WO2022199255A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2022199255A1
WO2022199255A1 PCT/CN2022/075053 CN2022075053W WO2022199255A1 WO 2022199255 A1 WO2022199255 A1 WO 2022199255A1 CN 2022075053 W CN2022075053 W CN 2022075053W WO 2022199255 A1 WO2022199255 A1 WO 2022199255A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
module
optical fiber
light
circuit board
Prior art date
Application number
PCT/CN2022/075053
Other languages
English (en)
French (fr)
Inventor
崔峰
王腾飞
冷宝全
李丹
黄绪杰
谢一帆
傅钦豪
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120615978.4U external-priority patent/CN214278496U/zh
Priority claimed from CN202120615977.XU external-priority patent/CN214278495U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022199255A1 publication Critical patent/WO2022199255A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in the optical communication equipment.
  • the transmission rate of the optical module continues to increase.
  • an optical module provided by some embodiments of the present disclosure includes: a circuit board, a light emitting sub-module, a light receiving sub-module, a first optical fiber adapter, and a second optical fiber adapter.
  • the light-emitting sub-module is electrically connected to the circuit board and configured to generate signal light;
  • the light-receiving sub-module is electrically connected to the circuit board and configured to receive signal light from outside the optical module;
  • An optical fiber adapter is optically connected to the light emitting sub-module through a first optical fiber;
  • the second optical fiber adapter is optically connected to the optical receiving sub-module through a second optical fiber.
  • the light receiving sub-module includes a light splitting device, a light receiving chip, a second supporting member and a first converging lens.
  • the optical branching device is arranged on the circuit board, and the input end of the optical branching device is connected to the second optical fiber;
  • the light receiving chip is arranged on the surface of the circuit board and located in the optical branch Below the output reflection surface of the device, it is electrically connected to the circuit board;
  • the second supporting member is connected to the optical splitting device;
  • the first converging lens is connected to the second supporting member and located on the optical splitting device Between the light-receiving chip and the light-receiving chip, the signal light output from the optical splitting device is configured to be converged and transmitted to the light-receiving chip.
  • an optical module provided by some embodiments of the present disclosure includes: a circuit board, a light emitting sub-module, a light receiving sub-module, a first optical fiber adapter, and a second optical fiber adapter.
  • the light-emitting sub-module is electrically connected to the circuit board and configured to generate signal light;
  • the light-receiving sub-module is electrically connected to the circuit board and configured to receive signal light from outside the optical module;
  • An optical fiber adapter is optically connected to the light emitting sub-module through a first optical fiber;
  • the second optical fiber adapter is optically connected to the optical receiving sub-module through a second optical fiber.
  • the light receiving sub-module includes: a light splitting device, a light receiving chip, a second supporting member and a first converging lens.
  • the optical branching device is arranged on the circuit board, and the input end of the optical branching device is connected to the second optical fiber;
  • the light receiving chip is arranged on the surface of the circuit board and located in the optical branch Below the output reflection surface of the device, it is electrically connected to the circuit board;
  • the second support member is arranged on the surface of the circuit board;
  • the first converging lens is connected to the second support member and located in the optical branch
  • the signal light output from the optical splitting device is configured to be converged and transmitted to the light-receiving chip.
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a schematic diagram illustrating the assembly of a light emitting component, a light receiving component and a circuit board in an optical module according to some embodiments;
  • FIG. 6 is a schematic diagram of a partial structure of an optical module according to some embodiments.
  • FIG. 7 is a schematic diagram of a partial structure of another optical module according to some embodiments.
  • FIG. 8 is a schematic diagram of the assembly structure of the light emitting assembly and the first optical fiber adapter according to some embodiments
  • FIG. 9 is a schematic structural diagram of a light emitting assembly with a cover plate removed according to some embodiments.
  • FIG. 10 is a cross-sectional view of a light emitting assembly according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 , a light emitting assembly 400 , a light receiving assembly 500 , and a first optical fiber Adapter 206 and second fiber optic adapter 207 .
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two sides of the cover plate are perpendicular to the cover plate.
  • the two upper side plates are combined with the two side plates by the two side walls to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200, or may be inconsistent with the length direction of the optical module 200.
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the inside of the optical module 200 .
  • the combination of the upper casing 201 and the lower casing 202 is adopted to facilitate the installation of components such as the circuit board 300 into the casing, and the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission, and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip may include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock and data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip .
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock and data recovery chip
  • DSP digital signal processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. .
  • the circuit board 300 further includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of pins which are independent of each other.
  • the circuit board 300 is inserted into the cage 106 , and is electrically connected to the electrical connector in the cage 106 by gold fingers.
  • the golden fingers can be arranged only on one side surface of the circuit board 300 (eg, the upper surface shown in FIG. 4 ), or can be arranged on the upper and lower surfaces of the circuit board 300 , so as to meet the needs of a large number of pins.
  • the golden finger is configured to establish an electrical connection with the upper computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • FIG. 5 is a schematic diagram illustrating the assembly of a light emitting component, a light receiving component and a circuit board in an optical module according to some embodiments.
  • the light emitting component 400 and the light receiving component 500 are respectively disposed on the edge of the circuit board 300 and are respectively electrically connected to the circuit board 300 , and the light emitting component 400 passes through the first optical fiber 2061
  • the first optical fiber adapter 206 is connected, the light receiving component 500 is connected to the second optical fiber adapter 207 through the second optical fiber 2071 , and the light transmitting component 400 and the light receiving component 500 are arranged on the circuit board 300 .
  • the light emitting component 400 is close to one side of the circuit board 300
  • the light receiving component 500 is close to the other side of the circuit board 300 .
  • the light emitting component 400 includes a wrapping cavity formed by the upper and lower casings.
  • the circuit board 300 is provided with a mounting hole 301 for placing the light emitting component; the mounting hole 301 is close to the side of the circuit board 300 .
  • the edge of the circuit board 300 is located at the edge of the circuit board 300.
  • the mounting hole 301 can also be set in the middle of the circuit board 300; Internally, it is also convenient to fix the light emitting assembly 400 and the circuit board 300 together.
  • the light emitting assembly 400 may be fixedly supported by the upper case 201 and the lower case 202 .
  • the light emitting component 400 is used to generate signal light, and the signal light generated by the light emitting component 400 is transmitted to the first optical fiber 2061 , and then transmitted to the outside of the optical module through the first optical fiber 2061 .
  • the light emitting component 400 may also be disposed at one end of the circuit board 300, and then electrically connected to the circuit board 300 through a flexible circuit board.
  • the light receiving component 500 is disposed on the surface of the circuit board 300 .
  • the signal light from outside the optical module is transmitted to the second optical fiber 2071 connected to the second optical fiber adapter 207 through the external optical fiber, and then transmitted to the light receiving component 500 through the second optical fiber 2071, and the light receiving component 500 converts the received signal light into electric current Signal.
  • the light receiving assembly 500 includes an optical device and a photoelectric conversion device.
  • optical devices such as fiber connectors, Arrayed Waveguide Grating (AWG), fiber arrays, lenses, etc.
  • photoelectric conversion devices such as light receiving chips, transimpedance amplifiers, etc., light receiving chips are PD (photodetectors), such as APD (Avalanche Diode), PIN-PD (Photo Diode), are used to convert the received signal light into photocurrent.
  • the second optical fiber 2071 transmits the signal light to the optical device, then converts the signal light beam transmission path to the optical device, and finally transmits it to the photoelectric conversion device, which receives the signal light and converts the optical signal into an electrical signal.
  • AWG and fiber array are used to realize the reception of multi-wavelength signal light of optical module.
  • FIG. 6 is a schematic diagram of a partial structure of an optical module according to some embodiments.
  • the light receiving assembly 500 is disposed on one side of the light transmitting assembly 400.
  • the light receiving assembly 500 includes an AWG 501, a light receiving chip 502, and a transimpedance amplifier 503.
  • the circuit board 300 can be provided with many A light-receiving chip 502, the light-receiving chip 502 can be directly mounted on the circuit board 300, one end of the AWG 501 is connected to the second optical fiber 2071, and the other end is covered above the light-receiving chip 502, that is, the other end of the AWG 501 is in the direction of the circuit board 300.
  • the projection covers the light receiving chip 502, the AWG 501 is used to split the signal light transmitted by the second optical fiber 2071 according to the wavelength and change the transmission direction, and the signal light that is split by the AWG 501 and changes the transmission direction is transmitted to the corresponding light receiving chip
  • the light-receiving chip 502 receives the signal light, converts the received signal light into photocurrent, and transmits it to the transimpedance amplifier 503 .
  • the optical fiber array is used in the optical module to receive multi-wavelength signal light, the optical fibers in the optical fiber array transmit the signal light of each wavelength correspondingly to the corresponding light receiving chip.
  • the transimpedance amplifier 503 is mounted on the circuit board 300 , and the plurality of light receiving chips 502 are connected to the transimpedance amplifier 503 for receiving the current signal generated by the light receiving chip 502 and converting the received current signal into a voltage signal.
  • the transimpedance amplifier 503 is connected to the light-receiving chip 502 by wire bonding, such as through a semiconductor bonding wire.
  • four light-receiving chips 502 are disposed on the circuit board 300 , the other end of the AWG 501 is capped on the four light-receiving chips 502 , and the four light-receiving chips 502 are connected to the transimpedance amplifier 503 by bonding wires.
  • the wire bonding length is longer, the inductance generated by the wire bonding is larger, and the signal mismatch will also be larger, and the signal output by the light receiving chip 502 is a small signal, which will cause the signal quality to be degraded. Therefore, the light-receiving chip 502 and the trans-impedance amplifier 503 are as close as possible to reduce the wire bonding length and ensure the signal transmission quality.
  • the trans-impedance amplifier 503 is arranged on one side of the light-receiving chip 502, so that the trans-impedance amplifier 503 and the light-receiving chip are as close as possible. 502 is close.
  • the electrodes of the light receiving chip 502 and the pins on the transimpedance amplifier 503 are on the same plane to ensure the shortest bonding wire between the light receiving chip 502 and the transimpedance amplifier 503 .
  • the light receiving assembly 500 provided by the embodiments of the present disclosure further includes a first support member 504 , and the first support member 504 is fixedly disposed on the circuit board 300 .
  • the bottom side of the first support member 504 is mounted and connected to the circuit board 300, and the top side is supported and connected to the AWG 501.
  • the first support member 504 is used to realize the fixation of the AWG 501 on the circuit board 300 and provide a sufficient installation height of the AWG 501 to ensure the AWG 501. distance from the light receiving chip 502 .
  • the first support member 504 may be made of a metal material such as Kovar alloy.
  • the signal light outputted by the beam splitting and conversion of the propagation direction by the AWG 501 is divergent light.
  • the light receiving assembly 500 provided in the embodiment of the present disclosure further includes a A converging lens 505, the first converging lens 505 is arranged above the light-receiving chip 502 for converging and transmitting the signal light output by the AWG 501 to the light-receiving chip 502, so that the signal light output by the AWG 501 is coupled through the first converging lens 505 To the light-receiving chip 502, the signal light output by the AWG 501 can be accurately incident on the corresponding light-receiving chip 502, which is convenient to improve the light-receiving efficiency of the light-receiving chip 502.
  • the first converging lens 505 may adopt a strip-shaped integrated structure, that is, the first converging lens 505 includes a lens body and a circular arc surface, and the lens body is close to the light
  • a circular arc surface is provided on one side of the receiving chip 502, the circular arc surface corresponds to the light receiving chip 502, the projection of the circular arc surface in the direction of the light receiving chip 502 covers the corresponding light receiving chip, and the circular arc surface is used to transmit the signal to it.
  • the light beams are converged and transmitted to the corresponding light receiving chips 502 .
  • the number of arc surfaces on the first converging lens 505 can be selected according to the number of light-receiving chips 502 . For example, if four light-receiving chips 502 are provided on the circuit board 300 , the number of four arc surfaces can be set on the first converging lens 505 , the four arc surfaces correspond to the four light receiving chips 502 one by one.
  • the light receiving assembly 500 provided by the embodiment of the present disclosure further includes a second supporting member 506, and the second supporting member 506 is used for supporting and connecting the first condensing lens 505, so that the first converging lens 505 is suspended. It is placed between the AWG 501 and the light receiving chip 502 .
  • Installing the first converging lens 505 through the second supporting member 506 not only facilitates the installation of the first converging lens 505, but also facilitates ensuring the distance between the first converging lens 505 and the signal light output port of the AWG 501 and the light receiving chip 502, thereby enabling the The focal point of the first converging lens 505 is located on the photosensitive surface of the light receiving chip 502 , which further ensures the light receiving efficiency of the light receiving chip 502 .
  • the second support member 506 is disposed on the surface of the circuit board 300. As shown in FIG. 6, the second support member 506 can be disposed under the AWG 501. The bottom of the second support member 506 is connected to the circuit board 300.
  • the converging lens 505 is arranged on the side of the second supporting member 506, and the first converging lens 505 is suspended above the light receiving chip 502 through the second supporting member 506, so that the first converging lens 505 condenses the signal light output by the AWG 501 transmitted to the photosensitive surface of the corresponding light receiving chip 502 .
  • the second support member 506 includes a first installation surface 5061 and a first inclined surface 5062, the first inclined surface 5062 is located below the first installation surface 5061, and the first inclined surface 5062 is located below the first installation surface 5061.
  • a converging lens 505 is connected to the first mounting surface 5061 , and the first inclined surface 5062 is close to the light receiving chip 502 .
  • the second support member 506 is pasted and fixed to the first converging lens 505 by glue, and a first mounting surface 5061 is provided on the second supporting member 506 to facilitate the installation and fixation of the first converging lens 505;
  • the first inclined surface 5062 is used to avoid the light receiving chip 502 , the setting of the first inclined surface 5062 is convenient to ensure the installation accuracy requirements of the AWG 501, the light receiving chip 502 and the first converging lens 505, and at the same time, it is convenient for the centralized setting of the AWG 501, the light receiving chip 502 and the first converging lens 505.
  • the height of the second support member 506 or the installation position of the first condensing lens 505 on the first installation surface 5061 can be adjusted according to the installation height requirement of the first converging lens 505, so as to facilitate the installation of the first converging lens 505 to the A relatively accurate position ensures the light receiving efficiency of the light receiving chip 502 .
  • FIG. 7 is a schematic partial structure diagram of another optical module according to some embodiments.
  • the light receiving assembly 500 is disposed on one side of the light emitting assembly 400, and the light receiving assembly 500 includes an AWG 501, a light receiving chip 502, a transimpedance amplifier 503, a first converging lens 505 and a second supporting member 506.
  • the light receiving assembly 500 includes an AWG 501, a light receiving chip 502, a transimpedance amplifier 503, a first converging lens 505 and a second supporting member 506.
  • the second supporting member 506 is located below the AWG 501, and the top of the second supporting member 506 is connected to the AWG 501, and the first converging lens 505 is disposed on the side of the second supporting member 506, And then the second support member 506 is fixed inside the optical module through the AWG 501, and the first convergence lens 505 is suspended above the light receiving chip 502 by the second support member 506, so that the first convergence lens 505 outputs the output of the AWG 501.
  • the signal light is converged and transmitted to the photosensitive surface of the corresponding light receiving chip 502 .
  • the second support member 506 includes a first mounting surface 5061 , a second inclined surface 5063 and a second mounting surface 5064 , and the first converging lens 505 is connected to the first mounting surface Surface 5061, the second mounting surface 5064 is arranged above the second support member 506, the second mounting surface 5064 is connected to the AWG 501, the second inclined surface 5063 is located on the side of the second mounting surface 5064 away from the first mounting surface 5061, the second The inclined surface 5063 is used to avoid the AWG 501, so as to facilitate the installation and fixation of the second support member 506 on the AWG 501.
  • the second support member 506 is pasted and fixed to the first converging lens 505 by glue, and a first mounting surface 5061 is provided on the second supporting member 506 to facilitate the installation and fixing of the first converging lens 505; the second inclined surface 5063 is used to avoid the AWG 501, and the setting
  • the first inclined surface 5062 not only facilitates ensuring the installation accuracy requirements of the AWG 501, the light receiving chip 502 and the first converging lens 505, but also facilitates the centralized arrangement of the AWG 501, the light receiving chip 502 and the first converging lens 505; the second mounting surface 5064 It is convenient for the second support member 506 to be pasted and fixed on the AWG 501.
  • the installation position of the first converging lens 505 on the first installation surface 5061 can be adjusted according to the installation height requirement of the first converging lens 505, so as to facilitate the installation of the first converging lens 505 to a relatively accurate position to ensure light The light receiving efficiency of the receiving chip 502 .
  • FIG. 8 is a schematic diagram of the assembly structure of the light emitting assembly and the first optical fiber adapter according to some embodiments.
  • the light emitting assembly 400 is connected to the first optical fiber adapter 206 through the optical fiber connector 600 and the first optical fiber 2061 in sequence.
  • One end of the first optical fiber 2061 is connected to the optical fiber adapter 600 , and the other end is connected to the first optical fiber adapter 206 .
  • the optical fiber connector 600 is used to be inserted into the light emitting assembly to receive the light converged by the optical lens; the first optical fiber adapter 206 is respectively connected with the first optical fiber 2061 and the optical fiber plug outside the optical module, and is used to realize the internal and external optical modules of the optical module.
  • the light output from the light emitting assembly 400 is connected to the optical fiber through the optical fiber connector, and is transmitted from the optical fiber to the first optical fiber adapter 206 , and then transmitted to the outside of the optical module through the first optical fiber adapter 206 .
  • the first optical fiber adapter 206 includes a main body 2062 and a protrusion 2063 , the protrusion 2063 is located on the surface of the main body 2062 , and the protrusion 2063 is raised relative to the main body 2062 .
  • the first optical fiber adapter 206 is assembled and fixed with the lower casing through the protrusion 2063 .
  • a positioning inclined surface 2064 is provided on the protrusion 2063. When the protrusion 2063 is assembled and connected to the lower casing, the first optical fiber adapter 206 is positioned by the positioning inclined surface 2064.
  • the positioning slope 2064 on the protrusion 2063 of the first optical fiber adapter 206 By setting the positioning slope 2064 on the protrusion 2063 of the first optical fiber adapter 206, not only the positioning and installation of the first optical fiber adapter 206 can be performed, and the rotation of the first optical fiber 2061 caused by the adapter can be prevented from being torn and the transmission optical path will fail. During the module assembly process, workers operate foolproof. In some embodiments of the present disclosure, reference may be made to the first optical fiber adapter 206 for the structure and fixing manner of the second optical fiber adapter 207 .
  • the light emitting component 400 provided by the embodiment of the present disclosure includes a cover plate 401 and a light emitting component cavity (hereinafter referred to as the cavity) 402.
  • the cover plate 401 covers the cavity 402 from above.
  • the side walls have openings 403 for insertion of the circuit board 300 .
  • FIG. 9 is a schematic structural diagram of a light emitting assembly with a cover plate removed according to some embodiments.
  • the cavity 402 is provided with a laser assembly 404 , the circuit board 300 extending into the cavity is electrically connected to the laser assembly 404 , and the laser assembly has components such as a laser chip, a collimating lens, etc., forming a collimated light output.
  • the cavity 402 is further provided with an optical multiplexing component 405, and the optical multiplexing component 405 receives multiple beams of light from the laser component 404, and combines the multiple beams into a beam of light, and the beam of light includes lights of different wavelengths.
  • the optical fiber connector 600 is inlaid on the other side wall of the cavity 402, and a beam of light combined by the optical multiplexing component 405 is injected into the optical fiber connector 600.
  • the optical fiber connector 600 receives the light from the optical multiplexing component 405, and then passes through the first
  • the optical fiber 2061 is transmitted to the first fiber optic adapter 206 .
  • a focusing lens 406 may also be disposed between the optical multiplexing component 405 and the optical fiber connector 600, and light is collected by the focusing lens 406 to facilitate subsequent light coupling.
  • the light emitting assembly 400 provided by the embodiment of the present disclosure includes four laser assemblies 404, and the four laser assemblies 404 emit light of four different wavelengths.
  • the data transmission capacity can be improved by increasing the number of optical paths.
  • the optical multiplexing assembly will Four parallel lights are combined into one light.
  • the laser assembly 404 includes a metallized ceramic, a laser chip, a collimating lens, a semiconductor refrigerator, etc.
  • the laser chip is disposed on the surface of the metallized ceramic, and the surface of the metallized ceramic is The circuit pattern is formed, which can supply power to the laser chip; meanwhile, the metallized ceramic has better thermal conductivity, and can be used as a heat sink for the laser chip to dissipate heat.
  • Laser has become the preferred light source for optical modules and even optical fiber transmission due to its better single-wavelength characteristics and better wavelength tuning characteristics; other types of light, such as LED light, are generally not used in common optical communication systems, even if special optical communication systems.
  • This kind of light source is used in the light source, and the characteristics and chip structure of the light source are quite different from those of the laser, so that there is a big technical difference between the optical module using the laser and the optical module using other light sources.
  • Those skilled in the art generally do not think that These two types of optical modules can give technical inspiration to each other.
  • FIG. 10 is a cross-sectional view of a light emitting assembly according to some embodiments.
  • the light emitted by the laser chip in the laser assembly 404 is condensed into parallel lights by the corresponding collimating lenses, and the parallel lights condensed by the collimating lenses are transmitted to the optical multiplexing assembly 405 , and the optical multiplexing assembly 405
  • the parallel lights are combined into one and then transmitted to the focusing lens 406 , and the combined light is concentrated and transmitted to the optical fiber connector 600 through the focusing lens 406 .
  • the optical fiber connector 600 includes a casing 601 , an isolator 602 and an optical fiber ferrule 603 .
  • the tube case 601 , the isolator 602 and the optical fiber ferrule 603 are all cylindrical structures, and the through hole 106 is a cylindrical through hole.
  • the isolator 602 and the optical fiber ferrule 603 are respectively disposed in the casing 601 , and the optical fiber ferrule 603 is connected to the first optical fiber 2061 .
  • the fixed cooperation between the tube shell 601 and the cavity 402 realizes the fixing of the optical fiber connector 600 and the cavity 402 .
  • the tube case 601 is used to fix the isolator 602 and the optical fiber ferrule 603 and facilitate the installation of the isolator 602 and the optical fiber ferrule 603 .
  • the isolator 602 allows light to pass in one direction and blocks the opposite direction for preventing reflected light from returning to the laser chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200)包括电路板(300)、光发射次模块、光接收次模块、第一光纤适配器(206)和第二光纤适配器(207)。光发射次模块与电路板(300)电连接;光接收次模块与电路板(300)电连接,被配置为接收来自光模块(200)外部的信号光;第一光纤适配器(206)通过第一光纤(2061)光连接光发射次模块;第二光纤适配器(207)通过第二光纤(2071)光连接光接收次模块。光接收次模块包括:光分路器件、光接收芯片(502)、第二支撑部件(506)、第一汇聚透镜(505)。光分路器件设置在电路板(300)上,所述光分路器件的输入端连接第二光纤适配器(207);光接收芯片(502)设置在电路板(300)的表面且位于光分路器件的输出反射面下方,与电路板(300)电连接;第二支撑部件(506)连接设置在光分路器件上;第一汇聚透镜(505)连接第二支撑部件(506)且位于光分路器件到光接收芯片(502)的传输光路上。

Description

光模块
本公开要求在2021年03月25日提交中国专利局、申请号为202120615978.4、在2021年03月25日提交中国专利局、申请号为202120615977.X的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
一方面,本公开一些实施例提供的一种光模块包括:电路板、光发射次模块、光接收次模块、第一光纤适配器和第二光纤适配器。所述光发射次模块与所述电路板电连接,被配置为产生信号光;所述光接收次模块与所述电路板电连接,被配置为接收来自光模块外部的信号光;所述第一光纤适配器通过第一光纤光连接所述光发射次模块;所述第二光纤适配器通过第二光纤光连接所述光接收次模块。所述光接收次模块包括光分路器件、光接收芯片、第二支撑部件和第一汇聚透镜。所述光分路器件设置在所述电路板上,所述光分路器件的输入端连接所述第二光纤;所述光接收芯片设置在所述电路板的表面且位于所述光分路器件的输出反射面下方,与所述电路板电连接;所述第二支撑部件连接所述光分路器件;所述第一汇聚透镜连接所述第二支撑部件且位于所述光分路器件和所述光接收芯片的之间,被配置为将所述光分路器件输出的信号光汇聚传输至所述光接收芯片。
另一方面,本公开一些实施例提供的一种光模块包括:电路板、光发射次模块、光接收次模块、第一光纤适配器和第二光纤适配器。所述光发射次模块与所述电路板电连接,被配置为产生信号光;所述光接收次模块与所述电路板电连接,被配置为接收来自光模块外部的信号光;所述第一光纤适配器通过第一光纤光连接所述光发射次模块;所述第二光纤适配器通过第二光纤光连接所述光接收次模块。所述光接收次模块包括:光分路器件、光接收芯片、第二支撑部件和第一汇聚透镜。所述光分路器件设置在所述电路板上,所述光分路器件的输入端连接所述第二光纤;所述光接收芯片设置在所述电路板的表面且位于所述光分路器件的输出反射面下方,与所述电路板电连接;所述第二支撑部件设置在所述电路板的表面;所述第一汇聚透镜连接所述第二支撑部件且位于所述光分路器件和所述光接收芯片的之间,被配置为将所述光分路器件输出的信号光汇聚传输至所述光接收芯片。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光模块中光发射组件、光接收组件与电路板的装配示意图;
图6为根据一些实施例的一种光模块的局部结构示意图;
图7为根据一些实施例的另一种光模块的局部结构示意图;
图8为根据一些实施例的光发射组件与第一光纤适配器装配结构示意图;
图9为根据一些实施例的一种光发射组件去除盖板的结构示意图;
图10为根据一些实施例的一种光发射组件的剖视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物 理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、光发射组件400、光接收组件500、第一光纤适配器206与第二光纤适配器207。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模 块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200的内部。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5为根据一些实施例的一种光模块中光发射组件、光接收组件与电路板的装配示意图。如图5所示,本公开实施例提供的光模块中,光发射组件400和光接收组件500分别设置在电路板300的边缘,分别与电路板300电连接,光发射组件400通过第一光纤2061连接第一 光纤适配器206,光接收组件500通过第二光纤2071连接第二光纤适配器207,光发射组件400和光接收组件500设置在电路板300上。在本公开的某一些实施例中,光发射组件400靠近电路板300的一侧边,光接收组件500靠近电路板300的另一侧边。
如图5所示,光发射组件400包括由上、下壳体形成的包裹腔体,电路板300上设置有安装孔301,用于放置光发射组件;安装孔301靠近电路板300的一侧边,位于电路板300的边缘,当然安装孔301还可以设置在电路板300的中间;光发射组件400通过嵌入的方式设置在电路板的安装孔301中,便于电路板伸入光发射组件400内部,同样便于将光发射组件400与电路板300固定在一起。在本公开的某一些实施例中,光发射组件400可通过上壳体201和下壳体202固定支撑。光发射组件400用于产生信号光,光发射组件400产生的信号光传输至第一光纤2061,然后经第一光纤2061传输至光模块外部。当然本公开实施例提供光模块中,光发射组件400还可以设置在电路板300的一端,然后通过柔性电路板电连接电路板300。
如图5所示,光接收组件500设置在电路板300表面。来自光模块外部的信号光通过外部光纤传输至第二光纤适配器207连接的第二光纤2071,然后经第二光纤2071传输至光接收组件500,光接收组件500将接收到的信号光转换为电流信号。
光接收组件500包括光学器件和光电转换器件。其中,光学器件如光纤接头、阵列波导光栅(Arrayed Waveguide Grating,AWG)、光纤阵列、透镜等,光电转换器件如光接收芯片、跨阻放大器等,光接收芯片为PD(光电探测器),如APD(雪崩二极管)、PIN-PD(光电二极管),用于将接收到的信号光转换为光电流。第二光纤2071将信号光传输光学器件,然后将光学器件进行信号光光束传输路径的转换,最后传输至光电转换器件,光电转换器件接收信号光并将光信号转换为电信号。AWG和光纤阵列用于实现光模块多波长信号光的接收。
图6为根据一些实施例的一种光模块的局部结构示意图。如图6所示,光接收组件500设置在光发射组件400的一侧,光接收组件500包括AWG 501、光接收芯片502、跨阻放大器503,电路板300上可沿着光接收方向设置多个光接收芯片502,光接收芯片502可直接贴装在电路板300上,AWG501的一端连接第二光纤2071,另一端覆盖在光接收芯片502上方,即AWG 501另一端在电路板300方向的投影覆盖光接收芯片502,AWG 501用于将经第二光纤2071传输的信号光按照波长进行分束并改变传输方向,经AWG 501分束并改变传输方向的信号光传输至相应的光接收芯片502的光敏面,光接收芯片502接收该信号光,并将接收到的信号光转换为光电流、并传输至跨阻放大器503。而当光模块中使用光纤阵列进行多波长信号光的接收时,光纤阵列中光纤将各波长的信号光对应传输至相应的光接收芯片。
跨阻放大器503贴装在电路板300上,且多个光接收芯片502均与跨阻放大器503连接,用于接收光接收芯片502产生的电流信号并将接收到的电流信号转换为电压信号。在本公开的某一些实施例中,跨阻放大器503打线连接光接收芯片502,如通过半导体键合金线连接。
在本公开一些实施例中,电路板300上设置4颗光接收芯片502,AWG 501的另一端罩设在4颗光接收芯片502上,4颗光接收芯片502通过打线连接跨阻放大器503。但当打线长度越大,打线产生的电感越大,信号不匹配性也将越大,而光接收芯片502输出的信号为小 信号,进而将会造成信号质量下降。因此光接收芯片502与跨阻放大器503尽量靠近,减少打线长度,保证信号传输质量,进而跨阻放大器503设置在光接收芯片502的一侧,尽可能的使跨阻放大器503与光接收芯片502贴近。在本公开的某一些实施例中,光接收芯片502的电极与跨阻放大器503上的管脚在同一平面上,保证光接收芯片502与跨阻放大器503之间的打线最短。
在本公开的某一些实施例中,本公开实施例提供的光接收组件500还包括第一支撑部件504,第一支撑部件504固定设置在电路板300上。第一支撑部件504的底部侧贴装连接电路板300、顶部侧支撑连接AWG 501,第一支撑部件504用于实现AWG 501在电路板300的固定以及提供AWG 501足够的安装高度,保证AWG 501与光接收芯片502之间的间距。在本公开的某一些实施例中,第一支撑部件504可采用可伐合金等金属材料制成。
经AWG 501分束、转换传播方向输出的信号光为发散光,为将反射后的信号光束传输至光接收芯片502的光敏面上,在本公开实施例提供的光接收组件500中还包括第一汇聚透镜505,第一汇聚透镜505设置在光接收芯片502的上方,用于将AWG 501输出的信号光汇聚传输至光接收芯片502,如此AWG 501输出的信号光经由第一汇聚透镜505耦合至光接收芯片502,使得AWG 501输出的信号光能够准确的入射至相应的光接收芯片502,便于提高光接收芯片502的光接收效率。
在本公开实施例中,为便于第一汇聚透镜505的耦合安装,第一汇聚透镜505可采用长条状一体结构,即第一汇聚透镜505包括透镜体和圆弧面,透镜体上靠近光接收芯片502的一侧设置圆弧面,圆弧面与光接收芯片502对应,圆弧面在光接收芯片502方向的投影覆盖相应的光接收芯片,圆弧面用于将传输至其的信号光束汇聚传输至对应的光接收芯片502。第一汇聚透镜505上圆弧面的数量可根据光接收芯片502的数量进行选择,如电路板300上设置4颗光接收芯片502,第一汇聚透镜505上可设置4个圆弧面的数量,4个圆弧面与4颗光接收芯片502一一对应。
为便于第一汇聚透镜505的安装,本公开实施例提供的光接收组件500还包括第二支撑部件506,第二支撑部件506用于支撑连接第一汇聚透镜505,使第一汇聚透镜505悬置于AWG501和光接收芯片502之间。通过第二支撑部件506安装第一汇聚透镜505,不仅方便第一汇聚透镜505的安装,还便于保证第一汇聚透镜505与AWG501信号光输出端口以及光接收芯片502之间的距离,进而能够使第一汇聚透镜505的焦点位于光接收芯片502的光敏面上,进一步保证光接收芯片502的光接收效率。
本实施例中第二支撑部件506设置在电路板300的表面,如图6所示,第二支撑部件506可设置于AWG 501的下方,第二支撑部件506的底部连接电路板300,第一汇聚透镜505设置在第二支撑部件506的侧边,通过第二支撑部件506将第一汇聚透镜505悬置在光接收芯片502上方,进而使第一汇聚透镜505将AWG 501输出的信号光汇聚传输至相应的光接收芯片502的光敏面。
在本公开的某一些实施例中,如图6所示,第二支撑部件506上包括第一安装面5061和第一倾斜面5062,第一倾斜面5062位于第一安装面5061的下方,第一汇聚透镜505连接第 一安装面5061,第一倾斜面5062靠近光接收芯片502。通常第二支撑部件506通过胶水粘贴固定第一汇聚透镜505,第二支撑部件506上设置第一安装面5061方便第一汇聚透镜505的安装固定;第一倾斜面5062用于避让光接收芯片502,设置第一倾斜面5062便于保证AWG 501、光接收芯片502和第一汇聚透镜505的安装精度需求,同时又便于AWG 501、光接收芯片502和第一汇聚透镜505集中设置。本公开实施例中,可根据第一汇聚透镜505的安装高度需求调整第二支撑部件506高度或第一汇聚透镜505在第一安装面5061的安装位置,进而方便将第一汇聚透镜505安装到较为准确的位置,保证光接收芯片502的光接收效率。
图7为根据一些实施例的另一种光模块的局部结构示意图。如图7所示,光接收组件500设置在光发射组件400的一侧,光接收组件500包括AWG 501、光接收芯片502、跨阻放大器503、第一汇聚透镜505和第二支撑部件506。如图7所示,本实施例中,第二支撑部件506位于AWG 501的下方,且第二支撑部件506的顶部连接AWG 501,第一汇聚透镜505设置在第二支撑部件506的侧边,进而第二支撑部件506通过AWG 501实现在光模块内部的固定,以及通过第二支撑部件506将第一汇聚透镜505悬置在光接收芯片502上方,使第一汇聚透镜505将AWG 501输出的信号光汇聚传输至相应的光接收芯片502的光敏面。
在本公开的某一些实施例中,如图7所示,第二支撑部件506上包括第一安装面5061、第二倾斜面5063和第二安装面5064,第一汇聚透镜505连接第一安装面5061,第二安装面5064设置在第二支撑部件506的上方,第二安装面5064连接AWG 501,第二倾斜面5063位于第二安装面5064背离第一安装面5061的一侧,第二倾斜面5063用于避让AWG 501,便于第二支撑部件506在AWG 501上的安装固定。通常第二支撑部件506通过胶水粘贴固定第一汇聚透镜505,第二支撑部件506上设置第一安装面5061方便第一汇聚透镜505的安装固定;第二倾斜面5063用于避让AWG 501,设置第一倾斜面5062既便于保证AWG 501、光接收芯片502和第一汇聚透镜505的安装精度需求,同时又便于AWG 501、光接收芯片502和第一汇聚透镜505集中设置;第二安装面5064便于第二支撑部件506粘贴固定在AWG 501上。本公开实施例中,可根据第一汇聚透镜505的安装高度需求调整第一汇聚透镜505在第一安装面5061的安装位置,进而方便将第一汇聚透镜505安装到较为准确的位置,保证光接收芯片502的光接收效率。
图8为根据一些实施例的光发射组件与第一光纤适配器装配结构示意图。如图8所示,光发射组件400依次通过光纤接头600及第一光纤2061实现与第一光纤适配器206的连接。第一光纤2061一端连接光纤适接头600,另一端连接第一光纤适配器206。
光纤接头600用于插入光发射组件中,以接收光学透镜汇聚的光;第一光纤适配器206分别与第一光纤2061及光模块外部的光纤插头连接,用于实现光模块内与光模块外之间的光连接,从而形成光发射组件400输出的光通过光纤接头接入光纤,由光纤传输至第一光纤适配器206,经第一光纤适配器206传输至光模块外。
第一光纤适配器206包括主体2062及凸起2063,凸起2063位于主体2062表面,凸起2063相对于主体2062而凸起。第一光纤适配器206通过凸起2063与下壳体实现装配固定。为便于进行第一光纤适配器206的定位安装,凸起2063上设置定位斜面2064,当凸起2063 装配连接下壳体时,通过定位斜面2064卡设定位第一光纤适配器206。通过在第一光纤适配器206的凸起2063上设置定位斜面2064,不仅可以进行第一光纤适配器206的定位安装,防止适配器造成第一光纤2061旋转出现撕裂而致使发射光路失效,还可以便于光模块装配过程中工人操作防呆。在本公开的某一些实施例中,第二光纤适配器207的结构以及固定方式可参见第一光纤适配器206。
如8所示,本公开实施例提供的光发射组件400包括盖板401及光发射组件腔体(以下简称腔体)402,由盖板401从上方盖合腔体402,腔体402的一侧壁具有开口403,用于电路板300插入。
图9为根据一些实施例的一种光发射组件去除盖板的结构示意图。如图9所示,腔体402中设置有激光组件404,伸入腔体中的电路板300与激光组件404电连接,激光组件中具有激光芯片、准直透镜等组件,形成准直光射出。腔体402中还设置有光复用组件405,光复用组件405接收来自激光组件404的多束光,将多束光合并为一束光,该一束光中包括不同波长的光。光纤接头600镶嵌设置在腔体402的另一侧壁上,经光复用组件405合并后的一束光射入光纤接头600中,光纤接头600接收来自光复用组件405的光,然后通过第一光纤2061传输至第一光纤适配器206。在本公开的某一些实施例中,在光复用组件405与光纤接头600之间还可以设置聚焦透镜406,通过聚焦透镜406汇聚光以便于后续耦合光。
如图9所示,本公开实施例提供的光发射组件400包括4个激光组件404,4个激光组件404发出4个不同波长的光,通过增加光路数量实现提升数据传输容量,光复用组件将4路平行光合并为1路光。
在本公开的某一些实施例中,如图9所示,激光组件404包括金属化陶瓷、激光芯片、准直透镜及半导体制冷器等,激光芯片设置在金属化陶瓷的表面,金属化陶瓷表面形成电路图案,可以为激光芯片供电;同时金属化陶瓷具有较佳的导热性能,可以作为激光芯片的热沉进行散热。激光以较好的单波长特性及较佳的波长调谐特性成为光模块乃至光纤传输的首选光源;其他类型的光如LED光等,常见的光通信系统一般不会采用,即使特殊的光通信系统中采用了这种光源,其光源的特性及芯片结构与激光存在较大的差别,使得采用激光的光模块与采用其他光源的光模块存在较大的技术差别,本领域技术人员一般不会认为这两种类型的光模块可以相互给与以技术启示。
图10为根据一些实施例的一种光发射组件的剖视图。如图10所示,激光组件404中激光器芯片发出的光分别经相应的准直透镜汇聚为平行光,经准直透镜汇聚的各路平行光传输至光复用组件405,光复用组件405将各路平行光合并为一路然后传输至聚焦透镜406,通过聚焦透镜406将合并后的光汇聚传输至光纤接头600。
如图10所示,光纤接头600包括管壳601、隔离器602及光纤插芯603。管壳601、隔离器602及光纤插芯603均为圆柱状结构,通孔106为圆柱形通孔。隔离器602及光纤插芯603分别设置在管壳601中,光纤插芯603与第一光纤2061连接。管壳601与腔体402的固定配合实现光纤接头600与腔体402的固定。管壳601用于固定隔离器602及光纤插芯603,并方便隔离器602及光纤插芯603的安装。隔离器602允许光单方向通过,反方向被阻拦, 用于防止反射光回到激光芯片中。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光模块,包括:
    电路板;
    光发射次模块,与所述电路板电连接,被配置为产生信号光;
    光接收次模块,与所述电路板电连接,被配置为接收来自光模块外部的信号光;
    第一光纤适配器,通过第一光纤光连接所述光发射次模块;
    第二光纤适配器,通过第二光纤光连接所述光接收次模块;
    其中,所述光接收次模块包括:
    光分路器件,设置在所述电路板上,所述光分路器件的输入端连接所述第二光纤;
    光接收芯片,设置在所述电路板的表面且位于所述光分路器件的输出反射面下方,与所述电路板电连接;
    第二支撑部件,连接所述光分路器件;
    第一汇聚透镜,连接所述第二支撑部件且位于所述光分路器件和所述光接收芯片的之间,被配置为将所述光分路器件输出的信号光汇聚传输至所述光接收芯片。
  2. 根据权利要求1所述的光模块,其中,所述光分路器件包括AWG,所述光接收次模块还包括第一支撑部件,所述第一支撑部件的底部连接所述电路板,所述第二支撑部件的顶部连接所述AWG。
  3. 根据权利要求1所述的光模块,其中,所述第二支撑部件上设置第一安装面、第二倾斜面和第二安装面,所述第一安装面位于所述第二安装面的一侧,所述第二倾斜面位所述第二安装面的另一侧,所述第二安装面连接所述光分路器件,所述第一安装面连接所述第一汇聚透镜。
  4. 根据权利要求1所述的光模块,其中,所述光接收次模块还包括跨阻放大器,所述跨阻放大器设置所述光接收芯片的一侧。
  5. 根据权利要求1所述的光模块,其中,所述第一光纤适配器包括主体和凸起,所述凸起设置在所述主体上,所述凸起上设置定位斜面,所述定位斜面用于所述第一光纤适配器定位装配连接所述光模块的下壳体。
  6. 根据权利要求1所述的光模块,其中,所述第一汇聚透镜包括透镜体和圆弧面,所述圆弧面设置在所述透镜体靠近所述光接收芯片的一侧,所述圆弧面在所述光接收芯片方向的投影覆盖相应的所述光接收芯片。
  7. 根据权利要求1所述的光模块,其中,所述电路板上设置安装孔,所述光发射次模块嵌设在所述安装孔内,所述光发射次模块包括:
    光发射次模块腔体,连接所述第一光纤;
    激光组件,设置在所述光发射次模块腔体内,被配置为产生光信号;
    光复用组件,设置在所述激光组件到所所述第一光纤的传输光路上。
  8. 根据权利要求7所述的光模块,其中,所述光模块还包括光纤接头,所述光纤接头嵌 设在所述光发射次模块腔体上,且一端连接所述第一光纤,另一端伸入所述光发射次模块腔体内。
  9. 根据权利要求8所述的光模块,其中,所述光纤接头包括管壳、隔离器和光纤插芯,所述隔离器和所述光纤插芯设置在所述管壳内,所述隔离器位于所述管壳靠近所述光发射次模块腔体内的一端,所述光纤插芯远离所述光发射次模块腔体内的一端连接所述第一光纤。
  10. 根据权利要求8所述的光模块,其中,所述光发射次模块还包括聚焦透镜,所述聚焦透镜位于所述光复用组件至所述光纤接头的光路上。
  11. 一种光模块,包括:
    电路板;
    光发射次模块,与所述电路板电连接,被配置为产生信号光;
    光接收次模块,与所述电路板电连接,被配置为接收来自光模块外部的信号光;
    第一光纤适配器,通过第一光纤光连接所述光发射次模块;
    第二光纤适配器,通过第二光纤光连接所述光接收次模块;
    其中,所述光接收次模块包括:
    光分路器件,设置在所述电路板上,输入端连接所述第二光纤;
    光接收芯片,设置在所述电路板的表面且位于所述光分路器件的输出反射面下方,与所述电路板电连接;
    第二支撑部件,设置在所述电路板的表面;
    第一汇聚透镜,连接所述第二支撑部件且位于所述光分路器件和所述光接收芯片的之间,被配置为将所述光分路器件输出的信号光汇聚传输至所述光接收芯片。
  12. 根据权利要求11所述的光模块,其中,所述光分路器件包括AWG,所述光接收次模块还包括第一支撑部件,所述第一支撑部件的底部连接所述电路板,所述第二支撑部件的顶部连接所述AWG。
  13. 根据权利要求11所述的光模块,其中,所述第二支撑部件上设置第一安装面和第一倾斜面,所述第一倾斜面位于所述第一安装面的下方,所述第一汇聚透镜连接所述第一安装面,所述第一倾斜面用于避让所述光接收芯片。
  14. 根据权利要求11所述的光模块,其中,所述光接收次模块还包括跨阻放大器,所述跨阻放大器设置所述光接收芯片的一侧。
  15. 根据权利要求11所述的光模块,其中,所述第一光纤适配器包括主体和凸起,所述凸起设置在所述主体上,所述凸起上设置定位斜面,所述定位斜面用于所述第一光纤适配器定位装配连接所述光模块的下壳体。
  16. 根据权利要求11所述的光模块,其中,所述第一汇聚透镜包括透镜体和圆弧面,所述圆弧面设置在所述透镜体靠近所述光接收芯片的一侧,所述圆弧面在所述光接收芯片方向的投影覆盖相应的所述光接收芯片。
  17. 根据权利要求11所述的光模块,其中,所述电路板上设置安装孔,所述光发射次模块嵌设在所述安装孔内,所述光发射次模块包括:
    光发射次模块腔体,连接所述第一光纤;
    激光组件,设置在所述光发射次模块腔体内,被配置为产生光信号;
    光复用组件,设置在所述激光组件到所所述第一光纤的传输光路上。
  18. 根据权利要求17所述的光模块,其中,所述光模块还包括光纤接头,所述光纤接头嵌设在所述光发射次模块腔体上,且一端连接所述第一光纤、另一端伸入所述光发射次模块腔体内。
  19. 根据权利要求18所述的光模块,其中,所述光纤接头包括管壳、隔离器和光纤插芯,所述隔离器和所述光纤插芯设置在所述管壳内,所述隔离器位于所述管壳靠近所述光发射次模块腔体内的一端,所述光纤插芯远离所述光发射次模块腔体内的一端连接所述第一光纤。
  20. 根据权利要求18所述的光模块,其中,所述光发射次模块还包括聚焦透镜,所述聚焦透镜位于所述光复用组件至所述光纤接头的光路上。
PCT/CN2022/075053 2021-03-25 2022-01-29 光模块 WO2022199255A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120615977.X 2021-03-25
CN202120615978.4 2021-03-25
CN202120615978.4U CN214278496U (zh) 2021-03-25 2021-03-25 一种光模块
CN202120615977.XU CN214278495U (zh) 2021-03-25 2021-03-25 一种光模块

Publications (1)

Publication Number Publication Date
WO2022199255A1 true WO2022199255A1 (zh) 2022-09-29

Family

ID=83396312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075053 WO2022199255A1 (zh) 2021-03-25 2022-01-29 光模块

Country Status (1)

Country Link
WO (1) WO2022199255A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183344A1 (en) * 2013-01-02 2014-07-03 Electronics And Telecommunications Research Institute Hybrid optical coupling module and manufacturing method thereof
US20170134099A1 (en) * 2015-11-10 2017-05-11 Sumitomo Electric Industries, Ltd. Optical receiver module that receives wavelength-multiplexed signal
CN109752802A (zh) * 2019-01-29 2019-05-14 武汉联特科技有限公司 多路波分复用光接收组件以及光模块
CN110954999A (zh) * 2019-12-27 2020-04-03 长飞光纤光缆股份有限公司 一种光收发器件
CN111458816A (zh) * 2020-05-22 2020-07-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN214278496U (zh) * 2021-03-25 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN214278495U (zh) * 2021-03-25 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183344A1 (en) * 2013-01-02 2014-07-03 Electronics And Telecommunications Research Institute Hybrid optical coupling module and manufacturing method thereof
US20170134099A1 (en) * 2015-11-10 2017-05-11 Sumitomo Electric Industries, Ltd. Optical receiver module that receives wavelength-multiplexed signal
CN109752802A (zh) * 2019-01-29 2019-05-14 武汉联特科技有限公司 多路波分复用光接收组件以及光模块
CN110954999A (zh) * 2019-12-27 2020-04-03 长飞光纤光缆股份有限公司 一种光收发器件
CN111458816A (zh) * 2020-05-22 2020-07-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN214278496U (zh) * 2021-03-25 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN214278495U (zh) * 2021-03-25 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN214278498U (zh) 一种光模块
CN214278497U (zh) 一种光模块
CN214278496U (zh) 一种光模块
CN214278495U (zh) 一种光模块
CN214380910U (zh) 一种光模块
CN111458816A (zh) 一种光模块
CN215181032U (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN218350561U (zh) 一种光模块
CN117693697A (zh) 光模块
CN215678864U (zh) 一种光模块
CN114624829B (zh) 一种光模块
WO2023109210A1 (zh) 光模块
CN218350566U (zh) 一种光模块
US11927817B2 (en) Optical module
WO2023035711A1 (zh) 光模块
WO2022199255A1 (zh) 光模块
WO2022127584A1 (zh) 一种光模块
CN113805290B (zh) 一种光模块
WO2022193734A1 (zh) 一种光模块
US20220099902A1 (en) Optical module
CN214704098U (zh) 一种光模块
CN212083739U (zh) 一种光模块
WO2022206169A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22773917

Country of ref document: EP

Kind code of ref document: A1