WO2021114714A1 - 一种光模块 - Google Patents
一种光模块 Download PDFInfo
- Publication number
- WO2021114714A1 WO2021114714A1 PCT/CN2020/110077 CN2020110077W WO2021114714A1 WO 2021114714 A1 WO2021114714 A1 WO 2021114714A1 CN 2020110077 W CN2020110077 W CN 2020110077W WO 2021114714 A1 WO2021114714 A1 WO 2021114714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- chip
- circuit board
- gold wire
- matching
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
- G02B6/428—Electrical aspects containing printed circuit boards [PCB]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4244—Mounting of the optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4245—Mounting of the opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
Definitions
- This application relates to the field of optical communication technology, and in particular to an optical module.
- the optical module is an important product in the optical communication industry. It realizes the mutual conversion between optical signals and telecommunications, provides optical signals transmitted in optical fibers, and provides electrical signals transmitted in electronic devices. There are a series of components for photoelectric conversion inside the optical module, the most important of which are lasers, detectors, drive chips, various capacitors, lens components, circuit boards, etc.
- the drive chips include laser drive chips and detector drive chips.
- the COB optical platform is often used in the processing of optical modules, that is, the driver chip is directly mounted on the circuit board, and the connection between the driver chip and the circuit board is realized by a gold wire.
- the lens assembly needs to be covered on the driving chip to collimate and converge the light, and an optical fiber plug is required to support the optical fiber in a proper position.
- the embodiment of the present application provides an optical module, which mainly includes: a circuit board with a signal circuit for providing signal electrical connection; a lens assembly located on one side of the circuit board; an optical fiber plug located on one side of the circuit board and connected with The lens assembly is connected for optical coupling; the optical chip is located between the circuit board and the optical fiber plug and is used to transmit or receive optical signals; the matching chip of the optical chip is electrically connected to the optical chip and is used to work together with the optical chip.
- the matching chip of the optical chip is located between the circuit board and the optical fiber plug; one end of the gold wire is connected to the upper surface of the matching chip of the optical chip, and the other end is connected to one side surface of the circuit board, which is used to realize the matching chip and the circuit of the optical chip.
- the first backing board is located on one side of the matching chip of the optical chip and is set on the circuit board;
- the second backing board is located on the other side of the matching chip of the optical chip and is set on the circuit On the board;
- the cover board which is connected across the first and second backing boards, is used to cover the matching chip of the gold wire and the optical chip, and isolate the matching chip and the gold wire of the optical chip from the bottom of the optical fiber plug respectively.
- Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
- Figure 2 is a schematic diagram of the optical network terminal structure
- FIG. 3 is a schematic diagram of the overall structure of an optical module provided by an embodiment of the application.
- FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the application.
- FIG. 5 is a schematic diagram of an exploded structure of an optical transceiver device provided by an embodiment of the application.
- FIG. 6 is a schematic diagram of the positions of two chips provided by an embodiment of the application.
- FIG. 7 is a schematic diagram of another exploded structure of the optical transceiver device provided by an embodiment of the application.
- FIG. 8 is a partial enlarged view of a circuit board provided by an embodiment of the application.
- FIG. 9 is a cross-sectional view of a circuit board provided by an embodiment of the application.
- Figure 10 is a partial enlarged view of part A in Figure 9;
- FIG. 11 is a partial cross-sectional view of an optical module provided by an embodiment of the application.
- FIG. 12 is a schematic structural diagram of a groove provided by an embodiment of the application.
- FIG. 13 is another cross-sectional view of the optical module provided by the embodiment of the application.
- Fig. 14 is a partial enlarged view of part C in Fig. 13.
- One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
- Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
- the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
- information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
- the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
- the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
- the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
- the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
- Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
- the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101 and the network cable 103.
- One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
- the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
- the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101; the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
- the optical module realizes the mutual conversion between optical signals and electrical signals, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network terminal 100 , The electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
- the optical module 200 is a tool for realizing the mutual conversion of photoelectric signals and does not have the function of processing data. In the foregoing photoelectric conversion process, the information only changes in the transmission carrier, and the information does not change.
- the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103.
- Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
- the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal serves as the optical The upper computer of the module monitors the work of the optical module.
- optical network terminals have certain information processing capabilities.
- the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
- Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
- the common optical module upper computer also has optical lines Terminal and so on.
- FIG 2 is a schematic diagram of the optical network terminal structure.
- the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
- the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
- the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
- FIG. 3 is a schematic diagram of the overall structure of an optical module provided by an embodiment of this application
- FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of this application.
- an optical module provided by an embodiment of the present application includes: an upper housing 201, a lower housing 202, an unlocking handle 203, a circuit board 300, an optical transceiver 400, and a first backing board 501 , The second backing plate 502 and the cover plate 503, wherein the upper housing 201 and the lower housing 202 form a packaging cavity with two openings (204, 205), the circuit board 300, the optical transceiver 400, the first backing plate 501, the second backing plate 502 and the cover plate 503 are all located in the package cavity.
- the outer contour of the wrapping cavity generally presents a square shape.
- the lower housing 202 includes a main board and two side plates located on both sides of the main board and perpendicular to the main board;
- the upper housing 201 includes a top plate, and the top plate covers the upper housing
- the two side panels of 201 form a wrapping cavity;
- the upper shell 201 may also include two side walls located on both sides of the top panel and perpendicular to the top panel. The two side walls are combined with the two side panels to achieve The upper housing 201 is covered on the lower housing 202.
- the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the golden finger of the circuit board 300 extends from the electrical port 204 The other opening is the optical port 205, which is used for fiber access to connect the optical transceiver 400 inside the optical module.
- the upper housing 201 and the lower housing 202 are combined to facilitate the installation of the circuit board 300, the optical transceiver device 400 and other components in the housing.
- the upper housing 201 and the lower housing 202 form the outermost layer of the optical module.
- Encapsulation and protection shell; the upper shell 201 and the lower shell 202 are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integrated structure, so that when assembling circuit boards and other components, positioning The components, heat dissipation and electromagnetic shielding structure cannot be installed, and it is not conducive to production automation.
- the circuit board 300 has a power supply circuit and a signal circuit for power supply and signal electrical connection.
- An optical port 205 is provided at one end of the circuit board 300, and the end where the circuit board 300 is located serves as the electrical port 204 of the optical module, and the optical port 205 and the electrical port 204 are opposite.
- the optical port 205 is used to receive the optical signal converted from the electrical signal from the circuit board 300, and to transmit the optical signal, which is converted to the electrical signal and sent to the circuit board 300.
- An optical port plug is provided at one end of the optical port 205, and the optical port plug is embedded and connected with the optical port 205, which is used for sealing when the optical module is not in use, so as to avoid prolonged exposure and dust pollution.
- the smooth plug can be made of rubber material, which is flexible and can play a good sealing effect.
- the unlocking handle 203 is located on the outer wall of the wrapping cavity/lower housing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
- the unlocking handle 203 has an engaging structure that matches the cage of the host computer; pulling the end of the unlocking handle can make the unlocking handle move relative to the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is locked by the engaging structure of the unlocking handle. Fixed in the cage of the host computer; by pulling the unlocking handle, the locking structure of the unlocking handle moves accordingly, and then the connection relationship between the locking structure and the host computer is changed, so as to release the optical module and the upper computer. The optical module is withdrawn from the cage of the host computer.
- the circuit board 300 is provided with circuit wiring, electronic components (such as capacitors, resistors, transistors, MOS tubes) and chips (such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP) and so on.
- electronic components such as capacitors, resistors, transistors, MOS tubes
- chips such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP
- the circuit board connects the electrical components in the optical module according to the circuit design through circuit traces to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
- the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage, specifically, metal pins/gold fingers are formed on the end surface of one side of the rigid circuit board for connection with the electrical connector; these are all The flexible circuit board is not easy to implement.
- Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver devices.
- the optical transceiver includes two parts: a light emitting part and a light receiving part, which are respectively used to realize the transmission of optical signals and the reception of optical signals.
- the light emitting part and the light receiving part can be combined together or independent of each other.
- the light emitting component and the light receiving component provided in the embodiments of the present application are combined to form an integrated optical transceiver structure.
- the existing optical modules are equipped with a series of components that can realize photoelectric conversion, the most important of which are lasers, laser drive chips, various capacitors, lens components and circuit boards, etc.
- the lasers and laser drive chips are covered under the lens components .
- the detector and the detector driving chip that realize the conversion of the optical signal into the electrical signal are placed near the laser and the laser driving chip, so that the detector and the detector driving chip are also located under the lens assembly.
- the optical transceiver device 400 In order to prevent the laser driver chip and the gold wire connecting the laser driver chip and the circuit board from being touched when assembling the optical module, interference phenomenon will affect the optical performance of the optical module, the optical transceiver device 400 provided in this embodiment needs to drive the laser Chip and gold wire are protected.
- FIG. 5 is a schematic diagram of an exploded structure of an optical transceiver device provided by an embodiment of this application
- FIG. 6 is a schematic diagram of the positions of two chips provided by an embodiment of this application
- FIG. 7 is another exploded structure of an optical transceiver device provided by an embodiment of this application Schematic.
- the optical transceiver device 400 provided by the embodiment of the present application includes a lens assembly 401, an optical fiber plug 402, an optical chip, a matching chip of the optical chip, and gold wires (407, 408).
- the optical chip is located between the circuit board 300 and the optical fiber plug 402, and is used to transmit or receive optical signals; the matching chip of the optical chip is electrically connected to the optical chip, and is used to work with the optical chip, and the matching chip of the optical chip is located in the circuit Between the board 300 and the optical fiber plug 402.
- the optical chip may include a detector 404 and a laser 406, and the matching chip of the optical chip and the optical chip work together. If the optical chip is the detector 404, the matching chip of the optical chip is the detector driving chip 403 at this time; if the optical chip is the laser 406, the matching chip of the optical chip is the laser driving chip 405 at this time.
- the lens assembly 401 needs to be arranged above the laser driving chip 405 to collimate and converge the light.
- an optical fiber plug 402 is needed to support the optical fiber in a proper position.
- the lens assembly 401 and the optical fiber plug 402 are both located on one side of the circuit board 300, and the optical fiber plug 402 is connected to the lens assembly 401 for optical coupling.
- the optical fiber plug 402 is used to install an optical fiber, and the optical fiber is optically coupled with the lens assembly 401 to realize efficient transmission of optical signals.
- the other end of the lens assembly 401 is used to receive the optical signal emitted from the laser 406, and propagate into the optical fiber in the optical fiber plug 402 after being converged.
- the laser 406 is located between the circuit board 300 and the optical fiber plug 402 and is attached to the circuit board 300.
- the laser 406 and the lens assembly 401 are located on the same side of the circuit board 300.
- the laser 406 is electrically connected to the laser drive chip 405 through a gold wire.
- the laser drive chip 405 is used to drive the laser 406 to emit light signals.
- the laser drive chip 405 is also located between the circuit board 300 and the optical fiber plug 402 and is attached to the circuit board.
- the detector 404 and the detector driving chip 403 are located between the circuit board 300 and the lens assembly 401 and attached to the circuit board 300.
- the detector 404 is electrically connected to the detector driving chip 403 through a gold wire.
- the detector driving chip 403 is used to drive the detector 404 to receive the optical signal from the optical fiber, and then perform subsequent photoelectric conversion.
- FIG. 8 is a partial enlarged view of a circuit board provided by an embodiment of the application.
- the detector driving chip 403 and the laser driving chip 405 are placed opposite to each other, that is, the positions of the detector 404 and the laser 406 are close.
- the matching chip of the optical chip is connected to the circuit board 300 through a gold wire.
- One end of the gold wire is connected to the upper surface of the matching chip of the optical chip, and the other end is connected to one side surface of the circuit board to realize the matching chip of the optical chip. Electrical connection with the signal circuit of the circuit board. That is, the detector driving chip 403 and the laser driving chip 405 are both connected to the circuit board 300 through gold wires (407, 408).
- the laser driving chip 405 is connected to the circuit board 300 through a gold wire 407, that is, one end of the gold wire 407 is connected to the laser
- the driving chip 405 is connected, and the other end is connected to one side surface of the circuit board 300 to realize electrical connection between the laser driving chip 405 and the signal circuit of the circuit board 300.
- the detector driving chip 403 is connected to the circuit board 300 through a gold wire 408, that is, one end of the gold wire 408 is connected to the detector driving chip 403, and the other end is connected to the upper surface of the circuit board 300, which is used to realize the detector driving chip 403 and the circuit board. 300 electrical connection of the signal circuit.
- the gold wire When the gold wire is connected to the circuit board 300, it is connected to the upper surface of the circuit board 300, so that the gold wire will generate a curvature during the connection, which is higher than a side surface of the circuit board 300.
- the detector 404 and the detector driving chip 403 are located below the lens assembly 401, due to the structural characteristics of the lens assembly 401, a large gap is formed between the lens assembly 401 and the circuit board 300.
- the height of is higher than the distance between the gold wire and the circuit board 300. Therefore, the lens assembly 401 can protect the detector driving chip 403 and the corresponding gold wire 408 from being touched.
- the gap between the optical fiber plug 402 and the circuit board 300 is small, so that the gold wire 407 corresponding to the laser driving chip 405 is easily touched by the optical fiber plug 402.
- the gold wire is bent, which easily affects the transmission of photoelectric signals, resulting in the optical module The optical performance becomes worse.
- the embodiment of the present application A protective cover is provided between the optical fiber plug 402 and the circuit board 300, which is prone to touch the gold wire 407, and the laser driving chip 405 and the corresponding gold wire 407 are protected by the protective cover to realize the laser driving chip 405 and the gold wire 407 is separately isolated from the bottom of the optical fiber plug 402 to prevent the gold wire 407 from being overwhelmed.
- FIG. 9 is a cross-sectional view of a circuit board provided by an embodiment of the application
- FIG. 10 is a partial enlarged view of part A in FIG. 9
- FIG. 11 is a partial cross-sectional view of an optical module provided by an embodiment of the application.
- the protective cover includes a first backing plate 501, a second backing plate 502 and a cover plate 503.
- the first pad 501 is located on one side of the matching chip of the optical chip and is arranged on the circuit board 300; the second pad 502 is located on the other side of the matching chip of the optical chip and is arranged on the circuit board 300; the cover plate 503 A protective cover is formed across the first pad 501 and the second pad 502 to cover the gold wire 407 and the matching chip of the optical chip, and isolate the matching chip and gold wire of the optical chip from the bottom of the optical fiber plug 402 respectively.
- the first pad 501 and the second pad 502 are both attached to the upper surface of the circuit board 300, and are respectively located on opposite sides of the laser driving chip 405, that is, the first pad 501 is located on a side of the laser driving chip 405.
- the second backing board 502 is located on the other side of the laser driving chip 405.
- the second backing board 502 and the first backing board 501 can be arranged parallel to each other.
- the first pad 501 and the second pad 502 are located below the optical fiber plug 402.
- the first pad 501 and the second pad 502 are narrow and long pads with a certain height, and the material can be glass or ceramic. Since one end of the laser driving chip 405 is opposite to the detector driving chip 403, in order to avoid interference with the detector driving chip 403, the first pad 501 and the second pad 502 are arranged in the undetected area of the laser driving chip 405. The two opposite sides of the driver chip 403.
- the cover plate 503 is covered on the first pad 501 and the second pad 502. One end of the cover plate 503 is placed on the first backing plate 501, and the other end of the cover plate 503 is placed on the second backing plate 502, so that the cover plate 503 and the first backing plate and the second backing plate form a protective cover with a cavity ,
- the protective cover is used to separate the laser drive chip and the gold wire from the bottom of the optical fiber plug.
- the first backing plate 501 and the second backing plate 502 are used as support columns, and the cover plate 503 is used as a protective cover, so that the formed protective cover has a concave structure.
- the concave protective cover is combined with the circuit board 300 to wrap the laser drive chip 405 and the corresponding gold wire 407.
- the optical fiber plug 402 is installed on the lens assembly 401, there is a protective cover to prevent the optical fiber plug 402 from being damaged.
- the bottom part touches the laser driving chip 405 and its corresponding gold wire 407.
- the two After a certain gap is reserved between the leftmost end of the backing plate and the rightmost end of the lens assembly 401, it is then attached to the circuit board 300. That is, at a vertical angle, there is a certain distance between the rightmost projection of the lens assembly 401 and the leftmost projection of the two pads.
- the detector 404 and the detector drive chip 403 are located below the lens assembly 401, and the distance between the lens assembly 401 and the circuit board 300 is relatively large, so that the bottom of the lens assembly 401 will not touch the connecting detector. 404 and the gold wire of the detector driver chip 403.
- the laser 406 and the laser driving chip 405 are located under the optical fiber plug 402, and the bottom surface of the optical fiber plug 402 is close to the circuit board 300.
- a protective cover (first backing plate 501, second backing plate 502, and cover 503) is added between the optical fiber plug 402 and the circuit board 300, and the gold wire 407 and the laser driving chip 405 are connected to the optical fiber by the protective cover.
- the bottom surface of the plug 402 is separated to avoid being touched.
- the upper surfaces of the first pad 501 and the second pad 502 are respectively higher than the upper surface of the gold wire 407.
- the gold wire 407 connects the laser driving chip 405 and the upper surface of the circuit board 300, the gold wire 407 has an arc structure, and the highest point of the arc structure is higher than one side surface of the circuit board 300.
- the cover plate 503 needs to be The height of the lower surface of the gold wire 407 is higher than the height corresponding to the highest point of the gold wire 407, so that the upper surfaces of the first pad 501 and the second pad 502 are higher than the upper surface corresponding to the highest point of the gold wire 407.
- the height of the highest point of the gold wire 407 above the surface of the circuit board 300 is about 50 ⁇ m, the height between the upper surfaces of the two pads and the surface of the circuit board 300 is greater than 50 ⁇ m.
- the gold wire 407 When the gold wire 407 connects the laser driver chip 405 and one side surface of the circuit board 300, the gold wire 407 will extend to the circuit board 300 for a certain distance, so that the area to be protected is the area occupied by the laser driver chip 405 and the gold wire 407 The sum of the area enclosed by the farthest distance that can be reached.
- the first backing board 501 and the second backing board 502 are set, neither of the two backing boards can touch the ends of the laser driving chip 405 and the gold wire 407, and the first backing board 501 and the second backing board 502
- the distance between the opposing surfaces is greater than the sum of the width of the matching chip of the optical chip and the length of the gold wire extending to the circuit board 300, that is, the distance between the opposing surfaces of the first pad 501 and the second pad 502 is greater than that of the laser
- the distance between the opposite surfaces of the first pad 501 and the second pad 502 is the shortest distance between the two pads.
- the opposite ends of the cover plate 503 are placed on two backing plates respectively. Therefore, in order to ensure the stability of the protection cover, the distance between the opposite ends of the cover plate 503 should be greater than the distance between the two backing plates. The shortest distance between. In order to ensure that the cover plate 503 can cover the largest area formed by the laser driving chip 405 and the gold wire 407, the length of the cover plate 503 needs to be greater than the length of the matching chip of the optical chip and the distance from the gold wire to the length of the circuit board 300.
- the width of the cover plate 503 is greater than the sum of the width of the matching chip of the optical chip and the length of the gold wire extending to the circuit board 300, that is, the length of the cover plate 503 is required to be greater than the length of the laser driving chip 405 and the gold wire 407 extension
- the sum of the distance to the length of the circuit board 300, the width of the cover plate 503 is greater than the sum of the width of the laser driving chip 405 and the length of the gold wire 407 extending to the circuit board 300.
- the coverage area of the cover plate 503 is larger than the maximum area formed by the laser driving chip 405 and the gold wire 407.
- a reserved space ⁇ is required between the upper surface of the cover plate 503 and the lower surface of the optical fiber plug 402, and the reserved space is used to prevent the cover plate 503 Interference with the optical fiber plug 402 occurs.
- the thickness of the backing plate is h1
- the thickness of the cover plate 503 is h2
- the reserved gap ⁇ between the upper surface of the cover plate 503 and the lower surface of the optical fiber plug 402 can be 0.01 mm to 0.1 mm. In an embodiment of the present application 0.2 mm, then the distance between the lower surface of the optical fiber plug 402 and the upper surface of the circuit board 300 is h1+h2+ ⁇ .
- cover plate 503 There is a reserved gap between the cover plate 503 and the optical fiber plug 402 to ensure that the two will not interfere with each other, and the cover plate 503 can also be used as a guide in the vertical direction during the process of assembling the optical fiber plug 402 to the lens assembly 401.
- the thickness h1 of the backing plate is 0.1mm to 0.2mm in an embodiment of this application, and is 0.1mm in an embodiment of this application; the thickness h2 of the cover plate 503 is in an embodiment of this application
- the middle is 0.1mm-0.3mm, and in an embodiment of the present application, it is 0.1mm.
- the specific thickness may be determined according to actual application conditions, and this embodiment does not specifically limit it.
- the laser 406, the laser driving chip 405, the detector 404, and the detector driving chip 403 are all attached to the surface of the circuit board 300, so that the first backing plate 501, the second backing plate 502, and the cover plate 503
- the formed protective cover forms a protective space with the upper surface of the circuit board 300 to protect the laser driving chip 405 and the corresponding gold wire 407 to prevent the bottom of the optical fiber plug 402 from touching the laser driving chip 405 and the corresponding gold wire 407.
- the optical module provided in this embodiment can dig a groove on the circuit board 300, and place the optical chip and the matching chip of the optical chip in the groove, that is, the laser 406, the laser driving chip 405, and the detection Both the detector 404 and the detector drive chip 403 are placed in the groove to increase the distance between the laser 406, the laser drive chip 405 and the corresponding gold wire 407 and the optical fiber plug 402, and to increase the detector 404 and the detector drive
- the distance between the chip 403 and the corresponding gold wire 408 and the lens assembly 401 prevents the laser driving chip 405 and the corresponding gold wire 407, the detector driving chip 403 and the corresponding gold wire 408 from being touched.
- the groove includes a first fixed groove 601 and a second fixed groove 602.
- the first fixed groove 601 is used to place the laser 406 and the laser driving chip 405, and the second fixed groove 602 is used to place the detector 404 and the detector drive.
- the shape of the groove can be adapted to the placement of the laser driving chip 405 and the detector driving chip 403. If the two are placed in alignment, the cross-sectional shape of the groove can be rectangular; if the two are staggered When placed, the cross-sectional shape of the groove can be lightning-shaped.
- FIG. 12 is a schematic structural diagram of a groove provided by an embodiment of the application. Refer to FIG. 12, which is specifically a partial enlarged view of part B in FIG. 5.
- the groove is formed by recessing one side surface of the circuit board, and the first fixing groove 601 and the second fixing groove 602 are both formed on one side of the circuit board. The surface is recessed downward. Since the laser 406 and the laser driving chip 405 are placed in the first fixing groove 601, the first pad 501 and the second pad 502 are arranged on opposite sides of the first fixing groove 601, and the gold wire 407 is wired in On the side of the first fixing groove 601.
- the first backing plate 501 and the second backing plate 502 can also be arranged in the first fixing groove 601.
- the first fixing recesses of the first backing plate 501 and the second backing plate 502 need to be provided.
- the two sides of the groove 601 are not connected with the gold wire 407.
- the height of the first pad 501 and the second pad 502 is higher than the surface of the circuit board 300, and higher than the gold wire 407 wire connection. The height of the highest point formed prevents the lower surface of the cover plate 503 from touching the gold wire 407 when the cover plate 503 is overlapped.
- the first backing board 501 and the second backing board 502 are attached to the surface of the circuit board 300, and other related setting requirements are the same as those of the foregoing embodiment, and will not be repeated here.
- FIG. 13 is another cross-sectional view of the optical module provided by an embodiment of the application;
- FIG. 14 is a partial enlarged view of part C in FIG. 13. 13 and 14, when protecting the laser 406 and the laser driving chip 405 attached to the bottom of the first fixing groove 601 of the circuit board 300, the first backing board 501 and the second backing board 502 are arranged on the Near the edge of a fixing groove 601, the premise is that it does not touch the far end of the gold wire 407 that extends to the surface of the circuit board 300.
- the bottom area of the first fixing groove 601 is made larger than the maximum area formed by the laser 406 and the laser driving chip 405.
- the depth h4 of the first fixing groove 601 is greater than the thickness h3 of the laser driving chip 405.
- the width is greater than the width of the laser driving chip 405.
- the depth h4 of the first fixing groove 601 may be 0.2 mm to 0.3 mm
- the thickness h3 of the laser driving chip 405 may be 0.15 mm to 0.2 mm.
- the laser driving chip 405 and the laser 406 are arranged in this embodiment, since the laser driving chip 405 and the laser 406 are located below the surface of one side of the circuit board 300, the first backing board 501 and the second backing board 501 are arranged below the surface of the circuit board 300. After the backing plate 502 and the cover plate 503, the distance between the lower surface of the cover plate 503 and the laser drive chip 405 is relatively large, which can prevent the cover plate 503 from touching the laser drive chip 405.
- One end of the gold wire 407 is connected to the laser driving chip 405, and the other end is connected to one side surface of the circuit board 300, so that the gold wire 407 has an arc structure, and the highest point of the arc structure is higher than the upper surface of the circuit board 300, that is, the gold wire
- the highest point of 407 is higher than the upper surface of the laser driving chip 405. Therefore, in order to prevent the cover plate 503 from touching the gold wire 407, the cover plate 503 is set according to the requirement that the lower surface is higher than the highest point of the gold wire 407.
- an optical module provided by an embodiment of the present application includes a circuit board 300, and a lens assembly 401 and an optical fiber plug 402 that are located on one side of the circuit board 300 and are coupled to each other.
- the optical chip and the matching chip of the optical chip are electrically connected under the optical fiber plug 402. Both the optical chip and the matching chip of the optical chip are attached to one side surface of the circuit board 300.
- the upper surface of the matching chip of the optical chip and the circuit board 300 One side surface is connected by a gold wire 407.
- the circuit board 300 is provided with a first backing board 501 and a second backing board 502 located on opposite sides of the matching chip of the optical chip respectively.
- the first backing board 501 and the second backing board 502 are bridged with a cover board 503, and the cover board 503 is used to cover the gold wire 407 and the matching chip of the optical chip to isolate the matching chip and gold wire of the optical chip from the bottom of the optical fiber plug 402 respectively.
- the optical module provided in the present application can use the first backing plate 501, the second backing plate 502, and the cover plate 503 to protect the matching chip of the optical chip and the gold wire 407, so as to avoid the optical fiber plug 402 being assembled when the optical fiber plug 402 is assembled.
- the bottom surface of the optical chip touches the matching chip of the optical chip and the gold wire 407 to avoid interference phenomenon that affects the optical performance of the optical module.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
一种光模块,属于光纤通信领域。光模块(200)包括电路板(300)以及位于电路板(300)一侧且耦合连接的透镜组件(401)和光纤插头(402)。光纤插头(402)的下方设有贴合在电路板(300)的光芯片(406)和光芯片的匹配芯片(405),光芯片的匹配芯片(405)的上表面和电路板(300)的一侧表面通过金线(407)连接。电路板(300)上设有位于光芯片的匹配芯片(405)相对两侧的第一垫板(501)和第二垫板(502),第一垫板(501)和第二垫板(502)上跨接有盖板(503),盖板(503)用于覆盖金线(407)和光芯片的匹配芯片(405),以将光芯片的匹配芯片(405)和金线(407)分别与光纤插头(402)的底部隔离。该光模块利用第一垫板(501)、第二垫板(502)和盖板(503)将光芯片的匹配芯片(405)和金线(407)保护起来,避免在组装光纤插头(402)时,光纤插头(402)的下表面触碰光芯片的匹配芯片(405)和金线(407),避免出现干涉现象影响光模块的光学性能。
Description
本申请要求在2019年12月13日提交中国专利局、申请号为201911280527.3、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光通信技术领域,尤其涉及一种光模块。
光模块是光通信产业中的重要产品,其实现光信号与电信之间的相互转换,提供在光纤中传输的光信号,提供在电子设备中传输的电信号。光模块内部有光电转换的一系列元件,其中最为重要的是激光器、探测器、驱动芯片、各种电容、透镜组件、电路板等,驱动芯片包括激光器驱动芯片和探测器驱动芯片。
在光模块的加工中常采用的是COB光学平台,即将驱动芯片直接贴装在电路板上,由金线实现驱动芯片与电路板的连接。为了将光耦合到光纤,需要将透镜组件覆盖在驱动芯片上,进行光的准直和汇聚,同时需要光纤插头来支撑光纤在合适的位置。
发明内容
本申请实施例提供一种光模块,其主要包括:电路板,具有信号电路,用于提供信号电连接;透镜组件,位于电路板的一侧;光纤插头,位于电路板的一侧,且与透镜组件连接,进行光耦合;光芯片,位于电路板和光纤插头之间,用于发射光信号或接收光信号;光芯片的匹配芯片,与光芯片电连接,用于与光芯片协同工作,光芯片的匹配芯片位于电路板和光纤插头之间;金线,一端与光芯片的匹配芯片的上表面连接,另一端与电路板的一侧表面连接,用于实现光芯片的匹配芯片与电路板的信号电路的电连接;第一垫板,位于光芯片的匹配芯片的一侧,且设置在电路板上;第二垫板,位于光芯片的匹配芯片的另一侧,且设置在电路板上;盖板,跨接在第一垫板和第二垫板上,用于覆盖金线和光芯片的匹配芯片,将光芯片的匹配芯片和金线分别与光纤插头的底部隔离。
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为本申请实施例提供的光模块的整体结构示意图;
图4为本申请实施例提供的光模块的分解结构示意图;
图5为本申请实施例提供的光收发器件的分解结构示意图;
图6为本申请实施例提供的两个芯片的位置示意图;
图7为本申请实施例提供的光收发器件的另一分解结构示意图;
图8为本申请实施例提供的电路板的局部放大图;
图9为本申请实施例提供的电路板的截面图;
图10为图9中A部分的局部放大图;
图11为本申请实施例提供的光模块的局部剖视图;
图12为本申请实施例提供的凹槽的结构示意图;
图13为本申请实施例提供的光模块的另一截面图;
图14为图13中C部分的局部放大图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接。
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息仅发生传输载体的变化,信息并未发生变化。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,具体地,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。与光模块不同,光网络终端具有一定的信息处理能力。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本申请实施例提供的光模块的整体结构示意图;图4为本申请实施例提供的光模块的分解结构示意图。
参见图3和图4,本申请实施例提供的一种光模块,包括:包括:上壳体201、下壳体202、解锁手柄203、电路板300、光收发器件400、第一垫板501、第二垫板502和盖板503,其中,上壳体201与下壳体202形成具有两个开口(204、205)的包裹腔体,电路板300、光收发器件400、第一垫板501、第二垫板502和盖板503均位于包裹腔体内。
包裹腔体的外轮廓一般呈现方形体,具体地,下壳体202包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体201包括顶板,顶板盖合在上壳体201的两个侧板上,以形成包裹腔体;上壳体201还可以包括位于顶板两侧、与顶板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板300的金手指从电口204伸出,插入光网络单元等上位机中;另一个开口为光口205,用于光纤接入以连接光模块内部的光收发器件400。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发器件400等器件安装到壳体中,由上壳体201、下壳体202形成光模块最外层的封装保护壳体;上壳体201及下壳体202一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体结构,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构 无法安装,也不利于生产自动化。
电路板300具有供电电路及信号电路,用于供电及信号电连接。电路板300的一端设置有光口205,电路板300所在的一端作为光模块的电口204,光口205和电口204相对。光口205用于接收来自电路板300的电信号经过转换而成的光信号,以及,发射光信号,经过转换而成电信号发送至电路板300。光口205的一端设有光口塞,光口塞与光口205嵌入连接,用于在光模块不使用时,起到密封作用,避免长时间暴露而受到粉尘污染。光口塞可采用橡胶材质,具有柔性,能够起到很好的密封效果。
解锁手柄203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁手柄203具有与上位机笼子匹配的卡合结构;拉动解锁手柄的末端可以在使解锁手柄在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁手柄的卡合结构将光模块固定在上位机的笼子里;通过拉动解锁手柄,解锁手柄的卡合结构随之移动,进而改变卡合结构与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,具体地,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
光收发器件包括光发射部件及光接收部件两部分,分别用于实现光信号的发射与光信号的接收。光发射部件及光接收部件可以结合在一起,也可以相互独立。本申请实施例提供的光发射部件及光接收部件结合在一起,形成光收发一体结构。
已有的光模块中设有可实现光电转换的一系列元件,其中最为重要的是激光器、激光器驱动芯片、各种电容、透镜组件和电路板等,激光器和激光器驱动芯片在透镜组件下面覆盖着。为减小光模块的体积,将实现光信号转换为电信号的探测器和探测器驱动芯片放置在靠近激光器和激光器驱动芯片的附近,使得探测器和探测器驱动芯片也位于透镜组件的下方。
为避免组装光模块时,激光器驱动芯片和实现激光器驱动芯片与电路板连接的金线被触碰到,出现干涉现象影响光模块的光学性能,本实施例提供的光收发器件400需对激光器驱动芯片和金线进行保护。
图5为本申请实施例提供的光收发器件的分解结构示意图;图6为本申请实施例提供的两个芯片的位置示意图;图7为本申请实施例提供的光收发器件的另一分解结构示意图。
具体地,参见图5、图6和图7,本申请实施例提供的光收发器件400包括透镜组件401、光纤插头402、光芯片、光芯片的匹配芯片和金线(407、408)。光芯片,位于电路板300和光纤插头402之间,用于发射光信号或接收光信号;光芯片的匹配芯片与光芯片电连接,用于与光芯片协同工作,光芯片的匹配芯片位于电路板300和光纤插头402之间。其中,光芯片可包括探测器404和激光器406,光芯片的匹配芯片与光芯片协同工作。如果光芯片为探测器404时,此时光芯片的匹配芯片为探测器驱动芯片403;如果光芯片为激光器406时,此时光芯片的匹配芯片为激光器驱动芯片405。
为了实现光耦合,需要将透镜组件401设置在激光器驱动芯片405的上方,进行光的准直和会聚,同时,需要光纤插头402来支撑光纤在合适的位置。为此,透镜组件401和光纤插头402均位于电路板300的一侧,且光纤插头402与透镜组件401连接,进行光耦合。光纤插头402用于安装光纤,光纤与透镜组件401进行光耦合,实现光信号的高效传输。透镜组件401的另一端用于接收来自激光器406发出的光信号,经过会聚后传播进光纤插头402中的光纤内。
激光器406位于电路板300和光纤插头402之间,且贴合在电路板300上,激光器406与透镜组件401位于电路板300的同一侧。激光器406通过金线与激光器驱动芯片405电连接,激光器驱动芯片405用于驱动激光器406发射光信号,激光器驱动芯片405也位于电路板300和光纤插头402之间,且贴合在电路板上。
探测器404和探测器驱动芯片403位于电路板300和透镜组件401之间,且贴合在电路板300上。探测器404通过金线与探测器驱动芯片403电连接,探测器驱动芯片403用于驱动探测器404接收来自光纤的光信号,进而进行后序的光电转换。
图8为本申请实施例提供的电路板的局部放大图。参见图8,本实施例中,探测器驱动芯片403和激光器驱动芯片405对头摆放,即探测器404和激光器406的设置位置接近。光芯片的匹配芯片通过金线与电路板300打线连接,金线的一端与光芯片的匹配芯片的上表面连接,另一端与电路板的一侧表面连接,用于实现光芯片的匹配芯片与电路板的信号电路的电连接。即探测器驱动芯片403和激光器驱动芯片405均通过金线(407、408)与电路板300连接,具体地,激光器驱动芯片405通过金线407连接于电路板300,即金线407的一端与激光器驱动芯片405连接,另一端与电路板300的一侧表面连接,用于实现激光器驱动芯片405与电路板300的信号电路的电连接。探测器驱动芯片403通过金线408连接于电路板300,即金线408的一端与探测器驱动芯片403连接,另一端与电路板300的上表面连接,用于实现探测器驱动芯片403与电路板300的信号电路的电连接。
由于金线在与电路板300连接时,是与电路板300的上表面连接,使得金线在连接时会产生弧度,该弧度高于电路板300的一侧表面。在组装光模块时,由于探测器404和探测器驱动芯片403位于透镜组件401的下方,鉴于透镜组件401的结构特点,使得透镜组件401与电路板300之间会产生较大的缝隙,该缝隙的高度高于金线与电路板300之间的距离,因此,透镜组件401可保护到探测器驱动芯片403和对应的金线408,不会被触碰 到。
而光纤插头402与电路板300之间的缝隙较小,使得激光器驱动芯片405对应的金线407易被光纤插头402碰到,金线被压弯,极易影响光电信号的传输,导致光模块的光学性能变差。为此,为防止在组装光模块时,连接于激光器驱动芯片405与电路板300的金线407,以及,连接于激光器406与激光器驱动芯片405的金线407被触碰到,本申请实施例,在极易出现触碰金线407现象的光纤插头402和电路板300之间设置保护罩,利用保护罩将激光器驱动芯片405和对应的金线407保护起来,实现激光器驱动芯片405和金线407分别与光纤插头402的底部隔离,避免金线407被压倒。
图9为本申请实施例提供的电路板的截面图;图10为图9中A部分的局部放大图;图11为本申请实施例提供的光模块的局部剖视图。参见图9、图10和图11,具体地,保护罩包括第一垫板501、第二垫板502和盖板503。第一垫板501位于光芯片的匹配芯片的一侧,且设置在电路板300上;第二垫板502位于光芯片的匹配芯片的另一侧,且设置在电路板300上;盖板503跨接在第一垫板501和第二垫板502上形成保护罩,用于覆盖金线407和光芯片的匹配芯片,将光芯片的匹配芯片和金线分别与光纤插头402的底部隔离。
具体地,第一垫板501和第二垫板502均贴合在电路板300的上表面,且分别位于激光器驱动芯片405的相对两侧,即第一垫板501位于激光器驱动芯片405的一侧,第二垫板502位于激光器驱动芯片405的另一侧,为尽量减小占用空间,第二垫板502与第一垫板501可相互平行设置。
第一垫板501和第二垫板502位于光纤插头402的下方,第一垫板501和第二垫板502是窄长型且具有一定高度的垫板,材质可以是玻璃或者陶瓷。由于激光器驱动芯片405的一端与探测器驱动芯片403相对,因此,为避免与探测器驱动芯片403产生干扰,将第一垫板501和第二垫板502设置在激光器驱动芯片405的未与探测器驱动芯片403相对的两侧。
为避免光纤插头402的底部与激光器驱动芯片405接触且压倒金线407,本实施例中,将盖板503覆盖在第一垫板501和第二垫板502上。盖板503的一端搭在第一垫板501上,盖板503的另一端搭在第二垫板502上,使得盖板503与第一垫板和第二垫板形成具有空腔的保护罩,保护罩用于将激光器驱动芯片和金线分别与光纤插头的底部隔离。两个垫板贴合在电路板300上时可采用胶水固定的方式,盖板503固定在两个垫板上时也可采用胶水固定的方式。
第一垫板501和第二垫板502作为支撑柱,盖板503作为保护盖,使得形成的保护罩为凹型结构。凹型的保护罩与电路板300相结合,可将激光器驱动芯片405及对应的金线407包裹住,在将光纤插头402安装到透镜组件401上时,有保护罩的存在,避免光纤插头402的底部与激光器驱动芯片405及其对应的金线407触碰到。
在安装时,避免第一垫板501、第二垫板502和盖板503对透镜组件401产生影响,本实施例中,在安装第一垫板501和第二垫板502时,将两个垫板的最左端与透镜组件401的最右端预留一定缝隙之后,再贴合在电路板300上。也就是说,在垂直角度,透镜组件 401的最右端投影与两个垫板的最左端投影之间存在一定距离。
如图11所示,探测器404和探测器驱动芯片403位于透镜组件401的下方,透镜组件401与电路板300之间的距离较大,使得透镜组件401的底部不会触碰到连接探测器404和探测器驱动芯片403的金线。而激光器406和激光器驱动芯片405位于光纤插头402的下方,光纤插头402的底面与电路板300的距离较近,为避免安装光纤插头402时,光纤插头402的底面触碰到金线407和激光器驱动芯片405,在光纤插头402和电路板300之间增设保护罩(第一垫板501、第二垫板502和盖板503),由保护罩将金线407和激光器驱动芯片405分别与光纤插头402的底面分离,避免被触碰到。
为避免盖板503触碰到金线407,本实施例中,第一垫板501和第二垫板502的上表面分别高于金线407的上表面。金线407在连接激光器驱动芯片405和电路板300的上表面时,金线407呈弧状结构,且该弧状结构的最高点高于电路板300的一侧表面。因此,为避免在利用盖板503、第一垫板501和第二垫板502保护金线407和激光器驱动芯片405时,盖板503的下表面触碰到金线407,需要使盖板503的下表面高度高于金线407的最高点对应的高度,进而使得第一垫板501和第二垫板502的上表面高于金线407的最高点对应的上表面。本实施例中,由于金线407的最高点高于电路板300一侧表面的高度约为50μm左右,因此两个垫板的上表面距离电路板300的一侧表面的高度要大于50μm。
金线407在连接激光器驱动芯片405和电路板300的一侧表面时,金线407会延伸至电路板300一段距离,使得需要保护的区域范围为激光器驱动芯片405的所占区域和金线407所能达到的最远距离所围成的区域之和。因此,在设置第一垫板501与第二垫板502时,两个垫板均不能触碰到激光器驱动芯片405和金线407的端部,第一垫板501与第二垫板502的相对面之间的距离大于光芯片的匹配芯片的宽度和金线延伸至电路板300的长度的距离之和,即第一垫板501与第二垫板502的相对面之间的距离大于激光器驱动芯片405的宽度和金线407延伸至电路板300的长度的距离之和。第一垫板501与第二垫板502的相对面之间的距离为两个垫板之间的最短距离。
在形成保护罩时,盖板503的相对两端分别搭在两个垫板上,因此,为保证保护罩的稳定性,盖板503的相对两端之间的距离要大于两个垫板之间的最短距离。而为保证盖板503能够将激光器驱动芯片405和金线407所形成的最大区域覆盖住,需要盖板503的长度大于光芯片的匹配芯片的长度和金线延伸至电路板300的长度的距离之和,盖板503的宽度大于光芯片的匹配芯片的宽度和金线延伸至电路板300的长度的距离之和,即需要盖板503的长度大于激光器驱动芯片405的长度和金线407延伸至电路板300的长度的距离之和,盖板503的宽度大于激光器驱动芯片405的宽度和金线407延伸至电路板300的长度的距离之和。也就是说,盖板503的覆盖面积要大于激光器驱动芯片405和金线407所形成的最大区域面积。
为避免在组装光模块时,盖板503与光纤插头402产生干涉,需要盖板503的上表面与光纤插头402的下表面之间设有预留空隙θ,预留空隙用于防止盖板503和光纤插头402产生干扰。垫板的厚度为h1,盖板503的厚度为h2,盖板503的上表面与光纤插头402的下表面之间的预留空隙θ可为0.01mm至0.1mm,本申请某一实施例中0.2mm,那么使 得光纤插头402的下表面与电路板300的上表面之间的距离为h1+h2+θ。盖板503与光纤插头402之间产生预留空隙,即可保证二者不会相互干扰,也可以将盖板503作为光纤插头402组装到透镜组件401过程中在垂直方向的引导。
本实施例中,垫板的厚度h1在本申请某一实施例中为0.1mm至0.2mm,在本申请某一实施例中为0.1mm;盖板503的厚度h2在本申请某一实施例中为0.1mm~0.3mm,在本申请某一实施例中为0.1mm。具体的厚度可根据实际应用情况而定,本实施例不做具体限定。
上述实施例提供的光模块,激光器406、激光器驱动芯片405、探测器404和探测器驱动芯片403均贴合在电路板300表面,使得第一垫板501、第二垫板502和盖板503所形成的保护罩与电路板300的上表面形成保护空间,将激光器驱动芯片405及对应的金线407保护起来,避免光纤插头402的底部触碰到激光器驱动芯片405及对应的金线407。
在另一实施例中,该实施例提供的光模块,可在电路板300上挖个凹槽,将光芯片和光芯片的匹配芯片放置在凹槽内,即将激光器406、激光器驱动芯片405、探测器404和探测器驱动芯片403均放置于凹槽中,增大激光器406和激光器驱动芯片405及对应的金线407与光纤插头402之间的距离,以及,增大探测器404、探测器驱动芯片403及对应的金线408与透镜组件401之间的距离,避免激光器驱动芯片405及对应的金线407、探测器驱动芯片403及对应的金线408被触碰到。
凹槽包括第一固定凹槽601和第二固定凹槽602,第一固定凹槽601用于放置激光器406和激光器驱动芯片405,第二固定凹槽602用于放置探测器404和探测器驱动芯片403。凹槽的形状可根据激光器驱动芯片405和探测器驱动芯片403的摆放位置相适应,如果二者以对齐方式摆放时,那么凹槽的横截面形状可为长方形;如果二者以错开方式摆放时,那么凹槽的横截面形状可为闪电形。
图12为本申请实施例提供的凹槽的结构示意图。参见图12,具体为图5中B部分的局部放大图,凹槽由电路板的一侧表面向下凹陷形成,第一固定凹槽601和第二固定凹槽602均由电路板的一侧表面向下凹陷形成。由于第一固定凹槽601内放置激光器406和激光器驱动芯片405,因此,将第一垫板501和第二垫板502设置在第一固定凹槽601的相对两侧,金线407打线在第一固定凹槽601的边上。
在其他实施例中,第一垫板501和第二垫板502也可设置在第一固定凹槽601内,此时,需设置第一垫板501和第二垫板502的第一固定凹槽601的两侧未与金线407打线连接,同时,第一垫板501和第二垫板502的高度要高于电路板的300的表面,且高于金线407打线连接时所形成的最高点的高度,避免在搭接盖板503时,盖板503的下表面触碰到金线407。
第一垫板501和第二垫板502贴合在电路板300的表面,其他相关设置要求与前述实施例的相同,此处不再赘述。
图13为本申请实施例提供的光模块的另一截面图;图14为图13中C部分的局部放大图。参见图13和图14,在对贴合在电路板300的第一固定凹槽601底部的激光器406和激光器驱动芯片405进行保护时,将第一垫板501和第二垫板502设置在第一固定凹槽 601的边缘附近,以不触碰到金线407的延伸至电路板300表面的最远端为前提。
为保证激光器406和激光器驱动芯片405能够放置在第一固定凹槽601内,本实施例中,使得第一固定凹槽601的底部面积大于激光器406和激光器驱动芯片405所形成的最大区域面积。另外,还要保证激光器406和激光器驱动芯片405不要露出电路板300的一侧表面,因此,使得第一固定凹槽601的深度h4大于激光器驱动芯片405的厚度h3,第一固定凹槽601的宽度大于激光器驱动芯片405的宽度。本实施例中,第一固定凹槽601的深度h4可为0.2mm至0.3mm,激光器驱动芯片405的厚度h3可为0.15mm至0.2mm。
在采用本实施例所示的激光器驱动芯片405和激光器406的设置方式时,由于激光器驱动芯片405和激光器406位于电路板300一侧表面的下方,因此,在设置第一垫板501、第二垫板502和盖板503之后,盖板503的下表面与激光器驱动芯片405的距离较大,可避免盖板503触碰到激光器驱动芯片405。而金线407的一端连接在激光器驱动芯片405,另一端连接到电路板300的一侧表面,使得金线407呈弧状结构,该弧状结构的最高点高于电路板300的上表面,即金线407的最高点高于激光器驱动芯片405的上表面。因此,为避免盖板503触碰到金线407,将盖板503按照下表面高于金线407的最高点的要求进行设置。
本实施例中,第一垫板501、第二垫板502和盖板503的设置方式、尺寸,光纤插头402与盖板503的设置位置,以及,光纤插头402与电路板300的距离要求等均可参照前述实施例公开的内容,此处不再赘述。
由以上技术方案可知,本申请实施例提供的一种光模块,包括电路板300,以及位于电路板300一侧且耦合连接的透镜组件401和光纤插头402。光纤插头402的下方设有电连接的光芯片和光芯片的匹配芯片,光芯片和光芯片的匹配芯片均贴合在电路板300的一侧表面,光芯片的匹配芯片的上表面和电路板300的一侧表面通过金线407连接。电路板300上设置有分别位于光芯片的匹配芯片相对两侧的第一垫板501和第二垫板502,第一垫板501和第二垫板502上跨接有盖板503,盖板503用于覆盖金线407和光芯片的匹配芯片,以将光芯片的匹配芯片和金线分别与光纤插头402的底部隔离。可见,本申请提供的光模块,可利用第一垫板501、第二垫板502和盖板503将光芯片的匹配芯片和金线407保护起来,避免在组装光纤插头402时,光纤插头402的下表面触碰到光芯片的匹配芯片和金线407,避免出现干涉现象影响光模块的光学性能。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由所附的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。
Claims (8)
- 一种光模块,其特征在于,包括:电路板,具有信号电路,用于提供信号电连接;透镜组件,位于所述电路板的一侧;光纤插头,位于所述电路板的一侧,且与所述透镜组件连接,进行光耦合;光芯片,位于所述电路板和所述光纤插头之间,用于发射光信号或接收光信号;光芯片的匹配芯片,与所述光芯片电连接,用于与所述光芯片协同工作,所述光芯片的匹配芯片位于所述电路板和所述光纤插头之间;金线,一端与所述光芯片的匹配芯片的上表面连接,另一端与所述电路板的一侧表面连接,用于实现所述光芯片的匹配芯片与电路板的信号电路的电连接;第一垫板,位于所述光芯片的匹配芯片的一侧,且设置在所述电路板上;第二垫板,位于所述光芯片的匹配芯片的另一侧,且设置在所述电路板上;盖板,跨接在所述第一垫板和所述第二垫板上,用于覆盖所述金线和所述光芯片的匹配芯片,将所述光芯片的匹配芯片和所述金线分别与所述光纤插头的底部隔离。
- 根据权利要求1所述的光模块,其特征在于,所述第一垫板和所述第二垫板的上表面分别高于所述金线的上表面。
- 根据权利要求1所述的光模块,其特征在于,还包括:第一固定凹槽,由所述电路板的一侧表面向下凹陷形成,用于放置所述光芯片和所述光芯片的匹配芯片,所述金线打线在所述第一固定凹槽的边上,所述第一垫板和所述第二垫板位于所述第一固定凹槽的相对两侧。
- 根据权利要求3所述的光模块,其特征在于,所述第一垫板和所述第二垫板位于所述第一固定凹槽内。
- 根据权利要求3所述的光模块,其特征在于,所述第一固定凹槽的深度大于所述光芯片的匹配芯片的厚度,所述第一固定凹槽的宽度大于所述光芯片的匹配芯片的宽度。
- 根据权利要求1所述的光模块,其特征在于,所述第一垫板与所述第二垫板的相对面之间的距离大于所述光芯片的匹配芯片的宽度和所述金线延伸至所述电路板的长度的距离之和。
- 根据权利要求1所述的光模块,其特征在于,所述盖板的长度大于所述光芯片的匹配芯片的长度和所述金线延伸至所述电路板的长度的距离之和,所述盖板的宽度大于所述光芯片的匹配芯片的宽度和所述金线延伸至所述电路板的长度的距离之和。
- 根据权利要求1所述的光模块,其特征在于,所述盖板的上表面与所述光纤插头的下表面之间设有预留空隙,所述预留空隙用于防止所述盖板和所述光纤插头产生干扰。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911280527.3A CN112987193A (zh) | 2019-12-13 | 2019-12-13 | 一种光模块 |
CN201911280527.3 | 2019-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021114714A1 true WO2021114714A1 (zh) | 2021-06-17 |
Family
ID=76329455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/110077 WO2021114714A1 (zh) | 2019-12-13 | 2020-08-19 | 一种光模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112987193A (zh) |
WO (1) | WO2021114714A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114035287A (zh) * | 2021-11-30 | 2022-02-11 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113866910B (zh) * | 2021-09-30 | 2023-01-24 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102157660A (zh) * | 2010-02-11 | 2011-08-17 | 福华电子股份有限公司 | 半导体封装结构 |
CN203178529U (zh) * | 2012-12-31 | 2013-09-04 | 深圳市易飞扬通信技术有限公司 | 含有45度透镜的激光器光纤耦合组件 |
CN204375731U (zh) * | 2014-12-30 | 2015-06-03 | 广州市鸿利光电股份有限公司 | 一种cob基板及cob光源 |
US20170131494A1 (en) * | 2015-11-10 | 2017-05-11 | National Applied Research Laboratories | Package framework for photoelectric conversion module |
JP2018004444A (ja) * | 2016-07-01 | 2018-01-11 | 日本電信電話株式会社 | 超伝導単一光子検出器モジュール |
CN207051545U (zh) * | 2017-08-30 | 2018-02-27 | 中航海信光电技术有限公司 | 一种多通道并行光接收组件 |
CN107861197A (zh) * | 2017-10-31 | 2018-03-30 | 深圳市易飞扬通信技术有限公司 | 光发射组件、封装工艺及光模块 |
CN109856738A (zh) * | 2019-03-19 | 2019-06-07 | 中航海信光电技术有限公司 | 一种光模块封装结构及光模块 |
CN109905958A (zh) * | 2017-12-11 | 2019-06-18 | 苏州旭创科技有限公司 | 光模块 |
CN209542893U (zh) * | 2019-03-20 | 2019-10-25 | 易锐光电科技(安徽)有限公司 | 光模块 |
CN110412699A (zh) * | 2019-07-24 | 2019-11-05 | 大连藏龙光电子科技有限公司 | 一种eml激光发射和接收器一体化封装方法及封装结构 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579212A (en) * | 1993-07-29 | 1996-11-26 | Sun Microsystems, Inc. | Protective cover for a silicon chip device and method relating thereto |
JP3895522B2 (ja) * | 2000-06-27 | 2007-03-22 | 古河電気工業株式会社 | 光素子・電子素子混載モジュール |
CN102520494B (zh) * | 2012-01-13 | 2014-11-05 | 河北华美光电子有限公司 | 多模qsfp 并行光收发模块的封装结构 |
CN108882523A (zh) * | 2018-06-27 | 2018-11-23 | 青岛海信宽带多媒体技术有限公司 | 光模块 |
-
2019
- 2019-12-13 CN CN201911280527.3A patent/CN112987193A/zh active Pending
-
2020
- 2020-08-19 WO PCT/CN2020/110077 patent/WO2021114714A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102157660A (zh) * | 2010-02-11 | 2011-08-17 | 福华电子股份有限公司 | 半导体封装结构 |
CN203178529U (zh) * | 2012-12-31 | 2013-09-04 | 深圳市易飞扬通信技术有限公司 | 含有45度透镜的激光器光纤耦合组件 |
CN204375731U (zh) * | 2014-12-30 | 2015-06-03 | 广州市鸿利光电股份有限公司 | 一种cob基板及cob光源 |
US20170131494A1 (en) * | 2015-11-10 | 2017-05-11 | National Applied Research Laboratories | Package framework for photoelectric conversion module |
JP2018004444A (ja) * | 2016-07-01 | 2018-01-11 | 日本電信電話株式会社 | 超伝導単一光子検出器モジュール |
CN207051545U (zh) * | 2017-08-30 | 2018-02-27 | 中航海信光电技术有限公司 | 一种多通道并行光接收组件 |
CN107861197A (zh) * | 2017-10-31 | 2018-03-30 | 深圳市易飞扬通信技术有限公司 | 光发射组件、封装工艺及光模块 |
CN109905958A (zh) * | 2017-12-11 | 2019-06-18 | 苏州旭创科技有限公司 | 光模块 |
CN109856738A (zh) * | 2019-03-19 | 2019-06-07 | 中航海信光电技术有限公司 | 一种光模块封装结构及光模块 |
CN209542893U (zh) * | 2019-03-20 | 2019-10-25 | 易锐光电科技(安徽)有限公司 | 光模块 |
CN110412699A (zh) * | 2019-07-24 | 2019-11-05 | 大连藏龙光电子科技有限公司 | 一种eml激光发射和接收器一体化封装方法及封装结构 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114035287A (zh) * | 2021-11-30 | 2022-02-11 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Also Published As
Publication number | Publication date |
---|---|
CN112987193A (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021212849A1 (zh) | 一种光模块 | |
WO2021227317A1 (zh) | 一种光模块 | |
WO2021120668A1 (zh) | 一种光模块 | |
WO2021227643A1 (zh) | 一种光模块 | |
CN114035287B (zh) | 一种光模块 | |
WO2021114714A1 (zh) | 一种光模块 | |
WO2022083366A1 (zh) | 一种光模块 | |
CN114035286B (zh) | 一种光模块 | |
CN114035288B (zh) | 一种光模块 | |
CN213659029U (zh) | 一种光模块 | |
CN111694112A (zh) | 一种光模块 | |
CN114488439B (zh) | 一种光模块 | |
CN114488438B (zh) | 一种光模块 | |
CN216310330U (zh) | 一种光模块 | |
WO2022016932A1 (zh) | 一种光模块 | |
WO2021232716A1 (zh) | 一种光模块 | |
WO2021232624A1 (zh) | 一种光模块 | |
WO2021120669A1 (zh) | 一种光模块 | |
WO2023030457A1 (zh) | 光模块 | |
US20220337022A1 (en) | Light Emission Assembly and an Optical Module | |
WO2022166350A1 (zh) | 一种光模块 | |
WO2022193733A1 (zh) | 一种光模块 | |
CN113009649A (zh) | 一种光模块 | |
CN216772052U (zh) | 一种光模块 | |
WO2023020075A1 (zh) | 一种新的光模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20898607 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20898607 Country of ref document: EP Kind code of ref document: A1 |