WO2021166073A1 - To-can型光半導体モジュール - Google Patents
To-can型光半導体モジュール Download PDFInfo
- Publication number
- WO2021166073A1 WO2021166073A1 PCT/JP2020/006307 JP2020006307W WO2021166073A1 WO 2021166073 A1 WO2021166073 A1 WO 2021166073A1 JP 2020006307 W JP2020006307 W JP 2020006307W WO 2021166073 A1 WO2021166073 A1 WO 2021166073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lead pin
- optical semiconductor
- conductor pattern
- stem
- type optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 102
- 239000004065 semiconductor Substances 0.000 title claims abstract description 102
- 239000004020 conductor Substances 0.000 claims abstract description 84
- 238000005219 brazing Methods 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 33
- 238000009434 installation Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 7
- 239000011521 glass Substances 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 4
- 239000003566 sealing material Substances 0.000 description 19
- 239000000758 substrate Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 239000000945 filler Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910000833 kovar Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000008393 encapsulating agent Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
Definitions
- the present disclosure relates to a TO-CAN type optical semiconductor module in which an optical semiconductor is mounted in a Transistor Outline (TO) -CAN type package.
- TO Transistor Outline
- the high frequency characteristics when transmitting a high frequency electric signal applied from the outside to the optical semiconductor are important, especially from the viewpoint of packaging.
- the exposed portion of the lead pin whose characteristic impedance is difficult to adjust has been eliminated (for example, Patent Document 1).
- the upper end surface of the signal lead for glass-sealing the eyelet is provided flush with the upper end surface of the eyelet, and an insulating substrate is bonded to the upper surface of the eyelet.
- the TO-CAN type optical semiconductor module includes a stem, a lead pin penetrating the stem, and a conductor pattern provided on a submount on which the optical semiconductor is mounted. Connect with materials.
- FIG. It is an external view which shows an example of the TO-CAN type optical semiconductor module 100 which concerns on Embodiment 1.
- FIG. It is a block diagram of the TO-CAN type optical semiconductor module 100 which concerns on Embodiment 1.
- FIG. It is explanatory drawing which saw the TO-CAN type optical semiconductor module 100 which concerns on Embodiment 1 from the front. It is explanatory drawing which looked at the TO-CAN type optical semiconductor module 100 which concerns on Embodiment 1 from the top. It is sectional drawing when the TO-CAN type optical semiconductor module 100 which concerns on Embodiment 1 is cut vertically. It is sectional drawing when the TO-CAN type optical semiconductor module 100 which concerns on Embodiment 1 is cut horizontally.
- FIG. 1 It is explanatory drawing which shows an example of the case where the position shift occurs in the TO-CAN type optical semiconductor module 100 which concerns on Embodiment 1.
- FIG. It is a block diagram of the TO-CAN type optical semiconductor module 101 which concerns on the modification of Embodiment 1.
- FIG. It is explanatory drawing which looked at the TO-CAN type optical semiconductor module 101 which concerns on the modification of Embodiment 1 from the top.
- Embodiment 1 the TO-CAN type optical semiconductor module 100 according to the first embodiment will be described in detail with reference to the drawings.
- the following first embodiment shows a specific example. Therefore, the shape, arrangement, material, etc. of each component are examples and are not intended to be limited. Moreover, each figure is a schematic view and is not exactly illustrated. Further, in each figure, the same components are designated by the same reference numerals.
- FIG. 1 is an external view showing an example of the TO-CAN type optical semiconductor module 100 according to the first embodiment.
- FIG. 1 is an external view of the TO-CAN type optical semiconductor module 100 as viewed diagonally from the upper right.
- the TO-CAN type optical semiconductor module 100 has the appearance of a TO-CAN type package.
- the TO-CAN type optical semiconductor module 100 can include, for example, a stem 1, a cap 2, a lens 3, and lead pins 4, 5, and 6.
- the TO-CAN type package has been used for a long time as a package for mounting electronic components.
- the TO-CAN type package includes a lead pin 4 as an electrical interface. Then, the lead pin 4 inserted into the through hole of the stem 1 serving as the substrate is sealed with a sealing material such as glass. By joining and sealing the stem 1 and the cap 2, the mounted parts and the outside air are shielded from each other.
- the TO-CAN type package has a structure in which an optical interface is obtained via a lens 3 or a window bonded to a cap 2. By inputting an electric signal via the lead pin 4, the TO-CAN type optical semiconductor module 100 emits light from the optical semiconductor in the cap 2 and emits light through the lens 3.
- FIG. 2 is a configuration diagram of the TO-CAN type optical semiconductor module 100 according to the first embodiment.
- FIG. 2 shows the external view of FIG. 1 with the cap 2 and the lens 3 removed.
- FIG. 2 is a configuration diagram viewed from diagonally upper right.
- FIG. 3 is an explanatory view of the TO-CAN type optical semiconductor module 100 as viewed from the front.
- FIG. 4 is an explanatory view of the TO-CAN type optical semiconductor module 100 as viewed from above.
- the TO-CAN type optical semiconductor module 100 includes a stem 1, a lead pin 4, a conductor pattern 7, and a brazing material 15.
- the TO-CAN type optical semiconductor module 100 includes a cap 2, a lens 3, lead pins 5, 6, optical semiconductors 9, 10, submounts 11, 12, sealing material 13, bonding wire 14, brazing material 16, and support block 17. Can be prepared.
- Stem 1 is a substrate. Stem 1 is also called an eyelet.
- the shape of the stem 1 is, for example, a flat plate shape, a disk shape, a columnar shape, or the like.
- the stem 1 is made of metal.
- the stem 1 is made of, for example, iron or kovar (iron-nickel-cobalt alloy).
- the surface of the stem 1 may also be plated.
- the stem 1 has a through hole in the thickness direction of the flat plate-shaped substrate.
- the lead pins 4, 5 and 6 are rod-shaped metal conductors.
- the lead pins 4, 5 and 6 are made of, for example, iron or Kovar.
- the surfaces of the lead pins 4, 5 and 6 may also be plated.
- the lead pins 4 and 5 are arranged in the through holes of the stem 1. Lead pins 4 and 5 are through lead pins. The penetrating lead pin penetrates the stem 1. Therefore, the lead pins 4 and 5 are not connected to the stem 1.
- the lead pin 6 is a joint lead pin. The lead pin 6 is connected to the stem 1.
- Lead pins 4 and 5 are signal lead pins.
- the lead pin 4 is, for example, a differential signal lead pin.
- the differential signal lead pin is a pair of signal terminals for transmitting a differential signal.
- the differential signal lead pin is used, for example, for adjusting the light emission of a laser diode or the like.
- the lead pin 5 is, for example, a monitor lead pin.
- the monitor lead pin transmits a luminance signal detected by, for example, a photodiode.
- the lead pin 6 is, for example, a ground lead pin or a ground terminal.
- the lead pin 6 is grounded. Further, the stem 1 is grounded via the lead pin 6.
- the sealing material 13 is an insulating material.
- the sealing material 13 is, for example, glass or the like.
- the sealing material 13 is sealed between the through hole of the stem 1 and the lead pins 4 and 5.
- the sealing material 13 seals the lead pins 4 and 5 into the through hole of the stem 1 without contacting the stem 1.
- the optical semiconductors 9 and 10 are optical semiconductor elements.
- the optical semiconductor 9 is, for example, a light emitting element such as a laser diode.
- the optical semiconductor 9 is, for example, an end face emission type semiconductor light emitting device having an oscillation wavelength in the wavelength band of 1310 nm or 1550 nm.
- the optical semiconductor 9 is arranged on or near the central axis of the stem 1 in order to facilitate the adjustment of the optical axis.
- the optical semiconductor 10 is, for example, a light receiving element such as a photodiode.
- the optical semiconductor 10 is a surface-incident type semiconductor light receiving element having a light receiving wavelength band including the oscillation wavelength of the optical semiconductor 9.
- Submounts 11 and 12 are substrates.
- the submount 11 mounts an optical semiconductor 9 such as a laser diode.
- the submount 11 is, for example, a dielectric substrate using a ceramic having excellent thermal affinity with the laser diode (such as aluminum nitride (AlN) or alumina (Al 2 O 3)).
- the submount 11 includes, for example, a metallized conductor pattern 7 on the surface of the dielectric substrate 18.
- the back surface of the sub mount 11 is the surface on the support block 17 side.
- the surface of the submount 11 is not the support block 17 side.
- the submount 11 may include a conductor pattern 8 on the back surface of the dielectric substrate 18.
- the submount 11 may also be a two-layer substrate having conductor patterns 7 and 8 metallized on the front surface and the back surface of the dielectric substrate 18.
- the thickness of the submount 11 is, for example, about 0.05 to 0.3 mm.
- the thickness of the submount 11 is preferably the above-mentioned structure and thickness from the viewpoint of high frequency characteristics and heat transfer characteristics. However, the structure and thickness are not necessarily limited to those described above, and changes can be made as appropriate.
- the submount 11 is held by the support block 17.
- the sub mount 11 is arranged with a gap from the top of the circle of the lead pin 4.
- the submount 12 mounts an optical semiconductor 10 such as a photodiode.
- the submount 12 includes a conductor pattern (not shown).
- the submount 12 may be a multilayer substrate having a plurality of conductor pattern layers.
- the submount 12 is arranged on the stem 1.
- the conductor patterns 7 and 8 are wiring patterns on the substrate.
- the conductor pattern 7 is a wiring pattern on the surface of the submount 11.
- the conductor pattern 7 is, for example, a wiring pattern having a film structure such as Ti / Pd / Au or Ti / Pt / Au.
- the conductor pattern 7 is connected to the lead pin 4 via the brazing material 15.
- the conductor pattern 7 has a shape divided into two in order to transmit a differential signal from the two lead pins 4 to the optical semiconductor 9. When other functional elements are mounted on the submount 11, they may be further patterned in a plurality of shapes.
- One of the two conductor patterns 7 on the front surface of the submount 11 is electrically connected to the back surface of the optical semiconductor 9.
- the other of the two conductor patterns 7 on the surface of the submount 11 is electrically connected to the surface of the optical semiconductor 9 via the bonding wire 14.
- the optical semiconductor 9 may be electrically connected to both of the two conductor patterns 7 on the back surface of the optical semiconductor 9 without using the bonding wire 14. At that time, for example, flip chip mounting or the like is used.
- the conductor pattern 8 is arranged on the back surface of the sub mount 11.
- the conductor pattern 8 is connected to the support block 17 via the brazing filler metal 16. From the viewpoint of adhesiveness and high frequency characteristics, it is desirable that the conductor pattern 7 on the surface of the submount 11 is patterned to the edge of the surface of the submount 11. It is desirable that the conductor pattern 7 on the surface of the submount 11 is patterned to at least one end of the surface of the submount 11. Similarly, it is desirable that the conductor pattern 8 on the back surface of the submount 11 is patterned to at least one end of the back surface of the submount 11.
- brazing material 16 is patterned, but it may be supplied from the outside at the time of manufacturing.
- the brazing material (not shown) for joining the submount 11 and the optical semiconductor 9 is also preferably patterned, but may be supplied from the outside at the time of manufacture.
- the support block 17 supports the submount 11.
- the support block 17 is made of metal.
- the support block 17 is made of, for example, iron or kovar.
- the surface of the support block 17 may also be plated.
- the support block 17 is installed vertically on the stem 1, for example.
- the support block 17 is preferably integrally molded with the stem 1. However, the support block 17 may be a separate body that is joined to the stem 1 after molding as long as it is electrically connected to the stem 1.
- the submount 11 is brazed to the support block 17.
- the area of the mounting surface of the submount 11 in the support block 17 is larger than the area of the submount 11 itself.
- the support block 17 is formed so that the volume is as large as possible within the range that maximizes the mounting surface of the submount 11 and the inner diameter of the cap 2.
- the brazing materials 15 and 16 are bonding media.
- the brazing materials 15 and 16 are, for example, gold tin (AuSn) solder, Ag paste, and the like.
- the brazing material 15 connects the conductor pattern 7 on the surface of the submount 11 and the lead pin 4.
- the brazing filler metal 16 connects the conductor pattern 8 on the back surface of the submount 11 and the stem 1.
- the bonding wire 14 is a wire that can be electrically connected.
- the bonding wire 14 is made of, for example, gold or aluminum.
- a bonding wire 14 is used for electrical connection between the optical semiconductor 9 and the conductor pattern 7. Further, the bonding wire 14 is used for the electrical connection between the optical semiconductor 10 and the stem 1. Further, a bonding wire 14 is used for electrical connection between the submount 12 and the lead pin 5.
- the cap 2 is a can-shaped cover.
- the cap 2 is made of, for example, metal.
- the cap 2 is made of, for example, iron or kovar.
- the surface of the cap 2 may also be plated.
- the cap 2 is installed on the stem 1.
- the cap 2 protects components on the stem 1, such as optical semiconductors 9 and 10.
- the cap 2 can be joined to the stem 1 for airtight sealing.
- the lens 3 is a lens for transmitting, focusing, diffusing, or collimating.
- the lens 3 has a desired beam shape of the light emitted from the optical semiconductor 9.
- the lens 3 is installed in the upper center of the cap 2.
- the differential signal is an electrical signal.
- the differential signal is input to the conductor pattern 7 on the submount 11 via the brazing filler metal 15. Further, the differential signal is input to the optical semiconductor 9 arranged on the conductor pattern 7.
- the optical semiconductor 9 emits light by a differential signal.
- the TO-CAN type optical semiconductor module 100 emits light from the lens 3.
- the optical semiconductor 10 When the optical semiconductor 10 receives light, it outputs an electric signal.
- the electric signal indicating the light receiving state is output to the lead pin 5 via the submount 12.
- the lead pin 6 is grounded.
- the stem 1, the support block 17, and the conductor pattern 8 are grounded via the lead pin 6.
- the lead pins 4 and 5 are not grounded by the sealing material 13.
- the optical semiconductor 9 and the conductor pattern 7 are not grounded by the submount 11.
- the high-frequency differential signal input from the two lead pins 4 can secure high-frequency characteristics by grounding the stem 1, the support block 17, and the conductor pattern 8.
- the following two methods can be considered when installing the submount 11 on the support block 17.
- the first method is to lower the sub mount 11 from above until it abuts on the upper surface of the lead pin 4, and fix the sub mount 11 to the support block 17.
- the second method is to press the sub mount 11 against the support block 17 from the front side to fix it.
- the conductor pattern 8 on the back surface of the sub-mount 11 is brazed to the support block 17.
- the first method had the problem that it was difficult to automate manufacturing because the assembly operation was complicated. Further, since the position of the submount 11 is determined with reference to the position of the lead pin 4, there is also a problem that the position of the optical semiconductor 9 on the submount 11 deviates from the assumed position and the optical characteristics deteriorate.
- the second method is that when the mounting position of the sub mount 11 or the lead pin 4 is displaced, the sub mount 11 and the lead pin 4 collide with each other and cannot be mounted, or the sub mount 11 and the lead pin 4 cannot be connected apart. There was a problem. Therefore, there is a problem that the yield is deteriorated in mass production using an automatic machine.
- the TO-CAN type optical semiconductor module 100 allows misalignment during assembly in order to simplify the assembly operation in order to deal with the above problems. At that time, the differential signal is surely input to the optical semiconductor 9, and further measures are taken to suppress deterioration of the high frequency characteristics of the differential signal.
- the TO-CAN type optical semiconductor module 100 includes a stem 1, a lead pin 4 penetrating the stem 1, and a conductor pattern 7 provided on a submount 11 on which the optical semiconductor 9 is mounted, and the lead pin 4 is provided. A gap is provided between the conductor pattern 7 and the conductor pattern 7, and the gap is connected by the brazing filler metal 15.
- FIG. 5 is a cut surface obtained by cutting the TO-CAN type optical semiconductor module 100 along the central axis of the lead pin 4.
- FIG. 5 is a side view of the cut TO-CAN type optical semiconductor module 100.
- the stem 1 has a stem inner surface 1a on the side sealed by the cap 2 and a stem outer surface 1b on the opposite side.
- the stem inner surface 1a is the upper surface of the stem 1
- the stem outer surface 1b is the lower surface of the stem 1.
- the lead pin 4 the portion protruding from the stem inner surface 1a is referred to as an inner lead pin 4a
- the portion protruding from the stem outer surface 1b is referred to as an outer lead pin 4b.
- the impedance of the lead pin 4 is adjusted by the dielectric constant of the sealing material 13 which is a dielectric and the ratio of the through hole diameter to the lead pin 4 diameter.
- the through hole is, for example, a hole having a diameter of 1.0 mm
- the lead pin 4 is, for example, a rod shape having a diameter of 0.38 mm.
- the inner lead pin 4a and the outer lead pin 4b are configured to be as short as possible.
- a feature is that a gap is provided between the top of the inner lead pin 4a and the end of the submount 11 and the gap is connected by the brazing material 15 in order to allow misalignment during assembly.
- the gap may be such that the circular top of the inner lead pin 4a and the conductor pattern 7 of the submount 11 can be connected by using the brazing material 15.
- the brazing material 15 has a gap that can be connected when the brazing material 15 melts to form a hemispherical shape at the top of the inner lead pin 4a. Therefore, the gap is preferably equal to or less than the radius of the top of the circle of the lead pin 4. That is, the gap is preferably less than half the thickness of the lead pin 4.
- the gap is set as a reference position when the sub mount 11 is arranged on the stem 1 to which the lead pin 4 is mounted. Therefore, if the position where the sub mount 11 is arranged is displaced, the gap may disappear as a result.
- the circular top of the inner lead pin 4a can be rephrased as the end point of the lead pin 4.
- the inner lead pin 4a protrudes from the stem inner surface 1a. That is, the end points of the lead pins 4 on the conductor pattern 7 side project from the surface of the stem 1 toward the conductor pattern 7.
- the length of the inner lead pin 4a is preferably 0.05 mm or more in order to suppress interference during assembly of the member. Further, from the viewpoint of high frequency characteristics, the length of the inner lead pin 4a is preferably 1.0 mm or less.
- the circular top of the lead pin 4 is above the stem inner surface 1a, that is, the presence of the inner lead pin 4a allows the sealing material 13 to be filled up to the vicinity of the stem inner surface 1a. As a result, impedance matching of the lead pin 4 can be maintained in the through hole of the stem 1. Further, when the sealing material 13 is sealed to the through hole, the sealing material 13 crawls up to the top of the circle of the lead pin 4 and hinders the electrical connection with the conductor pattern 7 or the brazing material 15. Can be avoided.
- the amount of the sealing material 13 can be increased as compared with the case where the inner lead pin 4a is not present, and the sealing material 13 can be densely filled in the through hole of the stem 1. ..
- the mounted semiconductor element can be protected from dust and moisture in the air, and failure can be suppressed.
- a sufficient sealing material 13 cannot be inserted into the through hole of the stem 1 in order to prevent the lead pin 4 from being buried in the sealing material 13.
- connectivity with the conductor pattern 7 can be ensured as long as the inner lead pin 4a is not covered. Therefore, an error in the encapsulation amount of the encapsulant 13 can be tolerated.
- the lead pin 4 and the conductor pattern 7 of the submount 11 are brazed by utilizing the wettability of the brazing material 15, so that they can be connected even if they are not on the same axis. Therefore, since the conductor pattern 7 is not required on the side surface of the submount 11 on the circular top surface side of the lead pin 4, that is, the side surface metallization is not required, the submount 11 can be manufactured at a relatively low cost.
- FIG. 6 is a cut surface obtained by cutting the TO-CAN type optical semiconductor module 100 on the stem inner surface 1a.
- FIG. 6 is a bottom view of the vicinity of the lead pin 4 of the cut TO-CAN type optical semiconductor module 100.
- the submount 11 includes a conductor pattern 7 on the front surface of the dielectric substrate 18 and a conductor pattern 8 on the back surface of the dielectric substrate 18.
- the submount 11 is connected to and fixed to the support block 17 by the brazing filler metal 16.
- the conductor pattern 8 is provided on the surface that is the back surface of the sub mount 11 on which the conductor pattern 7 is provided.
- the conductor pattern 8 is grounded and becomes a grounding pattern. By providing the conductor pattern 8, the high frequency transmission characteristics are improved.
- the lead pin 4 and the conductor pattern 7 are connected by a brazing material 15.
- the conductor pattern 7 is arranged at a position where the rod-shaped lead pin 4 is extended in the length direction. In FIG. 6 when the lead pin 4 is viewed from below, the cross section of the lead pin 4 and the conductor pattern 7 overlap. As described above, when the conductor pattern 7 is arranged on the extension line of the lead pin 4, the high frequency transmission characteristic is improved. Even if the conductor pattern 7 is not arranged on the extension line of the lead pin 4, the lead pin 4 and the conductor pattern 7 are connected by the brazing material 15. By arranging the conductor pattern 7 at a position where the end surface of the lead pin 4 is extended in the length direction of the lead pin 4, the high frequency transmission characteristic is improved.
- the brazing material 15 between the lead pin 4 and the conductor pattern 7 has a thickness of about the lead pin 4. That is, the brazing material 15 between the lead pin 4 and the conductor pattern 7 has a cross-sectional area equal to or larger than the cross section of the lead pin 4. As a result, the impedance near the inner lead pin 4a and the impedance near the brazing material 15 become the same, so that the high frequency transmission characteristic can be maintained. When the lead pin 4 and the conductor pattern 7 are connected by a bonding wire or the like, the impedance changes and the high frequency transmission characteristic cannot be maintained. In this way, by connecting the lead pin 4 and the conductor pattern 7 with the brazing material 15, it is possible to suppress a decrease in high frequency transmission characteristics.
- the conductor pattern 8 should be grounded over a wide area.
- the brazing filler metal 16 is inserted in a wide range between the submount 11 and the support block 17.
- the area of the surface of the support block 17 in contact with the submount 11 is increased with respect to the area of the conductor pattern 8.
- FIG. 7 is an example of the TO-CAN type optical semiconductor module 100 when the submount 11 is displaced.
- the submount 11 is fixed to the support block 17 in a state of being rotated clockwise. Due to such a misalignment, one of the two conductor patterns 7 shifts upward and the other shifts downward.
- a gap is provided between the lead pin 4 and the sub mount 11, it is possible to prevent a collision between the sub mount 11 and the lead pin 4.
- it can be fixed in a flexible shape by the brazing material 15 which becomes a fluid at the time of welding, it is possible to obtain an electrical connection between the conductor pattern 7 and the lead pin 4 even if there is a misalignment.
- X be the width and Y be the height when the sub mount 11 is viewed from the front.
- D (X / 2) * Sin ⁇ (Y / 2) * (1-Cos ⁇ ).
- X 1.8 mm
- Y 1.2 mm
- ⁇ 1 degree
- the amount of downward misalignment of the lower right corner of the submount 11 when viewed from the front is 0.016 mm.
- it is desirable that the gap is 0.016 mm or more.
- the plurality of lead pins 4 are arranged with a gap between them and the conductor pattern 7, and the gap is connected by the brazing material 15.
- the size of the gap may be determined in consideration of the misalignment of both the lead pin 4 and the sub mount 11. In this case, the maximum values of the respective installation position errors are added together. That is, the distance between the lead pin 4 and the conductor pattern 7 is the sum of the maximum value of the error of the installation position of the lead pin 4 and the maximum value of the error of the installation position of the conductor pattern 7 in the length direction of the lead pin 4. It is as follows.
- the tolerance at the time of assembling the member can be absorbed.
- the brazing material 15 having fluidity at the time of brazing can ensure electrical connectivity and high frequency characteristics. Since it is possible to give a degree of freedom to the mounting position in this way, it is possible to provide the TO-CAN type optical semiconductor module 100 having excellent productivity.
- FIG. 8 is a configuration diagram showing the TO-CAN type optical semiconductor module 101 according to the first modification of the first embodiment.
- FIG. 8 is an explanatory view of the TO-CAN type optical semiconductor module 101 as viewed from the front.
- FIG. 9 is an explanatory view of the TO-CAN type optical semiconductor module 101 as viewed from above.
- the TO-CAN type optical semiconductor module 101 has two lead pins 4 arranged in one through hole with respect to the TO-CAN type optical semiconductor module 100, and omits parts related to the optical semiconductor 10. Since the other components are the same as those in FIGS. 1 to 4, the description thereof will be omitted.
- the TO-CAN type optical semiconductor module 101 includes a stem 1, a lead pin 4, a conductor pattern 7, and a brazing material 15.
- the TO-CAN type optical semiconductor module 101 can include a cap 2, a lens 3, a lead pin 6, an optical semiconductor 9, a submount 11, a sealing material 13, a bonding wire 14, and a support block 17.
- Stem 1 has one through hole. Two lead pins 4 are arranged in the through hole. Then, the sealing material 13 is sealed between the through hole of the stem 1 and the two lead pins 4. The sealing material 13 seals the two lead pins 4 into the through holes of the stem 1 without contacting the stem 1.
- the TO-CAN type optical semiconductor module 101 is provided with a gap between the conductor pattern 7 on the submount 11 and the lead pin 4, and the gap is connected by the brazing material 15. ..
- Stem 1 is, for example, a columnar shape with a diameter of 3.8 mm.
- the through hole of the stem 1 has, for example, a shape in which two holes having a diameter of 1.0 mm are overlapped.
- the through hole of the stem 1 may have a shape in which a conductor does not intervene between the two lead pins 4.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
従来のパッケージでは、ガラス封着する信号用リードの上端面とアイレットの上端面とを面一に配置する際に、精度の高い組み立て技術が必要であるという課題があったため、電気信号の高周波特性の低下を抑えつつ、組み立て時の位置ずれを許容することを目的とする。TO-CAN型光半導体モジュールは、ステムと、ステムを貫通するリードピンと、光半導体を搭載するサブマウント上に設けられる導体パターンとを備え、リードピンと導体パターンとの間に設けられた隙間をろう材で接続する。
Description
本開示は、Transistor Outline(TO)-CAN型パッケージに光半導体を搭載したTO-CAN型光半導体モジュールに関する。
光半導体を搭載したTO-CAN型光半導体モジュールは、特にパッケージングの観点から、外部から印加される高周波電気信号を光半導体に伝送する際の高周波特性が重要となる。従来のパッケージは、高周波特性を改善する目的で、特性インピーダンスの調節が困難なリードピンの露出部分を無くしていた(例えば、特許文献1)。
特許文献1に記載のガラス端子は、アイレットにガラス封着する信号用リードの上端面をアイレットの上端面と面一に設け、アイレットの上面に絶縁基板を接合している。
従来のパッケージでは、ガラス封着する信号用リードの上端面とアイレットの上端面とを面一に配置する必要があるため、精度の高い組み立て技術が必要であるという課題があった。
上述のような課題を解決するためになされたもので、高周波特性の低下を抑えつつ、組み立て時の位置ずれを許容することを目的とする。
TO-CAN型光半導体モジュールは、ステムと、ステムを貫通するリードピンと、光半導体を搭載するサブマウント上に設けられる導体パターンとを備え、リードピンと導体パターンとの間に設けられた隙間をろう材で接続する。
組み立て時に位置ずれが発生しても、高周波特性の低下を抑えることができる。
実施の形態1.
以下、実施の形態1に係るTO-CAN型光半導体モジュール100について、図面を用いて詳細に説明する。なお、以下の実施の形態1は、一具体例を示すものである。したがって、各構成要素の形状、配置および材料などは一例であり、限定する趣旨はない。また、各図は模式図であり、厳密に図示されたものではない。また、各図において、同じ構成要素については同じ符号を付している。
以下、実施の形態1に係るTO-CAN型光半導体モジュール100について、図面を用いて詳細に説明する。なお、以下の実施の形態1は、一具体例を示すものである。したがって、各構成要素の形状、配置および材料などは一例であり、限定する趣旨はない。また、各図は模式図であり、厳密に図示されたものではない。また、各図において、同じ構成要素については同じ符号を付している。
<TO-CAN型光半導体モジュール100の構成>
図1は、実施の形態1に係るTO-CAN型光半導体モジュール100の一例を示す外観図である。図1は、TO-CAN型光半導体モジュール100を斜め右上から見た外観図である。TO-CAN型光半導体モジュール100は、TO-CAN型パッケージの外観を有する。TO-CAN型光半導体モジュール100は、例えば、ステム1、キャップ2、レンズ3およびリードピン4,5,6を備えることができる。
図1は、実施の形態1に係るTO-CAN型光半導体モジュール100の一例を示す外観図である。図1は、TO-CAN型光半導体モジュール100を斜め右上から見た外観図である。TO-CAN型光半導体モジュール100は、TO-CAN型パッケージの外観を有する。TO-CAN型光半導体モジュール100は、例えば、ステム1、キャップ2、レンズ3およびリードピン4,5,6を備えることができる。
TO-CAN型パッケージは、電子部品搭載用パッケージとして古くから用いられている。一般的に、TO-CAN型パッケージは、電気インタフェースとしてのリードピン4を備える。そして、基体となるステム1の貫通孔に挿通したリードピン4は、ガラスなどの封止材で封着される。ステム1とキャップ2と接合して封止することで搭載部品と外気とを遮断している。TO-CAN型パッケージは、キャップ2に接合されたレンズ3または窓などを介して光インタフェースを得る構造である。リードピン4を介して電気信号を入力することで、TO-CAN型光半導体モジュール100は、キャップ2内の光半導体が発光し、レンズ3を介して光を出射する。
図2は、実施の形態1に係るTO-CAN型光半導体モジュール100の構成図である。図2は、図1の外観図からキャップ2およびレンズ3を外したものである。図2は斜め右上から見た構成図である。同様に、図3はTO-CAN型光半導体モジュール100を正面から見た説明図である。図4はTO-CAN型光半導体モジュール100を上面から見た説明図である。TO-CAN型光半導体モジュール100は、ステム1、リードピン4、導体パターン7およびろう材15を備える。TO-CAN型光半導体モジュール100は、キャップ2、レンズ3、リードピン5,6、光半導体9,10、サブマウント11,12、封止材13、ボンディングワイヤ14、ろう材16および支持ブロック17を備えることができる。
≪ステム1≫
ステム1は、基体である。ステム1は、アイレットとも呼ばれる。ステム1の形状は、例えば、平板状、円盤状、円柱状などである。ステム1は、金属から構成される。ステム1は、例えば、鉄またはコバール(鉄・ニッケル・コバルト合金)などからできている。ステム1は、また、その表面をメッキ加工されていても良い。ステム1は、平板状の基体の厚さ方向に貫通孔を有する。
ステム1は、基体である。ステム1は、アイレットとも呼ばれる。ステム1の形状は、例えば、平板状、円盤状、円柱状などである。ステム1は、金属から構成される。ステム1は、例えば、鉄またはコバール(鉄・ニッケル・コバルト合金)などからできている。ステム1は、また、その表面をメッキ加工されていても良い。ステム1は、平板状の基体の厚さ方向に貫通孔を有する。
≪リードピン4,5,6≫
リードピン4,5,6は、棒状の金属導体である。リードピン4,5,6は、例えば、鉄またはコバールなどからできている。リードピン4,5,6は、また、その表面をメッキ加工されていても良い。リードピン4,5は、ステム1の貫通孔に配置される。リードピン4,5は、貫通リードピンである。貫通リードピンは、ステム1を貫通する。そのため、リードピン4,5は、ステム1に接続しない。リードピン6は、接合リードピンである。リードピン6は、ステム1に接続される。
リードピン4,5,6は、棒状の金属導体である。リードピン4,5,6は、例えば、鉄またはコバールなどからできている。リードピン4,5,6は、また、その表面をメッキ加工されていても良い。リードピン4,5は、ステム1の貫通孔に配置される。リードピン4,5は、貫通リードピンである。貫通リードピンは、ステム1を貫通する。そのため、リードピン4,5は、ステム1に接続しない。リードピン6は、接合リードピンである。リードピン6は、ステム1に接続される。
リードピン4,5は、信号用リードピンである。リードピン4は、例えば差動信号リードピンである。差動信号リードピンは、差動信号を伝送する一対の信号端子である。差動信号リードピンは、例えば、レーザダイオードなどの発光の調整のために用いられる。リードピン5は、例えば、モニタリードピンである。モニタリードピンは、例えば、フォトダイオードなどが検知した輝度信号を伝送する。リードピン6は、例えば、グランドリードピン、または接地端子である。リードピン6は、接地される。また、リードピン6を介して、ステム1は接地される。
≪封止材13≫
封止材13は、絶縁素材である。封止材13は、例えば、ガラスなどである。封止材13は、ステム1の貫通孔とリードピン4,5との間に封入される。封止材13によって、リードピン4,5は、ステム1と接触せずにステム1の貫通孔に封着される。
封止材13は、絶縁素材である。封止材13は、例えば、ガラスなどである。封止材13は、ステム1の貫通孔とリードピン4,5との間に封入される。封止材13によって、リードピン4,5は、ステム1と接触せずにステム1の貫通孔に封着される。
≪光半導体9,10≫
光半導体9,10は、光半導体素子である。光半導体9は、例えば、レーザダイオードなどの発光素子である。光半導体9は、例えば、波長1310nm帯もしくは1550nm帯に発振波長を有する端面出射型の半導体発光素子である。光半導体9は、光軸調整を容易とするためにステム1の中心軸上もしくは中心軸付近に配置される。光半導体10は、例えば、フォトダイオードなどの受光素子である。光半導体10は、光半導体9の発振波長を含む受光波長帯を有する面入射型の半導体受光素子である。
光半導体9,10は、光半導体素子である。光半導体9は、例えば、レーザダイオードなどの発光素子である。光半導体9は、例えば、波長1310nm帯もしくは1550nm帯に発振波長を有する端面出射型の半導体発光素子である。光半導体9は、光軸調整を容易とするためにステム1の中心軸上もしくは中心軸付近に配置される。光半導体10は、例えば、フォトダイオードなどの受光素子である。光半導体10は、光半導体9の発振波長を含む受光波長帯を有する面入射型の半導体受光素子である。
≪サブマウント11,12≫
サブマウント11,12は、基板である。サブマウント11は、レーザダイオードなどの光半導体9を搭載する。サブマウント11は、例えば、レーザダイオードとの熱親和性に優れるセラミック(窒化アルミニウム(AlN)またはアルミナ(Al2O3)など)を用いた誘電体基板である。
サブマウント11,12は、基板である。サブマウント11は、レーザダイオードなどの光半導体9を搭載する。サブマウント11は、例えば、レーザダイオードとの熱親和性に優れるセラミック(窒化アルミニウム(AlN)またはアルミナ(Al2O3)など)を用いた誘電体基板である。
サブマウント11は、例えば、誘電体基板18の表面にメタライズされた導体パターン7を備える。ここで、サブマウント11の裏面は、支持ブロック17側の面とする。サブマウント11の表面は、支持ブロック17側ではない面とする。サブマウント11は、誘電体基板18の裏面に導体パターン8を備えても良い。サブマウント11は、また、誘電体基板18の表面と裏面とにメタライズされた導体パターン7,8を備えた2層基板でもよい。サブマウント11の厚さは、例えば、0.05~0.3mm程度である。サブマウント11の厚さは、高周波特性および伝熱特性の観点から、前述の構造および厚さが好適である。ただし、必ずしも上述の構造および厚さに限定するものではなく、適宜変更は可能である。サブマウント11は、支持ブロック17によって保持される。サブマウント11は、リードピン4の円頂部から隙間を設けて配置される。
サブマウント12は、フォトダイオードなどの光半導体10を搭載する。サブマウント12は、導体パターン(図示せず)を備える。サブマウント12は、複数の導体パターン層を有する多層基板でもよい。サブマウント12は、ステム1上に配置される。
≪導体パターン7,8≫
導体パターン7,8は、基板上の配線パターンである。導体パターン7は、サブマウント11表面の配線パターンである。導体パターン7は、例えば、Ti/Pd/AuまたはTi/Pt/Auなどの膜構成による配線パターンである。導体パターン7は、ろう材15を介してリードピン4に接続する。導体パターン7は、2つのリードピン4から光半導体9へ差動信号を伝達させるために、2つに分断された形状である。その他の機能素子がサブマウント11上に載置される場合には、さらに複数の形状でパターンニングされてもよい。サブマウント11表面上の2つの導体パターン7のうちの一方が、光半導体9の裏面と電気的に接続される。サブマウント11表面上の2つの導体パターン7のうちの他方が、光半導体9の表面とボンディングワイヤ14を介して電気的に接続される。なお、ボンディングワイヤ14を使用せずに、光半導体9は、光半導体9の裏面で2つの導体パターン7の両方と電気接続しても良い。その際、例えばフリップチップ実装などが用いられる。
導体パターン7,8は、基板上の配線パターンである。導体パターン7は、サブマウント11表面の配線パターンである。導体パターン7は、例えば、Ti/Pd/AuまたはTi/Pt/Auなどの膜構成による配線パターンである。導体パターン7は、ろう材15を介してリードピン4に接続する。導体パターン7は、2つのリードピン4から光半導体9へ差動信号を伝達させるために、2つに分断された形状である。その他の機能素子がサブマウント11上に載置される場合には、さらに複数の形状でパターンニングされてもよい。サブマウント11表面上の2つの導体パターン7のうちの一方が、光半導体9の裏面と電気的に接続される。サブマウント11表面上の2つの導体パターン7のうちの他方が、光半導体9の表面とボンディングワイヤ14を介して電気的に接続される。なお、ボンディングワイヤ14を使用せずに、光半導体9は、光半導体9の裏面で2つの導体パターン7の両方と電気接続しても良い。その際、例えばフリップチップ実装などが用いられる。
導体パターン8は、サブマウント11裏面に配置される。導体パターン8は、ろう材16を介して支持ブロック17と接続する。接着性及び高周波特性の点から、サブマウント11表面の導体パターン7は、サブマウント11表面の端までパターンニングされているのが望ましい。サブマウント11表面の導体パターン7は、少なくとも、サブマウント11表面の一辺の端までパターンニングされているのが望ましい。同様に、サブマウント11裏面の導体パターン8は、少なくとも、サブマウント11裏面の一辺の端までパターンニングされているのが望ましい。
ろう材16はパターニングされている事が望ましいが、製造時に外部から供給しても良い。同様に、サブマウント11と光半導体9とを接合するためのろう材(非図示)も同様に、パターニングされている事が望ましいが、製造時に外部から供給しても良い。
≪支持ブロック17≫
支持ブロック17は、サブマウント11を支持する。支持ブロック17は、金属から構成される。支持ブロック17は、例えば、鉄またはコバールなどからできている。支持ブロック17は、また、その表面をメッキ加工されていても良い。支持ブロック17は、例えば、ステム1上に垂直に設置される。支持ブロック17は、ステム1に一体成型されたものが好適である。しかしながら、支持ブロック17は、ステム1と電気的な導通がとれていれば、別体を成型後にステム1と接合したものでも良い。サブマウント11は、支持ブロック17にろう付けされる。支持ブロック17におけるサブマウント11の実装面の面積は、サブマウント11自体の面積より大きい。支持ブロック17は、サブマウント11の実装面およびキャップ2の内直径を最大とする範囲内で可能な限り体積が大きくなるように形成される。
支持ブロック17は、サブマウント11を支持する。支持ブロック17は、金属から構成される。支持ブロック17は、例えば、鉄またはコバールなどからできている。支持ブロック17は、また、その表面をメッキ加工されていても良い。支持ブロック17は、例えば、ステム1上に垂直に設置される。支持ブロック17は、ステム1に一体成型されたものが好適である。しかしながら、支持ブロック17は、ステム1と電気的な導通がとれていれば、別体を成型後にステム1と接合したものでも良い。サブマウント11は、支持ブロック17にろう付けされる。支持ブロック17におけるサブマウント11の実装面の面積は、サブマウント11自体の面積より大きい。支持ブロック17は、サブマウント11の実装面およびキャップ2の内直径を最大とする範囲内で可能な限り体積が大きくなるように形成される。
≪ろう材15,16≫
ろう材15,16は、接合媒体である。ろう材15,16は、例えば、金スズ(AuSn)半田、またはAgペーストなどである。ろう材15は、サブマウント11表面の導体パターン7とリードピン4とを接続する。ろう材16は、サブマウント11背面の導体パターン8とステム1とを接続する。
ろう材15,16は、接合媒体である。ろう材15,16は、例えば、金スズ(AuSn)半田、またはAgペーストなどである。ろう材15は、サブマウント11表面の導体パターン7とリードピン4とを接続する。ろう材16は、サブマウント11背面の導体パターン8とステム1とを接続する。
≪ボンディングワイヤ14≫
ボンディングワイヤ14は、電気的に接続することができるワイヤである。ボンディングワイヤ14は、例えば、金またはアルミなどからなる。光半導体9と導体パターン7との電気的接続にボンディングワイヤ14が用いられる。また、光半導体10とステム1との電気的接続にボンディングワイヤ14が用いられる。さらに、サブマウント12とリードピン5との電気的接続にボンディングワイヤ14が用いられる。
ボンディングワイヤ14は、電気的に接続することができるワイヤである。ボンディングワイヤ14は、例えば、金またはアルミなどからなる。光半導体9と導体パターン7との電気的接続にボンディングワイヤ14が用いられる。また、光半導体10とステム1との電気的接続にボンディングワイヤ14が用いられる。さらに、サブマウント12とリードピン5との電気的接続にボンディングワイヤ14が用いられる。
≪キャップ2≫
キャップ2は、缶型のカバーである。キャップ2は、例えば、金属から構成される。キャップ2は、例えば、鉄またはコバールなどからできている。キャップ2は、また、その表面をメッキ加工されていても良い。キャップ2は、ステム1上に設置される。キャップ2は、ステム1上の部品、例えば光半導体9,10など、を保護する。キャップ2は、気密封止のために、ステム1と接合することができる。
キャップ2は、缶型のカバーである。キャップ2は、例えば、金属から構成される。キャップ2は、例えば、鉄またはコバールなどからできている。キャップ2は、また、その表面をメッキ加工されていても良い。キャップ2は、ステム1上に設置される。キャップ2は、ステム1上の部品、例えば光半導体9,10など、を保護する。キャップ2は、気密封止のために、ステム1と接合することができる。
≪レンズ3≫
レンズ3は、透過、集束、拡散、もしくはコリメートするためのレンズである。レンズ3は、光半導体9からの出射光を所望のビーム形状とする。レンズ3は、キャップ2の中央上部に設置される。
レンズ3は、透過、集束、拡散、もしくはコリメートするためのレンズである。レンズ3は、光半導体9からの出射光を所望のビーム形状とする。レンズ3は、キャップ2の中央上部に設置される。
<TO-CAN型光半導体モジュール100の動作>
次に、TO-CAN型光半導体モジュール100の動作について説明する。
次に、TO-CAN型光半導体モジュール100の動作について説明する。
2つのリードピン4より差動信号を入力する。差動信号は電気信号である。差動信号は、ろう材15を介してサブマウント11上の導体パターン7へ入力される。さらに差動信号は、導体パターン7上に配置されている光半導体9へ入力される。光半導体9は差動信号によって発光する。TO-CAN型光半導体モジュール100は、レンズ3より光を出射する。
光半導体10は受光すると、電気信号を出力する。受光状態を示す電気信号はサブマウント12を介してリードピン5へ出力される。リードピン6は接地される。リードピン6を介して、ステム1、支持ブロック17、および導体パターン8が接地される。リードピン4,5は、封止材13によって接地されない。光半導体9および導体パターン7は、サブマウント11によって接地されない。2つのリードピン4より入力される高周波の差動信号は、ステム1、支持ブロック17、および導体パターン8を接地することで、高周波特性を確保できる。
従来のTO-CAN型光半導体モジュールにおいて、サブマウント11を支持ブロック17に設置する際に、次の2つの方法が考えられる。一つ目の方法は、サブマウント11を上方からリードピン4の上面に突き当たるまで下げ、サブマウント11を支持ブロック17に固定する方法。二つ目の方法は、サブマウント11を正面側から支持ブロック17に押し当てて固定する方法。なお、サブマウント11を支持ブロック17に固定するために、サブマウント11の裏面の導体パターン8を支持ブロック17とろう付けする。
一つ目の方法は、組み立て動作が複雑なため、製造の自動化がしづらいという問題があった。さらに、リードピン4の位置を基準としてサブマウント11の位置を決めるため、サブマウント11上の光半導体9の位置が想定位置からずれてしまい光学特性が劣化するという問題もあった。
二つ目の方法は、サブマウント11もしくはリードピン4の実装位置がずれた場合に、サブマウント11とリードピン4とが衝突して実装できない、もしくはサブマウント11とリードピン4とが離れて接続できないという問題があった。このため、自動機を用いた量産において歩留まりが悪くなるという問題があった。
TO-CAN型光半導体モジュール100は、上記問題に対応すべく、組み立て動作を簡易とするために、組み立て時の位置ずれを許容している。その際、差動信号を確実に光半導体9へ入力し、さらに差動信号の高周波特性の低下を抑えるための工夫を施している。その方策として、TO-CAN型光半導体モジュール100は、ステム1と、ステム1を貫通するリードピン4と、光半導体9を搭載するサブマウント11上に設けられる導体パターン7と、を備え、リードピン4と導体パターン7との間に隙間を設けて配置し、隙間をろう材15で接続する。
図5は、リードピン4の中心軸に沿って、TO-CAN型光半導体モジュール100を切断した切断面である。図5は、切断されたTO-CAN型光半導体モジュール100を横から見た図である。
ステム1は、キャップ2によって封止される側のステムインナー面1aと、その反対側のステムアウター面1bを有する。図5において、ステムインナー面1aはステム1の上面、ステムアウター面1bはステム1の下面である。ここで、リードピン4について、ステムインナー面1aより突出した部分をインナーリードピン4aと呼び、ステムアウター面1bから突出した部分をアウターリードピン4bと呼ぶ。
ステム1の貫通孔内において、リードピン4は誘電体である封止材13の誘電率、および、貫通孔直径とリードピン4直径との比率によってインピーダンス調整される。貫通孔は例えば直径1.0mmの孔であり、リードピン4は例えば直径0.38mmの棒形状である。一方、インナーリードピン4aおよびアウターリードピン4bは、空間中に露出することからインピーダンスの調整が困難である。そのため、インナーリードピン4aおよびアウターリードピン4bは、極力短くなるように構成する。
組み立て時の位置ずれを許容するため、インナーリードピン4aの円頂部とサブマウント11端との間に隙間を設け、隙間をろう材15で接続した点が特徴である。隙間は、インナーリードピン4aの円頂部とサブマウント11の導体パターン7とをろう材15を用いて接続できる程度の間隔であれば良い。具体的には、ろう材15が溶融してインナーリードピン4aの円頂部にて半球形状となった場合に接続できる程度の隙間が望ましい。そのため、隙間はリードピン4の円頂部の半径以下が好適である。つまり隙間は、リードピン4の太さの半分以下が望ましい。隙間は、リードピン4を装着したステム1に、サブマウント11を配置する際の基準位置として設定したものである。そのため、サブマウント11を配置する位置がずれた場合、結果として隙間がなくなる場合も有り得る。なお、インナーリードピン4aの円頂部は、リードピン4の端点と言い換えられる。
さらに、インナーリードピン4aの長さを0としないことで、組み立て時の位置ずれを許容する。インナーリードピン4aがステムインナー面1aより突出している。つまり、導体パターン7側のリードピン4の端点は、ステム1の表面から導体パターン7側へ突出している。部材組立時の干渉を抑えるために、インナーリードピン4aの長さは0.05mm以上が好適である。また、高周波特性の観点から、インナーリードピン4aの長さは1.0mm以下が好適である。
リードピン4の円頂部が、ステムインナー面1aより上にあることで、つまりインナーリードピン4aが存在することで、封止材13をステムインナー面1a近傍まで充填させることができる。これによって、ステム1の貫通孔において、リードピン4のインピーダンス整合を保つことができる。さらに、封止材13を貫通孔へ封着する際に、封止材13がリードピン4の円頂部まで這い上がって、導体パターン7またはろう材15との電気的接続を阻害してしまうことを避けることができる。
また、インナーリードピン4aが存在することで、インナーリードピン4aが無い場合と比べて封止材13の量を増やすことができ、ステム1の貫通孔内に封止材13を密に埋めることができる。これにより、搭載する半導体素子を空気中の埃や湿気から守り、故障を抑制することができる。インナーリードピン4aが無い場合には、リードピン4が封止材13に埋まるのを防ぐために、ステム1の貫通孔内に十分な封止材13を挿入することができなくなる。また、ステムインナー面1aより上まで封止材13を封入しても、インナーリードピン4aが覆われることが無ければ、導体パターン7との接続性は確保できる。そのため、封止材13の封入量の誤差も許容できる。
リードピン4とサブマウント11の導体パターン7との接続は、ろう材15の濡れ性を利用してろう付けすることから、同一軸上になくとも接続可能である。そのため、リードピン4の円頂面側のサブマウント11の側面に導体パターン7が不要であるため、つまり側面メタライズが必要ないため、サブマウント11を比較的安価に作製できる。
図6は、ステムインナー面1aで、TO-CAN型光半導体モジュール100を切断した切断面である。図6は切断されたTO-CAN型光半導体モジュール100のリードピン4付近を下から見た図である。
サブマウント11は、誘電体基板18の前面に導体パターン7、誘電体基板18の背面に導体パターン8を備える。サブマウント11は、ろう材16によって、支持ブロック17と接続し、固定される。導体パターン7が設けられているサブマウント11の表面に対して裏面となる面に導体パターン8を備える。導体パターン8は接地され、接地パターンとなる。導体パターン8を設けることで、高周波の伝送特性が良好となる。
リードピン4と導体パターン7とは、ろう材15によって接続している。棒状のリードピン4を長さ方向に延長した位置に導体パターン7を配置している。リードピン4を下から見た図6において、リードピン4の断面と導体パターン7は重なっている。このように、リードピン4の延長線上に導体パターン7が配置されている方が高周波の伝送特性が良好となる。リードピン4の延長線上に導体パターン7が配置されていなくても、ろう材15により、リードピン4と導体パターン7とは接続される。リードピン4の端面をリードピン4の長さ方向に延長した位置に導体パターン7を配置することで、高周波の伝送特性が良好となる。
リードピン4と導体パターン7との間のろう材15は、リードピン4程度の太さを有する。つまり、リードピン4と導体パターン7との間のろう材15は、リードピン4の断面以上の断面積を有している。これによって、インナーリードピン4a付近のインピーダンスと、ろう材15付近のインピーダンスは同等となるため、高周波の伝送特性を維持することが可能となる。リードピン4と導体パターン7との間をボンディングワイヤなどで接続した場合には、インピーダンスが変わってしまい、高周波の伝送特性を維持することができなくなる。このように、リードピン4と導体パターン7との間をろう材15で接続することで高周波の伝送特性の低下を抑えることができる。
導体パターン7付近のインピーダンスを安定させるため、導体パターン8は広い面積で接地されている方がよい。もしくは、ろう材16をサブマウント11と支持ブロック17との間に広い範囲で挿入する。導体パターン8の面積に対して、サブマウント11と接する支持ブロック17の面の面積を大きくする。これにより、接地が安定して高周波の伝送特性が良好となる。
TO-CAN型光半導体モジュール100の組み立て時の位置ずれについて、別の例を説明する。
図7は、サブマウント11の位置ずれが発生した場合のTO-CAN型光半導体モジュール100の例である。サブマウント11が右回りに回転した状態で支持ブロック17に固定されている。このような位置ずれによって、2つの導体パターン7の一方が上側にずれ、もう一方が下側にずれる。しかしながら、リードピン4とサブマウント11との間に隙間を設けているため、サブマウント11とリードピン4との衝突を防ぐことができる。また、溶着時には流体となるろう材15により柔軟な形状で固着できるため、位置ずれがある場合でも、導体パターン7とリードピン4との電気的接続を得ることが出来る。
サブマウント11を正面から見た時の横幅をX、縦幅をYとする。正面から見てサブマウント11の中心を回転軸として角度θだけ右回転した場合の位置ずれ量を考える。正面から見たサブマウント11の右下隅の下方向の位置ずれ量Dは、D=(X/2)*Sinθ-(Y/2)*(1-Cosθ)。例えば、X=1.8mm,Y=1.2mm,θ=1度の場合には、正面からみてサブマウント11の右下隅の下方向の位置ずれ量は、0.016mmである。このような条件が想定される場合には、隙間は0.016mm以上であることが望ましい。
このように、複数のリードピン4に対して導体パターン7との隙間を設けることによって、サブマウント11の回転にも対応することができる。そのため、複数のリードピン4はそれぞれ導体パターン7との間に隙間を設けて配置し、隙間をろう材15で接続する。
リードピン4およびサブマウント11の両方の位置ずれを考慮して隙間の大きさを決定してもよい。この場合、それぞれの設置位置誤差の最大値を足し合わせることになる。つまり、リードピン4と導体パターン7との間の距離は、リードピン4の長さ方向における、リードピン4の設置位置の誤差の最大値と導体パターン7の設置位置の誤差の最大値とを加算した値以下とする。
以上のように、リードピン4とサブマウント11との間に隙間を設けることで、部材組み立て時の公差を吸収できる。さらに、ろう付け時に流動性を有するろう材15によって、電気接続性および高周波特性を確保できる。このように実装位置に自由度を持たせることが可能となるため、生産性に優れたTO-CAN型光半導体モジュール100を提供することができる。
≪変形例1≫
ステム1の1つの貫通孔に、2つのリードピン4を配置する例を示す。図8は、実施の形態1の変形例1に係るTO-CAN型光半導体モジュール101を示す構成図である。図8はTO-CAN型光半導体モジュール101を正面から見た説明図である。図9はTO-CAN型光半導体モジュール101を上面から見た説明図である。
ステム1の1つの貫通孔に、2つのリードピン4を配置する例を示す。図8は、実施の形態1の変形例1に係るTO-CAN型光半導体モジュール101を示す構成図である。図8はTO-CAN型光半導体モジュール101を正面から見た説明図である。図9はTO-CAN型光半導体モジュール101を上面から見た説明図である。
TO-CAN型光半導体モジュール101は、TO-CAN型光半導体モジュール100に対して、1つの貫通孔に2つのリードピン4を配置し、光半導体10関連の部品を省いたものである。他の構成要素は、図1~図4と同じであるので、説明を省略する。
<TO-CAN型光半導体モジュール101の構成>
TO-CAN型光半導体モジュール101は、ステム1、リードピン4、導体パターン7およびろう材15を備える。TO-CAN型光半導体モジュール101は、キャップ2、レンズ3、リードピン6、光半導体9、サブマウント11、封止材13、ボンディングワイヤ14および支持ブロック17を備えることができる。
TO-CAN型光半導体モジュール101は、ステム1、リードピン4、導体パターン7およびろう材15を備える。TO-CAN型光半導体モジュール101は、キャップ2、レンズ3、リードピン6、光半導体9、サブマウント11、封止材13、ボンディングワイヤ14および支持ブロック17を備えることができる。
ステム1は、1つの貫通孔を有する。その貫通孔に2つのリードピン4を配置する。そして、ステム1の貫通孔と2つのリードピン4との間に封止材13を封入する。封止材13によって、2つのリードピン4は、ステム1と接触せずにステム1の貫通孔に封着される。
TO-CAN型光半導体モジュール101は、TO-CAN型光半導体モジュール100と同様に、サブマウント11上の導体パターン7とリードピン4との間に隙間を設け、その隙間をろう材15で接続する。
ステム1は、例えば、直径3.8mmの円柱状である。ステム1の貫通孔は、例えば、直径1.0mmの孔を2つ重ね合わせた形状である。ステム1の貫通孔は、2つのリードピン4の間に導体が介在しない形状であればよい。
差動信号用のリードピン4の一対(2本)が1つの貫通孔に収まるため、結合線路となって外乱に強くなる。また、2つのリードピン4の間を狭くできるため、例えば、直径3.8mmの小型のステムを採用することも可能となる。このように、高周波特性の伝送特性が良好であるとともに生産性に優れたTO-CAN型光半導体モジュール101を提供することができる。
また、以上のように実施の形態について説明したが、これらの実施の形態は一例である。
1 ステム、1a ステムインナー面、1b ステムアウター面、2 キャップ、3 レンズ、4 リードピン、4a インナーリードピン、4b アウターリードピン、5,6 リードピン、7,8 導体パターン、9,10 光半導体、11,12 サブマウント、13 封止材、14 ボンディングワイヤ、15,16 ろう材、17 支持ブロック、18 誘電体基板、100,101 TO-CAN型光半導体モジュール。
Claims (9)
- ステムと、
前記ステムを貫通するリードピンと、
光半導体を搭載するサブマウント上に設けられる導体パターンと、
を備え、
前記リードピンと前記導体パターンとの間に設けられた隙間をろう材で接続するTO-CAN型光半導体モジュール。 - 前記リードピンの長さ方向に延長した位置に前記導体パターンを配置する請求項1記載のTO-CAN型光半導体モジュール。
- 前記リードピンと前記導体パターンとの間の前記ろう材は、前記リードピンの断面以上の断面積を有する請求項1または2記載のTO-CAN型光半導体モジュール。
- 前記導体パターン側の前記リードピンの端点は、前記ステムの表面から前記導体パターン側へ突出している請求項1~3のいずれか1項に記載のTO-CAN型光半導体モジュール。
- 前記リードピンと前記導体パターンとの間の距離は、前記リードピンの太さの半分以下である請求項1~4のいずれか1項に記載のTO-CAN型光半導体モジュール。
- 前記リードピンと前記導体パターンとの間の距離は、前記リードピンの長さ方向における、前記リードピンの設置位置の誤差の最大値と前記導体パターンの設置位置の誤差の最大値とを加算した値以下とする請求項1~4のいずれか1項に記載のTO-CAN型光半導体モジュール。
- 複数の前記リードピンを備え、
複数の前記リードピンはそれぞれ前記導体パターンとの間に設けられた前記隙間を前記ろう材で接続する請求項1~6のいずれか1項に記載のTO-CAN型光半導体モジュール。 - 前記導体パターンが設けられている前記サブマウントの表面に対して裏面となる面に接地パターンを備える請求項1~7のいずれか1項に記載のTO-CAN型光半導体モジュール。
- 前記サブマウントを前記裏面から保持する支持ブロックを設け、前記接地パターンの面積に対して、前記サブマウントと接する前記支持ブロックの面の面積の方が大きい請求項8記載のTO-CAN型光半導体モジュール。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006307 WO2021166073A1 (ja) | 2020-02-18 | 2020-02-18 | To-can型光半導体モジュール |
JP2020547237A JPWO2021166073A1 (ja) | 2020-02-18 | 2020-02-18 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006307 WO2021166073A1 (ja) | 2020-02-18 | 2020-02-18 | To-can型光半導体モジュール |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021166073A1 true WO2021166073A1 (ja) | 2021-08-26 |
Family
ID=77390707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006307 WO2021166073A1 (ja) | 2020-02-18 | 2020-02-18 | To-can型光半導体モジュール |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021166073A1 (ja) |
WO (1) | WO2021166073A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023109210A1 (zh) * | 2021-12-17 | 2023-06-22 | 青岛海信宽带多媒体技术有限公司 | 光模块 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050105911A1 (en) * | 2003-11-14 | 2005-05-19 | Yong-Chan Keh | TO-can type optical module |
JP2006216839A (ja) * | 2005-02-04 | 2006-08-17 | Mitsubishi Electric Corp | 光モジュール |
JP2007150182A (ja) * | 2005-11-30 | 2007-06-14 | Mitsubishi Electric Corp | 光素子用ステムとこれを用いた光半導体装置 |
JP2009077365A (ja) * | 2007-08-29 | 2009-04-09 | Kyocera Corp | 信号端子と信号線路導体との接続構造および電子部品搭載用パッケージならびに電子装置 |
JP2009152520A (ja) * | 2007-11-26 | 2009-07-09 | Kyocera Corp | 信号端子と信号線路導体との接続構造および電子部品搭載用パッケージならびに電子装置 |
JP2011061750A (ja) * | 2009-09-15 | 2011-03-24 | Nippon Telegr & Teleph Corp <Ntt> | 高周波線路の接続方法、構造及び当該構造を有するパッケージ |
JP2016225457A (ja) * | 2015-05-29 | 2016-12-28 | 新光電気工業株式会社 | 半導体装置用ステム及び半導体装置 |
WO2019082602A1 (ja) * | 2017-10-26 | 2019-05-02 | 京セラ株式会社 | 接合構造体、半導体パッケージおよび半導体装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010062512A (ja) * | 2008-07-02 | 2010-03-18 | Kyocera Corp | 電子部品搭載用パッケージおよびそれを用いた電子装置 |
JP6502797B2 (ja) * | 2015-08-31 | 2019-04-17 | 日本オクラロ株式会社 | 光モジュール |
JP6929113B2 (ja) * | 2017-04-24 | 2021-09-01 | 日本ルメンタム株式会社 | 光アセンブリ、光モジュール、及び光伝送装置 |
-
2020
- 2020-02-18 JP JP2020547237A patent/JPWO2021166073A1/ja active Pending
- 2020-02-18 WO PCT/JP2020/006307 patent/WO2021166073A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050105911A1 (en) * | 2003-11-14 | 2005-05-19 | Yong-Chan Keh | TO-can type optical module |
JP2006216839A (ja) * | 2005-02-04 | 2006-08-17 | Mitsubishi Electric Corp | 光モジュール |
JP2007150182A (ja) * | 2005-11-30 | 2007-06-14 | Mitsubishi Electric Corp | 光素子用ステムとこれを用いた光半導体装置 |
JP2009077365A (ja) * | 2007-08-29 | 2009-04-09 | Kyocera Corp | 信号端子と信号線路導体との接続構造および電子部品搭載用パッケージならびに電子装置 |
JP2009152520A (ja) * | 2007-11-26 | 2009-07-09 | Kyocera Corp | 信号端子と信号線路導体との接続構造および電子部品搭載用パッケージならびに電子装置 |
JP2011061750A (ja) * | 2009-09-15 | 2011-03-24 | Nippon Telegr & Teleph Corp <Ntt> | 高周波線路の接続方法、構造及び当該構造を有するパッケージ |
JP2016225457A (ja) * | 2015-05-29 | 2016-12-28 | 新光電気工業株式会社 | 半導体装置用ステム及び半導体装置 |
WO2019082602A1 (ja) * | 2017-10-26 | 2019-05-02 | 京セラ株式会社 | 接合構造体、半導体パッケージおよび半導体装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023109210A1 (zh) * | 2021-12-17 | 2023-06-22 | 青岛海信宽带多媒体技术有限公司 | 光模块 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021166073A1 (ja) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3998526B2 (ja) | 光半導体用パッケージ | |
JP4923542B2 (ja) | 光素子用ステムとこれを用いた光半導体装置 | |
JP6614811B2 (ja) | 半導体装置用ステム及び半導体装置 | |
US7875901B2 (en) | Optical device package and optical semiconductor device using the same | |
US7837398B2 (en) | Optical module having a block with feedthrough pins | |
US7039083B2 (en) | High speed optical transmission assembly | |
US11923652B2 (en) | Header for semiconductor package, and semiconductor package | |
WO2021014568A1 (ja) | To-can型光送信モジュール | |
US9106047B2 (en) | Optical semiconductor element package and optical semiconductor device | |
WO2021166073A1 (ja) | To-can型光半導体モジュール | |
JP4212845B2 (ja) | 光半導体素子モジュール | |
TWI845854B (zh) | 半導體裝置 | |
JP4105647B2 (ja) | 半導体レーザモジュール及び光伝送器 | |
JP5153682B2 (ja) | 半導体素子収納用パッケージおよび光半導体装置 | |
JP5515182B2 (ja) | 光モジュール | |
US7192201B2 (en) | Optical transmitting module having a de-coupling inductor therein | |
JPWO2002082578A1 (ja) | コネクタピンと信号線の接続構造及びそれを用いた半導体パッケージ | |
JPH0422908A (ja) | 光モジュール | |
US7391099B2 (en) | Optical modulator module | |
US20240047936A1 (en) | Electronic component package and the manufacturing method thereof | |
JP7246590B1 (ja) | 半導体レーザ光源装置 | |
JP7556107B1 (ja) | プラグおよびこれを備えた電子部品収納用パッケージ、電子モジュール | |
US20210305478A1 (en) | Header for semiconductor package and semiconductor package | |
JP3374732B2 (ja) | 半導体素子モジュールおよび半導体装置 | |
WO2020230327A1 (ja) | 光モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020547237 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20919884 Country of ref document: EP Kind code of ref document: A1 |