于第一管座402的第一表面4021,被配置为与第一管座402一起形成密封的第一腔体。光发射器405等光电器件设置在第一管座402的第一表面4021上,且位于第一管座402与第一管帽401形成的密封的第一腔体内。第一管帽401包括光窗4011;光窗4011设置在第一管帽401远离第一管座402的一侧的表面上,被配置为使由光发射器405发出的光通过。
管脚403穿过第一管座402并凸出于第一管座402的第一表面4021和第二表面4022,管脚403被配置为将光发射器405与电路板300电连接。在一些实施例中,管脚403位于第一管座402中的部分由玻璃包裹,以实现管脚403与第一管座402之间的绝缘;管脚403位于第一管座402之外的部分处于裸露状态。管脚403凸出于第一表面4021的一端与光发射器405电连接,管脚403凸出于第二表面4022的一端与电路板300电连接,从而实现光发射器405与电路板300之间的电连接。
在一些实施例中,为方便光发射器405等光电器件的安装,光发射组件400还包括底座404(例如,金属底座404)。该金属底座404设置在第一管座402的第一表面4021上,且凸出于第一管座402的第一表面4021。金属底座404与第一管座402可以为一体式结构,也可以为分离式结构。示例地,当金属底座404与第一管座402为分离式结构时,金属底座404与第一管座402通过导电银胶连接。此外,对金属底座404与第一管座402的材料不做限定,只要能够便于光发射器405等光电器件的散热即可。示例地,金属底座404与第一管座402的材料包括但不限于钨铜、可伐合金(Kovar Alloy,铁镍钴合金)、冷轧碳钢(Steel Plate Cold rolled Commercial,SPCC)、铜等。
在一些实施例中,管脚403包括正极管脚4031、负极管脚4032和信号管脚4033。正极管脚4031的一端穿过第一管座402,且凸出于第一管座402的第一表面4021。负极管脚4032的一端穿过第一管座402,且与金属底座404电连接。信号管脚4033的一端穿过第一管座402,且凸出于第一管座402的第一表面4021。
金属底座404包括导电本体4040和凸台4041(例如,金属凸台4041)。该金属凸台4041位于导电本体4040靠近正极管脚4031的一侧,且在第一表面4021上沿导电本体4040向靠近正极管脚4031的方向凸出设置。
光发射器405设置在金属凸台4041靠近正极管脚4031的一侧的表面上。在一些实施例中,光发射器405包括正极引脚4051。正极引脚4051通过打线工艺(wire bonding)与正极管脚4031电连接。示例地,光发射器405的正极引脚4051与正极管脚4031通过金线电连接。如此,金属凸台4041靠近正极管脚4031的一侧的表面凸出于导电本体4040设置,从而缩短从正极引脚4051到正极管脚4031的打线(例如,金线)距离,即缩短光发射器405与正极管脚4031之间的金线距离,以减少管脚403中寄生电容的产生。
光发射器405还包括负极引脚4052。负极引脚4052通过打线工艺与负极管脚4032电连接。在一些实施例中,当负极管脚4032与金属底座404电连接(例如,与导电本体4040电连接)时,负极引脚4052也与金属底座404电连接,即负极引脚4052通过打线工艺与金属底座404电连接。示例地,光发射器405的负极引脚4052与金属底座404通过金线 电连接。需要说明的是,对负极引脚4052与金属底座404之间的打线连接方式不做限定。负极引脚4052可以与导电本体4040通过金线连接。这样,能够使得负极引脚4052与导电本体4040之间的金线长度尽可能地短,从而减少管脚403中寄生电容的产生。
金属底座404还包括第一屏蔽块4042。第一屏蔽块4042为弯曲结构,具有弯曲拐角。第一屏蔽块4042的一端与金属凸台4041连接。正极管脚4031设置于第一屏蔽块4042的弯曲拐角的内部。第一屏蔽块4042与正极管脚4031接近但不连接。这样,通过设置第一屏蔽块4042,可以增加金属底座404的表面积,还可以提高金属底座404的散热效率。此外,由于在高频信号的控制下,正极管脚4031具有较强的电感效应,会受激辐射,造成强烈的电磁干扰,因此,将正极管脚4031包围于第一屏蔽块4042的内部(即,第一屏蔽块4042用以形成正极管脚4031的半包围结构),使得第一屏蔽块4042的弯曲结构对其内部的正极管脚4031实现电磁屏蔽,从而能够将大部分辐射能量束缚在正极管脚4031和第一屏蔽块4042之间,缓解辐射的产生;进而,改善正极管脚4031和金线的高频性能,减少阻抗突变,使正极管脚4031起到良好的信号传输作用。
在一些实施例中,第一屏蔽块4042充当高频信号地,使得光发射器405的负极引脚4052能够通过打线工艺与金属底座404电连接。示例地,第一屏蔽块4042直接作为光发射器405的参考地,使得信号回流路径变短,相对于相关技术中高频信号地下方具有陶瓷的技术方案,缓解信号地阻抗过高的情况。
在一些实施例中,金属底座404还包括第二屏蔽块4043。第二屏蔽块4043为弯曲结构,具有弯曲拐角。第二屏蔽块4043的一端与金属凸台4041连接。管脚403中的至少一个信号管脚4033设置于第二屏蔽块4043的弯曲拐角的内部。第二屏蔽块4043与信号管脚4033接近但不连接。这样,通过设置第二屏蔽块4043,也可以增加金属底座404的表面积并提高金属底座404的散热效率。此外,由于在高频信号的控制下,信号管脚4033也具有较强的电感效应,会受激辐射,造成强烈的电磁干扰,因此,将信号管脚4033包围于第二屏蔽块4043的内部(即,第二屏蔽块4043用以形成管脚403中的其他管脚的半包围结构),使得第二屏蔽块4043的弯曲结构对其内部的信号管脚4033实现电磁屏蔽,从而能够将大部分辐射能量束缚在信号管脚4033和第二屏蔽块4043之间,缓解辐射的产生;进而,改善信号管脚4033和金线的高频性能,减少阻抗突变,使信号管脚4033起到良好的信号传输作用。
在一些实施例中,第二屏蔽块4043也可以充当高频信号地,使得光发射器405的负极引脚4052能够通过打线工艺与金属底座404电连接。示例地,第二屏蔽块4043直接作为光发射器405的参考地,使得回流路径变短,相对于相关技术中高频信号地下方具有陶瓷的技术方案,缓解信号地阻抗过高的情况。
第一屏蔽块4042和第二屏蔽块4043分别设置在导电本体4040的相对两端,且结构大致相同。在一些实施例中,导电本体4040、凸台4041、第一屏蔽块4042和第二屏蔽块4043为一体结构,因此在图6A和图6B中,以虚线区分导电本体4040、凸台4041、第一屏蔽块4042和第二屏蔽块4043。正极管脚4031和至少一个信号管脚4033设置于第一屏蔽块4042、第二屏蔽块4043、以及第一屏蔽块4042的末端和第二屏蔽块4043的末端的连接线(例如,图6B中的点划线所示)界定的范围内。
示例地,第一屏蔽块4042包括依次连接的第一连接臂40421、第二连接臂40422和第三连接臂40423。第一连接臂40421的第一端与导电本体4040的第一侧壁连接,且该第一侧壁与导电本体4040的设置有金属凸台4041的侧壁相邻。第一连接臂40421的第二端与第二连接臂40422的第一端连接,第一连接臂4042与第二连接臂40422之间具有一定的夹角。第二连接臂40422的第二端与第三连接臂40423的第一端连接,第二连接臂40422与第三连接臂40423之间具有一定的夹角,且第二连接臂40422设置于第三连接臂40423与第一连接臂40421形成的夹角的内部。正极管脚4031设置于第一屏蔽块4042的弯曲拐角的内侧,第一屏蔽块4042对正极管脚4031形成不接触的半包覆。这样,能够将大部分辐射能量束缚在正极管脚4031和第一屏蔽块4042之间,缓解内部辐射的产生。
第二屏蔽块4043包括依次连接的第四连接臂40431、第五连接臂40432和第六连接臂 40433。第四连接臂40431的第一端与导电本体4040的第二侧壁连接,且该第二侧壁与导电本体4040的设置有金属凸台4041的侧壁相邻。第四连接臂40431的第二端与第五连接臂40432的第一端连接,第四连接臂40431与第五连接臂40432之间具有一定的夹角。第五连接臂40432的第二端与第六连接臂40433的第一端连接,第五连接臂40432与第六连接臂40433之间具有一定的夹角,且第五连接臂40432设置于第六连接臂40433与第四连接臂40431形成的夹角的内部。至少一个信号管脚4033设置于第二屏蔽块4043的弯曲拐角的内侧,第二屏蔽块4043对该至少一个信号管脚4033形成不接触的半包覆。这样,能够将大部分辐射能量束缚在该至少一个信号管脚4033和第二屏蔽块4043之间,缓解内部辐射的产生。
图7为根据一些实施例的一种光模块中光发射组件的另一局部结构图。如图7所示,在一些实施例中,第一屏蔽块4042和第二屏蔽块4043均呈圆弧形设置。
示例地,第一屏蔽块4042为圆弧形屏蔽块。正极管脚4031设置于第一屏蔽块4042的弯曲拐角的内侧,第一屏蔽块4042对正极管脚4031形成不接触的半包覆。这样,能够将大部分辐射能量束缚在正极管脚4031和第一屏蔽块4042之间,缓解辐射的产生。
第二屏蔽块4043也为圆弧形屏蔽块,至少一个信号管脚4033设置于第二屏蔽块4043的弯曲拐角的内侧,第二屏蔽块4043对该至少一个信号管脚4033形成不接触的半包覆。这样,能够将大部分辐射能量束缚在该至少一个信号管脚4033和第二屏蔽块4043之间,缓解辐射的产生。
示例地,第一屏蔽块4042与正极管脚4031为同心圆结构,使得第一屏蔽块4042和正极管脚4031形成的结构类似同轴线线缆,因此第一屏蔽块4042能够屏蔽外部干扰信号,使正极管脚4031起到良好的信号传输作用。
第二屏蔽块4043与至少一个信号管脚4033也为同心圆结构,使得第二屏蔽块4043和至少一个信号管脚4033形成的结构类似同轴线线缆,因此第二屏蔽块4043能够屏蔽外部干扰信号,使至少一个信号管脚4033起到良好的信号传输作用。
图8A为图4B的一局部结构图;图8B为图4B的另一局部结构图。如图8A和图8B所示,管体800包括相对设置的第一管口801和第三管口803。第一管口801内嵌设有光发射组件400,第三管口803内嵌设有光纤适配器600。
管体800还包括第二管口802。第二管口802设置在管体800的与第一管口801所在表面相邻的表面上,第二管口802内嵌设有光接收组件500。
管体800被配置为承载光发射组件400和光接收组件500。在一些实施例中,管体800采用金属材料制成,被配置为对光发射组件400和光接收组件500进行散热。光发射组件400通过第一管口801导热接触管体800;光接收组件500通过第二管口802导热接触管体800,以实现电磁屏蔽及散热。示例地,光发射组件400和光接收组件500直接压配到管体800中,管体800分别与光发射组件400和光接收组件500直接或通过导热介质接触。如此,可以保证光发射组件400和光接收组件500的散热效果。
图9为根据一些实施例的一种光模块中光接收组件的结构图;图10为图9所示光接收组件的内部结构图。如图9和图10所示,光接收组件500包括第二管帽501、第二透镜502、凹槽503、光接收芯片504、跨阻放大器505和第二管座506。
第二管帽501罩设在第二管座506上,以形成密封的第二腔体。
第二透镜502设置在第二管帽501远离第二管座506的一侧,且突出于第二管帽501的该侧的表面。在一些实施例中,第二透镜502为会聚透镜,被配置为将来自光纤101的外部光信号会聚至管体800的内部。
凹槽503位于第二管帽501远离第二管座506的一侧,且设置在第二透镜502的周围,被配置为收集粘接第二管帽501和滤波片支架508(将在下文描述)等部件时残留的胶水,防止多余的胶水对光路造成影响。因此,该凹槽503也被称为溢胶槽。
光接收芯片504和跨阻放大器505设置在第二管座506朝向第二管帽501的一侧的表面上。光接收芯片504被配置为接收来自第二透镜502的光信号,并将来自第二透镜502的光信号转换为电流信号。常见的光接收芯片为PIN光电二极管或雪崩光电二极管 (Avalanche Photon Diode,APD)。跨阻放大器505的输入引脚与光接收芯片504的输出引脚电连接,用于将光接收芯片504输出的电流信号转换为电压信号。
在一些实施例中,电路板300包括限幅放大芯片和时钟数据恢复芯片。跨阻放大器505的输出引脚与限幅放大芯片的高频信号输入引脚电连接,限幅放大芯片用于将跨阻放大器505输出的电压信号进行放大。时钟数据恢复芯片的输入引脚与限幅放大芯片的高频信号输出引脚电连接,时钟数据恢复芯片用于对限幅放大芯片输出的电压信号进行整形;时钟数据恢复芯片的输出引脚与金手指301电连接。通过金手指301与上位机电连接,进而可以将该光接收组件500接收的信号发送至上位机。
当光发射组件400和光接收组件500同时固定在管体800上时,管体800内将会存在多条不同波长光信号的光路。通常情况下,不同波长的光信号按照设置光路进行传输,进而使接收某一波长光信号的光接收组件500仅接收到该波长的光信号。然而,由于光的反射、折射等特性导致其他波长的杂光也可能会传输到该光接收组件500上,进而使光接收组件500接收到其他波长的杂光,对光接收组件500接收的光信号产生干扰,且干扰达到一定程度时,将会影响光接收组件500接收光信号的质量,导致光模块性能不良。
为了避免杂光对光接收组件500接收的光信号产生干扰,相关技术中,光接收组件500还包括滤波片和滤波片支架。滤波片设置在光接收组件500的第二管帽501和第二管座506形成的第二腔体内。滤波片支架也设置在该第二腔体的内部,被配置为支撑滤波片,并避免除光信号之外的其他波长的光进入光接收组件500中。然而,将滤波片设置在所述第二腔体的内部,会导致入射光与滤波片507之间的角度变大,进而导致光模块200的对其他波长光的隔离度变差,达不到所要求的隔离度。因此,相关技术中的上述做法对隔离度要求高的光模块200产品并不适用。
或者,光模块200包括滤波片和两个滤波片支架。滤波片设置在管体800内、且位于第二管帽501和第二管座506形成的第二腔体的外部。为了支撑滤波片,该两个滤波片支架分别设置在滤波片的两端。此时,滤波片设置在光接收组件500外部的接收光路上。然而,随着对光模块200内部结构紧凑型要求的不断提高,留给滤波片设置的空间越来越少,若要使光模块200的内部结构更加地紧凑,滤波片将会与光接收组件500等产生干涉。
图11A为图8A所示的光接收组件的结构图;图11B为图8B所示的光接收组件的结构图;图12为图8A所示的光接收组件另一角度的结构图。如图11A、图11B和图12所示,在一些实施例中,光接收组件500还包括滤波片507和滤波片支架508。滤波片支架508设置在第二管帽501远离第二管座506的一侧。滤波片507设置在第二透镜502远离第二管座506的一侧,且嵌设在滤波片支架508上。即滤波片507位于滤波片支架508内。滤波片507被配置为透射待接收的光信号、滤除杂光。示例地,滤波片507透射来自光纤101的光信号并滤除杂光,透过滤波片507的光信号传输至第二管帽501内的光接收芯片504上,光接收芯片504接收传输至其上的特定波长或特定波长范围的光信号。如此,通过设置滤波片507和滤波片支架508,可以避免杂光进入第二管帽501与第二管座506所形成的密封的第二腔体的内部,从而避免杂光对光接收芯片504接收光信号形成干扰。
图13A为图8A所示的光接收组件的分解结构图;图14A为图8A所示的光接收组件中滤波片支架的剖面结构图;图15A为图8A所示的光接收组件的剖面结构图。如图13A、图14A和图15A所示,在一些实施例中,滤波片支架508包括支架底座5081和凸台部5082。支架底座5081设置在第二管帽501远离第二管座506的一侧的表面上,凸台部5082设置在支架底座5081远离第二管帽501的一侧。滤波片支架508具有第一通孔5087,该第一通孔5087允许来自光纤101的光信号穿过并传输至第二透镜502的表面。支架底座5081和凸台部5082一体成型。
需要说明的是,本公开对支架底座5081的形状不做限定。示例地,支架底座5081为圆柱形状,使得支架底座5081与第二管帽501表面具有较大的接触面积,可较好地稳定在第二管帽501的表面。本公开对凸台部5082的形状也不做限定。示例地,当支架底座5081为圆柱形状时,凸台部5082为圆台形状。
本公开对支架底座5081与第二管帽501之间的连接方式不做限定。示例地,通过胶水将支架底座5081粘贴在第二管帽501远离第二管座506的一侧表面上。
滤波片支架508还包括支撑隔板5083,支撑隔板5083设置在滤波片支架508的第一通孔5087中。支撑隔板5083包括第二通孔50831,第二通孔50831与第一通孔5087连通。第二通孔50831被配置为使得来自光纤101的外部光信号穿过并传输至第二透镜502的表面。
滤波片支架508还包括相对设置的空腔5084和容纳腔5085。空腔5084和容纳腔5085分别位于支撑隔板5083的两侧,空腔5084和容纳腔5085分别为第一通孔5087的一部分。空腔5084位于支撑隔板5083远离第二管帽501的一侧,被配置为容纳滤波片507。容纳腔5085位于支撑隔板5083靠近第二管帽501的一侧,被配置为包裹容纳第二透镜502。示例地,第二通孔50831的直径小于第一通孔5087的直径。
在一些实施例中,滤波片507为方形滤波片,方形滤波片507的边长大于第二通孔50831的直径,以确保滤波片507较好地卡设在支撑隔板5083上。
在本公开一些实施例的光模块200中,光接收组件500包括第二管座506、第二管帽501、第二透镜502及滤波片支架508;第二透镜502设置在第二管帽501远离第二管座506的一侧且突出于该侧表面;滤波片支架508具有支撑隔板5083,支撑隔板5083用于支撑和承载滤波片507。滤波片支架508设置在第二管帽501远离第二管座506的一侧,即滤波片507设置在第二管帽501的外部,相较于滤波片507设置在光接收组件500外部的接收光路上,可以在占用较小空间的前提下实现对杂光的滤除;且相较于滤波片507设置在第二管帽501与第二管座506所形成的密封的第二腔体内(即滤波片507设置在第二管帽501的内部),可以保证光模块200产品对隔离度的要求。
图13B为图8B所示的光接收组件的分解结构图;图14B为图8B所示的光接收组件中滤波片支架的剖面结构图;图15B为图8B所示的光接收组件的剖面结构图。如图13B、图14B和图15B所示,光接收组件500的滤波片支架508中替换了由支架底座5081和凸台部5082组成的结构。在一些实施例中,滤波片支架508包括柱体部5086。
需要说明的是,本公开对柱体部5086的形状不做限定。示例地,柱体部5086为圆柱形状。
柱体部5086靠近第二管帽501的一端设置在溢胶槽503(即,凹槽503)内。需要说明的是,本公开对柱体部5086与溢胶槽503之间的连接方式不做限定。示例地,通过胶水将柱体部5086靠近第二管帽501的一端粘贴在溢胶槽503内。
滤波片支架508还具有第一通孔5087。第一通孔5087的形状与柱体部5086的形状相适配。
滤波片支架508还包括支撑隔板5083,支撑隔板5083设置在滤波片支架508的第一通孔5087中。支撑隔板5083包括与第一通孔5087连通的第二通孔50831。示例地,第二通孔50831的直径小于第一通孔5087的直径。滤波片支架508还包括相对设置的空腔5084和容纳腔5085。空腔5084和容纳腔5085分别位于支撑隔板5083的两侧,空腔5084和容纳腔5085分别为第一通孔5087的一部分。需要说明的是,滤波片支架508的空腔5084和容纳腔5085的设置及作用均与前面的描述相同,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种光模块,包括:
    壳体;
    电路板,位于所述壳体内;
    光发射组件,位于所述壳体内,与所述电路板电连接,被配置为将来自所述电路板的第一电信号转换成第一光信号,并将所述第一光信号传输至所述光模块的外部;
    其中,所述光发射组件包括:
    第一管座,包括相对设置的第一表面和第二表面;
    第一管帽,罩设于所述第一管座的所述第一表面上,被配置为与所述第一管座一起形成第一腔体;
    管脚,包括正极管脚,所述正极管脚穿过所述第一管座并分别凸出于所述第一表面和所述第二表面设置;
    底座,凸出于所述第一管座的所述第一表面设置于所述第一腔体内,包括导电本体和第一屏蔽块,所述第一屏蔽块的一端与所述导电本体连接且所述第一屏蔽块具有弯曲拐角;
    光发射器,设置于所述底座靠近所述正极管脚的一侧,具有正极引脚;
    其中,所述正极管脚设置在所述第一屏蔽块的弯曲拐角内,且与所述正极引脚电连接。
  2. 根据权利要求1所述的光模块,其中,所述底座还包括凸台,所述凸台位于所述导电本体靠近所述正极管脚的一侧,所述光发射器设置于所述凸台靠近所述正极管脚的一侧。
  3. 根据权利要求1或2所述的光模块,其中,
    所述管脚还包括负极管脚,所述负极管脚穿过所述第一管座并分别凸出于所述第一表面和所述第二表面设置;所述光发射器还具有负极引脚;
    所述负极管脚与所述导电本体电连接,所述导电本体与所述负极引脚电连接。
  4. 根据权利要求3所述的光模块,其中,所述正极管脚与所述光发射器的所述正极引脚打线连接,所述导电本体与所述光发射器的所述负极引脚打线连接。
  5. 根据权利要求3所述的光模块,其中,所述第一屏蔽块包括依次连接的第一连接臂、第二连接臂和第三连接臂;
    所述第一连接臂的第一端与所述导电本体的第一侧壁连接,且所述第一侧壁与所述导电本体的设置有所述凸台的侧壁相邻,所述第一连接臂的第二端与所述第二连接臂的第一端连接,所述第二连接臂的第二端与所述第三连接臂的第一端连接;
    所述第一连接臂与所述第二连接臂之间具有夹角,所述第二连接臂与所述第三连接臂之间具有夹角,以使所述第一屏蔽块具有弯曲拐角。
  6. 根据权利要求3所述的光模块,其中,所述第一屏蔽块为圆弧形屏蔽块,所述圆弧形屏蔽块与所述导电本体的第一侧壁连接,所述第一侧壁与所述导电本体的设置有所述凸台的侧壁相邻,所述圆弧形屏蔽块具有弯曲拐角。
  7. 根据权利要求6所述的光模块,其中,所述第一屏蔽块与所述正极管脚为同心圆结构。
  8. 根据权利要求3至7任一项所述的光模块,其中,
    所述管脚还包括信号管脚,所述信号管脚穿过所述第一管座并分别凸出于所述第一表面和所述第二表面设置;
    所述底座还包括第二屏蔽块,所述第二屏蔽块的一端与所述导本体连接且所述第二屏蔽块具有弯曲拐角;
    所述信号管脚设置在所述第二屏蔽块的弯曲拐角内。
  9. 根据权利要求8所述的光模块,其中,所述第二屏蔽块包括依次连接的第四连接臂、第五连接臂和第六连接臂;
    所述第四连接臂的第一端与所述导电本体的第二侧壁连接,且所述第二侧壁与所述导电本体的设置有所述凸台的侧壁相邻,所述第四连接臂的第二端与所述第五连接臂的第一端连接,所述第五连接臂的第二端与所述第六连接臂的第一端连接;
    所述第四连接臂与所述第五连接臂之间具有夹角,所述第五连接臂与所述第六连接臂之间具有夹角,以使所述第二屏蔽块具有弯曲拐角。
  10. 根据权利要求8所述的光模块,其中,所述第二屏蔽块为圆弧形屏蔽块,所述圆弧形屏蔽块与所述导电本体的第二侧壁连接,所述第二侧壁与所述导电本体的设置有所述凸台的侧壁相邻,所述圆弧形屏蔽块具有弯曲拐角。
  11. 根据权利要求10所述的光模块,其中,所述第二屏蔽块与所述信号管脚为同心圆结构。
  12. 根据权利要求8至11任一项所述的光模块,其中,所述正极管脚和所述信号管脚设置于所述第一屏蔽块、所述第二屏蔽块、以及所述第一屏蔽块的末端和所述第二屏蔽块的末端的连接线界定的范围内。
  13. 根据权利要求8至11任一项所述的光模块,其中,所述导电本体、所述第一屏蔽块、所述第二屏蔽块均与所述第一管座接触,以使得所述第一屏蔽块和所述第二屏蔽块被用作参考地。
  14. 根据权利要求8至11任一项所述的光模块,其中,所述第一屏蔽块和所述第二屏蔽块分别设置在所述导电本体的相对两端,且所述第一屏蔽块的结构和所述第二屏蔽块的结构相同。
  15. 根据权利要求1至14任一项所述的光模块,还包括:
    光接收组件,位于所述壳体内,与所述电路板电连接,被配置为将来自所述光模块外部的第二光信号转换成第二电信号,并将所述第二电信号传输至所述电路板;
    光纤适配器,位于所述壳体内,与所述光发射组件光耦合,且与所述光接收组件光耦合,被配置为传输所述光发射组件发射的光信号和所述光接收组件接收的光信号;
    管体,位于所述壳体内,具有第一管口、第二管口和第三管口,所述第一管口和所述第三管口相对设置,所述第二管口设置在所述管体与所述第一管口所在表面相邻的表面上;
    其中,所述光发射组件位于所述第一管口中,所述光接收组件位于所述第二管口中,所述光纤适配器位于所述第三管口中。
  16. 根据权利要求15所述的光模块,其中,
    所述光接收组件包括:
    第二管座;
    第二管帽,罩设于所述第二管座上,被配置为与所述第二管座一起形成第二腔体;
    光接收芯片,位于所述第二腔体内,被配置为接收来自所述光模块外部的所述第二光信号;
    滤波片支架,设置在所述第二管帽远离所述第二管座的一侧;
    滤波片,设置在所述滤波片支架上,被配置为将来自所述光模块外部的所述第二光信号透射至所述光接收芯片。
  17. 根据权利要求16所述的光模块,其中,
    所述滤波片支架包括:
    支架底座,设置在所述第二管帽远离所述第二管座的一侧的表面上;
    凸台部,设置在所述支架底座远离所述第二管帽的一侧;
    第一通孔,被配置为使来自所述光模块外部的所述第二光信号穿过并传输至所述光接收芯片;
    支撑隔板,设置在所述第一通孔内,被配置为支撑所述滤波片,所述支撑隔板具有第二通孔,所述第二通孔与所述第一通孔连通。
  18. 根据权利要求17所述的光模块,其中,
    所述光接收组件还包括透镜,所述透镜被配置为将来自所述光模块外部的所述第二光信号会聚至所述光接收芯片;
    所述第一通孔包括空腔和容纳腔,所述空腔位于所述支撑隔板远离所述第二管帽的一侧,所述容纳腔位于所述支撑隔板靠近所述第二管帽的一侧;
    所述滤波片位于所述空腔内,所述透镜位于所述容纳腔内。
  19. 根据权利要求17所述的光模块,其中,所述光接收组件还包括凹槽,所述凹槽位于所述第二管帽远离所述第二管座的一侧,且位于所述支架底座与所述第二管帽远离所述第二管座的一侧的表面之间。
  20. 根据权利要求16所述的光模块,其中,
    所述滤波片支架包括:
    柱体部,设置在所述第二管帽远离所述第二管座的一侧;
    第一通孔,被配置为使来自所述光模块外部的所述第二光信号穿过并传输至所述光接收芯片;
    支撑隔板,设置在所述第一通孔内,被配置为支撑所述滤波片,所述支撑隔板具有第二通孔,所述第二通孔与所述第一通孔连通。
  21. 根据权利要求20所述的光模块,其中,
    所述光接收组件还包括透镜,所述透镜被配置为将来自所述光模块外部的所述第二光信号会聚至所述光接收芯片;
    所述第一通孔包括空腔和容纳腔,所述空腔位于所述支撑隔板远离所述第二管帽的一侧,所述容纳腔位于所述支撑隔板靠近所述第二管帽的一侧;
    所述滤波片位于所述空腔内,所述透镜位于所述容纳腔内。
  22. 根据权利要求20所述的光模块,其中,
    所述光接收组件还包括凹槽,所述凹槽位于所述第二管帽远离所述第二管座的一侧,所述柱体部位于所述凹槽内。
PCT/CN2022/118090 2021-12-17 2022-09-09 光模块 WO2023109210A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202123201227.7 2021-12-17
CN202123204713.4U CN216351387U (zh) 2021-12-17 2021-12-17 一种光模块
CN202123201227.7U CN216351386U (zh) 2021-12-17 2021-12-17 一种光发射器件和光模块
CN202123204713.4 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023109210A1 true WO2023109210A1 (zh) 2023-06-22

Family

ID=86774785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118090 WO2023109210A1 (zh) 2021-12-17 2022-09-09 光模块

Country Status (1)

Country Link
WO (1) WO2023109210A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117631153A (zh) * 2024-01-26 2024-03-01 四川九州光电子技术有限公司 一种cpon器件、cpon器件装配方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108903A (ja) * 2003-09-26 2005-04-21 Sumitomo Electric Ind Ltd 発光モジュール
CN211603627U (zh) * 2020-04-21 2020-09-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN112558235A (zh) * 2019-09-25 2021-03-26 青岛海信宽带多媒体技术有限公司 光发射器及光模块
CN112558237A (zh) * 2019-09-26 2021-03-26 青岛海信宽带多媒体技术有限公司 一种光模块
WO2021166073A1 (ja) * 2020-02-18 2021-08-26 三菱電機株式会社 To-can型光半導体モジュール
CN214954233U (zh) * 2021-05-27 2021-11-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN113727219A (zh) * 2020-05-25 2021-11-30 华为技术有限公司 一种光器件、光网络设备及光网络系统
CN216351387U (zh) * 2021-12-17 2022-04-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN216351386U (zh) * 2021-12-17 2022-04-19 青岛海信宽带多媒体技术有限公司 一种光发射器件和光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108903A (ja) * 2003-09-26 2005-04-21 Sumitomo Electric Ind Ltd 発光モジュール
CN112558235A (zh) * 2019-09-25 2021-03-26 青岛海信宽带多媒体技术有限公司 光发射器及光模块
CN112558237A (zh) * 2019-09-26 2021-03-26 青岛海信宽带多媒体技术有限公司 一种光模块
WO2021166073A1 (ja) * 2020-02-18 2021-08-26 三菱電機株式会社 To-can型光半導体モジュール
CN211603627U (zh) * 2020-04-21 2020-09-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN113727219A (zh) * 2020-05-25 2021-11-30 华为技术有限公司 一种光器件、光网络设备及光网络系统
CN214954233U (zh) * 2021-05-27 2021-11-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN216351387U (zh) * 2021-12-17 2022-04-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN216351386U (zh) * 2021-12-17 2022-04-19 青岛海信宽带多媒体技术有限公司 一种光发射器件和光模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117631153A (zh) * 2024-01-26 2024-03-01 四川九州光电子技术有限公司 一种cpon器件、cpon器件装配方法
CN117631153B (zh) * 2024-01-26 2024-04-09 四川九州光电子技术有限公司 一种cpon器件、cpon器件装配方法

Similar Documents

Publication Publication Date Title
CN214278498U (zh) 一种光模块
CN214278497U (zh) 一种光模块
CN211603627U (zh) 一种光模块
US20220224073A1 (en) Optical module
CN214278496U (zh) 一种光模块
CN214278495U (zh) 一种光模块
CN214380910U (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN111458816A (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN218350561U (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
WO2023109210A1 (zh) 光模块
WO2022111034A1 (zh) 一种光模块
CN216248434U (zh) 一种光发射次模块及光模块
CN214278492U (zh) 一种光模块
WO2023030457A1 (zh) 光模块
US20230418006A1 (en) Optical module
US20230421262A1 (en) Optical module
WO2023035711A1 (zh) 光模块
US11927817B2 (en) Optical module
CN214954233U (zh) 一种光模块
CN214278494U (zh) 一种光模块
CN213122373U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905964

Country of ref document: EP

Kind code of ref document: A1