WO2021248957A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021248957A1
WO2021248957A1 PCT/CN2021/080971 CN2021080971W WO2021248957A1 WO 2021248957 A1 WO2021248957 A1 WO 2021248957A1 CN 2021080971 W CN2021080971 W CN 2021080971W WO 2021248957 A1 WO2021248957 A1 WO 2021248957A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
micro
wavelength
optical module
Prior art date
Application number
PCT/CN2021/080971
Other languages
English (en)
French (fr)
Inventor
张强
赵其圣
陈思涛
隋少帅
杨世海
杨柳
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021248957A1 publication Critical patent/WO2021248957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • the radio access network Radio Access Network, RAN
  • AAU Active Antenna Unit
  • DU Distributed Unit
  • CU Central Unit, centralized unit
  • the 5G bearer network is composed of three parts: fronthaul, midhaul, and backhaul.
  • the fronthaul is mainly responsible for the network transmission between the antenna site AAU and the baseband site DU/CU.
  • An application scenario in the field of 5G fronthaul requires the use of a colorless optical module, that is, the optical module on the AAU can flexibly set its operating wavelength.
  • a message channel is established for auxiliary channel control and management.
  • AAU flexibly adjusts the wavelength of the AAU transmitter according to the auxiliary signal information sent by the DU optical module to avoid the complexity of setting up multiple optical modules at the antenna end.
  • the traditional wave modulation method is to control the working temperature of the laser in the optical module through the TEC (Thermoelectric Cooler, semi-conductor cooler), so that it can output emission light of different wavelengths.
  • an optical module including: a circuit board; an MCU, which is electrically connected to the circuit board, and is used to load an electrical signal of an auxiliary channel message to a bias current; and a light source is used to receive Auxiliary channel message electrical signal bias current and output broad-spectrum optical signal; silicon optical chip, electrically connected to the circuit board, for receiving the broad-spectrum optical signal output by the light source; wavelength tuning control chip, and the silicon
  • the optical chip is electrically connected to send a wavelength tuning control signal;
  • the silicon optical chip is provided with: a tunable laser, which receives the broad-spectrum optical signal output by the light source, and includes a plurality of micro-ring waveguides, which are used to adjust the wavelength according to the wavelength
  • the tuning control signal changes the refractive index of the micro-ring waveguide to select a specific wavelength optical signal from the broad-spectrum optical signal; a modulator, connected to the tunable laser, is used to modulate a data carrier at the specific wavelength
  • an optical signal an optical signal
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the optical network terminal structure
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a circuit board in an optical module provided by an embodiment of the disclosure.
  • FIG. 6 is a partial schematic diagram of an optical module provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of wavelength selection of a tunable laser in an optical module provided by an embodiment of the disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment, and the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data information and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry, based on this, the definition of pins on the golden finger forms a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103.
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101; the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between the optical signal and the electrical signal, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal.
  • the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal acts as the upper computer of the optical module to monitor the operation of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG. 2 is a schematic diagram of the optical network terminal structure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers;
  • a radiator 107 is provided on the cage 106, and the radiator 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal 100. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then diffuse through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300 and a silicon optical chip 400, a light source 500 and an optical fiber adapter 403.
  • the optical module can be packaged in a standard SFP28 package, using a dual LC optical interface, the electrical interface is defined by 20pin SFP28 golden fingers, and the circuit board 300 adopts a double-layer circuit board.
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower casing 202 includes a main board and two side plates located on both sides of the main board and perpendicular to the main board; the upper casing includes a cover plate, which covers the two sides of the upper casing
  • the upper casing may also include two side walls located on both sides of the cover plate and perpendicular to the cover plate. The two side walls are combined with the two side plates to realize the upper casing 201 Covered on the lower housing 202.
  • the two openings can be two openings (204, 205) at the same end of the optical module, or two openings at different ends of the optical module; one of the openings is the electrical port 204, and the golden finger of the circuit board extends from the electrical port 204
  • the other opening is the optical port 205, which is used for external optical fiber access to connect the silicon optical chip 400 inside the optical module; the circuit board 300, silicon optical chip 400, light source 500 and other optoelectronic devices Located in the package cavity.
  • the upper shell and the lower shell are combined with the assembly method to facilitate the installation of the circuit board 300, silicon optical chip 400 and other components into the shell.
  • the upper shell and the lower shell form the outermost package protection shell of the optical module.
  • the upper shell and the lower shell generally use metal materials to achieve electromagnetic shielding and heat dissipation.
  • the shell of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding The components cannot be installed, and it is not conducive to production automation.
  • the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part that matches the cage of the host computer; pulling the end of the unlocking part can make the unlocking part move relative to the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging part of the unlocking part. Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, transistors, MOS tubes) and chips (such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP) and so on.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP
  • the MCU800 electrically connected to the circuit board 300, is used to receive the wavelength selection information sent by the host computer and output the wavelength selection control command.
  • the wavelength selection control command output by the MCU800 is directly transmitted to the wavelength tuning control chip 700, and the wavelength tuning control chip 700 is generated from this Wavelength tuning control signal.
  • the MCU 800 loads the electrical signal of the auxiliary channel message into the bias current, so that the light source 500 outputs a broad-spectrum optical signal according to the bias current loaded with the electrical signal of the auxiliary channel message.
  • the circuit board 300 connects the electrical components in the optical module according to the circuit design through circuit wiring to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver component is located on the circuit board, the rigid circuit board can also provide Stable load; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • a metal pin/gold finger is formed on the end surface of one side of the rigid circuit board for the electrical connection Connector connection; these are inconvenient for flexible circuit boards.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver components.
  • the silicon optical chip 400 is arranged on the circuit board 300 and is electrically connected to the circuit board 300. In an embodiment of the present disclosure, it may be wire-bonded connection; a plurality of conductive wires pass between the periphery of the silicon optical chip 400 and the circuit board 300 Therefore, the silicon optical chip 400 is generally arranged on the surface of the circuit board 300.
  • the silicon optical chip 400 and the light source 500 are optically connected through a lens, that is, the silicon optical chip 400 receives the broad-spectrum optical signal from the light source 500 through the lens, and then modulates the optical signal.
  • the middle is to load the data signal onto the optical signal; the silicon optical chip 400 receives the light from the optical fiber adapter 403, and then converts the optical signal into an electrical signal.
  • the silicon optical chip 400 and the optical fiber adapter 403 are coupled through free space, and the optical fiber adapter 403 realizes the optical connection with the external optical fiber of the optical module.
  • the light modulated by the silicon optical chip 400 is transmitted to the optical fiber adapter 403 through the optical fiber adapter 403, and is transmitted to the external optical fiber through the optical fiber adapter 403;
  • the external optical fiber of the optical module outputs light carrying data, or the external optical fiber of the optical module receives light carrying data.
  • the light source 500 can be SOA (Semiconductor Optical Amplifier).
  • SOA semiconductor Optical Amplifier
  • the principle of SOA is similar to that of rare earth-doped fiber amplifiers, but there are also differences. Its amplification characteristics mainly depend on the dielectric characteristics of the active layer and the characteristics of the laser cavity, although it is also a particle Number inversion amplifies light emission, but the medium of light emission is unbalanced carriers, that is, electron-hole pairs rather than rare elements.
  • the SOA is used as the internal cavity or intrinsic cavity of external cavity semiconductor lasers to output broad-spectrum optical signals.
  • the SOA outputs a broad-spectrum DC optical signal according to the bias current provided by the MCU 800, with a wavelength range covering 1525 nm to 1570 nm, and is coupled with the silicon optical chip 400.
  • the electrical connection between the light source 500 and the circuit board 300 may be achieved through a flexible board in an embodiment of the present disclosure.
  • the light source 500 can be arranged on the surface of the circuit board 300, can also be arranged outside the circuit board 300, or can be arranged with the silicon optical chip 400 in an airtight coaxial package TO. Therefore, in the present disclosure, the positions of the light source 500 and the circuit board 300 are not limited.
  • the light source 500 may be provided with a temperature adjustment electrical device such as a TEC to achieve temperature control for the laser chip.
  • the temperature adjustment electrical device is powered and driven from the outside of the light source 500 through a flexible board.
  • the light source 500 provides the silicon optical chip 400 with light with relatively stable optical power, and the light source 500 and the silicon optical chip 400 are connected by spatial coupling.
  • FIG. 5 is a schematic structural diagram of a circuit board in an optical module provided by the present disclosure
  • FIG. 6 is a partial schematic diagram of a circuit board provided by the present disclosure.
  • the circuit board provided by the present disclosure is provided with a wavelength tuning control chip 700 and a modulation driver 900.
  • One end of the wavelength tuning control chip 700 is electrically connected to the silicon optical chip 400 for sending wavelength tuning control signals.
  • one end of the wavelength tuning control chip 700 is electrically connected to the MCU 800, the other end is electrically connected to the silicon optical chip 400, and the wavelength tuning control signal is sent out according to the received signal output by the MCU 800.
  • the modulation driver 900 may be disposed on the upper surface of the silicon optical chip 400 or on the circuit board 300 to provide the silicon optical chip 400 with a data signal from an optical network terminal, and the data signal is a modulation signal.
  • the silicon optical chip 400 may be provided with a tunable laser 401, a modulator 402, and a detector 404, and the tunable laser 401 is connected to the light source 500 through an optical path to receive the broad-spectrum optical signal emitted by the light source 500.
  • the silicon optical chip 400 may also be provided with a lens L2, and the light source 500 and the tunable laser 401 are optically coupled through the lens L2 to couple the broad-spectrum optical signal emitted by the light source 500 into the tunable Inside the laser 401.
  • the tunable laser 401 is provided with a laser resonant cavity, and the light emitted by the light source 500 passes through the resonant cavity of the tunable laser 401 for wavelength selection.
  • Fig. 7 is a schematic diagram of wavelength selection of a tunable laser in an optical module provided by the present disclosure.
  • the tunable laser 401 includes a first micro-ring waveguide A and a second micro-ring waveguide B. Both the first micro-ring waveguide A and the second micro-ring waveguide B are connected to a wavelength tuning control chip for wavelength tuning.
  • the tuning control signal selects a wavelength that satisfies the spectral range of the first micro-ring waveguide A and the second micro-ring waveguide B.
  • the first micro-ring waveguide A and the second micro-ring waveguide B are arranged one behind the other, that is, the light emitted by the light source 500 passes through the first micro-ring waveguide A and the second micro-ring waveguide B in order to select and satisfy the spectrum of the first micro-ring waveguide A at the same time.
  • Range FSR1 the wavelength of the spectral range FSR2 of the second micro-ring waveguide B, so as to select a specific wavelength.
  • the tunable laser 401 also includes a first heating resistor C and a second heating resistor D.
  • the first micro-ring waveguide A is arranged on the first heating resistor C.
  • the first heating resistor C generates heat
  • the refraction of the first micro-ring waveguide A can be changed. Therefore, the FSR1 of the first microring waveguide A is displaced as a whole, while the period remains unchanged, so that the wavelength that satisfies FSR1 changes.
  • the second micro-ring waveguide B is arranged on the second heating resistor D.
  • the refractive index of the second micro-ring waveguide B can be changed, so that the FSR2 of the second micro-ring waveguide B is displaced as a whole.
  • the period remains unchanged, so the wavelength that meets FSR2 changes.
  • a control signal can be output through the DAC of the MCU800 to adjust the current value flowing through the first heating resistor C and the second heating resistor D, thereby controlling the heating of the first heating resistor C and the second heating resistor D, thereby changing the first heating resistor C and the second heating resistor D.
  • the refractive index of a micro-ring waveguide A and a second micro-ring waveguide D can be selected to select specific wavelengths.
  • the tunable laser 401 also includes a first detector E and a second detector F.
  • the first detector E is arranged close to the first microring waveguide A
  • the second detector F is arranged close to the second microring waveguide B, which are respectively used for Detect the optical signals emitted by the first micro-ring waveguide A and the second micro-ring waveguide B, and output an analog current signal to the MCU800.
  • the MCU uses a software algorithm to control the wavelength tuning control chip 700 to adjust the flow through the first
  • the current values of the heating resistor C and the second heating resistor D are controlled in a closed loop.
  • the working principle of the wavelength selection of the tunable laser 401 is: the spectrum emitted by the light source 500 is a broad-spectrum light source, the wavelength range covers 1525 ⁇ 1570 nm, and the wavelength is recorded as 1. After the light enters the tunable laser 401, it passes through the first micro-ring waveguide A. After that, select the wavelength that satisfies FSR1 to pass through the first micro-ring waveguide A. At this time, the wavelength selection is 2, and the wavelength period satisfies FSR1; then the filtered light passes through the second micro-ring waveguide B, and the wavelength that satisfies FSR2 is selected to pass For the second micro-ring waveguide B, the wavelength selection is 3 at this time, and the wavelength period meets FSR2.
  • the half mirror M2 transmits the light with a wavelength of 3 out to form a laser, the wavelength of which is 3b, and the laser enters the modulator 402 for modulation; part of the light with a wavelength of 3 will be in the half mirror M2
  • the reflected light has a wavelength of 3a, and the reflected light 3a passes through the second micro-ring waveguide B and the first micro-ring waveguide A again, and exits back to the light source 500; a mirror M1 is provided behind the light source 500 to reflect back
  • the light 3a is reflected again at the mirror M1, so the light with a wavelength of 3 forms a resonant cavity between the mirror M1 and the half mirror M2, and a specific wavelength can be selected by changing the cavity length of the resonant cavity.
  • the FSR1 of the first micro-ring waveguide A and the FSR2 of the second micro-ring waveguide B can be changed as a whole, and the period remains unchanged, which will cause simultaneous
  • the wavelengths that meet FSR1 and FSR2 are emitted by the second microring waveguide B, thereby tuning to obtain a variety of different wavelengths, the tuning wavelength range can cover the entire C-band, the tuning granularity is controllable, and it can meet the needs of 100GHz interval or 50GHz wavelength interval. .
  • the wavelength selection of the emitted light signal is realized by combining the above-mentioned devices.
  • the process is as follows:
  • the external light source receives the Bias bias current provided by the MCU control circuit to emit light, and the emitted light signal is broad-spectrum DC light, the wavelength range covers 1525-1570nm, the light source and the external cavity optical chip are optically coupled through the lens L2, and the optical signal emitted by the light source is coupled into the external cavity optical chip.
  • the external cavity optical chip is provided with a laser resonant cavity, and the light emitted by the light source passes through the resonant cavity of the external cavity laser for wavelength selection.
  • the external cavity laser tuning area has the first micro-ring waveguide A, the second micro-ring waveguide B, the first heating resistor C, the second heating resistor, the first detector E and the second detector F, and the MCU's DAC output control Signal, adjust the current value flowing through the first heating resistor C, the second heating resistor D, control the first heating resistor C, the second heating resistor D to generate heat, thereby changing the first micro-ring waveguide A, the second micro-ring waveguide B The refractive index, thereby changing the cavity length of the resonant cavity, so as to select a specific wavelength.
  • the optical signal output by the external cavity laser is also DC light, but the wavelength after wavelength selection is a specific wavelength in the C band in an embodiment of the present disclosure, and the wavelength interval is preferably 100 GHz.
  • the modulator After the modulator is connected to the laser, it receives the data drive signal provided by the modulation driver on the internal circuit board of the optical module, and modulates the data carrier on the optical signal.
  • the optical signal output by the modulator is coupled into the optical fiber adapter through the collimating lens L1 and the converging lens L3.
  • an isolator can be added between the convergent lens L3 and the optical fiber adapter 403, and the reflected light reflected by the end face of the optical fiber adapter 403 can be filtered out by the isolator to prevent the reflected light from returning to the modulator 402.
  • the optical module adopts a dual LC optical interface
  • the silicon optical chip 400 is also provided with a receiving optical component.
  • the receiving optical component includes a detector 404, a transimpedance amplifier 405, and a low-pass filter circuit 406.
  • the detector 404 is installed at
  • the silicon optical chip 400 is connected to an optical fiber adapter 403 for receiving optical signals carrying service information and auxiliary channel messages at the same time, that is, the optical signal is transmitted to the detector 404 through the optical fiber adapter 403, and the optical signal received by the detector 404 It is a subcarrier optical signal that carries service information and auxiliary channel information at the same time. After being demodulated by the PD, it is processed separately in high frequency and low frequency channels.
  • the transimpedance amplifier 405 is electrically connected to the detector 404 for receiving high-frequency electrical signals, that is, the transimpedance amplifier LIA405 of the high-frequency channel is set with a high-pass filter to filter out the low-frequency electrical signals, and the business information ( High-frequency electrical signal) output.
  • the low-pass filter circuit 406 is electrically connected to the detector 404 for receiving low-frequency electrical signals, that is, a low-pass filter is connected to the low-frequency channel to filter out high-frequency signals, and the demodulated low-frequency information is output to the MCU 800. After the MCU 800 receives the demodulated low frequency information, it controls the wavelength tuning control chip 700 to adjust the transmitter (that is, the tunable laser 401) to a predetermined wavelength.
  • the combination of the above devices realizes the tunable control of the optical signal wavelength in the silicon optical chip, that is, the wavelength of the emission channel can be flexibly adjusted according to the auxiliary channel information.
  • the tuning wavelength range can cover the entire C-band, the tuning granularity is controllable, and it can meet the 100GHz interval or 50GHz.
  • the requirement of wavelength spacing avoids the complexity of installing multiple optical modules at the antenna end.
  • the use of micro-ring waveguides to tune the wavelength of the emission channel will not cause the difference in radio frequency characteristics between different channels, and reduce the uniformity of the emitted light power and the difference in the wide temperature operating range.
  • the optical module carries the top adjustment function to meet the DU's management of AAU wavelength control.
  • the MCU couples a subcarrier signal with a low modulation depth to the bias current of the light source 500 by means of AC coupling, and performs an AC coupling on the transmitted light signal. Adjust the top control, so as to achieve the purpose of transmitting the message channel.
  • the wavelength tuning of the transmitted optical signal is realized by the external cavity tunable laser and MZM modulator, and the service information output and auxiliary channel information output of the received optical signal are realized by the detector, transimpedance amplifier and low-pass filter circuit.
  • a message channel is established to perform auxiliary channel control and management.
  • the embodiment of the present disclosure provides an optical module, including a circuit board, an MCU for loading an electrical signal of an auxiliary channel message to a bias current, a light source for outputting a broad-spectrum optical signal according to the bias current, a silicon optical chip, and A wavelength tuning control chip used to send a wavelength tuning control signal.
  • a tunable laser and a modulator are installed in the silicon optical chip. The tunable laser receives the broad-spectrum optical signal output by the light source, including multiple micro-ring waveguides, heating resistors and detectors.
  • the heating resistance can be controlled by adjusting the current value flowing through the heating resistor to change The refractive index of the micro-ring waveguide causes the overall FSR of the micro-ring waveguide to be shifted to select different wavelengths;
  • the detector is used to detect the optical signal output by the micro-ring waveguide, and output the analog current signal to the wavelength tuning control chip, the wavelength tuning control chip Adjust the value of the heating resistor according to the detected analog quantity to achieve closed-loop control;
  • the optical signal of a specific wavelength output through the micro-ring waveguide enters the modulator, and the data carrier is modulated on the optical signal to obtain the simultaneous carrying of business information and auxiliary
  • the specific wavelength optical signal of the channel message; the specific wavelength optical signal carrying the business information and the auxiliary channel message output by the modulator is coupled into the optical fiber adapter through the lens, and the optical signal is transmitted out
  • the optical module provided in the present disclosure carries the auxiliary channel function, which satisfies the system wavelength adjustment function and the message channel transmission function, and flexibly adjusts the wavelength of the emitted optical signal through the wavelength tuning control chip and the tunable laser.
  • the tuning wavelength range can cover the entire C-band
  • the external cavity optical chip including the tunable laser and modulator is integrated on the silicon optical chip, which has the characteristics of miniaturization and compactness, which realizes the miniaturization of the optical module, the wide wavelength tuning range, and the realization of the optical module Colorless, while the optical module carries the auxiliary channel function to meet the system wavelength adjustment function and message channel transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本公开公开了一种光模块,包括电路板、用于将辅助信道消息的电信号加载至偏置电流的MCU、用于根据偏置电流输出宽谱光信号的光源、硅光芯片与用于发出波长调谐控制信号的波长调谐控制芯片,硅光芯片内设有可调谐激光器与调制器,可调谐激光器接收光源输出的宽谱光信号,包括多个微环波导,用于根据波长调谐控制信号改变微环波导的折射率,以从宽谱光信号中选择特定波长光信号;调制器与可调谐激光器连接,用于将数据载波调制于特定波长光信号上,得到同时携带业务信息和辅助信道消息的特定波长光信号。本公开提供的光模块携带辅助信道功能满足了系统波长调整功能和消息通道传输,且调谐波长范围较宽,满足了5G网络中对多波无色化的需求。

Description

一种光模块
本公开要求在2020年06月11日提交中国专利局、申请号为202010530498.8、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着经济的发展、人们日常生活水平的提高,具有大带宽、万物互联、低时延、高可靠连接等优势的5G网络的推出势在必行。根据5G中的无线接入网(Radio Access Network,RAN)重构为AAU(Active Antenna Unit,有源天线单元)、DU(Distributed Unit,分布单元)、CU(Central Unit,集中单元)多级架构,5G承载网络由前传、中传、回传三部分组成,其中前传主要负责天线站点AAU与基带站点DU/CU之间的网络传输。
5G前传领域的一个应用场景需要用到无色光模块,即在AAU上的光模块可以灵活设置其工作波长。在AAU和DU之间除业务通道之外,建立消息通道,进行辅助信道控制与管理。AAU根据DU光模块发送的辅助信号信息,灵活调整AAU发射机的波长,避免在天线端设置多种光模块的复杂性。传统的调波方式是通过TEC(Thermoelectric Cooler,半导体制冷器)控制光模块中激光器的工作温度,使其输出不同波长的发射光。
发明内容
本公开实施例公开了一种光模块,包括:电路板;MCU,与所述电路板电连接,用于将辅助信道消息的电信号加载至偏置电流;光源,用于接收加载有所述辅助信道消息电信号的偏置电流并输出宽谱光信号;硅光芯片,与所述电路板电连接,用于接收所述光源输出的宽谱光信号;波长调谐控制芯片,与所述硅光芯片电连接,用于发出波长调谐控制信号;所述硅光芯片内设置有:可调谐激光器,接收所述光源输出的宽谱光信号,包括多个微环波导,用于根据所述波长调谐控制信号改变所述微环波导的折射率,以从所述宽谱光信号中选择特定波长光信号;调制器,与所述可调谐激光器连接,用于将数据载波调制于所述特定波长光信号上,得到同时携带业务信息和辅助信道消息的特定波长光信号。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为本公开实施例提供的一种光模块的结构示意图;
图4为本公开实施例提供的一种光模块的分解结构示意图;
图5为本公开实施例提供的光模块中电路板的结构示意图;
图6为本公开实施例提供的光模块的局部示意图;
图7为本公开实施例提供的光模块中可调谐激光器的波长选择示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信息以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接。
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接。在本公开某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接。在本公开某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300及硅光芯片400、光源500与光纤适配器403。该光模块可采用标准的SFP28封装,采用双LC的光接口,电接口为20pin SFP28金手指定义,电路板300采用双层电路板。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体。在本公开某一实施例中,下壳体202包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口具体可以是位于光模块同一端的两端开口(204、205),也可以是在光模块不同端的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的硅光芯片400;电路板300、硅光芯片400、光源500等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、硅光芯片400等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利用实现电磁屏蔽以及散热,一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从 上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
MCU800,与电路板300电连接,用于接收上位机发送的波长选择信息,输出波长选择控制指令,MCU800输出的波长选择控制指令直接传输至波长调谐控制芯片700,波长调谐控制芯片700由此产生波长调谐控制信号。同时,MCU800将辅助信道消息的电信号加载至偏置电流中,使得光源500根据加载有辅助信道消息电信号的偏置电流输出宽谱光信号。
电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发组件之间可以采用柔性电路板连接。
硅光芯片400设置在电路板300上,与电路板300实现电连接,在本公开某一实施例中可以是打线连接;硅光芯片400的周边与电路板300之间通过多条导电线连接,所以硅光芯片400一般设置在电路板300的表面上。
本示例中,硅光芯片400与光源500之间通过透镜实现光连接,即硅光芯片400通过透镜接收来自光源500的宽谱光信号,进而对光信号进行调制,在本公开某一实施例中为将数据信号加载到光信号上;硅光芯片400接收来自光纤适配器403的光,进而将光信号转换为电信号。
硅光芯片400与光纤适配器403之间通过自由空间进行耦合,光纤适配器403实现与光模块外部光纤的光连接。硅光芯片400调制的光通过光纤适配器403传输至光纤适配器403,通过光纤适配器403传输至外部光纤;外部光纤传来的光通过光纤适配器403传输至硅光芯片400中,实现硅光芯片400向光模块外部光纤输出携带数据的光,或从光模块外部光纤接收携带数据的光。
光源500可为SOA(Semiconductor Optical Amplifier,半导体光放大器),SOA的原理与掺稀土光纤放大器相似但也有不同,其放大特性主要取决于有源层的介质特性和激光腔的特性,它虽也是粒子数反转放大发光,但发光的媒介是非平衡载流子,即电子空穴对而非稀有元素。
SOA作为外腔半导体激光器的内腔或者本征腔,用于输出宽谱光信号。在本公开某一实施例中,SOA根据MCU800提供的偏置电流输出宽谱直流光信号,波长范围覆盖1525nm~1570nm,与硅光芯片400之间进行耦合。
光源500与电路板300之间实现电连接,在本公开某一实施例中可以是通过柔性板连接。光源500可以设置在电路板300的表面,也可以设置在电路板300之外,也可以与硅光芯片400设置在一个气密的同轴封装TO内部。因此,本公开中,光源500与电路板300的位置并不限定。
光源500中可以设置有TEC等温度调节电器件,以实现为激光芯片提供温度控制,该温度调节电器件通过柔性板从光源500外部获得供电驱动。
光源500为硅光芯片400提供光功率相对稳定的光,且光源500与硅光芯片400之间通过空间耦合连接。
图5为本公开提供的光模块中电路板的结构示意图;图6为本公开提供的电路板的局部示意图。如图5、图6所示,本公开提供的电路板上设置有波长调谐控制芯片700和调制驱动器900,波长调谐控制芯片700的一端与硅光芯片400电连接,用于发出波长调谐控制信号。在本公开某一实施例中,波长调谐控制芯片700的一端与MCU800电连接,另一端与硅光芯片400电连接,根据接收到的MCU800输出的信号,发出波长调谐控制信号。
调制驱动器900可以设置于硅光芯片400的上表面或者电路板300上,用于为硅光芯片400提供来自光网络终端的数据信号,该数据信号为调制信号。
本示例中,硅光芯片400内可设置有可调谐激光器401、调制器402与探测器404,可调谐激光器401与光源500通过光路连接,以接收所述光源500发出的宽谱光信号。在本公开某一实施例中,硅光芯片400上还可设置透镜L2,光源500与可调谐激光器401之间通过透镜L2进行光耦合,以将光源500发出的宽谱光信号耦合进可调谐激光器401内。可调谐激光器401内设置有激光谐振腔,光源500发出的光经可调谐激光器401的谐振腔进行波长选择。
图7为本公开提供的光模块中可调谐激光器波长选择的示意图。如图7所示,可调谐激光器401包括第一微环波导A与第二微环波导B,第一微环波导A、第二微环波导B均与波长调谐控制芯片连接,用于根据波长调谐控制信号选择波长满足第一微环波导A与第二微环波导B光谱范围的波长。
第一微环波导A与第二微环波导B前后设置,即光源500发出的光依次经过第一微环波导A与第二微环波导B,以选择同时满足第一微环波导A的光谱范围FSR1、第二微环波导B的光谱范围FSR2的波长,从而选择具体的波长。
通过调整第一微环波导A与第二微环波导B的折射率可改变微环波导出射光的波长,因此可在第一微环波导A与第二微环波导B上设置加热电阻,即可调谐激光器401还包括第一加热电阻C与第二加热电阻D,第一微环波导A设置在第一加热电阻C上,第一加热电阻C发热时可改变第一微环波导A的折射率,使得第一微环波导A的FSR1整体发生位移,而周期不变,如此满足FSR1的波长发生改变。
同理,第二微环波导B设置在第二加热电阻D上,第二加热电阻D发热时可改变第二微环波导B的折射率,使得第二微环波导B的FSR2整体发生位移,而周期不变,如此满足FSR2的波长发生改变。
本示例中,可通过MCU800的DAC输出控制信号,以调节流经第一加热电阻C与第 二加热电阻D的电流值,从而控制第一加热电阻C与第二加热电阻D发热,从而改变第一微环波导A与第二微环波导D的折射率,以选择具体的波长。可调谐激光器401还包括第一探测器E与第二探测器F,第一探测器E靠近第一微环波导A设置,第二探测器F靠近第二微环波导B设置,其分别用于探测第一微环波导A、第二微环波导B出射的光信号,输出模拟电流信号至MCU800,由MCU经过软件算法,控制波长调谐控制芯片700根据探测到的模拟量来调整流经第一加热电阻C与第二加热电阻D的电流值,做到闭环控制。
可调谐激光器401进行波长选择的工作原理为:光源500发出的光谱为宽谱光源,波长范围覆盖1525~1570nm,波长记为1,光入射到可调谐激光器401后,经过第一微环波导A之后,选择波长满足FSR1的波长可以通过第一微环波导A,此时波长筛选为2,波长周期满足FSR1;然后筛选后的光经过第二微环波导B,选择波长满足FSR2的波长可以通过第二微环波导B,此时波长筛选为3,波长周期满足FSR2,只有同时满足FSR1和FSR2的波长才会由第二微环波导B输出;在第二微环波导B的出射方向上设置有半反半透镜M2,该半反半透镜M2将波长为3的光透射出去形成激光,其波长为3b,激光进入调制器402进行调制;部分波长为3的光会在半反半透镜M2处发生反射,反射光的波长为3a,反射回的光3a重新经过第二微环波导B、第一微环波导A,出射回光源500;在光源500的后方设置有反射镜M1,反射回的光3a在反射镜M1处再次反射,如此波长为3的光在反射镜M1与半反半透镜M2之间形成谐振腔,通过改变谐振腔的腔长可以选择具体的波长。
调整流经第一加热电阻C或第二加热电阻D的电流值时,可改变第一微环波导A的FSR1与第二微环波导B的FSR2整体发生位移,而周期不变,会引起同时满足FSR1和FSR2的波长由第二微环波导B出射,由此调谐获得多种不同的波长,调谐波长范围可以覆盖整个C-波段,调谐粒度可控,可以满足100GHz间隔或者50GHz波长间隔的需求。
结合上述器件实现了发射光信号的波长选择,在本公开某一实施例中过程如下:对于发射通道,外置光源接收MCU控制电路提供的Bias偏置电流从而发光,发出的光信号是宽谱直流光,波长范围覆盖1525~1570nm,光源与外腔光芯片之间透过透镜L2进行光耦合,将光源发出的光信号耦合进外腔光芯片。外腔光芯片上设置有激光谐振腔,光源发出的光经过外腔激光器的谐振腔,进行波长选择。
其中,外腔激光器调谐区域有第一微环波导A、第二微环波导B、第一加热电阻C、第二加热电阻、第一探测器E与第二探测器F,MCU的DAC输出控制信号,调节流经第一加热电阻C、第二加热电阻D的电流值,控制第一加热电阻C、第二加热电阻D发热,从而改变第一微环波导A、第二微环波导B的折射率,从而改变谐振腔的腔长,从而选择具体的波长。
外腔激光器输出的光信号同样为直流光,但是经过波长选择之后的波长,在本公开某一实施例中为C波段中的一个具体波长,波长间隔优选100GHz。调制器连接在激光器之后,接收光模块内部电路板上调制驱动器提供的数据驱动信号,将数据载波调制在光信号上。调制器输出的光信号经过准直透镜L1和汇聚透镜L3耦合进光纤适配器。
为了降低光路反射的影响,可在汇聚透镜L3与光纤适配器403之间增设隔离器,通 过隔离器滤除光纤适配器403端面反射的反射光,避免反射光返回调制器402内。
本示例中,光模块采用双LC的光接口,硅光芯片400内还设置有接收光组件,该接收光组件包括探测器404、跨阻放大器405与低通滤波电路406,探测器404设置在硅光芯片400上,与光纤适配器403连接,用于接收同时携带业务信息和辅助信道消息的光信号,即通过光纤适配器403将光信号传输至探测器404内,探测器404接收到的光信号是同时携带业务信息和辅助信道消息的副载波光信号,经PD解调之后,分高频与低频通道分别进行处理。
跨阻放大器405与探测器404电连接,用于接收高频电信号,即高频通道的跨阻放大器LIA405设置高通滤波器,滤除低频电信号,并通过光模块的金手指将业务信息(高频电信号)输出。
低通滤波电路406与探测器404电连接,用于接收低频电信号,即低频通道外接低通滤波器,滤除高频信号,并将解调之后的低频信息输出至MCU800。MCU800接收到解调到的低频信息后,控制波长调谐控制芯片700,将发射机(即可调谐激光器401)调整到既定的波长上。
结合上述器件实现了硅光芯片内光信号波长的可调谐控制,即根据辅助信道信息灵活调整发射通道的波长,调谐波长范围可以覆盖整个C-波段,调谐粒度可控,可以满足100GHz间隔或者50GHz波长间隔的需求,避免了在天线端设置多种光模块的复杂性。且采用微环波导对发射通道的波长进行调谐,不会造成不同通道之间射频特性的差异,减小发射光功率的一致性和宽温工作区间的差异。
本示例中,光模块携带调顶功能,满足DU对AAU波长控制的管理。在本公开某一实施例中,对于AAU到DU/CU之间的消息,MCU将低调制深度的副载波信号,通过AC耦合的方式耦合到光源500的偏置电流上,对发射光信号进行调顶控制,从而达到传递消息通道的目的。
本公开中,通过外腔可调谐激光器、MZM调制器实现了发射光信号的波长调谐,通过探测器、跨阻放大器与低通滤波电路实现了接收光信号的业务信息输出与辅助信道信息输出,在AAU与DU/CU之间除业务通道之外,建立消息通道,进行辅助信道控制与管理。
本公开实施例提供了一种光模块,包括电路板、用于将辅助信道消息的电信号加载至偏置电流的MCU、用于根据偏置电流输出宽谱光信号的光源、硅光芯片及用于发出波长调谐控制信号的波长调谐控制芯片,硅光芯片内设置有可调谐激光器与调制器,可调谐激光器接收光源输出的宽谱光信号,包括多个微环波导、加热电阻与探测器,光源发出的光入射到微环波导后,选择波长满足微环波导FSR的波长通过微环波导,从而选择特定的波长;可通过调整流经加热电阻的电流值来控制加热电阻发热,从而改变微环波导的折射率,使得微环波导的FSR整体发生位移,从而选择不同的波长;探测器用于探测微环波导输出的光信号,并输出模拟电流信号至波长调谐控制芯片,波长调谐控制芯片根据探测到的模拟量来调整加热电阻的值,做到闭环控制;通过微环波导输出的特定波长的光信号进入调制器内,将数据载波调制在光信号上,得到同时携带业务信息和辅助信道消息的特定波长光信号;调制器输出的同时携带业务信息和辅助信道消息的特定波长光信号经过透镜耦合 进光纤适配器,通过光纤将光信号传输出去;硅光芯片内还设置有探测器、跨阻放大器与低通滤波电路,通过外部光纤传输进来的同时携带业务信息和辅助信道消息的副载波光信号经探测器解调分高频与低频通道分别进行处理,高频通道的跨阻放大器设置高通滤波器,滤除低频信号,通过光模块的金手指将业务信息输出;低频通道外接低通滤波器,滤除高频信号,将解调之后的信息输出至MCU,MCU接收到解调信息后,控制波长调谐控制芯片将可调谐激光器调整到既定的波长上。本公开提供的光模块携带辅助信道功能,满足了系统波长调整功能和消息通道传输功能,且通过波长调谐控制芯片、可调谐激光器灵活调整出射光信号的波长,调谐波长范围可以覆盖整个C-波段,且将包含可调谐激光器与调制器的外腔光芯片集成在硅光芯片上,具有小型化、紧凑化的特点,实现了光模块的小型化,宽的波长调谐范围,实现了光模块的无色化,同时光模块携带辅助信道功能满足系统波长调整功能和消息通道传输。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    电路板;
    MCU,与所述电路板电连接,用于将辅助信道消息的电信号加载至偏置电流;
    光源,用于接收加载有所述辅助信道消息电信号的偏置电流并输出宽谱光信号;
    硅光芯片,与所述电路板电连接,用于接收所述光源输出的宽谱光信号;
    波长调谐控制芯片,与所述硅光芯片电连接,用于发出波长调谐控制信号;
    所述硅光芯片内设置有:
    可调谐激光器,接收所述光源输出的宽谱光信号,包括多个微环波导,用于根据所述波长调谐控制信号改变所述微环波导的折射率,以从所述宽谱光信号中选择特定波长光信号;
    调制器,与所述可调谐激光器连接,用于将数据载波调制于所述特定波长光信号上,得到同时携带业务信息和辅助信道消息的特定波长光信号。
  2. 根据权利要求1所述的光模块,其特征在于,所述可调谐激光器包括第一微环波导与第二微环波导,所述第一微环波导、所述第二微环波导均与所述波长调谐控制芯片连接,用于从所述宽谱光信号中依次选择满足不同光谱范围的特定波长光信号。
  3. 根据权利要求2所述的光模块,其特征在于,所述可调谐激光器还包括第一加热电阻与第二加热电阻,所述第一微环波导设置在所述第一加热电阻上,所述第二微环波导设置在所述第二加热电阻上,用于根据所述波长调谐控制信号控制所述第一加热电阻与所述第二加热电阻发热,以改变所述第一微环波导与所述第二微环波导的折射率。
  4. 根据权利要求3所述的光模块,其特征在于,所述可调谐激光器还包括第一探测器与第二探测器,所述第一探测器靠近所述第一微环波导,所述第二探测器靠近所述第二微环波导,用于探测微环波导出射的光信号,输出模拟电流信号至所述波长调谐控制芯片,通过所述波长调谐控制芯片调整流经加热电阻的电流值。
  5. 根据权利要求4所述的光模块,其特征在于,所述第二微环波导的出射方向上设有半反半透镜,部分出射光信号透过所述半反半透镜射出去,部分出射光信号在所述半反半透镜处发生反射,反射光经过所述第二微环波导、所述第一微环波导射回所述光源;
    所述光源处设置有反射镜,反射回的光信号在所述反射镜处再次发生反射,用于在所述反射镜与所述半反半透镜之间形成谐振腔。
  6. 根据权利要求1所述的光模块,其特征在于,所述硅光芯片内还设置有:
    探测器,设置在所述硅光芯片上,用于接收所述同时携带业务信息和辅助信道消息的光信号,解调后形成高频电信号与低频电信号;
    跨阻放大器,与所述探测器电连接,用于接收所述高频电信号,并通过所述电路板输出所述高频电信号;
    低通滤波电路,与所述探测器电连接,用于接收所述低频电信号,并将所述低频电信号输出至所述MCU。
  7. 根据权利要求6所述的光模块,其特征在于,所述跨阻放大器处设置有高通滤波器,用于滤除所述探测器输出信号中的低频电信号。
  8. 根据权利要求6所述的光模块,其特征在于,所述低通滤波电路处设置有低通滤波器,用于滤除所述探测器输出信号中的高频电信号。
  9. 根据权利要求6所述的光模块,其特征在于,所述MCU还用于将接收到的所述低频电信号解调之后,将相应的信息作用到所述波长调谐控制芯片,以调整所述可调谐激光器出射光信号的波长。
  10. 根据权利要求6所述的光模块,其特征在于,所述MCU还用于接收系统要求的波长控制信息,将信息耦合至所述光源的偏置电流上,对所述可调谐激光器发射的光信号进行调顶控制。
PCT/CN2021/080971 2020-06-11 2021-03-16 一种光模块 WO2021248957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010530498.8 2020-06-11
CN202010530498.8A CN113810115B (zh) 2020-06-11 2020-06-11 一种光模块

Publications (1)

Publication Number Publication Date
WO2021248957A1 true WO2021248957A1 (zh) 2021-12-16

Family

ID=78845143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080971 WO2021248957A1 (zh) 2020-06-11 2021-03-16 一种光模块

Country Status (2)

Country Link
CN (1) CN113810115B (zh)
WO (1) WO2021248957A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296191A (zh) * 2021-12-31 2022-04-08 中天宽带技术有限公司 硅光组件及硅光组件的封装方法
CN114584434A (zh) * 2022-02-24 2022-06-03 青岛海信宽带多媒体技术有限公司 一种滤波器系数的计算方法及光模块
CN114584209A (zh) * 2022-02-25 2022-06-03 青岛海信宽带多媒体技术有限公司 光模块
WO2023125931A1 (zh) * 2021-12-31 2023-07-06 中国移动通信有限公司研究院 波长调谐装置、方法、光模块及通信设备
CN116545527A (zh) * 2023-05-11 2023-08-04 深圳市迅特通信技术股份有限公司 一种波长可调谐光模块波长调谐时间的测试方法、系统及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488435A (zh) * 2022-02-17 2022-05-13 Nano科技(北京)有限公司 一种光模块光组件
CN114915347B (zh) * 2022-04-13 2024-04-02 瑞斯康达科技发展股份有限公司 波长可调谐光模块及其波长自动适配方法
CN115165762B (zh) * 2022-07-26 2023-12-29 江苏联格科技有限公司 一种具有光谱分辨功能的芯片
WO2024065174A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 光发射机、光发射方法、光模块、设备及系统
WO2024113525A1 (zh) * 2022-11-30 2024-06-06 青岛海信宽带多媒体技术有限公司 光模块
CN118282517A (zh) * 2022-12-30 2024-07-02 中兴光电子技术有限公司 带宽调节方法、硅光芯片及硅光收发组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848556A (zh) * 2005-03-03 2006-10-18 日本电气株式会社 可调谐激光器、光模块及它们的控制方法
CN109286445A (zh) * 2018-10-23 2019-01-29 北京见合八方科技发展有限公司 远程配置波长的方法及可进行远程配置波长的hee装置
CN111049865A (zh) * 2018-10-12 2020-04-21 中兴通讯股份有限公司 一种建链方法、装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531155B2 (en) * 2014-04-09 2016-12-27 Applied Optoelectronics, Inc. Switched radio frequency (RF) driver for tunable laser with multiple in-line sections
CN104614877A (zh) * 2015-02-05 2015-05-13 中国科学院半导体研究所 一种可调谐级联微环滤波器
CN104966989B (zh) * 2015-06-29 2018-12-25 武汉光迅科技股份有限公司 波长可调谐外腔激光器及可调光发射模块
CN109802743B (zh) * 2017-11-17 2020-08-07 海思光电子有限公司 一种上下载滤波器和光分插复用器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848556A (zh) * 2005-03-03 2006-10-18 日本电气株式会社 可调谐激光器、光模块及它们的控制方法
CN111049865A (zh) * 2018-10-12 2020-04-21 中兴通讯股份有限公司 一种建链方法、装置和系统
CN109286445A (zh) * 2018-10-23 2019-01-29 北京见合八方科技发展有限公司 远程配置波长的方法及可进行远程配置波长的hee装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITU: "Multichannel bidirectional DWDM applications with port agnostic single-channel optical interfaces", RECOMMENDATION ITU-T G.698.4 (2018) CORRIGENDUM 1, 30 November 2018 (2018-11-30), pages 1 - 30, XP055878439 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296191A (zh) * 2021-12-31 2022-04-08 中天宽带技术有限公司 硅光组件及硅光组件的封装方法
WO2023125931A1 (zh) * 2021-12-31 2023-07-06 中国移动通信有限公司研究院 波长调谐装置、方法、光模块及通信设备
CN114296191B (zh) * 2021-12-31 2023-11-17 中天宽带技术有限公司 硅光组件及硅光组件的封装方法
CN114584434A (zh) * 2022-02-24 2022-06-03 青岛海信宽带多媒体技术有限公司 一种滤波器系数的计算方法及光模块
CN114584434B (zh) * 2022-02-24 2024-02-27 青岛海信宽带多媒体技术有限公司 一种滤波器系数的计算方法及光模块
CN114584209A (zh) * 2022-02-25 2022-06-03 青岛海信宽带多媒体技术有限公司 光模块
CN114584209B (zh) * 2022-02-25 2024-05-28 青岛海信宽带多媒体技术有限公司 光模块
CN116545527A (zh) * 2023-05-11 2023-08-04 深圳市迅特通信技术股份有限公司 一种波长可调谐光模块波长调谐时间的测试方法、系统及装置
CN116545527B (zh) * 2023-05-11 2024-02-20 深圳市迅特通信技术股份有限公司 一种波长可调谐光模块波长调谐时间的测试方法、系统及装置

Also Published As

Publication number Publication date
CN113810115B (zh) 2023-02-17
CN113810115A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2021248957A1 (zh) 一种光模块
CN213122371U (zh) 一种光模块
WO2022110965A1 (zh) 一种光模块
US6951426B2 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
CN114826409B (zh) 一种光模块
CN110780398A (zh) 一种直调模拟电光转换集成组件
CN212649474U (zh) 一种光模块
CN213780449U (zh) 一种光模块
CN217879744U (zh) 一种光模块
WO2022037227A1 (zh) 一种光模块
CN114167554B (zh) 一种光模块
CN213302584U (zh) 一种光模块
CN213279662U (zh) 一种光模块
CN113281853B (zh) 一种光模块
CN111277333A (zh) 一种光模块
US20220404563A1 (en) Optical Module
CN217445362U (zh) 一种光模块及激光组件
CN113917624B (zh) 一种光模块
CN113488832B (zh) 一种具有调制器的激光器及光模块
WO2022116619A1 (zh) 一种光模块
CN114879319A (zh) 一种光模块
CN113423028A (zh) 一种光模块
CN114167553A (zh) 一种光模块
WO2024055570A1 (zh) 光模块
CN214540151U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822347

Country of ref document: EP

Kind code of ref document: A1