WO2022127584A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022127584A1
WO2022127584A1 PCT/CN2021/134455 CN2021134455W WO2022127584A1 WO 2022127584 A1 WO2022127584 A1 WO 2022127584A1 CN 2021134455 W CN2021134455 W CN 2021134455W WO 2022127584 A1 WO2022127584 A1 WO 2022127584A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
optical
metal layer
receiving
Prior art date
Application number
PCT/CN2021/134455
Other languages
English (en)
French (fr)
Inventor
孙飞龙
傅钦豪
慕建伟
张衎
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011496690.6A external-priority patent/CN114647037A/zh
Priority claimed from CN202122253630.8U external-priority patent/CN216160876U/zh
Priority claimed from CN202122251048.8U external-priority patent/CN216013742U/zh
Priority claimed from CN202111088244.6A external-priority patent/CN113805289B/zh
Priority claimed from CN202111088602.3A external-priority patent/CN113805290B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022127584A1 publication Critical patent/WO2022127584A1/zh
Priority to US18/146,068 priority Critical patent/US20230194802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/672Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal
    • H04B10/673Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal using an optical preamplifier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4278Electrical aspects related to pluggable or demountable opto-electronic or electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4271Cooling with thermo electric cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4284Electrical aspects of optical modules with disconnectable electrical connectors

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in the optical communication equipment.
  • the transmission rate of the optical module continues to increase.
  • multi-channel optical modules are used in long-distance transmission scenarios, it is difficult for the sensitivity to meet the high sensitivity requirements in optical modules.
  • an optical module provided by the present application includes: a circuit board; a light receiving sub-module electrically connected to the circuit board for receiving signal light from outside the optical module; wherein the light receiving sub-module includes : a light receiving cavity, one end is provided with a light entrance hole, the other end is provided with an opening, an electrical connector is arranged in the opening, and the electrical connector is electrically connected to the circuit board; the optical amplifier assembly is arranged in the light receiving cavity, close to The light entrance hole of the light receiving cavity includes a fourth substrate and a semiconductor optical amplifier arranged on the fourth substrate, the semiconductor optical amplifier is electrically connected to the fourth substrate, and the fourth substrate is electrically connected to the fourth substrate.
  • the electrical connector; the light receiving component which is arranged in the light receiving cavity and is used for receiving the signal light passing through the semiconductor optical amplifier.
  • an optical module provided by the present application includes: a circuit board; a light receiving sub-module electrically connected to the circuit board for receiving signal light from outside the optical module; wherein the light receiving sub-module includes : a light receiving cavity, one end is provided with a light entrance hole, the other end is provided with an opening, an electrical connector is arranged in the opening, and the electrical connector is electrically connected to the circuit board; the optical amplifier assembly is arranged in the light receiving cavity, close to The light entrance hole of the light receiving cavity, the optical amplification component includes a semiconductor optical amplifier, a fourth substrate and a fifth substrate; the semiconductor optical amplifier is arranged on the fourth substrate and is electrically connected to the fourth substrate , the fifth substrate is arranged at one end of the fourth substrate, the fourth substrate is connected to the fifth substrate by wire bonding and is electrically connected to the electrical connector through the fifth substrate; the light receiving component is arranged on the The light receiving cavity is used for receiving the signal light transmitted through the semiconductor optical amplifier.
  • an optical module provided by the present application includes: a circuit board; a light receiving sub-module electrically connected to the circuit board for receiving signal light from outside the optical module; wherein the light receiving sub-module includes : a light receiving cavity, one end is provided with a light entrance hole, the other end is provided with an opening, an electrical connector is arranged in the opening, and the electrical connector is electrically connected to the circuit board; the first substrate is arranged in the light receiving cavity and is provided with On the bottom plate of the light-receiving cavity and the top surface of the first substrate, a blank area and a circuit metal layer are provided, and the circuit metal layer extends from the upper left end of the first substrate to the upper left of the first substrate.
  • the optical amplification component is arranged in the light receiving cavity, close to the light entrance hole of the light receiving cavity, and the optical amplification component includes a semiconductor light
  • the semiconductor optical amplifier is electrically connected to the electrical connector through the circuit metal layer on the first substrate
  • the light receiving component is mounted on the first substrate and is electrically connected to the electrical connector on the first substrate a circuit metal layer for receiving the signal light passing through the semiconductor optical amplifier
  • a demultiplexing component located on the optical path from the semiconductor optical amplifier to the light receiving component and arranged above the blank area .
  • an optical module provided by the present application includes: a circuit board provided with an MCU and a sampling module, the sampling module being connected to the MCU; an optical receiving sub-module electrically connected to the circuit board for receiving data from Signal light outside the optical module; wherein, the light receiving sub-module includes: a light receiving cavity, one end is provided with a light entrance hole, the other end is provided with an opening, and an electrical connector is arranged in the opening, and the electrical connector is electrically connected to the circuit a light splitter, which is arranged in the light-receiving cavity and is located in the light entrance hole of the light-receiving cavity; an optical amplifying component, which is arranged in the light-receiving cavity and is located on the transmission light path of the light-splitter, comprising: a semiconductor optical amplifier; a backlight detector, arranged on the reflected light path of the optical splitter, receives the signal light reflected by the optical splitter, and enables the sampling module to obtain the actual optical power of
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a perspective view of a light receiving sub-module according to some embodiments.
  • FIG. 6 is a schematic structural diagram of removing a light-receiving upper cover from a light-receiving sub-module according to some embodiments
  • FIG. 7 is a cross-sectional view of a light receiving sub-module provided according to some embodiments.
  • FIG. 8 is a schematic diagram of the operation of a DeMUX for beam splitting including 4 wavelengths provided according to some embodiments;
  • FIG. 9 is a schematic diagram of an optical path structure of a light receiving sub-module according to some embodiments.
  • FIG. 10 is an exploded schematic diagram of a light receiving sub-module according to some embodiments.
  • FIG. 11 is a schematic structural diagram 1 of a substrate assembly in a use state according to some embodiments.
  • FIG. 12 is a second structural schematic diagram of a use state of a substrate assembly according to some embodiments.
  • FIG. 13 is a cross-sectional view of another light receiving sub-module provided in accordance with some embodiments.
  • FIG. 14 is a schematic structural diagram of an electrical connector provided according to some embodiments.
  • FIG. 15 is a schematic structural diagram of removing a light-receiving upper cover from another light-receiving sub-module according to some embodiments.
  • FIG. 16 is a cross-sectional view of the light receiving sub-module in FIG. 15;
  • FIG. 17 is a schematic structural diagram of another first substrate provided according to some embodiments.
  • FIG. 18 is a use state diagram of another first substrate provided according to some embodiments.
  • FIG. 19 is a schematic structural diagram of an optical amplifying assembly provided according to some embodiments.
  • FIG. 20 is a use state diagram of another third substrate provided according to some embodiments.
  • FIG. 21 is a schematic partial structure diagram of a light receiving sub-module according to some embodiments.
  • 22 is a schematic structural diagram of a light-receiving lower case in another light-receiving sub-module according to some embodiments.
  • Fig. 23 is the partial enlarged view of A place in Fig. 22;
  • Figure 24 is a partial enlarged view at B in Figure 22;
  • Figure 25 is a partial enlarged view at C in Figure 22;
  • 26 is a schematic structural diagram of still another light-receiving sub-module with a light-receiving upper cover removed according to some embodiments;
  • FIG. 27 is a schematic structural diagram of a fourth light-receiving sub-module with a light-receiving upper cover removed according to some embodiments;
  • FIG. 28 is a use state diagram of still another third substrate provided according to some embodiments.
  • 29 is a schematic diagram of a SOA gain control circuit provided according to some embodiments.
  • FIG. 30 is a schematic diagram of an exploded structure of a light receiving sub-module of an optical module provided according to some embodiments.
  • 31 is a schematic top-view structural diagram of a light receiving sub-module of an optical module provided according to some embodiments after the cover plate is removed;
  • FIG. 32 is a schematic structural diagram of internal components of a light receiving sub-module of an optical module provided according to some embodiments.
  • FIG. 33 is a schematic structural diagram of internal components of another light receiving sub-module of an optical module provided according to some embodiments.
  • 34 is a schematic diagram of an optical path of a light receiving state of an optical module provided according to some embodiments.
  • FIG. 35 is a schematic diagram of an optical path of another light receiving state of an optical module provided according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission over several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 includes a housing, a circuit board 206 arranged in the housing, and an optical transceiver;
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two sides of the cover plate are perpendicular to the cover plate.
  • the two upper side plates are combined with the two side plates by the two side walls to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 206 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100);
  • the optical fiber 101 is connected to the optical transceiver device inside the optical module 200 .
  • the combination of the upper casing 201 and the lower casing 202 is used to facilitate the installation of circuit boards 206, optical transceivers and other devices into the casing, and the upper casing 201 and the lower casing 202 can form encapsulation protection for these devices.
  • the upper casing 201 and the lower casing 202 can form encapsulation protection for these devices.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 206 includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission, and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip may include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock and data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip .
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock and data recovery chip
  • DSP digital signal processing
  • the circuit board 206 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. .
  • the circuit board 206 also includes gold fingers formed on the end surfaces thereof, and the gold fingers are composed of a plurality of pins that are independent of each other.
  • the circuit board 206 is inserted into the cage 106 , and is electrically connected to the electrical connector in the cage 106 by gold fingers.
  • the golden fingers can be arranged only on the surface of one side of the circuit board 206 (for example, the upper surface shown in FIG. 4 ), or can be arranged on the surfaces of the upper and lower sides of the circuit board 206, so as to meet the needs of a large number of pins.
  • the golden finger is configured to establish an electrical connection with the upper computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • the optical transceiver device includes a light transmitting sub-module and a light receiving sub-module. As shown in FIG. 4 , the optical transceiver device includes an optical transmitting sub-module 207 and an optical receiving sub-module 208.
  • the optical transmitting sub-module 207 and the optical receiving sub-module 208 are collectively referred to as optical sub-modules; the optical transmitting sub-module 207 and the optical receiving sub-module 208 are collectively referred to as optical sub-modules; It is located on the edge of the circuit board 206, and the light emitting sub-module 207 and the light receiving sub-module 208 are arranged one above the other.
  • the light-emitting sub-module 207 is closer to the upper casing 201 than the light-receiving sub-module 208 , but it is not limited to this, and the light-receiving sub-module 208 may also be closer to the upper casing 201 than the light-emitting sub-module 207 .
  • the optical sub-module shown in FIGS. 3 and 4 is only an example of the present application.
  • the optical sub-module in the embodiment of the present application can also be an integrated transceiver structure, or a light-emitting sub-module 207 and a light-receiving sub-module 208 It is arranged in the cavity formed by the upper and lower shells in a manner of not being stacked on top of each other.
  • the optical sub-module is located at the end of the circuit board 206 , and the optical sub-module is physically separated from the circuit board 206 .
  • the optical sub-module is connected to the circuit board 206 through a flexible circuit board.
  • the light-emitting sub-module 207 and the light-receiving sub-module 208 are physically separated from the circuit board 206, respectively, and then electrically connected to the circuit board 206 through a flexible circuit board or an electrical connector.
  • the light receiving sub-module includes a light receiving cavity, and the light receiving cavity is used for accommodating devices or components for transmitting and receiving signal light.
  • FIG. 5 is a perspective view of a light receiving sub-module according to some embodiments.
  • the light-receiving cavity of the light-receiving sub-module 208 provided in the embodiment of the present application includes a light-receiving lower case 081 and a light-receiving upper cover 082 , and the light-receiving upper cover 082 is covered and connected to the light-receiving lower case 081 to form a light-receiving lower case 081 .
  • a receiving cavity, the device for receiving light transmission and light receiving is arranged in the light receiving cavity.
  • the light-receiving lower case 081 and the light-receiving upper cover 082 can be made of metal structural parts, such as die-casting and milling metal parts.
  • the structure of the light-receiving cavity is not limited to the structure composed of the light-receiving lower shell 081 and the light-receiving upper cover 082 in FIG.
  • FIG. 6 is a schematic structural diagram of a light-receiving sub-module with a light-receiving upper cover removed according to some embodiments
  • FIG. 7 is a cross-sectional view of a light-receiving sub-module according to some embodiments.
  • one end of the light-receiving lower case 081 is provided with an optical fiber adapter assembly 300, and the other end is provided with an electrical connector 400; the free end of the optical fiber adapter assembly 300 is located at the optical port for transmitting signal light from outside the optical module
  • the electrical connector 400 is used to realize the electrical connection between the light receiving sub-module 208 and the circuit board 206; the signal light from the outside of the light module is transmitted to the light receiving cavity through the optical fiber adapter assembly 300, and the light is transmitted and received through the light receiving cavity.
  • the device is transmitted and converted, and finally converted into an electrical signal, which is transmitted to the circuit board 206 through the electrical connector 400 .
  • the electrical connector 400 is electrically connected to the circuit board 206 through a flexible circuit board.
  • one end of the lower light receiving case 081 is provided with a light entrance hole 083, through which the light entrance hole 083 communicates the optical fiber adapter assembly 300 and the inner cavity of the light receiving cavity; the other end of the light receiving lower case 081 is provided with an opening 084 , the electrical connector 400 is embedded in the opening 084 .
  • One side of the electrical connector 400 is used to electrically connect the electrical devices in the light receiving cavity, and the other side is used to electrically connect the circuit board 206 .
  • the electrical connector 400 is electrically connected to the electrical devices in the light-receiving cavity by bonding wires.
  • the fiber optic adapter assembly 300 includes a fiber optic adapter and an adapter connector.
  • One end of the adapter connector is connected to the fiber optic adapter, and the other end is connected to the light entrance hole 083 of the light receiving lower shell 081; the fiber optic adapter is provided with a fiber ferrule inside.
  • the optical fiber adapter is used for docking with the external optical fiber of the optical module; the adapter connector is used for the optical fiber adapter to connect the light receiving lower shell 081, and optical devices such as lenses can be set in the adapter connector.
  • a plane light window is arranged in the light entrance hole 083, and the plane light window can be disposed at the light entrance hole 083, which facilitates sealing of the light receiving cavity to a certain extent.
  • the plane light window is inclined in the light entrance hole 083, or the plane light window is not perpendicular to the central axis of the light entrance hole 083.
  • the inclined plane light window is used to prevent the signal light transmitted to the light receiving cavity from returning to the fiber adapter. In the assembly 300 , the signal light reflected back in the light receiving cavity is prevented from polluting the signal light transmitted from the outside of the optical module to the optical fiber adapter assembly 300 .
  • the light receiving cavity of the light receiving sub-module 208 provided by the embodiment of the present application is generally provided with devices such as an isolator, a lens, a light receiving chip, and a transimpedance amplifier.
  • a plurality of light-receiving chips are arranged in the light-receiving cavity of the light-receiving sub-module 208 to receive signal light of various wavelengths; Receiver chip, 8 light receiving chips, etc.
  • the light-receiving sub-module 208 is used for receiving signal light of various wavelengths, and the signal light including various wavelengths from outside the optical module is transmitted to the light-receiving cavity through the optical fiber adapter
  • the beam splitting according to wavelength is realized by the reflection and refraction of optical devices such as different lenses in the light receiving cavity.
  • the signal light after splitting according to the wavelength is finally transmitted to the photosensitive surface of the corresponding light receiving chip, and the light receiving chip receives the signal through its photosensitive surface. Light, the light receiving chip receives the signal light and converts the light signal into an electrical signal.
  • the light receiving chip is a PD (photodetector), such as APD (avalanche diode), PIN-PD (photodiode), etc., for converting the received signal light into photocurrent.
  • PD photodetector
  • the light receiving sub-module 208 includes a light receiving component 810 , the light receiving component 810 is disposed in the light receiving cavity, and the light receiving component 810 includes a plurality of light receiving chips.
  • the light-receiving component 810 further includes a metallized ceramic substrate, the surface of the metallized ceramic substrate forms a circuit pattern, the light-receiving chip is arranged on the surface of the metallized ceramic substrate, and is electrically connected to the circuit on the metallized ceramic substrate, and the light-receiving chip passes through the metallized ceramic substrate.
  • the substrate is electrically connected to the electrical connector 400 .
  • the light-receiving component 810 is arranged in the light-receiving lower shell 081 near the electrical connector 400, and a transimpedance amplifier 820 is arranged on the side of the light-receiving component 810; The transimpedance amplifier 820 is connected; the transimpedance amplifier 820 is electrically connected to the electrical connector 400 .
  • the transimpedance amplifier 820 is closer to the electrical connector 400 than the light receiving component 810. As shown in FIGS.
  • the transimpedance amplifier 820 is disposed at On the right side of the light receiving assembly 810 , the transimpedance amplifier 820 is located between the light receiving assembly 810 and the electrical connector 400 .
  • the light receiving component 810 is wired to the transimpedance amplifier 820 .
  • the transimpedance amplifier 820 is close to the light receiving component 810 .
  • the optical receiving sub-module 208 further includes a demultiplexing component (DeMUX) 830, the demultiplexing component 830 is disposed in the optical receiving cavity, and the demultiplexing component 830 is used for
  • the signal light is split by the difference in the wavelength of the signal light. Specifically: a beam of signal light including multiple wavelengths enters the demultiplexing component 830, and the signal light with different wavelengths undergoes different reflections in the demultiplexing component 830 to realize beam splitting of the signal light with different wavelengths.
  • FIG. 8 is a working principle diagram of a DeMUX for beam splitting including four wavelengths provided according to some embodiments; wherein, the right side of the DeMUX includes a light entrance for incident signal light of multiple wavelengths, and the left side includes multiple Each light outlet is used for emitting light, and each light outlet is used for emitting signal light of one wavelength.
  • the signal light enters the DeMUX through the incident light port of the DeMUX, and the ⁇ 1 signal light passes through six different positions of the DeMUX and undergoes six different reflections to reach its light outlet; the ⁇ 2 signal light passes through four different positions of the DeMUX.
  • the ⁇ 3 signal light passes through two different positions of the DeMUX for two different reflections to reach its light outlet; the ⁇ 4 signal light enters the DeMUX and directly transmits to its light outlet.
  • signal lights of different wavelengths can enter the DeMUX through the same light entrance and output through different light exits, thereby realizing the splitting of signal lights of different wavelengths.
  • the light receiving sub-module 208 further includes a reflective prism 840 that can be used to change the transmission direction of the signal light.
  • the reflective prism 840 is disposed above the light receiving component 810, wherein the emitting surface of the reflective prism 840 covers the light receiving chip in the light receiving component 810, and the signal light split by the demultiplexing component 830 is incident on the reflective prism 840,
  • the signal light to the reflective prism 840 is parallel to the photosensitive surface of the light-receiving chip, and the reflective surface of the reflective prism 840 reflects the direction of the light parallel to the photosensitive surface of the light-receiving chip to be perpendicular to the photosensitive surface of the light-receiving chip, so that the light-receiving chip can Signal light is successfully received.
  • the light receiving sub-module 208 further includes an isolator 850.
  • the isolator 850 is arranged in the light receiving cavity and is close to the light entrance hole, and the signal light entering the light receiving cavity through the optical fiber adapter assembly 300 passes through the isolation At the same time, the isolator 850 prevents the signal light reflected and transmitted to the isolator 850 from passing through again, avoiding the pollution of the reflected signal light during the transmission process of the signal light to be received, so as to ensure the quality of the signal light to be received.
  • the light receiving sub-module 208 further includes a focusing lens 870.
  • the focusing lens 870 is arranged in the light receiving cavity and is located close to the light entrance of the demultiplexing component 830.
  • the signal after being focused by the focusing lens 870 The light is transmitted to the light entrance of the demultiplexing component 830 , so as to ensure the coupling efficiency of the signal light to the demultiplexing component 830 .
  • the light receiving sub-module 208 further includes a lens group 880, which is arranged in the light receiving cavity and located between the demultiplexing component 830 and the reflecting prism 840, and the lens group 880 is used to decompose the wave
  • the signal light after beam splitting by the demultiplexing component 830 is correspondingly converged and transmitted to the reflecting prism 840 .
  • the lens group 880 may adopt a structure in which a plurality of lenses are arranged side by side, and each lens corresponds to a light outlet of the demultiplexing component 830, that is, each lens corresponds to focusing and transmitting signal light of one wavelength; or, the lens group 880 may A lens body is provided with a plurality of protrusions, the light outlet of the WDM component 830 is raised, and the protrusions are used for condensing light beams, that is, each protrusion correspondingly focuses and transmits a signal light of one wavelength.
  • the optical receiving sub-module 208 provided in this embodiment of the present application further includes an optical amplifying component 500, and the optical amplifying component 500 is disposed in the optical In the receiving cavity near the light entrance hole 083 , the optical amplifying component 500 is used to amplify the signal light transmitted to the light receiving cavity, and the amplified signal light by the optical amplifying component 500 is then transmitted to the demultiplexing component 830 .
  • the optical amplifier assembly 500 is disposed between the isolator 850 and the focusing lens 870, the signal light passing through the isolator 850 is transmitted to the optical amplifier assembly 500, and the signal light amplified by the optical amplifier assembly 500 is transmitted to the optical amplifier assembly 500. to the focusing lens 870.
  • the light receiving sub-module 208 further includes a collimating lens 860 , the collimating lens 860 is disposed between the isolator 850 and the optical amplifying assembly 500 , and the signal light passing through the isolator 850 is transmitted to the collimating lens 860 , which is collimated and transmitted to the optical magnifying component 500 through the collimating lens 860 .
  • the optical amplifying component 500 includes an SOA (Semiconductor Optical Amplifier, semiconductor optical amplifier), and the SOA is disposed on the optical axis from the collimating lens 860 to the focusing lens 870 .
  • SOA semiconductor Optical Amplifier, semiconductor optical amplifier
  • the SOA performs signal light amplification gain according to the magnitude of the driving current applied to it.
  • the SOA amplification gain can be controlled by controlling the magnitude of the driving current applied to the SOA. Adjustment.
  • FIG. 9 is a schematic diagram of an optical path structure of an optical receiving sub-module according to some embodiments.
  • the arrows in FIG. 9 show the transmission path of the external signal light from the optical module in the optical receiving sub-module.
  • the multi-wavelength signal light from the outside of the optical module is transmitted to the isolator 850 through the optical fiber adapter assembly 300 , the signal light passing through the isolator 850 is transmitted to the collimating lens 860 , and collimated by the collimating lens 860
  • the signal light is transmitted to the optical amplifying component 500, the signal light amplified by the optical amplifying component 500 is transmitted to the focusing lens 870, the signal light concentrated by the focusing lens 870 is transmitted to the demultiplexing component 830, and transmitted to the demultiplexing component 830.
  • the signal of the multiplexing component 830 is split into four beams of signal light according to the light wavelength, the four beams of signal light are transmitted to the lens group 880, the four beams of signal light are collected and transmitted to the reflection prism 840, and finally the transmission direction is changed by the reflection prism 840. to the photosensitive surface of the light receiving chip in the receiving assembly (shielded by the reflective prism 840).
  • the light receiving sub-module 208 provided in this embodiment of the present application further includes a substrate component, The light receiving component 810 , the transimpedance amplifier 820 , the demultiplexing component 830 , the reflecting prism 840 , etc. are arranged on the substrate component, and the substrate component is arranged on the bottom plate of the light receiving lower case 081 .
  • the substrate assembly not only facilitates the installation of the light receiving assembly 810, the transimpedance amplifier 820, the demultiplexing assembly 830, the reflecting prism 840, etc. in the light receiving lower shell 081, but also facilitates the adjustment of the light receiving assembly 810, the transimpedance amplifier 820, the demultiplexing
  • the relative heights of the wavelength division multiplexing component 830, the reflecting prism 840, etc. further ensure the light transmission direction and coupling efficiency of the signal to be received.
  • FIG. 10 is an exploded schematic diagram of a light receiving sub-module according to some embodiments.
  • the light receiving sub-module provided in this embodiment of the present application further includes a substrate assembly 600 , and a light receiving assembly 810 , a transimpedance amplifier 820 , a demultiplexing assembly 830 , a reflecting prism 840 , a lens group 880 , and the like are disposed on the Above the substrate assembly 600 .
  • FIG. 11 is a first structural schematic diagram of a substrate assembly in a use state according to some embodiments. 10 and 11, in some embodiments of the present application, the substrate assembly 600 includes a first substrate 610 and a second substrate 620, the second substrate 620 is disposed above the first substrate 610, and the size of the second substrate 620 is smaller than that of the first substrate 620 The size of the substrate 610, and then the first substrate 610 is used to carry the second substrate 620.
  • the light receiving component 810 , the transimpedance amplifier 820 and the reflection prism 840 are disposed on the first substrate 610 .
  • the demultiplexing component 830 and the lens group 880 are disposed on the second substrate 620; on the one hand, the second substrate 620 is used to carry the demultiplexing component 830 and the lens group 880; on the other hand, the second substrate 620 is convenient for In the process of optical path coupling, it is convenient to adjust the optical path to ensure the coupling efficiency of the optical path to be received.
  • the first substrate 610 is disposed on the bottom plate of the light-receiving lower case 081 , that is, the first substrate 610 is connected to the bottom plate of the light-receiving lower case 081 .
  • a first missing corner 617 and a second missing corner 618 are provided on the bottom edge of the first substrate 610 in the length direction.
  • the first missing corner 617 It is arranged on one side of the bottom of the first substrate 610, and the second missing corner 618 is arranged on the other side of the bottom of the first substrate 610.
  • the first missing corner 617 and the second missing corner 618 are used for the bottom of the first substrate 610 to avoid light reception.
  • the sidewalls of the shell 081 facilitate the assembly of the first substrate 610 .
  • the first substrate 610 is further provided with a first support block 841 and The second support block 842; the first support block 841 is arranged at one end of the light receiving assembly 810, the second support block 842 is arranged at the other end of the light receiving assembly 810, the first support block 841 supports one end of the reflecting prism 840, the second support The block 842 supports the other end of the reflecting prism 840, and the first supporting block 841 and the second supporting block 842 are used to elevate the reflecting prism 840 so that the reflecting prism 840 is located above the light receiving assembly 810 and on the light path of the light to be received.
  • the reflective prism 840 can be fixed on the first support block 841 and the second support block 842 by glue, for example, the reflective prism 840 is fixed on the first support block 841 and the second support block 842 by dispensing glue, so the first support block
  • the reflective prism 840 is supported by the 841 and the second support block 842 , which can facilitate the fixing of the reflective prism 840 and effectively avoid the contamination of the light-receiving assembly 810 and other devices by dispensing glue.
  • the first support block 841 and the second support block 842 may be square columns made of insulating materials such as plastic and glass.
  • the isolator 850, the optical amplifier assembly 500, etc. can also be disposed on the first substrate 610 or the second substrate 620, so as to facilitate the assembly and optical path coupling of the isolator 850, the optical amplifier assembly 500, and the like.
  • the second substrate 620 , the light receiving component 810 , the transimpedance amplifier 820 , etc. are fixedly connected to the first substrate 610 by patching, so as to ensure the second substrate 620 , the light receiving component 810 , and the transimpedance amplifier 820 Equal to the patch fixing accuracy on the first substrate 610 , marking points 611 are set on the surface of the first substrate 610 , and the marking points 611 are used for visual recognition of the high-precision patches on the first substrate 610 .
  • the marking point 611 may be an O-shaped, L-shaped or +-shaped marking point; the marking point 611 in FIG. 11 adopts an O-shaped marking point.
  • the marking points 611 may be arranged on the first substrate 610 by printing; the marking points are arranged on the edge of the top surface of the first substrate 610 .
  • the substrate assembly 600 further includes a third substrate 630, and the isolator 850, the optical magnifying assembly 500, the collimating lens 860, the focusing lens 870 and the like are disposed on the third substrate 630, and the isolator 850 is disposed on the third substrate 630.
  • the optical amplifying component 500 and the demultiplexing component 830 and the like are arranged on different substrates to facilitate adjustment of the relative heights of the components, which further facilitates the adjustment of the optical path coupling to ensure the optical path coupling efficiency.
  • the light receiving sub-module 208 further includes a TEC (Thermo Electric Cooler, semiconductor refrigerator), and the TEC is used to stabilize the working temperature of the SOA.
  • TEC Thermo Electric Cooler, semiconductor refrigerator
  • FIG. 12 is a second structural schematic diagram of a use state of a substrate assembly according to some embodiments.
  • the light receiving sub-module 208 further includes a TEC 890 , the isolator 850 , the light magnifying assembly 500 , the collimating lens 860 , and the focusing lens 870 are disposed on the third substrate 630 , The third substrate 630 is disposed on the TEC890. Then, by fixing the TEC 890 on the bottom plate of the light receiving lower case 081, the isolator 850, the light amplifying assembly 500, the collimating lens 860 and the focusing lens 870 are arranged in the light receiving cavity.
  • the isolator 850, the optical amplifying assembly 500, the collimating lens 860 and the focusing lens 870 are disposed on the TEC 890 through a common substrate, so that the isolator 850, the optical amplifying assembly 500, the collimating lens 870 can be aligned when the third substrate 630 is deformed due to temperature changes.
  • the straight lens 860 and the focusing lens 870 have the same effect, thereby ensuring the stability of the transmission light path in the isolator 850 , the collimating lens 860 , the optical magnifying assembly 500 and the focusing lens 870 .
  • the optical amplifier assembly 500 includes an SOA 510 and a fourth substrate 520 , the SOA 510 is disposed on the fourth substrate 520 , a circuit pattern is formed on the surface of the fourth substrate 520 , and the SOA 510 is electrically connected to the fourth substrate 520 .
  • Circuit patterns on the fourth substrate 520 to facilitate the application of driving current to the SOA 510 through the fourth substrate 520 .
  • the fourth substrate 520 may be a ceramic substrate, and a circuit pattern for electrically connecting the SOA 510 is formed on the surface of the ceramic substrate.
  • the SOA 510 is mounted on the fourth substrate 520 , and the positive electrode of the SOA 510 is connected to the circuit on the fourth substrate 520 by bonding wires.
  • the optical amplifier assembly 500 further includes a temperature sensor 530, and the temperature sensor 530 is disposed around the SOA 510 for collecting the temperature of the SOA 510 in real time to facilitate temperature control of the SOA 510.
  • the temperature sensor 530 is disposed on the fourth substrate 520 , and a circuit pattern for electrically connecting the temperature sensor 530 is disposed on the fourth substrate 520 .
  • the temperature sensor 530 may be a thermistor, and the thermistor is mounted on the fourth substrate 520 and is electrically connected to the circuit pattern on the fourth substrate 520 .
  • FIG. 13 is a cross-sectional view of another light receiving sub-module according to some embodiments, and FIG. 13 shows the structure of the light receiving sub-module and the light path structure of the light to be received provided by the embodiments of the present application.
  • the TEC890 and the first substrate 610 are arranged on the lower light receiving case 081, that is, the bottom of the TEC890 and the first substrate 610 are fixed on the bottom plate of the lower light receiving case 081; wherein, the TEC890 is close to the lower light receiving case 081 to connect the optical fiber
  • One end of the adapter assembly 300 is connected to one end of the electrical connector 400 where the first substrate 610 is close to the light receiving lower shell 081 .
  • a third substrate 630 is arranged on the top of the TEC890, and an isolator 850, a collimating lens 860, an optical amplifying component 500 and a focusing lens 870 are arranged on the third substrate 630; A resistive amplifier 820 and a reflection prism 840 ; a demultiplexing component 830 and a lens group 880 are arranged on the second substrate 620 .
  • the first substrate 610, the second substrate 620 and the third substrate 630 coordinately carry devices such as the isolator 850 and the collimating lens 860, which not only meets the requirements of the relative installation height between the devices, but also facilitates the installation of the devices in the light receiving cavity. assembly.
  • FIG. 14 is a schematic structural diagram of an electrical connector provided according to some embodiments. As shown in FIGS. 13 and 14 , the left side of the electrical connector 400 extends into the cavity of the lower light-receiving case 081 , and the right side is located outside the cavity of the lower light-receiving case 081 .
  • the electrical connector 400 includes an electrical connector body 410, and the electrical connector body 410 is used to embed the connection opening 084; the left side of the electrical connector body 410 is used to electrically connect the devices in the cavity of the light receiving lower shell 081, and the electrical connector body The right side of 410 is used to electrically connect circuit board 206 .
  • a first stepped surface 420 and a second stepped surface 430 are provided on the left side of the electrical connector body 410 , and the first stepped surface 420 and the second stepped surface 430 are located at different positions on the left side of the electrical connector body 410
  • the height of the first stepped surface 420 and the second stepped surface 430 are toward the top of the light receiving lower shell 081 to form mutually staggered stepped structures, so that the electrical connector 400 can be electrically connected to the devices in the light receiving lower shell 081 cavity.
  • the right side of the electrical connector body 410 is provided with a first connection surface 440 and a second connection surface 450 which are arranged towards the back.
  • first connection surface 440 faces the top of the light-receiving lower shell 081 and the second connection surface 450 faces the light-receiving lower shell 081
  • the first connection surface 440 and the second connection surface 450 are used to connect the circuit board 206, for example, the first connection surface 440 and the second connection surface 450 are respectively electrically connected to the circuit board 206 through the flexible circuit board.
  • DC pins are provided on the first stepped surface 420 for transmitting DC signals and power supply, and AC pins and ground pins are provided on the second stepped surface 430 for AC signal transmission and grounding; several pins are respectively set on the first connection surface 440 and the second connection surface 450, and the pins of the first connection surface 440 and the second connection surface 450 are used to electrically connect the circuit board 206; and the first step The pins on the surface 420 are connected to the pins on the first connection surface 440 , and the pins on the second stepped surface 430 are connected to the pins on the second connection surface 450 .
  • the first stepped surface 420 is provided with a pin for connecting the negative electrode, a pin for connecting the positive electrode of the SOA 510, and a pin for connecting the positive electrode of the temperature sensor 530;
  • the second stepped surface 430 is used for connecting The negative electrode of the light receiving component 810 , the negative electrode of the transimpedance amplifier 820 , the negative electrode of the SOA 510 and the ground pin of the negative electrode of the temperature sensor 530 .
  • the devices in the cavity of the light-receiving lower shell 081 are connected to corresponding pins on the electrical connector 400 by wire bonding, for example, the transimpedance amplifier 820 is connected to several pins on the electrical connector 400 by wire bonding.
  • the operation of the optical amplifier assembly 500 and the TEC890, etc. also requires power supply, so it is necessary to provide electrical connection for the optical amplifier assembly 500 and the TEC89, etc. through the electrical connector 400, so as to supply power to the optical amplifier assembly 500 and the TEC89, etc.
  • the optical amplifier assembly 500 and the TEC89 equidistant electrical connector 400 are relatively far away, and the optical amplifier assembly 500, TEC890, etc.
  • the optical amplifier assembly and the electrical connector 400 are separated by devices such as the wavelength division multiplexing assembly 830, and the optical amplifier assembly is directly connected by bonding wires.
  • 500, TEC890, etc. and the corresponding pins on the electrical connector 400 are not easy to be realized, and the impedance between the optical amplifier components 500, TEC890, etc. and the electrical connector 400 is not easily limited by direct wire bonding.
  • the wire bonding method enables the optical amplifier assembly 500 and the TEC890 to be electrically connected to the corresponding pins on the electrical connector 400, and the electrical stability of the optical amplifier assembly 500 and the TEC890 is often difficult to meet the requirements.
  • a substrate with a circuit pattern is used to perform the transition between the optical amplifier assembly 500, the TEC890, etc. and the electrical connector 400.
  • the substrate is arranged on the bottom plate of the light-receiving lower case 081 or other positions of the light-receiving cavity, a corresponding metal layer is arranged on the substrate to form a circuit pattern, and one end of the substrate is electrically
  • the optical amplifier assembly 500 and the TEC890 are connected, and the other end of the substrate is electrically connected to the electrical connector 400, and the optical amplifier assembly 500, the TEC89, etc. are electrically connected to the electrical connector 400 through the substrate.
  • FIG. 15 is a schematic structural diagram of another light-receiving sub-module with a light-receiving upper cover removed according to some embodiments
  • FIG. 16 is a cross-sectional view of the light-receiving sub-module in FIG. 15 .
  • a metal layer is provided on the surface of the first substrate 610 , and a circuit pattern is formed through the metal layer for the electrical connection of the optical amplifier assembly 500 and the TEC890 and the like to the electrical connector 400 .
  • a separate substrate for realizing the electrical connection between the optical amplifier assembly 500 and the TEC 890 and the electrical connector 400 can also be provided, and the substrate is arranged in the light receiving lower shell 081 ; or, on the surface of the second substrate 620 A metal layer is provided, and the electrical connection between the optical amplifier assembly 500 and the TEC890 and the like to the electrical connector 400 is realized through the second substrate 620 .
  • a circuit pattern can also be formed inside the first substrate 610 , and pads can be formed on the surface, the first substrate 610 and the electrical connector 400 are integrally structured, and the pins on the other side of the electrical connector 400 pass through the first substrate 610
  • the internally formed circuit pattern is electrically connected to the pads on the surface of the first substrate, and the optical amplifier assembly 500 and the TEC890 are electrically connected to the pads on the first substrate 610 to realize the electrical connection of the optical amplifier assembly 500 and the TEC890 to the electrical connector 400 .
  • the electrical connection between the optical amplifier assembly 500 and the TEC 89 and the like to the electrical connector 400 will be described by taking the example of disposing a metal layer on the surface of the first substrate 610 to form a circuit pattern.
  • FIG. 17 is a schematic structural diagram of another first substrate provided according to some embodiments.
  • FIG. 17 shows a detailed structure of a metal layer disposed on the first substrate 610.
  • the metal layer is disposed on the first substrate 610.
  • the structure and shape of the metal layer are not limited to those shown in FIG. 17 .
  • a metal layer is provided on the first substrate 610 provided by the embodiment of the present application, and the metal layer on the first substrate 610 extends from one end of the first substrate 610 to the other end of the first substrate 610 .
  • the first substrate 610 One end is close to the optical amplifier assembly 500 and the TEC89, etc., and the other end is close to the electrical connector 400.
  • the first substrate 610 is a ceramic substrate, and a metal layer of a material such as gold or copper is laid on the top surface of the ceramic substrate.
  • a first metal layer 612 , a second metal layer 613 , a third metal layer 614 , a fourth metal layer 615 and a fifth metal layer 616 are disposed on the first substrate 610 . Because the pins close to the optical amplifier assembly 500 and the TEC89 are concentrated, the ends of the first metal layer 612, the second metal layer 613, the third metal layer 614, the fourth metal layer 615 and the fifth metal layer 616 are concentrated at one end. One end of the first substrate 610; and the pin distribution of the electrical connector 400 is relatively scattered, so the first metal layer 612, the second metal layer 613, the third metal layer 614, the fourth metal layer 615 and the fifth metal layer 616 The other end of the distribution is relatively scattered.
  • first metal layer 612 , the second metal layer 613 , the third metal layer 614 , the fourth metal layer 615 and the fifth metal layer 616 are collectively arranged on one end of the first substrate 610 and electrically connected to the optical amplifier assembly 500 by bonding wires and TEC89, etc., the other ends of the first metal layer 612, the second metal layer 613, the third metal layer 614, the fourth metal layer 615 and the fifth metal layer 616 are connected to the pins of the electrical connector 400 by bonding wires.
  • ends of one end of the first metal layer 612 , the second metal layer 613 , the third metal layer 614 , the fourth metal layer 615 and the fifth metal layer 616 are juxtaposed along the width direction of the first substrate 610 provided at one end of the first substrate 610 .
  • a blank area 619 is provided on the first substrate 610 , a first metal layer 612 , a second metal layer 613 , a third metal layer 614 , a fourth metal layer 615 and a fifth metal layer 619 .
  • the middle of the metal layer 616 avoids the blank area 619, and the second substrate 620 is disposed above the blank area 619, so as to ensure that a small amount of metal layers are laid under the de-wavelength division multiplexing component 830, so as to reduce the impact of the metal layer on the wavelength division multiplexing component 830. impact of use.
  • FIG. 17 also shows in detail the specific bus form of the metal layer on the first substrate 610 in some embodiments of the present application.
  • the blank area 619 is located on one side of the third metal layer 614
  • the second metal layer 613 is located on the other side of the third metal layer 614
  • the middle of the third metal layer 614 and the other end of the third metal layer 614 The end of the third metal layer 614 extends to the side of the first substrate 610 along the width direction
  • the other end of the second metal layer 613 extends to the end of the third metal layer 614
  • the fourth metal layer 615 surrounds the side of the blank area 619 not surrounded by the third metal layer 614 , and the other end of the fourth metal layer 615 extends to one side of the end of the third metal layer 614 .
  • the end of the other end of the first metal layer 612 is located between the end of the other end of the second metal layer 613 and the end of the other end of the third metal layer 614 ; the fifth metal layer The end of the other end of 616 is located between the end of the other end of the fourth metal layer 615 and the end of the other end of the third metal layer 614 . In this way, it is convenient to arrange devices on the third metal layer 614 and coordinate the arrangement of the metal layers on the first substrate 610 to the wirings on the electrical connector 400 .
  • one end of the first metal layer 612 is used to electrically connect the positive electrode of the TEC 890
  • one end of the second metal layer 613 is used to connect to the positive electrode of the temperature sensor 530
  • one end of the third metal layer 614 is used to connect the temperature sensor 530.
  • the area of the other end of the third metal layer 614 is relatively large.
  • the other end of the third metal layer 614 is set to have an area opposite to the other end. It is larger to facilitate the bonding between the other end of the third metal layer 614 and the electrical connector 400 .
  • the negative electrodes of the light-receiving components 810 and the transimpedance amplifier 820 on the first substrate 610 also need to be grounded.
  • the area of the other end of the third metal layer 614 is set to be relatively large, which is convenient for the light-receiving components 810, 820 and 820.
  • the negative poles of the transimpedance amplifier 820 and the like are grounded, and the light receiving components 810, the transimpedance amplifier 820 and the like are mounted and fixed.
  • the other end of the third metal layer 614 extends to the side of the first substrate 610 along the width direction of the first substrate 610 .
  • the first metal layer 612 , the second metal layer 613 , the fourth The other ends of the metal layer 615 and the fifth metal layer 616 are slightly farther away from the side of the first substrate 610 , which is convenient for the metal layer on the first substrate 610 and the electrical devices provided on the first substrate 610 to be connected to the electrical connector 400 . line arrangement.
  • FIG. 18 is a use state diagram of another first substrate provided according to some embodiments.
  • the light receiving component 810 and the transimpedance amplifier 820 are mounted on the third metal layer 614 .
  • the third metal layer 614 can also be mounted with matching resistors, matching resistors, and matching resistors. capacitors and other devices.
  • the second substrate 620 covers the middle of the first metal layer 612 , the second metal layer 613 , the third metal layer 614 , the fourth metal layer 615 and the fifth metal layer 616 , and the first support block 841 is disposed on the On the first metal layer 612 and the second metal layer 613 , the second support block 842 is disposed on the fourth metal layer 615 and the fifth metal layer 616 .
  • the second substrate 620 is insulated from the first metal layer 612 , the second metal layer 613 , the third metal layer 614 , the fourth metal layer 615 and the fifth metal layer 616 .
  • the middle portions of the third metal layer 614 , the fourth metal layer 615 and the fifth metal layer 616 are covered with insulating material, or the second substrate 620 is a substrate made of insulating material, such as a ceramic substrate.
  • the first support block 841 is insulated from the first metal layer 612 and the second metal layer 613, and the second support block 842 is insulated from the fourth metal layer 615 and the fifth metal layer 616;
  • the support block 842 is a support block made of insulating materials such as plastic and glass.
  • the first substrate 610 provided in this embodiment of the present application can not only be used to carry devices such as the demultiplexing component 830 , but also provide an electrical connection between the optical amplification component 500 and the electrical connection 400 , ensuring the use of the first substrate 610 . performance.
  • FIG. 19 is a schematic structural diagram of an optical amplifying assembly provided according to some embodiments.
  • the optical amplifying assembly 500 provided by the implementation of the present application includes a fourth substrate 520 , the fourth substrate 520 is a strip-shaped structure, and the top surface of the fourth substrate 520 is provided with an SOA positive metal layer 521 and an SOA negative metal layer 522 and the temperature sensor negative metal layer 523, the SOA positive metal layer 521, the SOA negative metal layer 522, and the end of the temperature sensor negative metal layer 523 close to the end of the fourth substrate 520;
  • the SOA 510 is mounted on the first section of the SOA negative metal layer 522,
  • the negative electrode of SOA510 is electrically connected to the SOA negative electrode metal layer 522, and the positive electrode of SOA510 is wired to the head end of the SOA positive electrode metal layer 521;
  • the temperature sensor 530 is mounted on the first section of the negative electrode metal layer 523 of the temperature sensor, and the negative electrode of the temperature sensor 530 is electrical
  • the fourth substrate 520 is elongated, which facilitates the setting of the collimating lens 860 and the focusing lens 870 and the like and ensures the utilization rate of the third substrate 630; of course, the fourth substrate 520 in the embodiment of the present application is not uniform It is limited to the elongated structure, and other shapes are also possible.
  • the ends of the SOA positive metal layer 521, the SOA negative metal layer 522 and the temperature sensor negative metal layer 523 and the positive electrode of the temperature sensor 530 can be directly connected to the corresponding metal layers on the first substrate 610 by bonding wires.
  • the embodiment of the present application is not limited to directly connecting the fourth substrate 520 and the first substrate 610 by wire bonding, and a relay substrate may also be provided between the fourth substrate 520 and the first substrate 610, and a metal layer is formed on the relay substrate.
  • the fourth substrate 520 and the first substrate 610 are respectively electrically connected to the relay substrate, and then the fourth substrate 520 and the first substrate 610 are electrically connected through the relay substrate.
  • FIG. 20 is a use state diagram of another third substrate provided according to some embodiments.
  • the optical amplification assembly 500 further includes a fifth substrate 540 , the fifth substrate 540 is disposed on the top surface of the third substrate 630 , and the fifth substrate 540 is located on the fourth substrate 520 .
  • the fifth substrate 540 is used as a relay substrate for electrical connection between the fourth substrate 520 and the first substrate 610 .
  • the fifth substrate 540 is not limited to be disposed on the third substrate 630 .
  • the fifth substrate 540 is disposed at the end of the fourth substrate 520, and the fifth substrate 540 is close to the positive and negative electrodes of the TEC890, so that the related wires can be arranged in a relatively centralized manner, thereby facilitating centralized wire bonding.
  • a number of metal strips are disposed on the fifth substrate 540 , and the metal strips are used to realize the transfer from the metal layer on the fourth substrate 520 to the metal layer on the first substrate 610 .
  • the length direction of the fourth substrate 520 is perpendicular to the length direction of the fifth substrate 540 , and a plurality of parallel metal strips are arranged along the length direction of the fifth substrate 540 , so that the fourth The ends of the SOA positive metal layer 521 , the SOA negative metal layer 522 and the temperature sensor negative metal layer 523 on the substrate 520 are perpendicular to the metal strips on the fifth substrate 540 , thereby facilitating the SOA positive metal layer 521 , SOA on the fourth substrate 520
  • the anode metal layer 522 and the temperature sensor anode metal layer 523 are bonded to the fifth substrate 540 .
  • the metal strips are used to electrically connect the SOA anode metal.
  • the four parallel metal strips are the first metal strip 541, the second metal strip 542, the third metal strip 543, and the fourth metal strip 544 from top to bottom.
  • the first metal strip 541 is wired to connect the SOA positive electrode.
  • the metal layer 521, the second metal strip 542 are wired to connect the SOA negative metal layer 522 and the temperature sensor negative metal layer 523, the third metal strip 543 is wired to the positive electrode of the temperature sensor 530, and the fourth metal strip 544 is wired to the positive electrode of the TEC890.
  • FIG. 21 is a schematic partial structure diagram of a light receiving sub-module according to some embodiments, wherein the anode of the TEC is located at the left position in FIG. 21 , and FIG. 21 shows the first substrate 610 , the fourth substrate 520 and the The wire bonding state of the fifth substrate 540 .
  • the end of the fifth substrate 540 is close to the end of the third substrate 630 , so that the end of the fifth substrate 540 is close to one end of the first substrate 610 , and then the end of the metal strip on the fifth substrate 540 is close to One end of the metal layer on the first substrate 610 is convenient for wire bonding.
  • one end of the metal layer on the first substrate 610 is close to the fifth substrate 540 , the other end of the first metal strip 541 is connected to the second metal layer 613 by wire bonding, and the second metal strip
  • the 542 wire is connected to the third metal layer 614
  • the third metal strip 543 is connected to the fourth metal layer 615
  • the fourth metal strip 544 is connected to the fifth metal layer 616 by wire.
  • the bonding wires of the fourth substrate 520 and the first substrate 610 are respectively connected to the fifth substrate 540, so that the bonding wires between the boards can be arranged in sequence, effectively avoiding the intersection of bonding wires and ensuring wire bonding connections. usage performance.
  • FIG. 22 is a schematic diagram of the structure of the light receiving lower case in another light receiving sub-module provided according to some embodiments, FIG. 22 shows the structure of the light receiving sub-module 208 in the light receiving lower case 081 in the embodiment of the present application
  • FIG. 23 is a partial enlarged view of the A in FIG. 22
  • FIG. 24 is a partial enlarged view of the B in FIG. 22
  • FIG. 25 is a partial enlarged view of the C in FIG. 22.
  • Enlarged, Figures 23-25 show the wire-bonding structure of the relevant parts.
  • the metal layer provided on the first substrate 610 with the fifth substrate 540 so that the electrical connector 400 can supply power to the optical amplifier assembly 500 and the TEC890, etc., ensuring that the optical amplifier assembly 500 and the TEC890 are powered etc. power supply stability.
  • the specific layout form in the embodiment of the present application is not limited to the form shown in FIG. 22 , and appropriate deformation and adjustment can also be made.
  • the gain of the SOA 510 can be adjusted according to the intensity of the signal light actually transmitted to the SOA 510, so that the power of the signal light transmitted to the light receiving component 810 is kept in a relatively stable state, so the gain of the SOA 510 can be
  • the light receiving sub-module 208 adjusts the intensity of the signal light.
  • the present application in order to realize the electrical connection between the optical amplifier assembly 500 and the electrical connector 400 such as the TEC890, is not limited to disposing a gold layer on the first substrate 610, but also disposing a metal layer or a metal layer on the second substrate 620. Other substrates are provided for setting the metal layers.
  • FIG. 26 is a schematic structural diagram of still another light receiving sub-module with a light receiving upper cover removed according to some embodiments.
  • a metal layer is provided on the second substrate 620 provided in the embodiment of the present application, and the metal layer is provided on the second substrate 620 to realize the electrical connection between the optical amplifier assembly 500 and the TEC890 and other electrical connectors 400 .
  • the metal layer on the second substrate 620 is disposed on the second substrate 620 at a position close to the sidewall of the lower light-receiving case 081 .
  • the metal layers on the second substrate 620 can be all elongated, and of course can also have other shapes.
  • FIG. 27 is a schematic structural diagram of a fourth light-receiving sub-module with a light-receiving upper cover removed according to some embodiments.
  • the substrate assembly 600 further includes a sixth substrate 640 and a seventh substrate 650 .
  • Metal layers are respectively provided on the sixth substrate 640 and the seventh substrate 650 , and the sixth substrate 640 and the seventh substrate 650 are combined to realize light
  • the amplifying assembly 500 and the TEC890 and the like are electrically connected to the electrical connector 400 .
  • the sixth substrate 640 and the seventh substrate 650 are disposed on the second substrate 620, that is, the second substrate 620 is used to fix and support the sixth substrate 640 and the seventh substrate 650,
  • the sixth substrate 640 and the seventh substrate 650 are disposed on the second substrate 620 at positions close to the sidewalls of the light-receiving lower case 081 .
  • the sixth substrate 640 is disposed on one side of the second substrate 620, and is used for the amplifying assembly 500 to be electrically connected to the electrical connector 400
  • the seventh substrate 650 is disposed on the other side of the seventh substrate 650, and is used for the TEC890 to electrically connect to the electrical connector 400.
  • the electrical connector 400 is connected.
  • the metal layers on the sixth substrate 640 and the seventh substrate 650 may be of a strip type.
  • the sixth substrate 640 and the seventh substrate 650 may also be disposed on the first substrate 610 or the bottom plate of the lower light receiving case 081 .
  • FIG. 28 is a use state diagram of still another third substrate according to some embodiments, and FIG. 28 shows a partial structure of another light receiving sub-module 208 .
  • the light receiving sub-module 208 provided in this embodiment of the present application further includes a light splitter 085 and a backlight detector 086 .
  • the optical splitter 085 is used to separate the signal light of a certain optical power from the signal light transmitted from the outside of the optical module to the light receiving sub-module 208 to the backlight detector 086, and the backlight detector 086 receives the signal light split by the optical
  • the intensity of the signal light power determines the intensity of the signal light transmitted from the outside of the optical module to the light receiving sub-module 208 .
  • the optical splitter 085 can transmit the signal light from the optical module with 2%-5% optical power to the light receiving sub-module 208 to the backlight detector 086.
  • the optical splitter 085 is not limited to The signal light transmitted to the optical receiving sub-module 208 is externally transmitted to the optical module with 2%-5% of the optical power.
  • the beam splitter 085 and the backlight detector 086 are disposed on the third substrate 630 ; the beam splitter 085 is disposed between the isolator 850 and the collimating lens 860 and passes through the isolator 850
  • the signal light is transmitted to the optical splitter 085; the signal light of part of the optical power transmitted to the optical splitter 085 is reflected and transmitted to the backlight detector 086, and the signal light of another part of the optical power is transmitted through the optical splitter 085 and then transmitted to the collimating lens 860.
  • the transmission direction of the signal light transmitted from the outside of the module to the light receiving sub-module 208 is shown by the arrow in FIG. 26 .
  • FIG. 29 is a schematic diagram of an SOA gain control circuit provided according to some embodiments.
  • the SOA gain control circuit includes an MCU2061, and the MCU2061 determines the gain of the SOA510 according to the collected signal, and then controls the operating current applied to the SOA510.
  • the backlight detector 086 receives the signal light reflected by the beam splitter and converts it into an electrical signal; The converted electrical signal is transmitted to the transimpedance amplifier 820 and amplified by the transimpedance amplifier 820; the sampling module 2062 is connected between the transimpedance amplifier 820 and the MCU2061, and the MCU2061 collects the analog signal through the sampling module 2062 to obtain the digital signal, and then the MCU2061 passes the digital signal Determine the optical power of the signal light received by the backlight detector 086 to determine the actual optical power of the external signal light from the optical module, and then determine the gain of the SOA 510 in combination with the expected value of the optical power of the optical module, and finally determine the SOA 510 according to the gain of the SOA 510 The operating current of the SOA 510.
  • the register of the MCU2061 may store a lookup table in which the optical power of the signal light received by the backlight detector 086 corresponds to the operating current of the SOA 510.
  • the lookup table Get the working current of SOA510.
  • the temperature sensor 530 is connected to the MCU2061 to transmit the collected temperature signal to the MCU2061.
  • the MCU2061 determines the current to be applied by the TEC and the direction of the current according to the received temperature signal, so that the TEC890 can effectively control the temperature of the SOA510 , to ensure that SOA510 works in the set temperature range, so that the performance of SOA510 is better.
  • the register of the MCU2061 stores a look-up table of the temperature signal, the SOA510 gain and the TEC890 drive current, and the current and current direction that need to be applied to the TEC are determined according to the collected temperature signal and the set SOA510 gain .
  • the TEC is driven according to the determined current and current direction, so that the TEC can adjust and control the working temperature of SOA510.
  • FIG. 30 is a schematic diagram of an exploded structure of a light receiving sub-module of an optical module provided according to some embodiments; as can be seen from FIG. 30 , a collimating lens 860 is sequentially provided inside the light receiving lower shell 081 from the side of the optical fiber adapter assembly 300 , SOA chip 510 , focusing lens 870 , demultiplexing component 830 , lens group 880 , reflecting prism 840 and light receiving chip array 409 .
  • the collimating lens 860 , the SOA chip 510 , the focusing lens 870 , the demultiplexing component 830 , the lens group 880 , the reflecting prism 840 and the light receiving chip array 409 are specifically arranged on the bottom surface of the light receiving lower case 081 .
  • the collimating lens 860 is used for receiving the optical signal from the optical fiber adapter and converting it into a condensing beam;
  • the SOA chip 510 is used for receiving and amplifying the optical signal from the first lens;
  • the focusing lens 870 is arranged on the surface of the circuit board, with for receiving the optical signal from the SOA chip and converting it into a collimated beam;
  • the demultiplexing component 830 is used for receiving the optical signal from the second lens and dividing the optical signal into multiple beams of optical signals with different wavelengths;
  • the lens group 880 includes A plurality of lenses are used to receive multiple beams of optical signals of different wavelengths output by the optical demultiplexing component and convert the multiple beams of optical signals of different wavelengths into convergent beams;
  • the reflective prism 840 is covered on the light receiving chip array and has a reflective surface for receiving multiple light signals of different wavelengths from the lens array and reflected by the reflective surface and then input to the light-receiving chip array;
  • the light-receiving surface of the light-receiving chip in the light-receiving chip array 409 is the upper surface of the corresponding chip, that is, the light-receiving surface of the light-receiving chip faces the bottom surface of the reflective prism 840, and the light-receiving surface of the light-receiving chip It is in a vertical relationship with the light-emitting surface of the lens group 880 , and is incident on the light-receiving surface of the light-receiving chip after being reflected by the reflective prism 840 .
  • FIG. 31 is a schematic top-view structural diagram of a light receiving sub-module of an optical module provided according to some embodiments after removing the cover plate;
  • FIG. 31 is a schematic top-view structural diagram of a light receiving sub-module of an optical module provided according to some embodiments after removing the cover plate;
  • the optical signal from the transmission link is emitted from the optical fiber adapter assembly 300, and the optical fiber adapter assembly 300 transmits the optical signal to the collimating lens 860, and the collimating lens 860 receives the light from the optical fiber adapter
  • the signal is converted into a condensed beam, and transmitted to the SOA chip 510.
  • the SOA chip 510 receives and amplifies the optical signal from the collimating lens 860 and outputs it to the focusing lens 870.
  • the focusing lens 870 receives the optical signal from the SOA chip 510 and converts it into The beam is collimated and transmitted to the optical demultiplexing component, and the optical signal output by the focusing lens 870 is decomposed into multiple optical signals of different wavelengths by the demultiplexing component 830, and the multiple optical signals of different wavelengths obtained after the decomposition After the multiple lenses in the lens group 880 are converted into condensed beams, the beams are transmitted to the reflecting prism 840.
  • the reflecting prism 840 has a reflecting surface, which is reflected by the reflecting surface and then input to the multiple light-receiving chips in the light-receiving chip array 409. The plurality of light receiving chips correspondingly receive multiple beams of light signals of different wavelengths.
  • the application reasonably integrates the SOA chip into the optical receiving sub-module of the optical module, and achieves good connection with other devices, amplifies the power of the optical signal received by the optical receiving sub-module, and finally obtains high sensitivity and long-distance transmission. optical module.
  • the SOA chip 510 is carried by the fourth substrate 520, and the SOA chip 510 is attached to the surface of the fourth substrate 520; further, in order to ensure the normal operation of the SOA chip 510, its operating temperature needs to be monitored , therefore, the temperature sensor 530 is set in this application, and the temperature sensor 530 is arranged near the SOA chip 510. There is a certain relationship between the resistance value of the temperature sensor 530 and the operating temperature of the SOA chip 510. By monitoring the resistance value of the temperature sensor 530, the The change of the working temperature of the SOA chip 510 is monitored, and then the working temperature of the SOA chip 510 is adjusted by adjusting the current of the TEC.
  • the working temperature of the SOA chip 510 changes accordingly until the SOA chip 510 is changed. Adjust the temperature to the normal operating temperature.
  • the three structures of the SOA chip 510, the fourth substrate 520 and the temperature sensor 530 are integrated and described as an SOA component.
  • the SOA component is located between the collimating lens 860 and the focusing lens 870, That is to say, corresponding lenses are provided on both sides of the SOA component. Due to the limited space in the cavity of the light receiving sub-module, the space between the two lenses can be reasonably used by placing the SOA component between the collimating lens 860 and the focusing lens 870.
  • the SOA component is set in other positions, since the optical signal output by the SOA component is a divergent beam, the optical signal state changes, and a lens needs to be added to change the optical signal state, which will increase The size of the cavity space.
  • the optical module further includes a displacement prism 405 for adjusting the demultiplexing component. 830
  • the distance between the central axis of the light inlet and the central axis of the optical fiber adapter, the movement of the optical axis can be realized by the displacement prism 405; Specifically, it may be located between the demultiplexing component 830 and the focusing lens 870 , or may be located on one side of the central axis of the optical fiber adapter assembly 300 , and may specifically be located between the collimating lens 860 and the optical fiber adapter assembly 300 .
  • the position of the displacement prism 405 is not limited in the embodiment of this application, as long as the displacement prism 405 can realize the movement of the central axis of the light inlet of the demultiplexing component 830 and the central axis of the optical fiber adapter, so that the distance between the two can meet the requirements
  • the positions of all belong to the protection scope of the embodiments of the present application.
  • the lens types of the collimating lens 860, the focusing lens 870 and the lens group 880 are adapted to the type of the optical fiber adapter.
  • the optical signal coupled and output by the collimating adapter is a collimated beam
  • the collimating lens 860 is a collimating lens
  • the collimated beam output by the collimating adapter is converted into a condensing beam and coupled into the SOA chip
  • the focusing lens 870 is a collimating lens
  • It is used to convert the diverging beam output by the SOA chip into a collimated beam
  • the lens group 880 includes a plurality of condensing lenses, and is used to convert the collimated beam output by the demultiplexing component 830 into a convergent beam.
  • the collimating lens 860 is a converging lens, which is used to convert the divergent beam output by the optical fiber adapter into a converging beam;
  • the focusing lens 870 is a collimating lens, which is used to output the SOA chip.
  • the divergent light beams are converted into collimated light beams;
  • the lens group 880 includes a plurality of condensing lenses for converting the collimated light beams output by the optical demultiplexing component into condensed light beams.
  • the demultiplexing component 830 includes a plurality of optical output ports, and the number of the optical output ports is equal to the number of the multiple beams of optical signals of different wavelengths, and each optical output port correspondingly outputs a beam of optical signals of a wavelength;
  • the lens group 880 includes a plurality of lenses, and the plurality of lenses are arranged in the form of an array. The number of lenses in the lens group 880 is equal to the number of light output ports in the demultiplexing component 830.
  • Each lens in the lens group 880 Correspondingly receives the optical signal output by each light output port in the demultiplexing component 830; the number of light receiving chips in the light receiving chip array 409 is equal to the number of lenses in the lens group 880; in the embodiment of the present application,
  • the de-wavelength division multiplexing component 830 uses different film layers arranged on both sides and different positions to transmit and reflect the signal light of different wavelengths to divide a beam of optical signals into multiple beams of optical signals of different wavelengths.
  • the light receiving sub-module of the embodiment of the present application undergoes the beam conversion of the first lens, the method of the SOA chip, the beam conversion of the second lens, the demultiplexing of the optical demultiplexing component, the beam conversion of the lens array,
  • the reflection of the third lens and the reception of the light-receiving chip array can reasonably realize the connection of each structure and exert their respective functions, obtain a reasonable optical design and optical path design, and finally integrate the SOA chip into the light-receiving structure reasonably.
  • the optical signal power received by the module is amplified.
  • FIG. 33 is a schematic structural diagram of the internal components of another light receiving sub-module of an optical module provided according to some embodiments;
  • the lens group 880 includes a plurality of lenses for Receive multiple beams of optical signals with different wavelengths output by the demultiplexing component 830 and convert the multiple beams of optical signals with different wavelengths into condensed beams and inject them into the light-receiving surface of each light-receiving chip in the light-receiving chip array;
  • the light receiving surface of the receiving chip is in a parallel relationship with the light emitting surface of the lens group 880 , that is, the light receiving surface of the light receiving chip faces the lens group 880 , so that the light receiving surface of the light receiving chip does not need to be totally reflected by the third lens.
  • FIG. 34 is a schematic optical path diagram of a light receiving state of the optical module provided according to some embodiments
  • FIG. 35 is a schematic diagram of an optical path of another light receiving state of an optical module provided according to some embodiments.
  • the light beams are sequentially converged by the collimating lens 860 , magnified by the SOA chip 510 , collimated by the focusing lens 870 , split by the demultiplexing component 830 , converged by the lens group 880 , and reflected by the reflecting prism 840 and then input to the light receiver chip array 409.
  • the light receiving in this application provides two states, one is that the light-receiving surface of the light-receiving chip faces upwards, and it needs to be reflected by the third lens to enter the light-receiving surface of the light-receiving chip, and the other is The light-receiving surface of the light-receiving chip faces the lens array. In this case, the light-receiving surface of the light-receiving chip is directly input to the light-receiving surface of the light-receiving chip without being reflected by the third lens.
  • Figures 34 and 35 show schematic diagrams of the optical paths of the two receiving states, respectively.
  • the optical module provided by the present application includes a circuit board and a light receiving sub-module.
  • the light receiving sub-module includes a cover plate and a cavity that are covered and connected.
  • the bottom surface of the cavity is provided with: a first lens, an SOA chip, a second lens, an optical demultiplexer using an assembly, a lens array, a third lens and an array of light-receiving chips, wherein the first lens receives the optical signal from the fiber optic adapter and converts it into a convergent beam, and transmits it to the SOA chip, and the SOA chip receives and amplifies the optical signal from the first lens, And output to the second lens, the second lens receives the optical signal from the SOA chip and converts it into a collimated beam, and transmits it to the optical demultiplexing component, and the optical signal output by the second lens is decomposed into multiple components by the optical demultiplexing component.
  • the optical signals of different wavelengths are decomposed, and the multiple optical signals of different wavelengths obtained after decomposition are converted into condensed beams by a plurality of lenses in the lens array, and transmitted to the third lens, which covers the light of the light-receiving chip array.
  • the receiving surface has a reflective surface, which is reflected by the reflective surface and then incident on a plurality of light-receiving chips in the light-receiving chip array, and the plurality of light-receiving chips correspondingly receive multiple beams of light signals of different wavelengths.
  • the application reasonably integrates the SOA chip into the optical receiving sub-module of the optical module, and achieves good connection with other devices, amplifies the power of the optical signal received by the optical receiving sub-module, and finally obtains high sensitivity and long-distance transmission. optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括:电路板(206);光接收次模块(208),电连接电路板(206),用于接收来自光模块(200)外部的信号光;光接收次模块(208)包括:光接收腔体,一端设置入光孔(083),另一端设置开口(084),开口(084)内设置电连接器(400),电连接器(400)电连接电路板(206);光放大组件(500),设置在光接收腔体内,靠近光接收腔体的入光孔(083),包括第四基板(520)和半导体光放大器(510),半导体光放大器(510)电连接第四基板(520),第四基板(520)电连接电连接器(400);光接收组件(810),设置在光接收腔体内,用于接收透过半导体光放大器(510)的信号光。来自光模块(200)外部的信号光在传输至光接收组件(810)之前被放大,使待接收的信号光具有高灵敏度,满足长距离传输场景中高灵敏度的要求。

Description

一种光模块
本公开要求在2020年12月17日提交中国专利局、申请号为202011496690.6、专利名称为“一种光模块”、在2021年09月16日提交中国专利局、申请号为202111088244.6、专利名称为“一种光模块”、在2021年09月16日提交中国专利局、申请号为202122253630.8、专利名称为“一种光模块”、在2021年09月16日提交中国专利局、申请号为202111088602.3、专利名称为“一种光模块”、在2021年09月16日提交中国专利局、申请号为202122251048.8、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。当多通道光模块用于长距离传输场景中,灵敏度很难达到光模块中的高灵敏度要求。
发明内容
第一方面,本申请提供的一种光模块,包括:电路板;光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;其中,所述光接收次模块包括:光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路板;光放大组件,设置在所述光接收腔体内,靠近所述光接收腔体的入光孔,包括第四基板和设置在所述第四基板上的半导体光放大器,所述半导体光放大器电连接所述第四基板,所述第四基板电连接所述电连接器;光接收组件,设置在所述光接收腔体内,用于接收透过所述半导体光放大器的信号光。
第二方面,本申请提供的一种光模块,包括:电路板;光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;其中,所述光接收次模块包括:光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路板;光放大组件,设置在所述光接收腔体内,靠近所述光接收腔体的入光孔,所述光放大组件包括半导体光放大器、第四基板和第五基板;所述半导体光放大器设置在所述第四基板上且电连接所述第四基板,所述第五基板设置在第四基板的一端,所述第四基板打线连接所述第五基板且通过所述第五基板电连接所述电连接器;光接收组件,设置在所述光接收腔体内,用于接收透过所述半导体光放大器的信号光。
第三方面,本申请提供的一种光模块,包括:电路板;光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;其中,所述光接收次模块包括:光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路 板;第一基板,设置在所述光接收腔体内且设置在所述光接收腔体的底板上,所述第一基板的顶面上设置空白区域和电路金属层,所述电路金属层自所述第一基板的左上端延伸至所述第一基板的另一端且所述电路金属层的中部避开所述空白区域;光放大组件,设置在所述光接收腔体内,靠近所述光接收腔体的入光孔,所述光放大组件包括半导体光放大器,所述半导体光放大器通过所述第一基板上的电路金属层电连接所述电连接器;光接收组件,贴装设置在所述第一基板上且电连接所述第一基板上的电路金属层,用于接收透过所述半导体光放大器的信号光;解波分复用组件,位于所述半导体光放器到所述光接收组件的光路上且设置在所述空白区域的上方。
第四方面,本申请提供的一种光模块,包括:电路板,设置有MCU和采样模块,所述采样模块连接所述MCU;光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;其中,所述光接收次模块包括:光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路板;分光器,设置在所述光接收腔体内且位于所述光接收腔体的入光孔;光放大组件,设置在所述光接收腔体内且位于所述分光器的透射光路上,包括半导体光放大器;背光探测器,设置在所述分光器的反射光路上,接收所述分光器反射的信号光,使所述采样模块获取来自模块外部信号光的实际光功率;光接收组件,设置在所述光接收腔体内,用于接收透过所述半导体光放大器的信号光;所述MCU根据所述采样模块获取的来自模块外部信号光的实际光功率以及光功率期望值调整所述半导体光放大器的增益。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例提供的一种光接收次模块的立体图;
图6为根据一些实施例提供的一种光接收次模块拆除光接收上盖的结构示意图;
图7为根据一些实施例提供的一种光接收次模块的剖视图;
图8为根据一些实施例提供的一种用于包括4种波长光束分束的DeMUX工作原理图;
图9为根据一些实施例提供的一种光接收次模块的光路结构示意图;
图10为根据一些实施例提供的一种光接收次模块的分解示意图;
图11为根据一些实施例提供的一种基板组件的使用状态结构示意图一;
图12为根据一些实施例提供的一种基板组件的使用状态结构示意图二;
图13为根据一些实施例提供的另一种光接收次模块的剖视图;
图14为根据一些实施例提供的一种电连接器的结构示意图;
图15为根据一些实施例提供的另一种光接收次模块拆除光接收上盖的结构示意图;
图16为图15中光接收次模块的剖视图;
图17为根据一些实施例提供的另一种第一基板的结构示意图;
图18为根据一些实施例提供的另一种第一基板的使用状态图;
图19为根据一些实施例提供的一种光放大组件的结构示意图;
图20为根据一些实施例提供的另一种第三基板的使用状态图;
图21为根据一些实施例提供的一种光接收次模块的局部结构示意图;
图22为根据一些实施例提供的另一种光接收次模块中光接收下壳内的结构示意图;
图23为图22中A处的局部放大图;
图24为图22中B处的局部放大图;
图25为图22中C处的局部放大图;
图26为根据一些实施例提供的再一种光接收次模块拆除光接收上盖的结构示意图;
图27为根据一些实施例提供的第四种光接收次模块拆除光接收上盖的结构示意图;
图28为根据一些实施例提供的再一种第三基板的使用状态图;
图29为根据一些实施例提供的一种SOA增益控制电路原理图;
图30为根据一些实施例提供的光模块的光接收次模块的分解结构示意图;
图31为根据一些实施例提供的光模块的光接收次模块的移除盖板后的俯视结构示意图;
图32为根据一些实施例提供的光模块的光接收次模块的内部各器件的结构示意图;
图33为根据一些实施例提供的光模块的另一种光接收次模块的内部各器件的结构示意图;
图34为根据一些实施例提供的光模块的一种光接收状态的光路示意图;
图35为根据一些实施例提供的光模块的另一种光接收状态的光路示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指 同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础 上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,光模块200包括壳体、设置于壳体中的电路板206及光收 发器件;
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板206的金手指从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200内部的光收发器件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板206、光收发器件等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板206等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板206包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板206一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板206还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板206插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅 设置在电路板206一侧的表面(例如图4所示的上表面),也可以设置在电路板206上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
在一些实施例中,光收发器件包括光发射次模块及光接收次模块。如图4所示,光收发器件包括光发射次模块207及光接收次模块208,光发射次模块207及光接收次模块208统称为光学次模块;光发射次模块207及光接收次模块208位于电路板206的边缘,且光发射次模块207及光接收次模块208上下叠放设置。可选的,光发射次模块207较光接收次模块208更靠近上壳体201,但不局限于此,还可以是光接收次模块208较光发射次模块207更靠近上壳体201。图3和4中所展示的光学次模块仅是本申请的一种实例,当然本申请实施例中光学次模块也可为收发一体结构,或是将光发射次模块207及光接收次模块208非上下叠放的方式设置在上、下壳体形成的腔体中。可选的,光学次模块位于电路板206的端部,光学次模块与电路板206物理分离。光学次模块通过柔性电路板连接电路板206。
在本申请实施例中,光发射次模块207及光接收次模块208分别与电路板206物理分离,然后分别通过柔性电路板或电连接器电连接电路板206。
本申请实施例中,光接收次模块包括光接收腔体,光接收腔体用于容纳用于传输、接收信号光的器件或组件。图5为根据一些实施例提供的一种光接收次模块的立体图。如图5所示,本申请实施例提供的光接收次模块208的光接收腔体包括光接收下壳081和光接收上盖082,光接收上盖082盖合连接光光接收下壳081形成光接收腔体,用于待接收光传输以及光接收的器件设置在光接收腔体内。光接收下壳081和光接收上盖082可采用金属材料结构件,如压铸、铣削加工的金属件。当然在本申请一些实施例,光接收腔体的结构不局限于图5中光接收下壳081和光接收上盖082组成的机构,还可以根据需要是其他结构形式的光接收腔体结构。
图6为根据一些实施例提供的一种光接收次模块拆除光接收上盖的结构示意图,图7为根据一些实施例提供的一种光接收次模块的剖视图。如图5-7所示,光接收下壳081的一端设置光纤适配器组件300、另一端设置电连接器400;光纤适配器组件300的自由端位于光口,用于传输来自光模块外部的信号光;电连接器400用于实现光接收次模块208与电路板206的电连接;来自光模块外部的信号光通过光纤适配器组件300传输至光接收腔体内,经光接收腔体内光传输以及光接收的器件传输和转化、最终转化为电信号经电连接器400传输至电路板206。可选的,电连接器400通过柔性电路板电连接电路板206。
在本申请一些实施例中,光接收下壳081的一端开设入光孔083,通过入光孔083连通光纤适配器组件300和光接收腔体的内腔;光接收下壳081的另一端设置开口084,电连接器400嵌设在开口084内。电连接器400的一侧用于电连接光接收腔体内的电学器件、另一侧用于电连接电路板206,通过电连接器400实现电路板206到光接收次模块208电连接转接。通常电连接器400通过打线电连接光接收腔体内的电学器件。
在一些实施例中,光纤适配器组件300包括光纤适配器和适配器连接件等,适配器连 接件的一端连接光纤适配器、另一端连接光接收下壳081的入光孔083;光纤适配器的内部设置光纤插芯,光纤适配器用于与光模块外部光纤对接;适配器连接件用于光纤适配器连接光接收下壳081,适配器连接件中可设置透镜等光器件。
在一些实施例中,入光孔083内设置平面光窗,平面光窗可设置在入光孔083处,在一定程度便于实现光接收腔体的密封。平面光窗倾斜设置在入光孔083内,或平面光窗与入光孔083中轴线不垂直,倾斜设置的平面光窗用于防止传输至光接收腔体内的信号光原路返回至光纤适配器组件300中,避免光接收腔体内反射回的信号光污染光模块外部传输至光纤适配器组件300的信号光。
本申请实施例提供的光接收次模块208的光接收腔体内通常设置有隔离器、透镜、光接收芯片、跨阻放大器等器件。在本申请一些实施例中,光接收次模块208的光接收腔体内设置多个光接收芯片,用于接收多种波长的信号光;如光接收腔体内设置2个光接收芯片、4个光接收芯片、8个光接收芯片等。当光接收腔体内设置多个光接收芯片时,光接收次模块208用于接收多种不同波长的信号光,来自光模块外部的包括多种不同波长的信号光通过光纤适配器传输至光接收腔体内,经光接收腔体内不同透镜等光学器件的反射、折射实现按波长分束,按波长分束后的信号光最后传输至对应光接收芯片的光敏面,光接收芯片通过其光敏面接收信号光,光接收芯片接收信号光将光信号转换为电信号。图6和7中所示的光收次模块208的光接收腔体内设置4个光接收芯片,用于接收4种不同波长的信号光,但本申请实施例提供的光模块中不局限于接收4种不同波长的信号光。在本申请实施例中,光接收芯片为PD(光电探测器),如APD(雪崩二极管)、PIN-PD(光电二极管)等,用于将接收到的信号光转换为光电流。
如图7所示,本申请实施例提供的光接收次模块208中包括光接收组件810,光接收组件810设置在光接收腔体内,光接收组件810包括多个光接收芯片。光接收组件810还包括金属化陶瓷基板,金属化陶瓷基板的表面形成电路图案,光接收芯片设置在金属化陶瓷基板的表面,电连接金属化陶瓷基板上的电路,光接收芯片通过金属化陶瓷基板电连接电连接器400。
光接收组件810设置在光接收下壳081内靠近电连接器400处,光接收组件810的侧边设置跨阻放大器820;光接收组件810电连接跨阻放大器820,如光接收组件810打线连接跨阻放大器820;跨阻放大器820电连接电连接器400。在一些实施例中,为便于跨阻放大器820电连接电连接器400,跨阻放大器820较光接收组件810更靠近电连接器400,如图6和7所示方向,跨阻放大器820设置在光接收组件810的右侧,跨阻放大器820位于光接收组件810和电连接器400之间。可选的,光接收组件810打线连接跨阻放大器820,为便于控制光接收组件810与跨阻放大器820之间打线连接的长度,跨阻放大器820靠近光接收组件810。
在本申请一些实施例中,光接收次模块208还包括解波分复用组件(DeMUX)830,解波分复用组件830设置在光接收腔体内,解波分复用组件830用于根据信号光波长的不同进行信号光分束。具体的:包括多种波长的一束信号光进入解波分复用组件830,不同波长的信号光在解波分复用组件830内经过不同次反射从而实现不同波长的信号光的分束。 图8为根据一些实施例提供的一种用于包括4种波长光束分束的DeMUX工作原理图;其中,DeMUX右侧包括一个用于入射多种波长信号光的入光口,左侧包括多个用于出射光的出光口,每一出光口用于出射一种波长的信号光。如图7所示,信号光通过DeMUX的入射光口进入DeMUX,β1信号光经过DeMUX的六个不同位置进行了六次不同的反射到达其出光口;β2信号光经过DeMUX的四个不同位置进行了四次不同的反射到达其出光口;β3信号光经过DeMUX的二个不同位置进行了二次不同的反射到达其出光口;β4信号光入射至DeMUX后直接传输到达至其出光口。如此,通过DeMUX实现不同波长的信号光经同一入光口进入DeMUX、经不同的出光口输出,进而实现不同波长信号光的分束。
在一些实施例中,如图6和7,光接收次模块208还包括反射棱镜840,反射棱镜840可用于改变信号光的传输方向。反射棱镜840设置在光接收组件810的上方,其中反射棱镜840的发射面覆盖在光接收组件810中光接收芯片,经解波分复用组件830分束的信号光入射至反射棱镜840,入射至反射棱镜840的信号光平行于光接收芯片的光敏面,反射棱镜840的反射面将平行于光接收芯片光敏面光的方向反射为垂直于光接收芯片的光敏面,以便于光接收芯片能够顺利接收信号光。
如图6和7,光接收次模块208还包括隔离器850,隔离器850设置在光接收腔体内且靠近入光孔的位置,通过光纤适配器组件300进入光接收腔体内的信号光透过隔离器850,同时隔离器850防止再次反射传输至隔离器850的信号光通过,避免待接收信号光传输过程中遭受被反射比分信号光的污染,以便于保证待接收信号光的质量。
如图6和7,光接收次模块208还包括聚焦透镜870,聚焦透镜870设置在光接收腔体内且设置位置靠近解波分复用组件830的入光口,经聚焦透镜870聚焦后的信号光传输至解波分复用组件830的入光口,如此便于保证信号光到解波分复用组件830的耦合效率。
如图6和7,光接收次模块208还包括透镜组880,透镜组880设置在光接收腔体内且位于解波分复用组件830和反射棱镜840之间,透镜组880用于将解波分复用组件830分束后的信号光对应汇聚传输至反射棱镜840。透镜组880可以采用多个透镜并排排列的结构形式,每个透镜对应解波分复用组件830的一个出光口,即每个透镜对应聚焦传输一种波长的信号光;或者,透镜组880可以采用一个透镜本体上设置若干凸起,凸起解波分复用组件830的出光口,凸起用于汇聚光束,即每个凸起对应聚焦传输一种波长的信号光。
进一步,如图6和7,为满足光模块在40Km或80Km等长距离传输场景中灵敏度要求,本申请实施例提供的光接收次模块208还包括光放大组件500,光放大组件500设置在光接收腔体内靠近入光孔083的位置,光放大组件500用于进行传输至光接收腔体内信号光的放大,经过光放大组件500放大后的信号光再传输至解波分复用组件830。
在本申请一些实施例中,光放大组件500设置在隔离器850和聚焦透镜870之间,透过隔离器850的信号光传输至光放大组件500,经光放大组件500放大后的信号光传输至聚焦透镜870。
在本申请一些实施例中,光接收次模块208还包括准直透镜860,准直透镜860设置在隔离器850和光放大组件500之间,透过隔离器850的信号光传输至准直透镜860,经 准直透镜860准直传输至光放大组件500。
可选的,在本申请实施例中,光放大组件500包括SOA(Semiconductor Optical Amplifier,半导体光放大器),SOA设置在准直透镜860到聚焦透镜870的光轴上。SOA根据其上施加驱动电流的大小进行信号光放大增益,当SOA上施加电流不同时,对信号光的放大增益不同,因此可通过控制SOA上施加驱动电流的大小进行SOA放大增益倍数的控制以及调整。
图9为根据一些实施例提供的一种光接收次模块的光路结构示意图,图9中箭头展示出了来自光模块外部信号光在光接收次模块中的传输路径。如图9所示,来自光模块外部的多波长信号光通过光纤适配器组件300中传输至隔离器850,透过隔离器850的信号光传输至准直透镜860,经准直透镜860准直后的信号光传输至光放大组件500,经光放大组件500放大后的信号光传输至聚焦透镜870,经聚焦透镜870汇聚后的信号光传输至解波分复用组件830,传输至解波分复用组件830信号根据光波长被分束为四束信号光,四束信号光传输至透镜组880,四束信号光分别被汇聚传输至反射棱镜840,最后被反射棱镜840改变传输方向的传输至接收组件(被反射棱镜840遮挡)中光接收芯片的光敏面。
为便于光接收组件810、跨阻放大器820、解波分复用组件830、反射棱镜840等在光接收下壳081中的设置,本申请实施例提供的光接收次模块208还包括基板组件,光接收组件810、跨阻放大器820、解波分复用组件830、反射棱镜840等设置在基板组件上,基板组件设置在光接收下壳081的底板上。在进行光接收次模块208装配时,先将光接收组件810、跨阻放大器820、解波分复用组件830、反射棱镜840等装配置基板组件上,然后将基板组件装配置光接收下壳081的底板上。基板组件除了方便光接收组件810、跨阻放大器820、解波分复用组件830、反射棱镜840等在光接收下壳081中的安装,还便于调整光接收组件810、跨阻放大器820、解波分复用组件830、反射棱镜840等的相对高度,进而保证待接收信号光传输方向和耦合效率。
图10为根据一些实施例提供的一种光接收次模块的分解示意图。如图10所示,本申请实施例提供的光接收次模块还包括基板组件600,光接收组件810、跨阻放大器820、解波分复用组件830、反射棱镜840、透镜组880等设置在基板组件600的上方。
图11为根据一些实施例提供的一种基板组件的使用状态结构示意图一。结合图10和11,在本申请一些实施例中,基板组件600包括第一基板610和第二基板620,第二基板620设置在第一基板610的上方,第二基板620的尺寸小于第一基板610的尺寸,进而第一基板610用于承载第二基板620。光接收组件810、跨阻放大器820和反射棱镜840设置在第一基板610上。解波分复用组件830和透镜组880设置在第二基板620上;一方面,第二基板620用于承载解波分复用组件830和透镜组880,另一方面,第二基板620便于在光路耦合过程中便于调整光路,保证待接收光路的耦合效率。
在本申请一些实施例中,第一基板610设置在光接收下壳081的底板上,即第一基板610连接光接收下壳081的底板。为便于第一基板610在光接收下壳081上的装配,如图11所示方向,第一基板610长度方向的底边设置第一缺角617和第二缺角618,第一缺角617设置在第一基板610底部的一侧,第二缺角618设置在第一基板610底部的另一侧, 第一缺角617和第二缺角618用于第一基板610底部避让光接收下壳081的侧壁,便于第一基板610的装配。
在本申请一些实施例中,如图11所示,为便于装配反射棱镜840以及防止装配反射棱镜840干扰光接收组件810等结构的装配,第一基板610上设置还设置第一支撑块841和第二支撑块842;第一支撑块841设置在光接收组件810的一端,第二支撑块842设置在光接收组件810的另一端,第一支撑块841支撑反射棱镜840的一端、第二支撑块842支撑反射棱镜840的另一端,进而第一支撑块841和第二支撑块842用于抬高反射棱镜840,使反射棱镜840位于光接收组件810的上方以及位于待接收光的光路上。反射棱镜840可用胶水固定在第一支撑块841和第二支撑块842上,如通过点胶将反射棱镜840固定设置在第一支撑块841和第二支撑块842上,因此通过第一支撑块841和第二支撑块842支撑反射棱镜840,可方便固定反射棱镜840以及有效避免点胶污染到光接收组件810等器件。在本申请一些实施例中,第一支撑块841和第二支撑块842可采用塑料、玻璃等绝缘材质的方形柱。
在本申请一些实施例中,隔离器850、光放大组件500等也可设置在第一基板610或第二基板620上,以便于隔离器850、光放大组件500等的装配以及光路耦合。
在本申请一些实施例中,第二基板620、光接收组件810、跨阻放大器820等通过贴片方式固定连接第一基板610,为保证第二基板620、光接收组件810、跨阻放大器820等在第一基板610上的贴片固定精度,第一基板610的表面设置标记点611,标记点611用于第一基板610高精度贴片的视觉识别。可选的,标记点611可为O型、L型或+型等形状的标记点;图11中标记点611采用的是O型形状的标记点。标记点611可通过印刷设置在第一基板610上;标记点设置在第一基板610顶面的边缘。
进一步,在本申请一些实施例中,基板组件600还包括第三基板630,隔离器850、光放大组件500、准直透镜860、聚焦透镜870等设置在第三基板630上,将隔离器850和光放大组件500等与解波分复用组件830等设置在不同的基板上便于调整各器件的相对高度,进而更加便于光路耦合调整以保证光路耦合效率。
光放大组件500中SOA在工作过程时,当将SOA的光放大增益稳定在某个固定值时,需要给SOA施加稳定驱动电流;同时,因为SOA易受温度影响,在同样的驱动电流下,不同温度,SOA的光放大增益不一样,因此为确定SOA的光放大增益需要将SOA保持在一定的温度范围,进而才能使SOA的工作性能表现更佳。因此本申请一些实施例中,光接收次模块208还包括TEC(Thermo Electric Cooler,半导体致冷器),TEC用于SOA工作温度的稳定。
图12为根据一些实施例提供的一种基板组件的使用状态结构示意图二。如图10和12所示,在本申请一些实施例中,光接收次模块208还包括TEC890,隔离器850、光放大组件500、准直透镜860、聚焦透镜870设置在第三基板630上,第三基板630设置在TEC890上。然后通过将TEC890固定在光接收下壳081的底板上以将隔离器850、光放大组件500、准直透镜860和聚焦透镜870设置在光接收腔体内。隔离器850、光放大组件500、准直透镜860和聚焦透镜870通过共同的基板设置在TEC890上,使在第三基板630在温度变 化而产生形变时对隔离器850、光放大组件500、准直透镜860和聚焦透镜870产生相同的影响,进而保证在隔离器850、准直透镜860、光放大组件500和聚焦透镜870传输光路的稳定性。
如图12所示,在本申请一些实施例中,光放大组件500包括SOA510和第四基板520,SOA510设置在第四基板520上,第四基板520的表面形成有电路图案,SOA510电连接第四基板520上的电路图案,以通过第四基板520方便向SOA510施加驱动电流。可选的,第四基板520可采用陶瓷基板,陶瓷基板的表面形成用于电连接SOA510的电路图案。SOA510贴装在第四基板520上,SOA510的正极通过打线连接第四基板520上的电路。
在本申请实施例中,光放大组件500还包括温度传感器530,温度传感器530设置在SOA510的周围,用于实时采集SOA510的温度以便于进行SOA510的温度控制。在本申请一些实施例中,温度传感器530设置在第四基板520上,第四基板520上设置有用于电连接温度传感器530的电路图案。在本申请一些实施例中,温度传感器530可为热敏电阻,热敏电阻贴装在第四基板520上,与第四基板520上的电路图案电连接。
图13为根据一些实施例提供的另一种光接收次模块的剖视图,图13中展示出了本申请实施例提供的光接收次模块的结构以及待接收光的光路结构。如图13所示,TEC890和第一基板610设置在光接收下壳081,即TEC890和第一基板610底部固定在光接收下壳081的底板上;其中,TEC890靠近光接收下壳081连接光纤适配器组件300的一端,第一基板610靠近光接收下壳081连接电连接器400的一端。TEC890的顶部设置第三基板630,第三基板630上设置隔离器850、准直透镜860、光放大组件500和聚焦透镜870;第一基板610上设置第二基板620、光接收组件810、跨阻放大器820和反射棱镜840;第二基板620上设置解波分复用组件830和透镜组880。第一基板610、第二基板620和第三基板630协调承载隔离器850、准直透镜860等器件,既满足了器件间相对安装高度的需求,同时又能便于各器件在光接收腔体内的装配。
图14为根据一些实施例提供的一种电连接器的结构示意图。如图13和14所示方向,电连接器400的左侧伸入光接收下壳081的腔体内、右侧位于光接收下壳081的腔体外。电连接器400包括电连接器本体410,电连接器本体410用于嵌设连接开口084;电连接器本体410的左侧用于电连接光接收下壳081腔体内的器件,电连接器本体410的右侧用于电连接电路板206。
在本申请一些实施例中,电连接器本体410的左侧设置第一台阶面420和第二台阶面430,第一台阶面420和第二台阶面430位于电连接器本体410左侧的不同高度,第一台阶面420和第二台阶面430的朝向光接收下壳081的顶部、形成相互错开的台阶状结构,方便电连接器400电连接光接收下壳081腔体内的器件。电连接器本体410的右侧设置向背设置的第一连接面440和第二连接面450,如第一连接面440朝向光接收下壳081的顶部、第二连接面450朝向光接收下壳081的底部;第一连接面440和第二连接面450用于连接电路板206,如第一连接面440和第二连接面450分别通过柔性电路板电连接电路板206。
在本申请一些实施例中,如图14所示,第一台阶面420上设置直流引脚,用于传输 直流信号、供电,第二台阶面430上设置交流引脚、接地引脚,用于传输交流信号、接地;第一连接面440和第二连接面450上分别设置若干引脚,第一连接面440和第二连接面450的引脚用于电连接电路板206;且第一台阶面420上的引脚连接第一连接面440上的引脚、第二台阶面430上的引脚连接第二连接面450上的引脚。在本申请一些实施例中,第一台阶面420设置有用于连接负极的引脚、用于连接SOA510正极的引脚、用于连接温度传感器530正极的引脚;第二台阶面430用于连接光接收组件810负极、跨阻放大器820负极、SOA510负极以及温度传感器530负极的接地引脚。
在本申请一些实施例中,光接收下壳081腔体内的器件通过打线连接电连接器400上相应的引脚,如跨阻放大器820打线连接电连接器400上若干引脚。在申请实施例中,光放大组件500和TEC890等的工作也需要供电,因此需要通过电连接器400为光放大组件500和TEC89等提供电连接,用于向光放大组件500和TEC89等供电,但是光放大组件500和TEC89等距离电连接器400相对较远且光放大组件500、TEC890等与电连接器400之间跨越了解波分复用组件830等器件,采用打线直接连接光放大组件500、TEC890等与电连接器400上相应的引脚不易被实现且采用直接打线的形式光放大组件500、TEC890等与电连接器400之间的阻抗不容易被限定,因此即使可通过直接打线的方式使光放大组件500和TEC890等电连接电连接器400上响应的引脚,光放大组件500、TEC890等电学稳定性也往往很难满足需求。
为满足光放大组件500和TEC890等电连接电连接器400的需求,本申请一些实施例中采用设置电路图案的基板进行光放大组件500和TEC890等与电连接器400之间的转接,基板可直接设置在光接收下壳081的腔体内;如,基板设置在光接收下壳081的底板上或光接收腔体的其他位置,基板上设置相应金属层以形成电路图案,基板的一端电连接光放大组件500和TEC890等,基板的另一端电连接电连接器400,进而通过基板实现光放大组件500和TEC89等到电连接器400的电连接。
图15为根据一些实施例提供的另一种光接收次模块拆除光接收上盖的结构示意图,图16为图15中光接收次模块的剖视图。如图15和16所示,第一基板610的表面设置金属层,通过金属层形成电路图案以用于光放大组件500和TEC890等到电连接器400的电连接。当然本申请实施例中,还可以设置单独用于实现光放大组件500和TEC890等到电连接器400的电连接的基板,该基板设置光接收下壳081内;或者,在第二基板620的表面设置金属层,通过第二基板620实现光放大组件500和TEC890等到电连接器400的电连接。另外,还可以在第一基板610的内部形成电路图案、表面形成有焊盘,第一基板610与电连接器400为一体结构,电连接器400上另一侧的管脚通过第一基板610内部形成的电路图案电连接第一基板表面的焊盘,光放大组件500和TEC890等电连接第一基板610上的焊盘,以实现光放大组件500和TEC890等到电连接器400的电连接。下面以在第一基板610的表面设置金属层形成电路图案为例,进行通过第一基板610实现光放大组件500和TEC89等到电连接器400的电连接说明。
图17为根据一些实施例提供的另一种第一基板的结构示意图,图17展示出了一种第一基板610上设置金属层的详细结构,当然本申请实施例中第一基板610上设置金属层的 结构与形状不局限于图17所展示的结构与形状。如图17所示,本申请实施例提供的第一基板610上设置金属层,第一基板610上的金属层自第一基板610的一端延伸至第一基板610的另一端,第一基板610的一端靠近光放大组件500和TEC89等、另一端靠近电连接器400。在本申请一些实施例中,第一基板610为陶瓷基板,陶瓷基板的顶面上铺设金或铜等材料的金属层。
如图17所示,第一基板610上设置第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616。由于靠近光放大组件500和TEC89等的引脚比较集中,进而第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的一端集中设置在第一基板610的一端;而电连接器400的引脚分布相对比较散,因而第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的另一端分布相对较散。通常第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的一端集中设置在第一基板610的一端通过打线电连接光放大组件500和TEC89等,第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的另一端通过打线连接电连接器400的引脚。在本申请一些实施例中,第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616一端的端部沿第一基板610的宽度方向并列设置在第一基板610的一端。
在本申请一些实施例中,如图17所示,第一基板610上设置空白区域619,第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的中部避开空白区域619,空白区域619上方设置第二基板620,以便于保证解波分复用组件830下方铺设较少量金属层,以减少金属层对波分复用组件830使用的影响。
图17中还详细展示出了本申请一些实施例中第一基板610上金属层的具体总线形式。如图17所示,空白区域619位于第三金属层614的一侧,第二金属层613位于第三金属层614的另一侧,第三金属层614的中部和第三金属层614另一端的端部围绕空白区域619;第三金属层614另一端的端部宽度方向沿伸至第一基板610的侧边,第二金属层613另一端的端部延伸至第三金属层614端部的一侧;第四金属层615围绕空白区域619未被第三金属层614围绕的侧边,且第四金属层615另一端的端延伸至第三金属层614端部的一侧。
在一些实施例中,如图17所示,第一金属层612另一端的末尾位于第二金属层613另一端的端部和第三金属层614另一端的端部之间;第五金属层616另一端的末尾位于第四金属层615另一端的端部和第三金属层614另一端的端部之间。如此,可便于在第三金属层614上设置器件以及协调第一基板610上金属层到电连接器400上打线的排布。
在本申请一些实施例中,第一金属层612的一端用于电连接TEC890的正极,第二金属层613的一端用于连接温度传感器530的正极,第三金属层614的一端用于连接温度传感器530的负极和SOA510的负极,第四金属层615的一端用于连接SOA510的正极,第五金属层616用于连接TEC890的负极;根据电连接器400上引脚的分布第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的另一端对应连接相应的引脚。
在本申请一些实施例中,如图17所示的金属层布局中,第三金属层614的另一端面 积相对比较大。一方面,为保证光放大组件500和TEC89等的接地性能,第三金属层614的另一端与电连接器400之间需要打多根线,将第三金属层614的另一端面积设置的相对大一些,便于第三金属层614的另一端与电连接器400的打线。另一方面,第一基板610上光接收组件810、跨阻放大器820等电器件的负极也需要接地,因此将第三金属层614的另一端面积设置的相对大一些,方便光接收组件810、跨阻放大器820等的负极接地以及光接收组件810、跨阻放大器820等的贴装固定。如此在本申请一些实施例中,第三金属层614另一端的端部沿第一基板610宽度方向延伸至第一基板610的侧边,第一金属层612、第二金属层613、第四金属层615和第五金属层616另一端的端部距离第一基板610侧边稍远些,便于第一基板610上金属层以及第一基板610上设置的电学器件到电连接器400上打线的排布。
图18为根据一些实施例提供的另一种第一基板的使用状态图。如图18所示,光接收组件810、跨阻放大器820贴装在第三金属层614上。当然本申请实施例中,为了保证光接收组件810、跨阻放大器820的正常工作,可能还需要一些匹配电阻、匹配电容等器件,因此第三金属层614上还可以贴装设置匹配电阻、匹配电容等器件。
如图18所示,第二基板620覆盖第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的中部,第一支撑块841设置在第一金属层612和第二金属层613上,第二支撑块842设置在第四金属层615和第五金属层616上。第二基板620与第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616绝缘,可以在第一金属层612、第二金属层613、第三金属层614、第四金属层615和第五金属层616的中部覆盖绝缘材料,或是第二基板620采用绝缘材质的基板,如陶瓷基板等。第一支撑块841与第一金属层612和第二金属层613绝缘,第二支撑块842与第四金属层615和第五金属层616绝缘;可选的,第一支撑块841和第二支撑块842采用塑料、玻璃等绝缘材质的支撑块。如此本申请实施例提供的第一基板610,既能够用于承载解波分复用组件830等器件,又能够提供光放大组件500到电连接400的电连接,保证了第一基板610的使用性能。
图19为根据一些实施例提供的一种光放大组件的结构示意图。如图19所示,本申请实施提供的光放大组件500包括第四基板520,第四基板520为长条状结构,第四基板520的顶面设置SOA正极金属层521、SOA负极金属层522和温度传感器负极金属层523,SOA正极金属层521、SOA负极金属层522、温度传感器负极金属层523的末端靠近第四基板520的端部;SOA510贴装在SOA负极金属层522的首段,SOA510的负极电连接SOA负极金属层522,SOA510的正极打线连接SOA正极金属层521的首端;温度传感器530贴装在温度传感器负极金属层523的首段,温度传感器530的负极电连接温度传感器负极金属层523。本申请实施例中,第四基板520为长条状,便于准直透镜860和聚焦透镜870等的设置以及保证第三基板630的利用率;当然本申请实施例中的第四基板520不均限于长条状结构,还可以为其他形状。
在本申请一些实施例中,SOA正极金属层521、SOA负极金属层522和温度传感器负极金属层523的末端以及温度传感器530的正极可直接通过打线连接第一基板610上相应 的金属层。当然本申请实施例中不局限于直接将第四基板520与第一基板610打线连接,还可以在第四基板520与第一基板610之间设置中转基板,中转基板上设置金属层形成的电路图案,第四基板520与第一基板610分别对应电连接中转基板,进而通过中转基板实现第四基板520与第一基板610的电连接。
图20为根据一些实施例提供的另一种第三基板的使用状态图。如图20所示,在本申请一些实施例中,光放大组件500还包括第五基板540,第五基板540设置在第三基板630的顶面,且第五基板540位于第四基板520的端部,第五基板540用于作第四基板520到第一基板610之间电连接的中转基板。当然本申请实施例中,不局限于将第五基板540设置在第三基板630上。
如图20所示,第五基板540设置在第四基板520的端部,第五基板540靠近TEC890的正、负极,如此可将相关的打线相对集中的设置,进而便于集中打线。第五基板540上设置若干金属条,金属条用于实现第四基板520上金属层到第一基板610上金属层的转接。
可选的,第五基板540的顶面设置若干平行的金属条;当然本申请实施例中不局限于平行的金属条,还可以根据需要设置任意形状的金属条。在本申请一些实施例中,如图20所示,第四基板520的长度方向与第五基板540的长度方向垂直,若干平行的金属条沿第五基板540长度方向排布设置,使第四基板520上的SOA正极金属层521、SOA负极金属层522和温度传感器负极金属层523的末端与第五基板540上的金属条垂直,进而方便第四基板520上的SOA正极金属层521、SOA负极金属层522和温度传感器负极金属层523到第五基板540上的打线。
在本申请一系实施例中,如图20所示,第四基板520上设置4条相互平行的金属条,如图20所示方向中,自上往下依次为用于电连接SOA正极金属层521的金属条、SOA负极金属层522和温度传感器负极金属层523的金属条、温度传感器530正极的金属条以及TEC890正极的金属条。为便于描述4条相互平行的金属条自上往下依次为第一金属条541、第二金属条542、第三金属条543和第四金属条544,第一金属条541打线连接SOA正极金属层521,第二金属条542打线连接SOA负极金属层522和温度传感器负极金属层523,第三金属条543打线连接温度传感器530正极,第四金属条544打线连接TEC890的正极。
图21为根据一些实施例提供的一种光接收次模块的局部结构示意图,其中TEC的正极位于图21中较左的位置,且图21中展示出了第一基板610、第四基板520和第五基板540的打线状态。如图21所示,第五基板540的端部靠近第三基板630端部,使第五基板540的端部靠近第一基板610的一端,进而使第五基板540上金属条的端部靠近第一基板610上金属层的一端以便于打线。
如图21所示,在本申请一些实施例中,第一基板610上金属层的一端靠近第五基板540,第一金属条541的另一端打线连接第二金属层613,第二金属条542打线连接第三金属层614,第三金属条543打线连接第四金属层615,第四金属条544打线连接第五金属层616。本申请实施例中,第四基板520与第一基板610的打线分别连接第五基板540,使各板之间的打线可以依次排布,有效避免打线连接的交叉,保证打线连接的使用性能。
图22为根据一些实施例提供的另一种光接收次模块中光接收下壳内的结构示意图, 图22展示出了本申请实施例中光接收次模块208在光接收下壳081中的结构以及为光放大组件500和TEC890提供电连接的布局;图23为图22中A处的局部放大图,图24为图22中B处的局部放大图,图25为图22中C处的局部放大图,图23-25中展示出了相关部位的打线结构。图22-25中设计的布局通过将第一基板610上设置的金属层与第五基板540结合,便于实现电连接器400为光放大组件500和TEC890等供电,保证了光放大组件500和TEC890等的供电稳定性。当然本申请实施例中的具体布局形式不局限于图22中展示形式,还可以做适当的变形以及调整。
在本申请实施例中,SOA510的增益可根据实际传输至SOA510信号光的强度进行调整,使传输至光接收组件810的信号光功率度保持在相对稳定的状态,因此SOA510的增益可根据传输至光接收次模块208信号光的强度进行调整。
在本申请实施例中,为实现光放大组件500和TEC890等电连接电连接器400,本申请不局限于在第一基板610上设置金层,还可以在第二基板620上设置金属层或设置其他基板用于设置金属层。
图26为根据一些实施例提供的再一种光接收次模块拆除光接收上盖的结构示意图。如图26所示,本申请实施例提供的第二基板620上设置金属层,通过第二基板620上设置金属层实现满足光放大组件500和TEC890等电连接电连接器400。
在本申请一些实施例中,第二基板620上的金属层设置在第二基板620上靠近光接收下壳081侧壁的位置。第二基板620上的金属层可均为长条型,当然也可为其他形状。
图27为根据一些实施例提供的第四种光接收次模块拆除光接收上盖的结构示意图。如图27所示,基板组件600还包括第六基板640和第七基板650,第六基板640和第七基板650上分别设置金属层,进而通过第六基板640和第七基板650结合实现光放大组件500和TEC890等电连接电连接器400。
在本申请一些实施例中,如图27所示,第六基板640和第七基板650设置在第二基板620上,即第二基板620用于固定支撑第六基板640和第七基板650,第六基板640和第七基板650设置在第二基板620上靠近光接收下壳081侧壁的位置。如27所示,第六基板640设置在第二基板620的一侧,用于放大组件500电连接电连接器400,第七基板650设置在第七基板650的另一侧,用于TEC890电连接电连接器400。第六基板640和第七基板650上的金属层可为长条型。
当然本申请一些实施例中,第六基板640和第七基板650还可以设置在第一基板610上或光接收下壳081的底板上。
图28为根据一些实施例提供的再一种第三基板的使用状态图,图28中展示出了另一种光接收次模块208的局部结构。如图26所示,本申请实施例提供的光接收次模块208中还包括分光器085和背光探测器086。分光器085用于将光模块外部传输至光接收次模块208的信号光分出一定光功率的光至背光探测器086,背光探测器086接收分光器085分出的信号光以及根据接收到的信号光功率度确定光模块外部传输至光接收次模块208的信号光的强度。可选的,分光器085可将2%-5%光功率的光模块外部传输至光接收次模块208的信号光至背光探测器086,当然在本申请实施例中,分光器085不局限于分出2%-5% 光功率的光模块外部传输至光接收次模块208的信号光。
如图28所示,在本申请一些实施例中,分光器085和背光探测器086设置在第三基板630;分光器085设置在隔离器850与准直透镜860之间,透过隔离器850的信号光传输至分光器085;传输至分光器085部分光功率的信号光被反射传输至背光探测器086、另一部分光功率的信号光透射过分光器085再传输至准直透镜860,光模块外部传输至光接收次模块208的信号光的传输方向如图26中箭头所示。
图29为根据一些实施例提供的一种SOA增益控制电路原理图。如图29所示,本申请实施例中,SOA增益控制电路包括MCU2061,MCU2061根据采集到的信号确定SOA510的增益,进而控制向SOA510施加的工作电流。
如图29所示,在本申请一些实施例中,背光探测器086接收分光器反射的信号光并转换为电信号;背光探测器086的输出端电连接跨阻放大器820,经背光探测器086转换的电信号传输至跨阻放大器820、经跨阻放大器820放大;跨阻放大器820与MCU2061之间连接采样模块2062,MCU2061通过采样模块2062采集模拟信号以获取数字信号,然后MCU2061通过该数字信号确定背光探测器086接收信号光的光功率以确定来自光模块外部信号光的实际光功率,进而结合光模块的光功率期望值确定SOA510的增益,最后根据SOA510的增益确定SOA510的工作电流。在本申请一些实施例中,MCU2061的寄存器中可存储有背光探测器086接收信号光的光功率对应SOA510的工作电流的查找表,当获得背光探测器086接收信号光的光功率,通过查找表获取SOA510的工作电流。
如图29所示,温度传感器530连接MCU2061,用于将采集到温度信号传输至MCU2061,MCU2061根据接收到的温度信号确定TEC需要施加的电流以及电流的方向,进而使TEC890能够有效的控制SOA510温度,保证SOA510工作在设定的温度范围,使得SOA510的工作性能更佳。
在本申请一些实施例中,MCU2061的寄存器中存储有温度信号、SOA510增益和TEC890驱动电流的查找表,根据采集到的温度信号和设定的SOA510增益确定需要施加在TEC上的电流和电流方向。根据确定的电流和电流方向驱动TEC,使TEC进行SOA510工作温度的调节和控制。
图30为根据一些实施例提供的光模块的光接收次模块的分解结构示意图;从图30中可以看出,光接收下壳081内部从光纤适配器组件300一侧开始依次设有准直透镜860、SOA芯片510、聚焦透镜870,解波分复用组件830、透镜组880、反射棱镜840和光接收芯片阵列409。准直透镜860、SOA芯片510、聚焦透镜870,解波分复用组件830、透镜组880、反射棱镜840和光接收芯片阵列409具体设置于光接收下壳081的底表面上。准直透镜860用于接收来自光纤适配器的光信号并转换为会聚光束;SOA芯片510用于接收并放大来自所述第一透镜的光信号;聚焦透镜870,设置在所述电路板表面,用于接收来自SOA芯片的光信号并转换为准直光束;解波分复用组件830用于接收来自第二透镜的光信号并将光信号分为多束不同波长的光信号;透镜组880包括多个透镜,用于接收所述光解复用组件输出的多束不同波长的光信号并将多束不同波长的光信号转换为会聚光束;反射棱镜840罩设在光接收芯片阵列上,具有反射面,用于接收来自所述透镜阵列的多束 不同波长的光信号并经所述反射面反射后输入所述光接收芯片阵列;光接收芯片阵列409包括多个光接收芯片,用于接收多束不同波长的光信号;若干光接收芯片以一列的形式设置于腔体的底面上。本申请实施例中,光接收芯片阵列409中的光接收芯片的光接收面为对应芯片的上表面,即光接收芯片的光接受面朝向反射棱镜840的底表面,光接收芯片的光接收面与透镜组880的出光面呈垂直关系,经过反射棱镜840的反射后入射至光接收芯片的光接收面上。
下面结合图31和图32对光接收次模块208中的各结构的连接关系和功能进行具体阐述。图31为根据一些实施例提供的光模块的光接收次模块的移除盖板后的俯视结构示意图;图32为根据一些实施例提供的光模块的光接收次模块的内部各器件的结构示意图;如图31和图32所示,来自传输链路的光信号从光纤适配器组件300射出,由光纤适配器组件300将光信号传输至准直透镜860中,准直透镜860接收来自光纤适配器的光信号并转换为会聚光束,并传输至SOA芯片510,SOA芯片510接收并放大来自准直透镜860的光信号,并输出至聚焦透镜870,聚焦透镜870接收来自SOA芯片510的光信号并转换为准直光束,并传输至光解复用组件,通过解波分复用组件830将聚焦透镜870输出的光信号分解为多束不同波长的光信号,分解后得到的多束不同波长的光信号经过透镜组880中的多个透镜转换为会聚光束,并传输至反射棱镜840,反射棱镜840具有反射面,经过反射面的反射后输入至光接收芯片阵列409中的多个光接收芯片上,多个光接收芯片对应接收多束不同波长的光信号。本申请合理地将SOA芯片集成至光模块的光接收次模块中,并与其他器件实现较好地连接,将光接收次模块接收的光信号的功率放大,最终得到高灵敏度、可长距离传输的光模块。
为了承载SOA芯片510,本申请实施例中由第四基板520承载SOA芯片510,SOA芯片510贴在第四基板520的表面;进一步地,为了保证SOA芯片510的正常工作,需要监控其工作温度,因此本申请中设置温度传感器530,温度传感器530设置在SOA芯片510的附近,温度传感器530的电阻值和SOA芯片510的工作温度之间呈一定的关系,通过监控温度传感器530的电阻值可以监测到SOA芯片510的工作温度变化,进而通过调节TEC的电流大小来调节SOA芯片510的工作温度,TEC的电流大小发生变化时,SOA芯片510的工作温度随之发生变化直至将SOA芯片510的温度调整至正常工作温度下。本申请实施例中为了便于描述,将SOA芯片510、第四基板520和温度传感器530三种结构集成后统一描述为SOA组件,本申请中SOA组件位于准直透镜860和聚焦透镜870之间,也就是SOA组件的两侧均设有相应透镜,由于光接收次模块腔体内的空间大小有限,将SOA组件设置于准直透镜860和聚焦透镜870之间可以合理使用两个透镜之间的空间,且保证不增加腔体空间大小,若将SOA组件设置于其他位置,则由于SOA组件输出的光信号为发散光束,光信号状态发生变化,需再增加透镜来改变光信号状态,进而会增加腔体空间的大小。
在有些结构中,解波分复用组件830的进光口中心轴和光纤适配器中心轴之间的距离较远,本申请中光模块还包括位移棱镜405,用于调整解波分复用组件830进光口中心轴与所述光纤适配器中心轴之间的距离,通过位移棱镜405可以实现光轴的移动;位移棱镜 405可以位于解波分复用组件830的进光口中心轴一侧,具体可位于解波分复用组件830和聚焦透镜870之间,也可以位于光纤适配器组件300中心轴一侧,具体可位于准直透镜860和光纤适配器组件300之间。本申请实施例中对位移棱镜405的位置不作限制,只要位移棱镜405可以实现解波分复用组件830的进光口中心轴和光纤适配器中心轴的移动,使二者之间的距离达到要求的位置均属于本申请实施例的保护范围。
本申请实施例中,准直透镜860、聚焦透镜870和透镜组880的透镜类型与光纤适配器的类型相适应,当光纤适配器组件300为准直适配器时,由于准直适配器内部具有准直透镜,准直适配器耦合输出的光信号为准直光束,则准直透镜860为准直透镜,将准直适配器输出的准直光束转换为会聚光束耦合进SOA芯片中,聚焦透镜870为准直透镜,用于将SOA芯片输出的发散光束转换为准直光束;透镜组880包括多个会聚透镜,用于将解波分复用组件830输出的准直光束转换为会聚光束。当光纤适配器为非准直适配器时,准直透镜860为会聚透镜,用于将所述光纤适配器输出的发散光束转换为会聚光束;聚焦透镜870为准直透镜,用于将所述SOA芯片输出的发散光束转换为准直光束;透镜组880包括多个会聚透镜,用于将所述光解复用组件输出的准直光束转换为会聚光束。
如图32,解波分复用组件830包括多个光输出口,光输出口的数量与多束不同波长的光信号中的数量相等,每个光输出口对应输出一束波长的光信号;透镜组880中包括多个透镜,多个透镜以阵列的形式排列,透镜组880中透镜的数量与解波分复用组件830中的光输出口的数量相等,透镜组880中的每个透镜对应接收解波分复用组件830中的每个光输出口输出的光信号;光接收芯片阵列409中的光接收芯片的数量与透镜组880中透镜的数量相等;在本申请实施例中,解波分复用组件830利用其两侧以及不同位置设置不同的膜层对不同波长信号光进行透过和反射将一束光信号分为多束不同波长光信号。
从上述可以看出,本申请实施例的光接收次模块经过第一透镜的光束转换、SOA芯片的方法、第二透镜的光束转换、光解复用组件的分波、透镜阵列的光束转换、第三透镜的反射和光接收芯片阵列的接收可以合理地实现各结构的连接和发挥各自功能,得到合理的光学设计和光路设计,最终将SOA芯片合理地集成在光接收结构中,对光接收次模块接收的光信号功率进行放大处理。
在某些实施例中,如图33所示,图33为根据一些实施例提供的光模块的另一种光接收次模块的内部各器件的结构示意图;透镜组880包括多个透镜,用于接收解波分复用组件830输出的多束不同波长的光信号并将多束不同波长的光信号转换为会聚光束并射入光接收芯片阵列中各光接收芯片的光接收面上;这时光接收芯片的光接收面与透镜组880的出光面呈平行关系,即光接收芯片的光接收面朝向透镜组880,从而无需经过第三透镜的全反射入射至光接收芯片的光接收面上。
下面结合图34-图35对本申请实施例提供的光接收次模块中的各结构之间的光路结构示意图;图34为根据一些实施例提供的光模块的一种光接收状态的光路示意图;图35为根据一些实施例提供的光模块的另一种光接收状态的光路示意图。光束依次经过准直透镜860的会聚、SOA芯片510的放大、聚焦透镜870的准直,解波分复用组件830的分束、透镜组880的会聚、反射棱镜840的反射后输入至光接收芯片阵列409中。由于本申请中 的光接收提供了两种状态,一种是光接收芯片的光接收面朝向上,此时需要经过第三透镜的反射才能进入光接收芯片的光接收面上,另一种是光接收芯片的光接受面朝向透镜阵列,此时不需要经过第三透镜的反射而直接输入至光接收芯片的光接收面上。图34和图35分别示出了两种接收状态的光路示意图。
本申请提供的光模块包括电路板和光接收次模块,光接收次模块包括盖合连接的盖板和腔体,腔体的底面设置有:第一透镜、SOA芯片、第二透镜、光解复用组件、透镜阵列、第三透镜和光接收芯片阵列,其中第一透镜接收来自光纤适配器的光信号并转换为会聚光束,并传输至SOA芯片,SOA芯片接收并放大来自第一透镜的光信号,并输出至第二透镜,第二透镜接收来自SOA芯片的光信号并转换为准直光束,并传输至光解复用组件,通过光解复用组件将第二透镜输出的光信号分解为多束不同波长的光信号,分解后得到的多束不同波长的光信号经过透镜阵列中的多个透镜转换为会聚光束,并传输至第三透镜,第三透镜罩设在光接收芯片阵列的光接收面上且具有反射面,经过反射面的反射后射入至光接收芯片阵列中的多个光接收芯片上,多个光接收芯片对应接收多束不同波长的光信号。本申请合理地将SOA芯片集成至光模块的光接收次模块中,并与其他器件实现较好地连接,将光接收次模块接收的光信号的功率放大,最终得到高灵敏度、可长距离传输的光模块。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;
    其中,所述光接收次模块包括:
    光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路板;
    光放大组件,设置在所述光接收腔体内,靠近所述光接收腔体的入光孔,包括第四基板和设置在所述第四基板上的半导体光放大器,所述半导体光放大器电连接所述第四基板,所述第四基板电连接所述电连接器;
    光接收组件,设置在所述光接收腔体内,用于接收透过所述半导体光放大器的信号光。
  2. 根据权利要求1所述光模块,其特征在于,所述光模块还包括TEC,所述光接收次模块还包括基板组件,所述基板组件包括第一基板和第三基板;
    所述TEC设置在所述光接收腔体的底板上且靠近所述光接收腔体的入光孔,所述第三基板设置在所述TEC的顶部,所述第四基板设置在所述第三基板上;
    所述第一基板设置在所述光接收腔体的底板上且位于所述TEC和所述电连接器之间,所述光接收组件设置在所述第一基板上。
  3. 根据权利要求1所述光模块,其特征在于,所述光放大组件还包括温度传感器,所述第四基板的表面设置有电路图案,所述半导体光放大器和所述温度传感器贴装设置在所述第四基板上。
  4. 根据权利要求2所述光模块,其特征在于,所述基板组件还包括第二基板,所述第二基板设置在所述第一基板上;
    所述光接收次模块还包括解波分复用组件和透镜组,所述解波分复用组件和透镜组设置在所述第二基板上,所述透镜组设置在所述解波分复用组件的出光侧。
  5. 根据权利要求2所述光模块,其特征在于,所述光接收次模块还包括反射棱镜,所述第一基板上设置第一支撑块和第二支撑块,所述反射棱镜设置在所述第一支撑块和第二支撑块上使所述反射棱镜罩设在所述光接收组件的上方。
  6. 根据权利要求1所述光模块,其特征在于,所述光接收次模块还包括隔离器、准直透镜和聚焦透镜,所述隔离器和所述准直透镜依次设置在所述光接收腔体的入光口和所述光放大组件之间,所述聚焦透镜设置在所述光放大组件远离所述准直透镜的一侧。
  7. 根据权利要求2所述光模块,其特征在于,所述光接收腔体包括光接收下壳和光接收上盖,所述光接收上盖盖合连接所述光接收下壳,所述光接收下壳的一端设置所述入光孔、另一端设置所述开口;
    所述入光孔设置光纤适配器组件,所述光纤适配器组件包括光纤适配器和光纤适配器连接件,所述光纤适配器连接件的一端连通所述光纤适配器,所述光纤适配器连接件的另一端连通所述入光孔。
  8. 根据权利要求2所述光模块,其特征在于,所述第一基板上设置电路金属层,所述光接收组件贴装设置在所述第一基板的电路金属层上,所述第四基板通过所述第一基板上的电路金属层电连接所述电连接器;
    所述光接收次模块还包括跨阻放大器,所述跨阻放大器贴装设置在所述第一基板的电路金属层上,所述光接收组件和所述电连接器分别打线连接所述跨阻放大器。
  9. 根据权利要求4所述光模块,其特征在于,所述第二基板的顶部设置电路金属层,所述电路金属层靠近所述第二基板的侧边,所述第四基板通过所述第二基板上的电路金属层电连接所述电连接器。
  10. 根据权利要求4所述光模块,其特征在于,所述基板组件还包括第六基板,所述第六基板设置在所述第二基板上,所述第四基板通过所述第六基板电连接所述电连接器。
  11. 一种光模块,其特征在于,包括:
    电路板;
    光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;
    其中,所述光接收次模块包括:
    光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路板;
    光放大组件,设置在所述光接收腔体内,靠近所述光接收腔体的入光孔,所述光放大组件包括半导体光放大器、第四基板和第五基板;所述半导体光放大器设置在所述第四基板上且电连接所述第四基板,所述第五基板设置在第四基板的一端,所述第四基板打线连接所述第五基板且通过所述第五基板电连接所述电连接器;
    光接收组件,设置在所述光接收腔体内,用于接收透过所述半导体光放大器的信号光。
  12. 根据权利要求11所述的光模块,其特征在于,所述第四基板上设置SOA正极金属层和SOA负极金属层,所述半导体光放大器的负极贴装在所述SOA负极金属层上,所述半导体光放大器的正极打线连接所述SOA正极金属层;
    所述第五基板上设置第一金属条和第二金属条,所述SOA正极金属层打线连接所述第一金属条,所述SOA负极金属层打线连接所述第二金属条,以通过所述第一金属条和所述第二金属条电连接所述电连接器。
  13. 根据权利要求12所述的光模块,其特征在于,所述光放大组件还包括温度传感器,所述第四基板上还设置温度传感器负极金属层,所述温度传感器的负极贴装设置在所述温度传感器负极金属层上;
    所述第五基板上还设置第三金属条,所述温度传感器负极金属层打线连接所述第二金属条,所述温度传感器的正极打线连接所述第三金属条,以通过所述第三金属条电连接所述电连接器。
  14. 根据权利要求12所述的光模块,其特征在于,所述光接收次模块还包括TEC,所述TEC设置在所述光接收腔体的底板上;
    所述光接收次模块还包括第三基板,所述第三基板设置在所述TEC的顶部,所述光放大组件设置在所述第三基板上;
    所述第五基板位于所述第四基板与所述TEC的电极之间,所述第五基板上还设置第四金属条,所述TEC的正极打线连接所述第四金属条,以通过所述第四金属条电连接所述电连接器。
  15. 根据权利要求12所述的光模块,其特征在于,所述光接收次模块还包括第一基板,所述第一基板的表面设置上设置金属层,所述第五基板打线连接所述第一基板上的金属层以通过所述第一基板电连接所述电连接器。
  16. 根据权利要求15所述的光模块,其特征在于,所述光接收次模块还包括解波分复用组件和第二基板,所述第二基板设置在所述第一基板上,所述解波分复用组件设置在所述第二基板上且位于所述光放大组件和光接收组件之间。
  17. 根据权利要求16所述的光模块,其特征在于,所述光接收次模块还包括反射棱镜和透镜组,所述反射棱镜罩设在所述光接收组件的上方,所述透镜组设置在所述第二基板上且所述透镜组位于所述解波分复用组件和所述反射棱镜之间。
  18. 根据权利要求11所述的光模块,其特征在于,所述光接收次模块还包括隔离器、准直透镜和聚焦透镜,所述隔离器和所述准直透镜依次设置在所述光接收腔体的出光口和所述光放大组件之间,所述聚焦透镜设置在所述光放大组件远离所述准直透镜的一侧。
  19. 根据权利要求11所述的光模块,其特征在于,所述光接收腔体包括光接收下壳和光接收上盖,所述光接收上盖盖合连接所述光接收下壳,所述光接收下壳的一端设置所述入光孔、另一端设置所述开口;
    所述入光孔设置光纤适配器组件,所述光纤适配器组件包括光纤适配器和光纤适配器连接件,所述光纤适配器连接件的一端连通所述光纤适配器,所述光纤适配器连接件的另一端连通所述入光孔。
  20. 根据权利要求12所述的光模块,其特征在于,所述第一金属条靠近所述电连接器方向的端部和所述第二金属条靠近所述电连接器方向的端部沿所述第五基板宽度方向设置在并列设置在所述第五基板的端部。
  21. 一种光模块,其特征在于,包括:
    电路板;
    光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;
    其中,所述光接收次模块包括:
    光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路板;
    第一基板,设置在所述光接收腔体内且设置在所述光接收腔体的底板上,所述第一基板的顶面上设置空白区域和电路金属层,所述电路金属层自所述第一基板的左上端延伸至所述第一基板的另一端且所述电路金属层的中部避开所述空白区域;
    光放大组件,设置在所述光接收腔体内,靠近所述光接收腔体的入光孔,所述光放大组件包括半导体光放大器,所述半导体光放大器通过所述第一基板上的电路金属层电连接所述电连接器;
    光接收组件,贴装设置在所述第一基板上且电连接所述第一基板上的电路金属层,用 于接收透过所述半导体光放大器的信号光;
    解波分复用组件,位于所述半导体光放器到所述光接收组件的光路上且设置在所述空白区域的上方。
  22. 根据权利要求21所述的光模块,其特征在于,所述第一基板上包括第二金属层和第三金属层,所述半导体光放大器通过所述第二金属层和所述第三金属层电连接所述电连接器;
    所述空白区域位于所述第三金属层的一侧,所述第二金属层位于所述第三金属层的另一侧,所述第三金属层的中部和所述第三金属层另一端的端部围绕所述空白区域;
    所述第三金属层另一端的端部宽度方向沿伸至所述第一基板的侧边,所述第二金属层另一端的端部延伸至所述第三金属层端部的一侧;
    所述光接收组件贴装设置在所述第三金属层另一端的端部。
  23. 根据权利要求22所述的光模块,其特征在于,所述第一基板的表面还设置有第四金属层,所述第四金属层围绕所述空白区域未被所述第三金属层围绕的侧边,且所述第四金属层另一端的端延伸至所述第三金属层端部的一侧。
  24. 根据权利要求23所述的光模块,其特征在于,所述第一基板的表面还设置第一金属层和第五金属层;
    所述第一金属层位于所述第二金属层远离所述第三金属层的一侧,所述第五金属层位于所述第四金属层远离所述空白区域的一侧。
  25. 根据权利要求21所述的光模块,其特征在于,所述光接收次模块还包括第二基板,所述第二基板设置在所述第一基板上且位于所述空白区域的上方,所述第二基板支撑所述解波分复用组件。
  26. 根据权利要求21所述的光模块,其特征在于,所述电连接器包括电连接器本体,所述电连接器的一侧设置第一台阶面和第二台阶面,所述电连接器本体的另一侧设置第一连接面和第二连接面;
    所述第一台阶面上设置直流引脚,所述第二台阶面上设置交流引脚和接地引脚,所述第一连接面和所述第二连接面电连接所述电路板。
  27. 根据权利要求21所述的光模块,其特征在于,所述光接收腔体包括光接收下壳,所述第一基板设置在所述光接收下壳的底板上;
    所述第一基板底部的两侧设置第一缺角和第二缺角,所述第一缺角和所述第二缺角沿所述光接收下壳的长度方向设置。
  28. 根据权利要求22所述的光模块,其特征在于,所述光接收次模块还包括跨阻放大器,所述光接收组件贴装设置在所述第三金属层另一端的端部,且位于所述光接收组件远离所述空白区域的一侧。
  29. 根据权利要求24所述的光模块,其特征在于,所述第一金属层另一端的末尾位于所述第二金属层另一端的端部和所述第三金属层另一端的端部之间;
    所述第五金属层另一端的末尾位于所述第四金属层另一端的端部和所述第三金属层另一端的端部之间。
  30. 根据权利要求21所述的光模块,其特征在于,所述第一基板的一端设置标记点,所述标记点为O型、L型或+型等形状的标记点。
  31. 一种光模块,其特征在于,包括:
    电路板,设置有MCU和采样模块,所述采样模块连接所述MCU;
    光接收次模块,电连接所述电路板,用于接收来自光模块外部的信号光;
    其中,所述光接收次模块包括:
    光接收腔体,一端设置入光孔,另一端设置开口,开口内设置电连接器,所述电连接器电连接所述电路板;
    分光器,设置在所述光接收腔体内且位于所述光接收腔体的入光孔;
    光放大组件,设置在所述光接收腔体内且位于所述分光器的透射光路上,包括半导体光放大器;
    背光探测器,设置在所述分光器的反射光路上,接收所述分光器反射的信号光,使所述采样模块获取来自模块外部信号光的实际光功率;
    光接收组件,设置在所述光接收腔体内,用于接收透过所述半导体光放大器的信号光;
    所述MCU根据所述采样模块获取的来自模块外部信号光的实际光功率以及光功率期望值调整所述半导体光放大器的增益。
  32. 根据权利要求31所述的光模块,其特征在于,所述光接收次模块还包括TEC和第三基板,所述TEC和所述第三基板位于所述光接收腔体内,所述第三基板位于所述TEC的顶部;
    所述光放大组件还包括第四基板和温度传感器,所述半导体光放大器和所述温度传感器设置在所述第四基板上,所述温度传感器电连接所述MCU;
    所述MCU根据所述温度传感器采集到的信号调整所述TEC的驱动电流以控制所述半导体光放大器的工作温度。
  33. 根据权利要求32所述的光模块,其特征在于,所述第四基板上设置SOA正极金属层、SOA负极金属层和温度传感器负极金属层;所述半导体光放大器的负极贴装在所述SOA负极金属层上,所述半导体光放大器的正极打线连接所述SOA正极金属层,所述温度传感器的负极贴装设置在所述温度传感器负极金属层上。
  34. 根据权利要求32所述的光模块,其特征在于,所述光放大组件还包括第五基板,所述第五基板上设置金属条;所述光接收次模块还包括第一基板,所述第一基板上设置电路金属层;所述半导体光放大器通过所述第五基板的金属条电连接所述第一基板上的电路金属层。
  35. 根据权利要求34所述的光模块,其特征在于,所述光接收次模块还包括解波分复用组件,设置在所述半导体光放大器与所述光接收组件之间。
  36. 根据权利要求31所述的光模块,其特征在于,所述光接收次模块还包括隔离器,设置在所述光接收腔体内且所述隔离器设置在所述光接收腔体的入光口和所述分光器之间。
  37. 根据权利要求31所述的光模块,其特征在于,所述光接收次模块还包括准直透 镜和聚焦透镜,所述准直透镜设置在所述半导体光放大器的一侧、位于所述分光器和所述半导体光放大器之间,所述聚焦透镜设置在所述半导体光放大器另一侧。
  38. 根据权利要求35所述的光模块,其特征在于,所述光接收次模块还包括第二基板,所述第二基板设置在所述第一基板上,所述解波分复用组件设置在所述第二基板上。
  39. 根据权利要求31所述的光模块,其特征在于,所述光接收腔体包括光接收下壳和光接收上盖,所述光接收上盖盖合连接所述光接收下壳,所述光接收下壳的一端设置所述入光孔、另一端设置所述开口;
    所述入光孔设置光纤适配器组件,所述光纤适配器组件包括光纤适配器和光纤适配器连接件,所述光纤适配器连接件的一端连通所述光纤适配器,所述光纤适配器连接件的另一端连通所述入光孔。
  40. 根据权利要求31所述的光模块,其特征在于,所述电连接器包括电连接器本体,所述电连接器的一侧设置第一台阶面和第二台阶面,所述电连接器本体的另一侧设置第一连接面和第二连接面;
    所述第一台阶面上设置直流引脚,所述第二台阶面上设置交流引脚和接地引脚,所述第一连接面和所述第二连接面电连接所述电路板。
PCT/CN2021/134455 2020-12-17 2021-11-30 一种光模块 WO2022127584A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/146,068 US20230194802A1 (en) 2020-12-17 2022-12-23 Optical module

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202011496690.6A CN114647037A (zh) 2020-12-17 2020-12-17 一种光模块
CN202011496690.6 2020-12-17
CN202122253630.8U CN216160876U (zh) 2021-09-16 2021-09-16 一种光模块
CN202122251048.8U CN216013742U (zh) 2021-09-16 2021-09-16 一种光模块
CN202111088244.6 2021-09-16
CN202111088602.3 2021-09-16
CN202111088244.6A CN113805289B (zh) 2021-09-16 2021-09-16 一种光模块
CN202122253630.8 2021-09-16
CN202111088602.3A CN113805290B (zh) 2021-09-16 2021-09-16 一种光模块
CN202122251048.8 2021-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/146,068 Continuation US20230194802A1 (en) 2020-12-17 2022-12-23 Optical module

Publications (1)

Publication Number Publication Date
WO2022127584A1 true WO2022127584A1 (zh) 2022-06-23

Family

ID=82060027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134455 WO2022127584A1 (zh) 2020-12-17 2021-11-30 一种光模块

Country Status (2)

Country Link
US (1) US20230194802A1 (zh)
WO (1) WO2022127584A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127059A1 (zh) * 2020-12-14 2022-06-23 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028415A (ja) * 2014-07-09 2016-02-25 住友電工デバイス・イノベーション株式会社 半導体光増幅装置
CN108347284A (zh) * 2018-02-08 2018-07-31 青岛海信宽带多媒体技术有限公司 一种光接收机及光模块
CN209283247U (zh) * 2018-11-29 2019-08-20 深圳市易飞扬通信技术有限公司 100Gbps光模块
CN111458816A (zh) * 2020-05-22 2020-07-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN111555811A (zh) * 2020-04-22 2020-08-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN111628828A (zh) * 2020-05-25 2020-09-04 湖北协长通讯科技有限公司 一种高灵敏度光接收器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028415A (ja) * 2014-07-09 2016-02-25 住友電工デバイス・イノベーション株式会社 半導体光増幅装置
CN108347284A (zh) * 2018-02-08 2018-07-31 青岛海信宽带多媒体技术有限公司 一种光接收机及光模块
CN209283247U (zh) * 2018-11-29 2019-08-20 深圳市易飞扬通信技术有限公司 100Gbps光模块
CN111555811A (zh) * 2020-04-22 2020-08-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN111458816A (zh) * 2020-05-22 2020-07-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN111628828A (zh) * 2020-05-25 2020-09-04 湖北协长通讯科技有限公司 一种高灵敏度光接收器件

Also Published As

Publication number Publication date
US20230194802A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
CN114035285B (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN218350561U (zh) 一种光模块
US11994726B2 (en) Optical module
WO2022127584A1 (zh) 一种光模块
CN114488438B (zh) 一种光模块
WO2022111034A1 (zh) 一种光模块
CN203324522U (zh) 用于高速并行光收发模块的光引擎微封装结构
US20230228955A1 (en) Optical module
CN113805290B (zh) 一种光模块
WO2023109210A1 (zh) 光模块
WO2023035711A1 (zh) 光模块
WO2022193733A1 (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
WO2022100278A1 (zh) 一种光模块
WO2022247426A1 (zh) 光模块
CN114647037A (zh) 一种光模块
WO2022206169A1 (zh) 光模块
CN216160876U (zh) 一种光模块
CN216013742U (zh) 一种光模块
CN113805289B (zh) 一种光模块
WO2022199255A1 (zh) 光模块
CN219392324U (zh) 一种光模块
CN217639669U (zh) 一种光接收组件及光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905513

Country of ref document: EP

Kind code of ref document: A1