WO2022052527A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022052527A1
WO2022052527A1 PCT/CN2021/098265 CN2021098265W WO2022052527A1 WO 2022052527 A1 WO2022052527 A1 WO 2022052527A1 CN 2021098265 W CN2021098265 W CN 2021098265W WO 2022052527 A1 WO2022052527 A1 WO 2022052527A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
light
optical
chip
semiconductor
Prior art date
Application number
PCT/CN2021/098265
Other languages
English (en)
French (fr)
Inventor
刘维伟
邵乾
杨柳
吴涛
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021992828.7U external-priority patent/CN213122371U/zh
Priority claimed from CN202010953988.9A external-priority patent/CN114167554B/zh
Priority claimed from CN202010953872.5A external-priority patent/CN114167553B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022052527A1 publication Critical patent/WO2022052527A1/zh
Priority to US17/893,036 priority Critical patent/US20220404563A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4271Cooling with thermo electric cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • wavelength-tunable optical modules In optical fiber communication, wavelength-tunable optical modules have been widely studied.
  • the wavelength tunable optical module can not only make full use of the broadband resources of the DWDM (Dense Wave Length Division Multiplexing) system fiber, but also greatly improve the communication capacity of the network system.
  • Links such as networking and material preparation are more flexible and changeable, and can also be used as a backup light source for traditional DWDM systems, which is a key factor in an intelligent optical network.
  • an embodiment of the present disclosure discloses an optical module, including: a circuit board; a light emitting component electrically connected to the circuit board through a flexible board for emitting signal light; wherein, the light emitting component includes: a housing, which is The side wall is provided with a gap, and the flexible board is electrically connected to the inside of the shell through the gap; the semiconductor refrigerator is located on the bottom surface of the shell and can adjust the temperature; the silicon photonic chip is located on the surface of the semiconductor refrigerator and can modulate light to Generate signal light, including filter, light entrance and light exit.
  • the light inside the silicon photonic chip passes through the filter; the semiconductor light amplification chip is located on the surface of the semiconductor refrigerator, and the multi-wavelength light emitted by it can pass the incoming light.
  • the port enters the silicon photonics chip; the converging lens can condense the light from the light outlet of the silicon photonics chip.
  • an embodiment of the present disclosure discloses an optical module, including: a circuit board; a light emitting component electrically connected to the circuit board through a flexible board for emitting signal light; wherein, the light emitting component includes: a housing, which is There is a gap on it, a metallized ceramic is arranged at the gap, and the metallized ceramic is sealed with the gap; the outer wall of the metallized ceramic is provided with pins, and the flexible board is electrically connected with the pins; the metallized ceramic is provided with a pad; the semiconductor The optical amplifying chip is arranged in the casing and is used to emit light of various wavelengths; the adapter ceramic plate is arranged in the casing, and the semiconductor optical amplifier chip is connected with the adapter ceramic plate through the gold wire bonding wire, and the adapter ceramic plate passes through the The gold wire bonding wire is connected to the pad; the silicon photonic chip is arranged in the casing and connected to the pad through the gold wire bonding wire; it is used to select the wavelength of light of
  • an embodiment of the present disclosure discloses an optical module, comprising: a circuit board; a light emitting component electrically connected to the circuit board through a flexible board for emitting signal light; wherein, the light emitting component includes: a housing, which is There is a jack on the top, and the flexible board is inserted into the casing through the jack; the semiconductor optical amplification chip is arranged in the casing to emit light of various wavelengths; the adapter ceramic is arranged in the casing, and the semiconductor optical amplifier chip passes through the gold wire
  • the bonding wire is connected with the transfer ceramic, and the transfer ceramic is connected with the flexible board through the gold wire bonding wire; the silicon photonic chip is arranged in the shell and connected with the flexible board through the gold wire bonding wire; The wavelength of light is selected, and the selected light is modulated to obtain signal light of corresponding wavelength.
  • Fig. 1 is a schematic diagram of the connection relationship of optical communication terminals
  • FIG. 2 is a schematic structural diagram of an optical network terminal
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 4 is an exploded schematic diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a light emitting component in an optical module according to an embodiment of the present disclosure
  • FIG. 6 is an exploded schematic diagram of a light emitting component in an optical module provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a housing in an optical module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a metallized ceramic in an optical module provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a light emitting device in an optical module according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a silicon photonics chip in an optical module provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another angle of a silicon photonic chip in an optical module provided by an embodiment of the present disclosure.
  • FIG. 12 is a partial top view of a light emitting component in an optical module according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of an optical path of a light emitting device in an optical module according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a light emitting component in an optical module according to another embodiment of the present disclosure.
  • 15 is an exploded schematic diagram of a light emitting component in an optical module according to another embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a housing in an optical module provided by another embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of an adapter board in an optical module according to another embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a light emitting device 800 in an optical module according to another embodiment of the present disclosure.
  • FIG. 19 is a partial top view of a light emitting component in an optical module according to another embodiment of the present disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to transmit in information transmission equipment such as optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can realize low-cost, low-loss information transmission; while computers and other information processing equipment Electrical signals are used.
  • the optical module realizes the mutual conversion function of the above-mentioned optical and electrical signals in the technical field of optical fiber communication, and the mutual conversion of the optical signal and the electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on its internal circuit board.
  • the main electrical connection includes power supply, I2C signal, data information and grounding, etc.
  • the electrical connection realized by the gold finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of pins on the gold finger has formed a variety of industry protocols/norms.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100 , the optical module 200 , the optical fiber 101 and the network cable 103 .
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing device.
  • the connection between the local information processing device and the remote server is completed by the connection between the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101, and a two-way optical signal connection is established with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100, and a two-way electrical signal connection is established with the optical network terminal 100;
  • the optical module internally realizes the mutual conversion of optical signals and electrical signals, so as to establish an information connection between the optical fiber and the optical network terminal.
  • an optical signal from an optical fiber is converted into an electrical signal by an optical module and then input to the optical network terminal 100
  • an electrical signal from the optical network terminal 100 is converted into an optical signal by an optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to access the optical module 200 and establish a two-way electrical signal connection with the optical module 200; Signal connection; the connection between the optical module 200 and the network cable 103 is established through the optical network terminal 100 .
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal serves as the upper computer of the optical module to monitor the operation of the optical module.
  • the remote server has established a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the host computer of the optical module, providing data signals to the optical module and receiving data signals from the optical module.
  • the common optical module host computer also has optical lines. terminal etc.
  • FIG. 2 is a schematic structural diagram of an optical network terminal.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for connecting to an optical module electrical port such as a golden finger;
  • the cage 106 is provided with a heat sink 107, and the heat sink 107 has a first boss portion such as a fin for increasing the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal 100 , specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106 , and the optical port of the optical module is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage, so that the interior of the cage is provided with electrical connectors; the optical module is inserted into the cage, the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage. 106 and then diffuse through a heat sink 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure
  • FIG. 4 is an exploded schematic diagram of an optical module according to an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 , a light emitting assembly 400 and an optical fiber adapter 700 .
  • the upper casing 201 is covered with the lower casing 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square body.
  • the lower case 202 includes a main board and two side plates located on both sides of the main board and perpendicular to the main board; the upper case includes a cover plate, and the cover plates are closed on the two sides of the upper case to form a wrapping cavity; the upper shell can also include two side walls located on both sides of the cover plate and vertically arranged with the cover plate, and the two side walls are combined with the two side plates to realize the upper shell 201 The cover is closed on the lower case 202 .
  • the two openings may be openings (204, 205) at both ends of the optical module in the same direction, or may be two openings in different directions of the optical module;
  • the aforementioned same direction refers to the direction in which the connection line between the openings 203 and 2044 is located. , this direction is consistent with the length direction of the optical module 200;
  • the aforementioned different directions refer to the direction in which the connection line between the openings 204 and 205 is located is inconsistent with the length direction of the optical module 200, for example, the opening 203 is located at the end face of the optical module 200, while the opening 204 It is located at the side of the optical module 200 .
  • One of the openings is the electrical port 204, and the gold fingers of the circuit board protrude from the electrical port 204 and are inserted into the host computer such as the optical network terminal; the other opening is the optical port 205, which is used for external optical fiber access to connect the optical module inside the optical module.
  • the launch assembly 400; the circuit board 300, the light launch assembly 400, the optical fiber adapter 700 and other optoelectronic devices are located in the package cavity.
  • the combination of the upper casing and the lower casing is adopted to facilitate the installation of the circuit board 300, the light emitting assembly 400, the optical fiber adapter 700 and other devices into the casing, and the upper casing and the lower casing form the outermost package of the module Protective casing; the upper casing and the lower casing are generally made of metal materials, which are used to achieve electromagnetic shielding and heat dissipation.
  • the casing of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation And electromagnetic shielding parts cannot be installed, which is not conducive to production automation.
  • the unlocking part 203 is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part matched with the cage of the upper computer; pulling the end of the unlocking part 203 can make the unlocking part 203 move relatively on the surface of the outer wall; Fix the optical module in the cage of the host computer; by pulling the unlocking part 203, the engaging part of the unlocking part 203 moves with it, thereby changing the connection relationship between the engaging part and the host computer to release the optical module and the host computer. relationship, so that the optical module can be pulled out from the cage of the host computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP), etc.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP, etc.
  • the circuit board 300 is used to provide a signal circuit for electrical connection of the signal, and the signal circuit can provide the signal.
  • the circuit board 300 connects the electrical components in the optical module together according to the circuit design through circuit wiring, so as to realize electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver components are located on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector. Connector connections; these are inconvenient to implement with flexible circuit boards.
  • Flexible circuit boards are also used in some optical modules as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceiver components.
  • FIG. 5 is a schematic structural diagram of a light emitting component in an optical module according to an embodiment of the present disclosure
  • FIG. 6 is an exploded schematic diagram of a light emitting component in an optical module according to an embodiment of the present disclosure.
  • one end of the light emitting assembly 400 is connected to the circuit board 300 through the flexible board 500, and the circuit board 300 supplies power to the optical device of the light emitting assembly 400 through the flexible board 500 and provides high-frequency signals; light emission
  • the other end of the component 400 is connected to the optical fiber adapter 700 , and the signal light emitted by the light emitting component 400 is transmitted to the external optical fiber through the optical fiber adapter 700 to realize the emission of the signal light.
  • the light emitting assembly 400 includes a casing 600 and a light emitting device 800 disposed in the casing 600.
  • the casing 600 is provided with a notch, and the flexible board is electrically connected to the inside of the casing through the notch.
  • a metallized ceramic 602 is provided at the notch, and the metallized ceramic 602 is sealedly connected to the notch.
  • the metallized ceramic 602 is provided with a pad inside, and the light emitting device 800 passes through
  • the gold wire bonding wire is connected with the pad to transmit the electrical signal, high frequency signal, etc. transmitted from the circuit board 300 to the light emitting component 400 to the light emitting device 800, so that the light emitting device 800 emits signal light.
  • the metallized ceramic at the notch realizes the electrical connection between the flexible board and the inside of the housing through the notch.
  • a substrate is provided, one end of the flexible board protrudes into the housing through the gap, and the flexible board is located on the substrate;
  • a rigid object is required to carry the flexible board while sealing the gap.
  • the flexible board passes through the gap, so that the flexible board can establish an electrical connection with the inside of the casing through the gap.
  • Electrical devices silicon photonic chips, semiconductor refrigerators, etc.
  • inside the casing are connected to the flexible circuit board extending into the casing through gold wire bonding wires.
  • the casing 600 includes a main casing 601 , a bottom plate 603 and an upper cover plate 604 , the main casing 601 , the metallized ceramic 602 , the bottom plate 603 and the upper cover plate 604 form a sealed cavity, and the light emitting device 800 is provided with in the sealed cavity.
  • FIG. 7 is a schematic structural diagram of a housing in an optical module according to an embodiment of the present disclosure.
  • the main casing 601 includes a first side plate 6011 , a second side plate 6012 , a third side plate 6013 and a fourth side plate 6014 , a first side plate 6011 , a second side plate 6012 , and a third side plate 6011
  • the plate 6013 and the fourth side plate 6014 are sequentially connected to form a rectangular casing with upper and lower openings.
  • the notch 6016a is disposed on the second side plate 6012 along the length direction of the first side plate 6011, and the metallized ceramic 602 is sealedly connected to the main casing 601 through the notch.
  • the notch 6016a on the main casing 601 is located at the lower end of the second side plate 6012 , the top surface of the notch on the second side plate 6012 abuts against the top surface of the metallized ceramic 602 , and the side of the notch 6016a abuts against the side surface of the metallized ceramic 602 catch.
  • the main casing 601 is an integrally formed metal casing.
  • FIG. 8 is a schematic structural diagram of a metallized ceramic in an optical module according to an embodiment of the present disclosure.
  • the metallized ceramic 602 includes a fifth side plate 6021 , a sixth side plate 6022 and a seventh side plate 6023 , two ends of the sixth side plate 6022 are respectively connected with the fifth side plate 6021 and the seventh side plate 6023 connected, and the fifth side plate 6021 , the seventh side plate 6023 and the sixth side plate 6022 are all arranged at a certain angle.
  • the fifth side plate 6021, the sixth side plate 6022 and the seventh side plate 6023 are connected to form a C-shaped block, the top surface of the C-shaped block is sealed with the top surface of the gap 6016a, and the side of the opening of the C-shaped block is connected to the gap 6016a.
  • the sides are sealed and connected, and the bottom surface of the C-shaped block is sealed with the upper side of the bottom plate 603 .
  • the sixth side board 6022 is provided with a boss 6024, the side of the boss 6024 is provided with pins 6025, the flexible board 500 is connected with the pins 6025, so as to transmit the signal on the circuit board 300 to the metallization through the flexible board 500 Ceramic 602 on.
  • a groove 6026 is provided on the inner wall of the metallized ceramic 602, and a pad 6027 is provided on the bottom surface of the groove 6026. The transmitted signal is transmitted to the light emitting device 800 .
  • the inner side of the C-shaped block formed by the fifth side plate 6021 , the sixth side plate 6022 and the seventh side plate 6023 is provided with a groove 6026 , and the groove 6026 is a C-shaped groove 6026 .
  • the disk 6027 is arranged on the bottom surface of the C-shaped groove 6026, and the inner wall connected with the bottom surface of the C-shaped groove 6026 is wrapped with the light emitting device 800, so as to facilitate the connection between the pad 6027 and the light emission through gold wire bonding wires. Device 800.
  • the housing 600 provided by the present disclosure adopts the structural form of the main housing 601 , the metallized ceramic 602 , the bottom plate 603 and the upper cover plate 604 being sealed and connected, which can facilitate the connection between the light emitting device 800 and the flexible board 500 .
  • the light emitting device 800 is first fixed on the bottom plate 603, and then the main casing 601 is covered on the bottom plate 603, so that the bottom surface of the main casing 601 and the upper side of the bottom plate 603 are brazed and sealed; then the metal
  • the metallized ceramic 602 is installed at the gap 6016a of the main casing 601, and the bottom surface of the metallized ceramic 602 is brazed and sealed to the upper side of the bottom plate 603, and the top surface and the side surface of the metallized ceramic 602 are respectively brazed with the side of the gap 6016a.
  • the device 800 is encapsulated within the housing 600 .
  • the light emitting device 800 is electrically connected to the circuit board 300 through the metallized ceramic 602, the flexible board 500, the distance between the pin 6025 of the metallized ceramic 602 connecting the flexible board 500 and the pad 6027 is short, and the signal transmission distance is small, so The loss of the signal transmitted by the circuit board 300 through the flexible board 500 is less.
  • the fourth side plate 6014 of the main casing 601 is provided with a through hole 6015 , and the optical fiber adapter 700 is connected to the casing 600 through the through hole 6015 to realize the assembly of the optical fiber adapter 700 and the casing 600 .
  • FIG. 9 is a schematic structural diagram of a light emitting device in an optical module according to an embodiment of the present disclosure.
  • the light emitting device includes a semiconductor refrigerator 801, a silicon photonic chip 802, a semiconductor optical amplifier chip 805 and an adapter ceramic plate 804 arranged on the semiconductor refrigerator 801.
  • the semiconductor refrigerator 801 is arranged on the bottom plate 603,
  • the silicon photonic chip 802 and the semiconductor optical amplifier chip 805 are both disposed on the surface of the semiconductor refrigerator 801 and in direct contact, which can ensure better heat dissipation for the silicon photonic chip 802 and the semiconductor optical amplifier chip.
  • the silicon photonic chip 802 is arranged in the light outgoing direction of the semiconductor optical amplification chip 805 , the semiconductor optical amplification chip 805 and the silicon photonics chip 802 form a resonant cavity, and the light without signal emitted by the semiconductor optical amplification chip 805 is incident into the silicon photonics chip 802 , the light interferes in the silicon photonic chip 802, and part of the light returns to the semiconductor optical amplifier chip 805 for resonance amplification, and so on until the intensity of the light reaches the standard requirement, and the amplified light is modulated by the silicon photonic chip 802 to obtain a signal
  • the signal light is emitted from the silicon optical chip 802 and then coupled to the optical fiber adapter 700 through the lens, so as to realize the emission of the signal light.
  • a coupling lens 807 is also provided between the semiconductor optical amplification chip 805 and the silicon optical chip 802, and the coupling lens 807 is a converging lens, which is used for converging the light emitted by the semiconductor optical amplification chip 805 to the silicon optical chip 802, so as to improve the coupling efficiency of the optical path .
  • the heat sink 803 between the semiconductor optical amplifier chip 805 and the semiconductor refrigerator 801, the heat sink 803 is pasted on the upper surface of the semiconductor refrigerator 801, the semiconductor optical amplifier chip 805 is pasted on the upper surface of the heat sink 803, and so on
  • the heat generated by the semiconductor optical amplifier chip 805 is conducted to the semiconductor cooler 801 through the heat sink 807 , which can improve the heat dissipation efficiency of the semiconductor optical amplifier chip 805 .
  • the semiconductor optical amplifier chip 805 can emit light of various wavelengths, and the light of various wavelengths emitted by the semiconductor optical amplifier chip 805 is amplified in the resonant cavity formed between the semiconductor optical amplifier chip 805 and the silicon optical chip 802 .
  • Silicon photonics chips are capable of modulating light to generate signal light.
  • the silicon photonics chip includes an optical filter, a light entrance and a light exit. The light enters from the light entrance of the silicon photonics chip and goes out from the light exit. The light of multiple wavelengths at the optical port passes through the filter, and the filter allows the light of a specific wavelength to pass through according to its own wavelength bandpass characteristics, and the light of the specific wavelength is finally emitted from the light outlet of the silicon photonics chip.
  • the wavelength selection of the optical filter in the silicon photonics chip 802 is realized by controlling the temperature of the optical filter. Specifically, the temperature of the silicon photonics chip 802 can be controlled by the semiconductor refrigerator 801, so as to achieve the function of wavelength selection.
  • a thermistor 806 can be provided on the heat sink 803 , and the thermistor 806 can control the temperature in the housing 600 together with the semiconductor cooler 801 to better control the temperature of the silicon photonics chip 802 temperature, thereby improving wavelength selectivity.
  • FIG. 10 is a schematic structural diagram of a silicon photonics chip in an optical module provided by an embodiment of the present disclosure
  • FIG. 11 is a schematic structural schematic diagram of another angle of a silicon photonics chip in an optical module provided by an embodiment of the present disclosure.
  • the silicon photonic chip 802 includes an input optical port 8021 and an output optical port 8022, and the input optical port 8021 is arranged in the light exit direction of the semiconductor optical amplifier chip 805, so that the light emitted by the semiconductor optical amplifier chip 805 can emit light.
  • the light is collected into the input optical port 8021 of the silicon optical chip 802 through the coupling lens 807 , so that the light can be amplified in the resonant cavity formed by the silicon optical chip 802 and the semiconductor optical amplifying chip 805 .
  • the input optical port 8021 of the silicon photonics chip 802 and the end face of the silicon photonics chip 802 are arranged at a certain angle, that is, the input optical port 8021 is arranged at a certain angle with the horizontal plane, so that the output end face of the semiconductor optical amplifier chip 805 and the The horizontal plane is also set at a certain angle, and the converging light path of the coupling lens 807 is also set at a certain angle with the horizontal plane.
  • This arrangement can prevent the light emitted from the semiconductor optical amplifier chip 805 from being reflected at the end face of the input optical port 8021 and return to the semiconductor optical amplifier chip 805 in the same way.
  • the reflected light enters the silicon photonics chip 802 and affects the signal modulation of the light in the silicon photonics chip 802 .
  • the output optical port 8022 and the input optical port 8021 of the silicon photonics chip 802 have a preset angle for outputting the modulated signal light of the corresponding wavelength, and the signal light is converged and coupled to the optical fiber adapter 700, so the output optical port of the silicon photonics chip 802 8022 is located in the light incident direction of the fiber optic adapter 700 .
  • a collimating lens 808 and a converging lens 8010 are arranged between the output optical port 8022 and the optical fiber adapter 700 in sequence, and the collimating lens 808 and the converging lens 8010 are both pasted on the semiconductor.
  • the output optical port 8022, the collimating lens 808, the converging lens 8010 and the optical fiber adapter 700 are located on the same optical path.
  • the collimating lens 808 converts the signal light into a collimated beam
  • the collimated beam enters the converging lens 8010
  • the converging lens 8010 converts the collimated beam into a converging beam
  • the converged beam is coupled to fiber optic adapter 700 .
  • the transition ceramic board 804 can be arranged in parallel with the silicon photonic chip 802 on the upper surface of the semiconductor refrigerator 801, and the silicon photonic chip 802 is directly connected to the pads on the metallized ceramic 602 through gold wire bonding wires 6027 is connected to receive power supply and high-frequency signals transmitted by the circuit board 300 through the metallized ceramic 602; the semiconductor optical amplifier chip 805, the thermistor 806 and other devices are respectively connected to the transfer ceramic board 804 through gold wire bonding wires, and the transfer The ceramic plate 804 is connected to the pad 6027 on the inner wall of the metallized ceramic 602 through gold wire bonding, so as to receive the power-on signal transmitted by the circuit board 300 through the metallized ceramic 602; the semiconductor refrigerator 801 is connected to the metallized ceramic through the bottom plate 603 602 is electrically connected to receive the power-on signal transmitted by the circuit board 300 through the metallized ceramic 602 and the bottom plate 603 .
  • the semiconductor optical amplifier chip 805 emits light of various wavelengths under the action of the signal; the semiconductor refrigerator 801 adjusts the temperature in the casing 600 under the action of the signal, so that the silicon photonic chip 802 performs wavelength selection under temperature control; the silicon photonics chip 802 modulates the wavelength-selected light under the action of the signal to obtain signal light, and the signal light is coupled into the optical fiber adapter 700 .
  • transition ceramic board and the flexible circuit board extending into the housing are connected by gold wire bonding wires.
  • the flexible board connected to the circuit board is the main body of electrical connection of the light emitting assembly. According to the sealing state of the light reflecting assembly, the flexible circuit board can extend into the shell of the light emitting assembly, and the electrical devices in the shell can be directly connected to the flexible circuit board. ; The flexible circuit board can also not extend into the shell of the light emitting component, but directly connect with the metallized ceramics at the notch, and indirectly connect with the electrical devices in the shell through the metallized ceramics.
  • a glass light window 8011 can also be arranged between the converging lens 8010 and the fourth side plate 6014 of the main casing 601, the glass light window 8011 can be pasted on the inner side of the fourth side plate 6014, and the central axis of the glass light window 8011 It is coincident with the central axis of the through hole 6015 on the fourth side plate 6014 to ensure the transmission of the condensed light beam from the inside to the outside of the casing 600 .
  • FIG. 12 is a partial top view of a light emitting component in an optical module according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of an optical path of a light emitting device in an optical module according to an embodiment of the present disclosure.
  • the light emitting assembly 400 encapsulates the silicon optical chip 802 of the multi-wavelength tunable device together with the semiconductor optical amplifier chip 805 in the casing, which includes two transmitting end optical paths, and one optical path is a semiconductor optical path.
  • the specific installation steps of the light emitting assembly 400 provided by the embodiment of the present disclosure are as follows: firstly, the semiconductor light amplification chip 805 is welded to the heat sink 803; then the thermistor 806 is pasted on the corresponding position of the heat sink 803 by using The semiconductor refrigerator 801 is pasted on the bottom plate 603 of the housing 600 with silver glue for curing; then the silicon photonic chip 802, the heat sink 803 and the transfer ceramic plate 804 are bonded to the corresponding positions of the semiconductor refrigerator 801 by silver glue; then The silicon photonic chip 802 is connected to the bonding pad 6027 on the metallized ceramic 602, the semiconductor optical amplifier chip 805 and the transfer ceramic board 804, the thermistor 806 and the transfer ceramic board 804, and the transfer ceramic board 804 through gold wire bonding wires It is electrically connected to the pad 6027 on the metallized ceramic 602; then the coupling lens 807 is pasted on the corresponding position of the semiconductor refrigerator 801 according to the light output direction of the semiconductor optical amplification chip 8
  • FIG. 14 is a schematic structural diagram of a light emitting component in an optical module according to another embodiment of the present disclosure
  • FIG. 15 is an exploded schematic diagram of a light emitting component in an optical module according to another embodiment of the present disclosure.
  • one end of the tunable light emitting assembly 400 is connected to the circuit board 300 through the flexible board 500 , and the circuit board 300 supplies power and high frequency to the optical devices of the tunable light emitting assembly 400 through the flexible board 500 Signal;
  • the other end of the tunable light transmitting component 400 is connected to the optical fiber adapter 700, and the signal light emitted by the tunable light transmitting component 400 is transmitted to the external optical fiber through the optical fiber adapter 700 to realize the emission of the signal light.
  • the tunable light emitting assembly 400 includes a housing 600 and a light emitting device 800 disposed in the housing 600.
  • the housing 600 is provided with a jack through which the flexible board 500 can be inserted into the housing 600 to realize a flexible board 500 is connected to the tunable light emitting component 400.
  • the casing 600 includes a main casing 601, an upper cover 604 covering the main casing 601, a bottom plate 603 under the main casing, the main casing 601 and the upper cover 604 A casing with an internal cavity is formed, the insertion hole is arranged on the side of the main casing 601, and the flexible board 500 is inserted into the cavity of the main casing 601 through the insertion hole; in an embodiment of the present disclosure, the bottom plate 603 and the main casing 601 The housing 601 is integrally formed.
  • the tunable light emitting assembly 400 may further include an adapter board 900 , and the adapter board 900 is connected to the flexible board 500 to support the flexible board 500 .
  • the adapter board 900 can be inserted into the housing 600 through the jack on the main housing 601 to realize the connection between the flexible board 500 and the light emitting device 800 .
  • the second side plate 6012 is provided with a first insertion hole 6016 along its length direction, and the length dimension of the first insertion hole 6016 is the same as that of the second side plate 6012;
  • the board 6013 is provided with a second insertion hole 6017 along its length direction, the length dimension of the second insertion hole 6017 is smaller than the length dimension of the third side plate 6013; one end of the first insertion hole 6016 is connected with one end of the second insertion hole 6017 In this way, an "L"-shaped socket is provided on the left side of the main casing 601 .
  • the end face of the adapter plate 900 inserted into the casing 600 abuts the inner side wall of the second jack 6017, and the end face can be pasted on the inner side wall of the second jack 6017;
  • the bottom surface of the adapter board 900 can also be pasted on the lower side walls of the first socket 6016 and the second socket 6017 . In this way, the adapter plate 900 and the main casing 601 can be fixed.
  • the end of the adapter plate 900 that is inserted into the housing 600 is provided with a notch, the notch is disposed from the front side of the adapter plate 900 to the rear side of the adapter plate 900 , and the length of the notch is smaller than the distance between the front side and the rear side of the adapter plate 900 .
  • the distance between them, that is, the notch on the adapter plate 900 is an "L"-shaped notch.
  • pads 903 may also be provided on the adapter board 900 , and the light emitting device 800 is connected to the pads 903 through gold wire bonding wires, so that the information transmitted by the flexible board 500 can be transferred through the adapter board 900 . Connected to the light emitting device 800, so that the size of the flexible board 500 can be reduced.
  • the pads 903 may be arranged on the edge of the interposer board 900 along the notch, that is, the pads 903 may be arranged on the edge of the "L"-shaped notch.
  • the adapter plate 900 Since the light emitting device 800 is arranged in the cavity of the casing 600, the adapter plate 900 is inserted into the "L"-shaped socket of the main casing 601, and the notch on the adapter plate 900 wraps the light emitting device 800. If a pad 903 is arranged on the edge of the notch, then the light emitting device 800 is also wrapped in the "L" notch, so that setting the pad on the edge of the "L” notch facilitates its connection with the light emitting device 800 .
  • the adapter plate 900 and the casing 600 are non-airtight packaging, and the adapter plate 900 is inserted into the casing 600.
  • One end of the adapter plate 900 is connected to the flexible board 500, and the other end is connected to the flexible board 500.
  • the connection of the light emitting device 800 can facilitate the connection between the light emitting device 800 and the flexible board 500 .
  • the adapter board 900 When the adapter board 900 is connected to the flexible board 500 , considering that there are many transmission signals, the adapter board 900 can be connected to a plurality of flexible boards 500 .
  • the flexible board 500 includes an RF flexible board and a DC flexible board, the RF flexible board is connected to the upper side of the adapter board 900, the DC flexible board is connected to the lower side of the adapter board 900, and the RF flexible board is connected to the lower side of the adapter board 900.
  • the fourth side plate 6014 of the main casing 601 is provided with a through hole, and the optical fiber adapter 700 is connected to the casing 600 through the through hole, so as to realize the assembly of the optical fiber adapter 700 and the casing 600 .
  • FIG. 18 is a schematic structural diagram of a light emitting device in an optical module according to another embodiment of the present disclosure.
  • the light emitting device 800 includes a semiconductor cooler 801 , a silicon photonic chip 802 , a semiconductor optical amplifier chip 805 and an adapter ceramic plate 804 arranged on the semiconductor cooler 801 , and the semiconductor cooler 801 is arranged on the bottom plate 603 , used to control the temperature in the housing 600, the silicon photonic chip 802 and the semiconductor optical amplifier chip 805 are both arranged in direct contact with the surface of the semiconductor refrigerator 801, which can ensure better heat dissipation for the silicon photonic chip 802 and the semiconductor optical amplifier chip 805 .
  • the silicon photonic chip 802 is arranged in the light outgoing direction of the semiconductor optical amplification chip 805 , the semiconductor optical amplification chip 805 and the silicon photonics chip 802 form a resonant cavity, and the light of various wavelengths emitted by the semiconductor optical amplification chip 805 enters the silicon photonics chip 802 , the light is reflected in the silicon photonics chip 802, and part of the light returns to the semiconductor optical amplifying chip 805 for resonance amplification, and so on until the intensity of the light reaches the standard requirement, and the amplified light is wavelength-selected in the silicon photonics chip 802 , and modulate to obtain signal light, which is emitted from the silicon optical chip 802 and then coupled to the optical fiber adapter 700 through a lens, so as to realize the emission of the signal light.
  • a coupling lens 807 is also provided between the semiconductor optical amplification chip 805 and the silicon optical chip 802, and the coupling lens 807 is a converging lens, which is used for converging the light emitted by the semiconductor optical amplification chip 805 to the silicon optical chip 802, so as to improve the coupling efficiency of the optical path .
  • silicon photonics chips have the advantages of low optical loss, high integration density and compatibility with CMOS, they have great application potential in developing low-cost, high-speed optoelectronic devices.
  • the present disclosure encapsulates silicon photonics chips into 25G wireless tunable wavelength optical devices. , which has played a role in promoting the application and development of silicon photonics technology in optical modules.
  • the silicon optical chip and the semiconductor optical amplifier chip are packaged together, and wavelength tunable is performed based on the silicon optical chip and the semiconductor optical amplifier chip, so that the optical module has a multi-wavelength tunable function, and has the advantages of low cost, wide tuning range and power consumption.
  • the good advantages of low-level aspects are the preferred solution to solve the 25G colorless optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块(200),包括电路板(300)与光发射组件(400),光发射组件(400)中由半导体光放大芯片(805)、硅光芯片(802)以及半导体制冷器(801)构成了波长调谐机制,由半导体光放大芯片(805)提供多个波长,由硅光芯片(802)中的滤光片实现对波长的筛选,由半导体制冷器(801)实现对滤光片温度的调节,以进一步调节滤光片筛选波长的性能,在壳体(600)中放置上述器件,便于实现对器件的封装。

Description

一种光模块
本公开要求在2020年09月11日提交中国专利局、申请号为202010953988.9、专利名称为“一种光模块”、在2020年09月11日提交中国专利局、申请号为202010953872.5、专利名称为“一种光模块”、在2020年09月11日提交中国专利局、申请号为202021992828.7、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在光纤通信中,波长可调谐的光模块一直是被广泛研究的课题。波长可调谐光模块不仅可以充分利用DWDM(Dense Wave Length Division Multiplexing,密集型光波复用)系统光纤的宽带资源,极大地提高了网络系统的通信容量,同时相比固定波长的DWDM光模块,在组网、备料等环节更加灵活多变,并且还能作为传统DWDM系统的备份光源,是智能光网络的关键因素。
发明内容
第一方面,本公开实施例公开了一种光模块,包括:电路板;光发射组件,通过柔性板与电路板电连接,用于发射信号光;其中,光发射组件包括:壳体,其侧壁设置有缺口,柔性板通过缺口与壳体内部建立电连接;半导体制冷器,位于壳体的底面上,能够调节温度;硅光芯片,位于半导体制冷器的表面,能够对光进行调制以生成信号光,包括滤光片、入光口及出光口,硅光芯片内部的光通过滤光片;半导体光放大芯片,位于半导体制冷器的表面,其发出的多波长的光能够通过入光口进入硅光芯片;汇聚透镜,能够将来自硅光芯片出光口的光汇聚。
第二方面,本公开实施例公开了一种光模块,包括:电路板;光发射组件,通过柔性板与电路板电连接,用于发射信号光;其中,光发射组件包括:壳体,其上设有缺口,缺口处设置有金属化陶瓷,金属化陶瓷与缺口密封连接;金属化陶瓷的外壁上设有引脚,柔性板与引脚电连接;金属化陶瓷内设有焊盘;半导体光放大芯片,设置于壳体内,用于发出多种波长的光;转接陶瓷板,设置于壳体内,半导体光放大芯片通过金丝键合线与转接陶瓷板连接,转接陶瓷板通过金丝键合线与焊盘连接;硅光芯片,设置于壳体内,通过金丝键合线与焊盘连接;用于对多种波长的光进行波长选择,选择后的光进行调制得到相应波长的信号光。
第三方面,本公开实施例公开了一种光模块,包括:电路板;光发射组件,通过柔性板与电路板电连接,用于发射信号光;其中,光发射组件包括:壳体,其上设有插孔,柔性板通过插孔插入壳体内;半导体光放大芯片,设置于壳体内,用于发出多种波长的光;转接陶瓷,设置于壳体内,半导体光放大芯片通过金丝键合线与转接陶瓷连接,转接陶瓷 通过金丝键合线与柔性板连接;硅光芯片,设置于壳体内,通过金丝键合线与柔性板连接;用于对多种波长的光进行波长选择,并对选择后的光进行调制得到相应波长的信号光。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为本公开实施例提供的一种光模块的结构示意图;
图4为本公开实施例提供的一种光模块的分解示意图;
图5为本公开实施例提供的光模块中光发射组件的结构示意图;
图6为本公开实施例提供的光模块中光发射组件的分解示意图;
图7为本公开实施例提供的光模块中壳体的结构示意图;
图8为本公开实施例提供的光模块中金属化陶瓷的结构示意图;
图9为本公开实施例提供的光模块中光发射器件的结构示意图;
图10为本公开实施例提供的光模块中硅光芯片的结构示意图;
图11为本公开实施例提供的光模块中硅光芯片的另一角度结构示意图;
图12为本公开实施例提供的光模块中光发射组件的局部俯视图;
图13为本公开实施例提供的光模块中光发射器件的光路示意图;
图14为本公开另一实施例提供的光模块中光发射组件的结构示意图;
图15为本公开另一实施例提供的光模块中光发射组件的分解示意图;
图16为本公开另一实施例提供的光模块中壳体的结构示意图;
图17为本公开另一实施例提供的光模块中转接板的结构示意图;
图18为本公开另一实施例提供的光模块中光发射器件800的结构示意图;
图19为本公开另一实施例提供的光模块中光发射组件的局部俯视图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信息以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接。
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接。在本公开某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接。在本公开某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等第一凸台部。
光模块200插入光网络终端100中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供的光模块的分解示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、光发射组件400与光纤适配器700。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体。在本公开某一实施例中,下壳体202包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口具体可以是位于光模块同一方向的两端开口(204、205),也可以是在光模块不同方向的两处开口;前述同一方向指的是开口203和2044的连线所在的方向,该方向与光模块200的长度方向一致;前述不同方向指的是开口204和205的连线所在的方向与光模块200的长度方向不一致,例如开口203位于光模块200的端面,而开口204则位于光模块200的侧部。其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光发射组件400;电路板300、光发射组件400、光纤适配器700等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光发射组件400、光纤适配器700等器件安装到壳体中,由上壳体、下壳体形成模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利用实现电磁屏蔽以及散热,一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件203的末端可以在使解锁部件203在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件203的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件203,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300用于提供信号电连接的信号电路,信号电路可以提供信号。电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性 电路板配合使用,如硬性电路板与光收发组件之间可以采用柔性电路板连接。
图5为本公开实施例提供的光模块中光发射组件的结构示意图,图6为本公开实施例提供的光模块中光发射组件的分解示意图。如图5、图6所示,光发射组件400的一端通过柔性板500与电路板300连接,电路板300通过柔性板500向光发射组件400的光器件加电及提供高频信号;光发射组件400的另一端与光纤适配器700连接,光发射组件400发射的信号光通过光纤适配器700传输至外部光纤中,实现信号光的发射。
光发射组件400包括壳体600及设置于壳体600内的光发射器件800,壳体600上设有缺口,柔性板通过所述缺口与所述壳体内部建立电连接。缺口处可以有多种设计,在一种实施例中,缺口处设置有金属化陶瓷602,金属化陶瓷602与缺口密封连接。金属化陶瓷602的外壁上设有引脚,柔性板500与该引脚连接,以实现柔性板500与光发射组件400的连接;金属化陶瓷602的内部设有焊盘,光发射器件800通过金丝键合线与焊盘连接,以将电路板300向光发射组件400传输的电信号、高频信号等传输至光发射器件800,使得光发射器件800发射信号光。缺口处的金属化陶瓷实现了柔性板通过缺口与壳体内部建立电连接。
缺口处在另一种实施例中,设置有衬底,柔性板的一端通过缺口伸入壳体中,柔性板位于衬底上;衬底是硬性物体,由于柔性板较软,且不易对缺口形成密封,所以需要一个硬性物体承载柔性板,同时密封缺口。柔性板通过缺口,实现了柔性板通过缺口与壳体内部建立电连接。壳体内部的电器件(硅光芯片、半导体制冷器等)通过金丝键合线与伸入壳体内的柔性电路板连接。
如图6所示,壳体600包括主壳体601、底板603与上盖板604,主壳体601、金属化陶瓷602、底板603与上盖板604形成密封腔体,光发射器件800设置于该密封腔体内。
图7为本公开实施例提供的光模块中壳体的结构示意图。如图7所示,主壳体601包括第一侧板6011、第二侧板6012、第三侧板6013与第四侧板6014,第一侧板6011、第二侧板6012、第三侧板6013与第四侧板6014依次连接围成上、下端开口的矩形壳体,上盖板604与主壳体601的上端开口密封连接,底板603与主壳体601的下端开口密封光连接。缺口6016a设置于第二侧板6012沿第一侧板6011的长度方向上,金属化陶瓷602通过缺口与主壳体601密封连接。主壳体601上的缺口6016a位于第二侧板6012的下端,第二侧板6012上缺口的顶面与金属化陶瓷602的顶面相抵接,缺口6016a的侧面与金属化陶瓷602的侧面相抵接。本示例中,主壳体601为一体成型的金属壳体。
图8为本公开实施例提供的光模块中金属化陶瓷的结构示意图。如图8所示,金属化陶瓷602包括第五侧板6021、第六侧板6022与第七侧板6023,第六侧板6022的两端分别与第五侧板6021、第七侧板6023连接,且第五侧板6021、第七侧板6023与第六侧板6022之间均成一定角度设置。即第五侧板6021、第六侧板6022与第七侧板6023连接形成C型块,该C型块的顶面与缺口6016a的顶面密封连接,C型块开口的侧面与缺口6016a的侧面密封连接,C型块的底面与底板603的上侧面密封连接。
第六侧板6022上设有凸台6024,该凸台6024的侧面上设有引脚6025,柔性板500与引脚6025连接,以通过柔性板500将电路板300上的信号传输至金属化陶瓷602上。 金属化陶瓷602的内壁上设有凹槽6026,该凹槽6026的底面上设有焊盘6027,光发射器件800可通过金丝键合线与该焊盘6027连接,以将金属化陶瓷602传输的信号传输至光发射器件800。
在本公开一些实施例中,第五侧板6021、第六侧板6022与第七侧板6023形成的C型块的内侧设有凹槽6026,该凹槽6026为C型凹槽6026,焊盘6027设置在该C型凹槽6026的底面上,与该C型凹槽6026的底面相连接的内壁内包裹有光发射器件800,以方便通过金丝键合线连接焊盘6027与光发射器件800。
本公开提供的壳体600采用主壳体601、金属化陶瓷602、底板603与上盖板604之间密封连接的结构形式,可方便光发射器件800与柔性板500的连接。装配时,首先将光发射器件800固定于底板603上,然后将主壳体601罩设于底板603上,使得主壳体601的底面与底板603的上侧面进行钎焊密封连接;然后将金属化陶瓷602安装至主壳体601的缺口6016a处,且金属化陶瓷602的底面与底板603的上侧面进行钎焊密封连接,金属化陶瓷602的顶面、侧面分别与缺口6016a的侧面进行钎焊密封连接;然后将上盖板604盖合于主壳体601上,主壳体601的顶面与上盖板604的下侧面密封连接,从而完成壳体600的密封装配,并将光发射器件800封装于壳体600内。
光发射器件800通过金属化陶瓷602、柔性板500与电路板300实现电连接,金属化陶瓷602上连接柔性板500的引脚6025与焊盘6027的距离较短,信号传输距离较小,如此电路板300通过柔性板500传输的信号损耗较少。
主壳体601的第四侧板6014上设有通孔6015,光纤适配器700通过该通孔6015与壳体600连接,实现光纤适配器700与壳体600的装配。
图9为本公开实施例提供的光模块中光发射器件的结构示意图。如图9所示,光发射器件包括半导体制冷器801及设置于半导体制冷器801上的硅光芯片802、半导体光放大芯片805与转接陶瓷板804,半导体制冷器801设置在底板603上,用于控制壳体600内的温度,硅光芯片802与半导体光放大芯片805均设置在半导体制冷器801的表面且直接接触,可保证对硅光芯片802与半导体光放大芯片更好的散热。
硅光芯片802设置于半导体光放大芯片805的光出射方向上,半导体光放大芯片805与硅光芯片802形成谐振腔,半导体光放大芯片805发出的不携带信号的光射入硅光芯片802内,光在硅光芯片802内发生干涉,部分光重新回到半导体光放大芯片805进行谐振放大,如此反复,直至光的强度达到标准要求,如此放大后的光由硅光芯片802进行调制得到信号光,信号光由硅光芯片802射出后经透镜耦合至光纤适配器700,从而实现信号光的发射。
半导体光放大芯片805与硅光芯片802之间还设有耦合透镜807,该耦合透镜807为汇聚透镜,用于将半导体光放大芯片805发出的光汇聚至硅光芯片802,以提高光路耦合效率。
半导体光放大芯片805与半导体制冷器801之间还设有热沉803,该热沉803粘贴在半导体制冷器801的上表面上,半导体光放大芯片805粘贴在热沉803的上表面上,如此半导体光放大芯片805产生的热量通过热沉807传导至半导体制冷器801上,可提高半导 体光放大芯片805的散热效率。
半导体光放大芯片805可发射多种波长的光,半导体光放大芯片805射出的多种波长的光在半导体光放大芯片805与硅光芯片802之间组成的谐振腔内进行放大。
硅光芯片能够对光进行调制以生成信号光。硅光芯片包括滤光片、入光口及出光口,光从硅光芯片的入光口处传入,从出光口处传出,滤光片设置在硅光芯片内,来自硅光芯片入光口处的多个波长的光从滤光片处经过,滤光片根据自身的波长带通特性,允许特定波长的光通过,特定波长的光最终从硅光芯片的出光口射出。硅光芯片802内的滤光片进行波长选择是通过对滤光片的温度控制实现的,具体的可通过半导体制冷器801来控制硅光芯片802的温度,从而达到波长选择的功能。
在一种可能的实施方式汇总,可在热沉803上设置热敏电阻806,该热敏电阻806可与半导体制冷器801共同控制壳体600内的温度,更好地控制硅光芯片802的温度,从而提高波长选择性能。
图10为本公开实施例提供的光模块中硅光芯片的结构示意图,图11为本公开实施例提供的光模块中硅光芯片的另一角度结构示意图。如图10、图11所示,硅光芯片802包括输入光口8021与输出光口8022,输入光口8021设置于半导体光放大芯片805的光出射方向上,使得半导体光放大芯片805射出的光经耦合透镜807汇聚到硅光芯片802的输入光口8021内,方便光在硅光芯片802与半导体光放大芯片805组成的谐振腔内放大。
为了避免串扰及回损,硅光芯片802的输入光口8021与硅光芯片802的端面成一定角度设置,即输入光口8021与水平面成一定角度设置,如此半导体光放大芯片805的出射端面与水平面也成一定角度设置,同样耦合透镜807的汇聚光路也与水平面成一定角度设置。这样设置可避免半导体光放大芯片805射出的光在输入光口8021的端面处反射原路返回半导体光放大芯片805,同样也可避免半导体光放大芯片805射出的光在输入光口8021的端面处反射,反射光进入硅光芯片802内,影响硅光芯片802内光的信号调制。
在本公开实施例中,半导体光放大芯片805的出射端面与水平面之间的夹角、硅光芯片802的输入光口8021与水平面之间的夹角以及耦合透镜807的汇聚光路与水平面之间的夹角均为19.5°,如此可保证光路耦合效率最大。
硅光芯片802的输出光口8022与输入光口8021具有预设角度,用于输出调制后的相应波长的信号光,信号光汇聚耦合至光纤适配器700中,因此硅光芯片802的输出光口8022位于光纤适配器700的光入射方向上。为将输出光口8022输出的信号光耦合至光纤适配器700,输出光口8022与光纤适配器700之间依次设置有准直透镜808与汇聚透镜8010,准直透镜808与汇聚透镜8010均粘贴于半导体制冷器801的上表面上,且输出光口8022、准直透镜808、汇聚透镜8010与光纤适配器700位于同一光路上。输出光口8022输出的信号光射入准直透镜808后,准直透镜808将信号光转换为准直光束,准直光束射入汇聚透镜8010,汇聚透镜8010将准直光束转换为汇聚光束,汇聚光束耦合至光纤适配器700。
汇聚光束耦合至光纤适配器700内,容易在光纤适配器700的光纤插芯的端面上发生反射,反射后的光束易通过汇聚透镜8010、准直透镜808射入硅光芯片802的输出光口8022内,影响硅光芯片802的信号调制。如此,可在准直透镜808与汇聚透镜8010之间 设置隔离器809,硅光芯片802的输出光口8022输出信号光后,信号光射入准直透镜808后,准直透镜808将信号光转换为准直光束,准直光束透过隔离器809后射入汇聚透镜8010,汇聚透镜8010将准直光束转换为汇聚光束,汇聚光束耦合至光纤适配器700;汇聚光束在光纤适配器700的光纤插芯的端面上反射的光束透过汇聚透镜8010后射入隔离器809,隔离器809滤除反射光束,使得反射光束无法射入硅光芯片802内,避免了光的回波损耗。
在本公开实施例中,转接陶瓷板804可与硅光芯片802并行排列于半导体制冷器801的上表面上,硅光芯片802通过金丝键合线直接与金属化陶瓷602上的焊盘6027连接,以通过金属化陶瓷602接收电路板300传送的供电与高频信号;半导体光放大芯片805、热敏电阻806等器件分别通过金丝键合线与转接陶瓷板804连接,且转接陶瓷板804通过金丝键合线与金属化陶瓷602内壁上的焊盘6027连接,以通过金属化陶瓷602接收电路板300传送的加电信号;半导体制冷器801通过底板603与金属化陶瓷602电连接,以通过金属化陶瓷602、底板603接收电路板300传送的加电信号。如此,半导体光放大芯片805在信号作用下发出多种波长的光;半导体制冷器801在信号作用下调节壳体600内的温度,使得硅光芯片802在温度控制下进行波长选择;硅光芯片802在信号作用下对波长选择后的光进行调制得到信号光,信号光耦合至光纤适配器700内。
在另一实施例中,转接陶瓷板与伸入壳体内的柔性电路板通过金丝键合线连接。
与电路板连接的柔性板是光发射组件的电连接主体,根据光反射组件的密封状态不同,柔性电路板可以伸入光发射组件的壳体内,壳体内的电器件可以直接与柔性电路板连接;柔性电路板也可以不伸入光发射组件的壳体内,而是与缺口处的金属化陶瓷直接连接,通过金属化陶瓷间接与壳体内的电器件连接。
在汇聚透镜8010与主壳体601的第四侧板6014之间还可设置玻璃光窗8011,该玻璃光窗8011可粘贴于第四侧板6014的内侧面,且玻璃光窗8011的中心轴线与第四侧板6014上通孔6015的中心轴线相重合,以保证汇聚光束由壳体600的内部到外部的透射。
图12为本公开实施例提供的光模块中光发射组件的局部俯视图,图13为本公开实施例提供的光模块中光发射器件的光路示意图。如图12、图13所示,该光发射组件400将多波长可调谐器件的硅光芯片802与半导体光放大芯片805一起封装在壳体内,其包括两路发射端光路,一路光路为半导体光放大芯片805发出的光通过耦合透镜807汇聚到硅光芯片802的输入光口8021,光通过硅光芯片802与半导体光放大芯片802组成的谐振腔进行谐振放大;另一路光路为谐振放大后的光在硅光芯片802内进行波长选择,波长选择后的光在硅光芯片802内进行信号调制,调制后的信号光经相位干涉后由硅光芯片802的输出光口8022射出,出射后的信号光经准直透镜808转换为准直光束,准直光束透过隔离器809射入汇聚透镜8010,经由汇聚透镜8010将信号光耦合至光纤适配器700,由光纤适配器700传送至外部光纤,实现光的发射。
本公开实施例提供的光发射组件400的具体安装步骤为:首先将半导体光放大芯片805焊接到热沉803上;然后采用银胶将热敏电阻806粘贴在热沉803对应的位置;然后采用银胶将半导体制冷器801粘贴在壳体600的底板603上进行固化;然后采用银胶将硅光芯片802、热沉803、转接陶瓷板804粘接在半导体制冷器801的相应位置;然后通过金丝 键合线连接硅光芯片802与金属化陶瓷602上的焊盘6027、半导体光放大芯片805与转接陶瓷板804、热敏电阻806与转接陶瓷板804、转接陶瓷板804与金属化陶瓷602上的焊盘6027,实现电气连接;然后根据半导体光放大芯片805的光出射方向将耦合透镜807粘贴在半导体制冷器801相应位置;然后根据硅光芯片802的光出射方向对准直透镜808进行耦合,通过beam canner检查光斑,之后根据检查情况将准直透镜808粘贴在半导体制冷器801上;然后贴片机无源贴装隔离器809与汇聚透镜8010,将隔离器809与汇聚透镜8010粘贴在半导体制冷器801上;然后采用平行封焊机壳体,即采用平行封焊机密封主壳体601、金属化陶瓷602、底板603与上盖板604,将光发射器件800密封于壳体600内;最后耦合光纤适配器700至光功率最大,采用激光焊接机固定光纤适配器700至壳体600。
图14为本公开另一实施例提供的光模块中光发射组件的结构示意图,图15为本公开另一实施例提供的光模块中光发射组件的分解示意图。如图14、图15所示,可调谐光发射组件400的一端通过柔性板500与电路板300连接,电路板300通过柔性板500向可调谐光发射组件400的光器件加电及提供高频信号;可调谐光发射组件400的另一端与光纤适配器700连接,可调谐光发射组件400发射的信号光通过光纤适配器700传输至外部光纤中,实现信号光的发射。
可调谐光发射组件400包括壳体600及设置于壳体600内的光发射器件800,壳体600上设有插孔,柔性板500可通过该插孔插入壳体600内,以实现柔性板500与可调谐光发射组件400的连接。在本公开某一实施例中,壳体600包括主壳体601、盖合于主壳体601上的上盖板604,位于主壳体下的底板603,主壳体601与上盖板604形成具有内部空腔的壳体,插孔设置于主壳体601的侧面上,柔性板500通过插孔插入主壳体601的空腔内;在本公开某一实施例中,底板603与主壳体601一体成型。
光发射器件800通过金丝键合线与柔性板500连接,以将电路板300向可调谐光发射组件400传输的电信号、高频信号等传输至光发射器件800,使得光发射器件800发射信号光。
在本公开实施例中,可调谐光发射组件400还可包括转接板900,转接板900与柔性板500连接,以支撑柔性板500。转接板900可通过主壳体601上的插孔插入壳体600内,以实现柔性板500与光发射器件800的连接。
图16为本公开另一实施例提供的光模块中壳体的结构示意图,图17为本公开另一实施例提供的光模块中转接板的结构示意图。如图16、图17所示,主壳体601包括第一侧板6011、第二侧板6012、第三侧板6013及第四侧板6014,第一侧板6011、第二侧板6012、第三侧板6013、第四侧板603分别与底板603的侧边连接,形成上端开口的空腔壳体。也就是说,主壳体601为一方形体,该方形体的上端开口,且该方形体的内部为空腔。
主壳体601侧面上设置的缺口包括第一插孔6016与第二插孔6017,第一插孔6016设置在主壳体601的第二侧板6012上,第二插孔6017设置在主壳体601的第三侧板6013上,且第一插孔6016与第二插孔6017相连通。在本公开某一实施例中,第二侧板6012上沿其长度方向设有第一插孔6016,该第一插孔6016的长度尺寸与第二侧板6012的长度尺寸相同;第三侧板6013上沿其长度方向设有第二插孔6017,该第二插孔6017的长度尺 寸小于第三侧板6013的长度尺寸;第一插孔6016的一端与第二插孔6017的一端相连通,如此在主壳体601的左侧面上设置有一个“L”型的插孔。
转接板900插入主壳体601的插孔时,转接板900插入壳体600的端面与第二插孔6017的内侧壁相抵接,该端面可粘贴于第二插孔6017的内侧壁;也可将转接板900的底面粘贴于第一插孔6016与第二插孔6017的下侧壁上。如此,可实现转接板900与主壳体601的固定。
转接板900插入壳体600的一端设有缺口,该缺口由转接板900的前侧面向转接板900的后侧面设置,且缺口的长度尺寸小于转接板900前侧面与后侧面之间的距离,即转接板900上的缺口为“L”型的缺口。将转接板900插入主壳体601时,该缺口的第一侧面901可与第一插孔6016的内边缘相平齐,缺口的第二侧面902可与第二插孔6017的内边缘相平齐,以对转接板900进行限位。
在本公开实施例中,也可在转接板900上设置焊盘903,光发射器件800通过金丝键合线与焊盘903连接,如此柔性板500传输的信息可通过转接板900转接至光发射器件800,如此可减小柔性板500的尺寸。焊盘903可设置在转接板900沿缺口的边缘上,即焊盘903设置在“L”型缺口的边缘上。由于光发射器件800设置在壳体600的空腔内,转接板900插入主壳体601的“L”型插孔内,转接板900上的缺口包裹光发射器件800,在“L”型缺口的边缘上设置焊盘903,那么光发射器件800也包裹于“L”型缺口内,如此在“L”缺口的边缘设置焊盘有利于其与光发射器件800连接。
在本公开实施例中,转接板900与壳体600之间为非气密性封装,将转接板900插入壳体600内,转接板900的一端与柔性板500连接、另一端与光发射器件800连接,可方便光发射器件800与柔性板500的连接。装配时,首先将光发射器件800固定于主壳体601的空腔内,然后将转接板900插入主壳体601的插孔内,并固定转接板900与主壳体601;然后将光发射器件800的器件通过金丝键合线与转接板900上的焊盘903连接;然后将壳体600的上盖板604盖合于主壳体601的上端;然后将转接板900与柔性板500连接。
转接板900与柔性板500连接时,考虑到传输信号较多,因此转接板900可连接多个柔性板500。在本公开某一实施例中,柔性板500包括射频柔性板与直流柔性板,射频柔性板与转接板900的上侧面连接,直流柔性板与转接板900下侧面连接,通过射频柔性板将电路板300传输的高频信号(调制信号)传导至转接板900,通过直流柔性板将电路板300传输的电信号传导至转接板900,以分别实现电路板300与可调谐光发射组件400之间的连接。
主壳体601的第四侧板6014上设有通孔,光纤适配器700通过该通孔与壳体600连接,实现光纤适配器700与壳体600的装配。
图18为本公开另一实施例提供的光模块中光发射器件的结构示意图。如图18所示,光发射器件800包括半导体制冷器801及设置于半导体制冷器801上的硅光芯片802、半导体光放大芯片805与转接陶瓷板804,半导体制冷器801设置在底板603上,用于控制壳体600内的温度,硅光芯片802与半导体光放大芯片805均设置在半导体制冷器801的表面直接接触,可保证对硅光芯片802与半导体光放大芯片805更好的散热。
硅光芯片802设置于半导体光放大芯片805的光出射方向上,半导体光放大芯片805与硅光芯片802形成谐振腔,半导体光放大芯片805发出的多种波长的光射入硅光芯片802内,光在硅光芯片802内发生反射,部分光重新回到半导体光放大芯片805进行谐振放大,如此反复,直至光的强度达到标准要求,如此放大后的光在硅光芯片802内进行波长选择、调制得到信号光,信号光由硅光芯片802射出后经透镜耦合至光纤适配器700,从而实现信号光的发射。
半导体光放大芯片805与硅光芯片802之间还设有耦合透镜807,该耦合透镜807为汇聚透镜,用于将半导体光放大芯片805发出的光汇聚至硅光芯片802,以提高光路耦合效率。
半导体光放大芯片805与半导体制冷器801之间还设有热沉803,该热沉803粘贴在半导体制冷器801的上表面上,半导体光放大芯片805粘贴在热沉803的上表面上,如此半导体光放大芯片805产生的热量通过热沉803传导至半导体制冷器801上,可提高半导体光放大芯片805的散热效率。
半导体光放大芯片805射出的光在半导体光放大芯片805与硅光芯片802之间组成的谐振腔内进行放大,放大后的光在硅光芯片802内进行波长选择、信号调制等,硅光芯片802可通过温度控制进行波长选择,如此可通过半导体制冷器801来控制硅光芯片802的温度,从而达到波长选择的功能。还可在热沉803上设置热敏电阻,该热敏电阻可与半导体制冷器801共同控制壳体600内的温度,更好地控制硅光芯片802的温度,从而提高波长选择性能。
图19为本公开另一实施例提供的光模块中光发射组件的局部俯视图,如图19所示,该光发射组件400将多波长可调谐器件的硅光芯片802与半导体光放大芯片805一起封装在壳体600内,其包括两路发射端光路,一路光路为半导体光放大芯片805发出的光通过耦合透镜807汇聚到硅光芯片802的输入光口8021,光通过硅光芯片802与半导体光放大芯片802组成的谐振腔进行谐振放大;另一路光路为谐振放大后的光在硅光芯片802内进行波长选择,波长选择后的光在硅光芯片802内进行信号调制,调制后的信号光经相位干涉后由硅光芯片802的输出光口8022射出,出射后的信号光经准直透镜808转换为准直光束,准直光束透过隔离器809射入汇聚透镜8010,经由汇聚透镜8010将信号光耦合至光纤适配器700,由光纤适配器700传送至外部光纤,实现光的发射。
本公开实施例提供的可调谐光发射组件400的具体安装步骤为:首先将半导体光放大芯片805焊接到热沉803上;然后采用银胶将热敏电阻粘贴在热沉803对应的位置;然后采用银胶将半导体制冷器801粘贴在壳体600的底板603上进行固化;然后采用银胶将硅光芯片802、热沉803、转接陶瓷板804粘接在半导体制冷器801的相应位置;然后通过金丝键合线连接硅光芯片802与柔性板500、半导体光放大芯片805与转接陶瓷板804、热敏电阻与转接陶瓷板804及转接陶瓷板804与柔性板500,实现电气连接;然后根据半导体光放大芯片805的光出射方向将耦合透镜807粘贴在半导体制冷器801相应位置;然后根据硅光芯片802的光出射方向对准直透镜808进行耦合,通过beam canner检查光斑,之后根据检查情况将准直透镜808粘贴在半导体制冷器801上;然后贴片机无源贴装隔离 器809与汇聚透镜8010,将隔离器809与汇聚透镜8010粘贴在半导体制冷器801上;然后将上盖板604粘接到主壳体601的上端面上密封;最后耦合光纤适配器700至光功率最大,采用激光焊接机固定光纤适配器700至壳体600。
由于硅光芯片具有低光损耗、高集成密度和与CMOS兼容的优势,在发展低成本、高速光电器件方面有着巨大的应用潜力,本公开将硅光芯片封装到25G无线可调波长光器件中,为硅光技术在光模块中的应用发展起到了推动作用。本公开将硅光芯片与半导体光放大芯片封装在一起,基于硅光芯片与半导体光放大芯片进行波长可调谐,使得光模块具有多波长可调谐功能,且具有低成本、调谐范围广、功耗低等方面的良好优势,是解决25G无色光模块的优选解决方案。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (27)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光发射组件,通过柔性板与所述电路板电连接,用于发射信号光;
    其中,所述光发射组件包括:
    壳体,其侧壁设置有缺口,所述柔性板通过所述缺口与所述壳体内部建立电连接;
    半导体制冷器,位于所述壳体的底面上,能够调节温度;
    硅光芯片,位于所述半导体制冷器的表面,能够对光进行调制以生成所述信号光;包括滤光片、入光口及出光口,所述硅光芯片内部的光通过所述滤光片;
    半导体光放大芯片,位于所述半导体制冷器的表面,其发出的多波长的光能够通过所述入光口进入所述硅光芯片;
    汇聚透镜,能够将来自硅光芯片出光口的光汇聚。
  2. 根据权利要求1所述的光模块,其特征在于,所述光发射组件还包括
    耦合透镜,位于所述半导体光放大芯片与所述硅光芯片之间,能够将于所述半导体光放大芯片的光耦合进所述硅光芯片的入光口;
    准直透镜,位于所述硅光芯片与所述汇聚透镜之间,能够将所述硅光芯片出光口的光准直为平行光;
    隔离器,位于所述准直透镜与所述汇聚透镜之间,光能够单方向通过所述隔离器;
    光纤适配器,位于所述壳体上,能够接收来自所述汇聚透镜的光。
  3. 根据权利要求1或2任一所述的光模块,其特征在于,所述光发射组件还包括
    金属化陶瓷,位于所述壳体缺口处;其一端位于所述壳体外部,其一端表面设置有金属焊盘,所述金属焊盘与所述柔性板焊接;其另一端位于所述壳体内部,与所述壳体内部建立电连接;所述金属化陶瓷实现所述柔性板通过所述缺口与所述壳体内部建立电连接。
  4. 根据权利要求1或2任一所述的光模块,其特征在于,所述光发射组件还包括
    衬底,位于所述壳体缺口处;所述柔性板的一端通过所述缺口伸入所述壳体中,所述柔性板位于所述衬底上。
  5. 根据权利要求1或2任一所述的光模块,其特征在于,所述半导体光放大芯片与所述半导体制冷器之间设置有热沉,所述热沉上设置有热敏电阻。
  6. 根据权利要求3所述的光模块,其特征在于,所述壳体包括主壳体、盖合于所述主壳体上的上盖板与底板,所述主壳体包括第一侧板、第二侧板、第三侧板与第四侧板,所述第一侧板、所述第二侧板、所述第三侧板与所述第四侧板依次连接形成空腔壳体;
    所述缺口设置于所述第二侧板上沿所述第一侧板的长度方向上,所述金属化陶瓷通过所述缺口与所述主壳体密封连接。
  7. 根据权利要求5所述的光模块,其特征在于,所述金属化陶瓷包括第五侧板、第六侧板与第七侧板,所述第六侧板的两端分别与所述第五侧板、所述第七侧板连接,且所述第五侧板、所述第七侧板与所述第六侧板之间均成一定角度设置;所述第五侧板、所述 第六侧板与所述第七侧板的侧面分别与所述缺口的侧面密封连接;
    所述第六侧板上设有凸台,所述引脚设置于所述凸台上。
  8. 根据权利要求3所述的光模块,其特征在于,所述硅光芯片通过金丝键合线与所述金属化陶瓷连接。
  9. 根据权利要求4所述的光模块,其特征在于,所述硅光芯片通过金丝键合线与所述柔性板连接。
  10. 一种光模块,其特征在于,包括:
    电路板;
    光发射组件,通过柔性板与所述电路板电连接,用于发射信号光;
    其中,所述光发射组件包括:
    壳体,其上设有缺口,所述缺口处设置有金属化陶瓷,所述金属化陶瓷与所述缺口密封连接;所述金属化陶瓷的外壁上设有引脚,所述柔性板与所述引脚电连接;所述金属化陶瓷内设有焊盘;
    半导体光放大芯片,设置于所述壳体内,用于发出多种波长的光;
    转接陶瓷板,设置于所述壳体内,所述半导体光放大芯片通过金丝键合线与所述转接陶瓷板连接,所述转接陶瓷板通过金丝键合线与所述焊盘连接;
    硅光芯片,设置于所述壳体内,通过金丝键合线与所述焊盘连接;用于对所述多种波长的光进行波长选择,选择后的光进行调制得到相应波长的信号光。
  11. 根据权利要求10所述的光模块,其特征在于,所述壳体包括主壳体、盖合于所述主壳体上的上盖板与底板,所述主壳体包括第一侧板、第二侧板、第三侧板与第四侧板,所述第一侧板、所述第二侧板、所述第三侧板与所述第四侧板依次连接形成空腔壳体;
    所述缺口设置于所述第二侧板上沿所述第一侧板的长度方向上,所述金属化陶瓷通过所述缺口与所述主壳体密封连接。
  12. 根据权利要求11所述的光模块,其特征在于,所述金属化陶瓷包括第五侧板、第六侧板与第七侧板,所述第六侧板的两端分别与所述第五侧板、所述第七侧板连接,且所述第五侧板、所述第七侧板与所述第六侧板之间均成一定角度设置;所述第五侧板、所述第六侧板与所述第七侧板的侧面分别与所述缺口的侧面密封连接;
    所述第六侧板上设有凸台,所述引脚设置于所述凸台上。
  13. 根据权利要求12所述的光模块,其特征在于,所述金属化陶瓷的内壁上设有凹槽,所述焊盘设置于所述凹槽的底面上。
  14. 根据权利要求10所述的光模块,其特征在于,所述硅光芯片包括输入光口与输出光口,所述输入光口设置于所述半导体光放大芯片的光出射方向上,所述输出光口与所述输入光口之间具有预设角度。
  15. 根据权利要求14所述的光模块,其特征在于,所述硅光芯片的输入光口与所述硅光芯片的端面成一定角度设置。
  16. 根据权利要求10所述的光模块,其特征在于,所述光发射组件还包括半导体制冷器,其设置于所述壳体内,所述半导体光放大芯片、所述硅光芯片与所述转接陶瓷板均 设置于所述半导体制冷器上。
  17. 根据权利要求16所述的光模块,其特征在于,所述半导体光放大芯片与所述半导体制冷器之间设置有半导体光放大热沉,所述半导体光放大芯片设置于所述半导体光放大热沉上;所述半导体光放大热沉上还设置有热敏电阻。
  18. 根据权利要求16所述的光模块,其特征在于,所述半导体制冷器上设置有透镜,用于将所述硅光芯片射出的相应波长的信号光耦合至光纤适配器。
  19. 一种光模块,其特征在于,包括:
    电路板;
    光发射组件,通过柔性板与所述电路板电连接,用于发射信号光;
    其中,所述光发射组件包括:
    壳体,其上设有插孔,所述柔性板通过所述插孔插入所述壳体内;
    半导体光放大芯片,设置于所述壳体内,用于发出多种波长的光;
    转接陶瓷,设置于所述壳体内,所述半导体光放大芯片通过金丝键合线与所述转接陶瓷连接,所述转接陶瓷通过金丝键合线与所述柔性板连接;
    硅光芯片,设置于所述壳体内,通过金丝键合线与所述柔性板连接;用于对所述多种波长的光进行波长选择,并对选择后的光进行调制得到相应波长的信号光。
  20. 根据权利要求19所述的光模块,其特征在于,所述光发射组件还包括转接板,其通过所述插孔插入所述壳体内;
    所述转接板与所述柔性板连接,用于支撑所述柔性板。
  21. 根据权利要求20所述的光模块,其特征在于,所述壳体包括主壳体及盖合于所述主壳体上的盖板,所述主壳体与所述盖板形成具有内部空腔的壳体;
    所述插孔设置于所述主壳体的侧面上。
  22. 根据权利要求21所述的光模块,其特征在于,所述主壳体包括底板、第一侧板、第二侧板、第三侧板与第四侧板,所述第一侧板、所述第二侧板、所述第三侧板与所述第四侧板分别与所述底板的侧边连接,形成上端开口的空腔壳体;
    所述插孔包括第一插孔与第二插孔,所述第一插孔设置在所述第二侧板上,所述第二插孔设置在所述第三侧板上,且所述第一插孔与所述第二插孔相连通。
  23. 根据权利要求22所述的光模块,其特征在于,所述转接板插入所述壳体的端面与所述第二插孔的内侧壁相抵接;
    所述转接板插入所述壳体的一端设有缺口,所述缺口的第一侧面与所述第一插孔的内边缘相平齐,所述缺口的第二侧面与所述第二插孔的内边缘相平齐。
  24. 根据权利要求19所述的光模块,其特征在于,所述硅光芯片包括输入光口与输出光口,所述输入光口设置于所述半导体光放大芯片的光出射方向上,所述输出光口与所述输入光口具有预设角度。
  25. 根据权利要求24所述的光模块,其特征在于,所述硅光芯片的输入光口与所述硅光芯片的端面成一定角度设置。
  26. 根据权利要求23所述的光模块,其特征在于,所述光发射组件还包括半导体制 冷器,其设置于所述壳体内,所述半导体光放大芯片、所述硅光芯片与所述转接陶瓷均设置于所述半导体制冷器上。
  27. 根据权利要求26所述的光模块,其特征在于,所述缺口的第一侧面、第二侧面分别与所述半导体制冷器相邻的两侧面相抵接。
PCT/CN2021/098265 2020-09-11 2021-06-04 一种光模块 WO2022052527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/893,036 US20220404563A1 (en) 2020-09-11 2022-08-22 Optical Module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010953988.9 2020-09-11
CN202021992828.7U CN213122371U (zh) 2020-09-11 2020-09-11 一种光模块
CN202010953988.9A CN114167554B (zh) 2020-09-11 2020-09-11 一种光模块
CN202010953872.5 2020-09-11
CN202010953872.5A CN114167553B (zh) 2020-09-11 2020-09-11 一种光模块
CN202021992828.7 2020-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/893,036 Continuation US20220404563A1 (en) 2020-09-11 2022-08-22 Optical Module

Publications (1)

Publication Number Publication Date
WO2022052527A1 true WO2022052527A1 (zh) 2022-03-17

Family

ID=80630217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098265 WO2022052527A1 (zh) 2020-09-11 2021-06-04 一种光模块

Country Status (2)

Country Link
US (1) US20220404563A1 (zh)
WO (1) WO2022052527A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230115731A1 (en) * 2021-10-13 2023-04-13 Electronics And Telecommunications Research Institute Optical submodule

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084202A1 (en) * 2001-10-09 2005-04-21 Infinera Corporation Monitoring of a laser source with front and rear output photodetectors to determine frontal laser power and power changes over laser lifetime
CN1721899A (zh) * 2004-02-11 2006-01-18 Jds尤尼弗思公司 小型光学分组件
US20160156149A1 (en) * 2014-11-28 2016-06-02 Fujitsu Limited Tunable laser and tunable laser module
CN107611774A (zh) * 2017-09-30 2018-01-19 武汉光迅科技股份有限公司 一种硅基集成可调谐激光器结构及其控制方法
CN110350394A (zh) * 2019-07-17 2019-10-18 武汉光迅科技股份有限公司 一种基于调制器的波长可调谐器件封装结构
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN111146683A (zh) * 2018-11-02 2020-05-12 颖飞公司 基于硅光子的可调谐激光装置和其封装结构
CN213122371U (zh) * 2020-09-11 2021-05-04 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084202A1 (en) * 2001-10-09 2005-04-21 Infinera Corporation Monitoring of a laser source with front and rear output photodetectors to determine frontal laser power and power changes over laser lifetime
CN1721899A (zh) * 2004-02-11 2006-01-18 Jds尤尼弗思公司 小型光学分组件
US20160156149A1 (en) * 2014-11-28 2016-06-02 Fujitsu Limited Tunable laser and tunable laser module
CN107611774A (zh) * 2017-09-30 2018-01-19 武汉光迅科技股份有限公司 一种硅基集成可调谐激光器结构及其控制方法
CN111146683A (zh) * 2018-11-02 2020-05-12 颖飞公司 基于硅光子的可调谐激光装置和其封装结构
CN110350394A (zh) * 2019-07-17 2019-10-18 武汉光迅科技股份有限公司 一种基于调制器的波长可调谐器件封装结构
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN213122371U (zh) * 2020-09-11 2021-05-04 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
US20220404563A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2021227317A1 (zh) 一种光模块
CN213122371U (zh) 一种光模块
WO2021248957A1 (zh) 一种光模块
CN214795314U (zh) 一种光模块
CN214795313U (zh) 一种光模块
US20220224073A1 (en) Optical module
CN113325526A (zh) 一种光模块
CN216248434U (zh) 一种光发射次模块及光模块
WO2022052842A1 (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
WO2022127059A1 (zh) 一种光模块
WO2022052527A1 (zh) 一种光模块
CN114675383A (zh) 一种光模块
CN114624829B (zh) 一种光模块
CN114637079A (zh) 一种光模块
CN114167553B (zh) 一种光模块
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN113009649B (zh) 一种光模块
WO2021244101A1 (zh) 一种光模块
CN214540156U (zh) 一种光模块
CN113281853B (zh) 一种光模块
CN114624828B (zh) 一种光模块
CN114063224B (zh) 一种光模块
CN114167554B (zh) 一种光模块
WO2022262551A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865587

Country of ref document: EP

Kind code of ref document: A1