WO2023184919A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023184919A1
WO2023184919A1 PCT/CN2022/123453 CN2022123453W WO2023184919A1 WO 2023184919 A1 WO2023184919 A1 WO 2023184919A1 CN 2022123453 W CN2022123453 W CN 2022123453W WO 2023184919 A1 WO2023184919 A1 WO 2023184919A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
vortex
optical
sub
mode
Prior art date
Application number
PCT/CN2022/123453
Other languages
English (en)
French (fr)
Inventor
王健
郑�硕
张华�
姚超男
杨敏
朱彦军
邵宇辰
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210348504.7A external-priority patent/CN116931186A/zh
Priority claimed from CN202210348603.5A external-priority patent/CN116931187A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023184919A1 publication Critical patent/WO2023184919A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular, to an optical module.
  • optical communication technology optical modules are tools to realize the mutual conversion of optical signals and electrical signals, and are one of the key components in optical communication equipment.
  • optical modules combining coherent optical communication technology with wavelength division multiplexing, polarization multiplexing, time division multiplexing, space division multiplexing and other technologies can improve the communication capacity and spectral efficiency of short- and medium-distance optical communication systems.
  • the optical module includes a first laser, a first coupler, at least one modulator and a vortex mode multiplexing component.
  • the first laser emits first emission light, and the first emission light is Gaussian mode light.
  • the first coupler is disposed on the light exit side of the first laser and is configured to receive the first emitted light and divide the first emitted light into at least one channel of emitted light and a first pilot light.
  • the at least one modulator is connected to the first coupler and configured to modulate the at least one path of emitted light to generate at least one optical signal.
  • the vortex mode multiplexing component connected to the at least one modulator and the first coupler, is configured to convert the at least one optical signal and the first pilot light into different vortices respectively. patterns and merge into a vortex of emitted light.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Figure 3 is a structural diagram of an optical module according to some embodiments.
  • Figure 4 is an exploded structural view of an optical module according to some embodiments.
  • Figure 5 is a structural diagram of a light emitting component according to some embodiments.
  • Figure 6 is an optical path diagram of a light emitting component according to some embodiments.
  • Figure 7 is a structure and optical path diagram of a vortex mode multiplexing component according to some embodiments.
  • Figure 8 is a cross-sectional view of a vortex ring optical fiber according to some embodiments.
  • FIG. 9 is a structural diagram of another vortex mode multiplexing component according to some embodiments.
  • Figure 10 is a structural diagram of a light receiving component according to some embodiments.
  • Figure 11 is an optical path diagram of a light receiving component according to some embodiments.
  • Figure 12 is a structure and optical path diagram of a vortex mode demultiplexing component according to some embodiments.
  • Figure 13 is a structural diagram of another swirl mode demultiplexing component according to some embodiments.
  • Figure 14 is a structural diagram of a homodyne coherent detection system according to some embodiments.
  • 15 is a schematic diagram of a pilot light path and signal light path length alignment component in a self-homodyne coherent detection based on vortex mode multiplexing according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • some embodiments may be described using the term “connected” to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • optical signals are used to carry information to be transmitted, and the optical signals carrying the information are transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by computers and other information processing equipment are electrical signals. Therefore, in order to distinguish between information transmission equipment such as optical fibers or optical waveguides and computers and other information processing equipment To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • Common information processing equipment includes routers, switches, computers, etc.
  • Optical modules realize the mutual conversion function of the above-mentioned optical signals and electrical signals in the field of optical fiber communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection Mainly used for power supply, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to computers through network cables or wireless fidelity technology (Wi-Fi), etc.
  • Information processing equipment Mainly used for power supply, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to computers through network cables or wireless fidelity technology (Wi-Fi), etc.
  • I2C Inter-Integrated Circuit
  • Wi-Fi wireless fidelity technology
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103.
  • the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of thousands of meters (6 kilometers to 8 kilometers). On this basis, if a repeater is used, unlimited distance transmission can be theoretically achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers, or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: router, switch, computer, mobile phone, tablet computer, television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 provided on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 Establish a two-way electrical signal connection.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100 serves as the host computer of the optical module 200 and can monitor the optical module. 200 job.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT), etc.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection;
  • the electrical port is configured to be connected to the optical network terminal 100, so that the optical module 200 and the optical network terminal 100 establish a bidirectional connection. electrical signal connection.
  • the optical module 200 realizes mutual conversion between optical signals and electrical signals, thereby establishing a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101. Since the optical module 200 is a tool for realizing mutual conversion of photoelectric signals and does not have the function of processing data, the information does not change during the above photoelectric conversion process.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101, the optical module 200, the optical network terminal 100 and the network cable 103.
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 2 only shows the structure of the optical network terminal 100 related to the optical module 200.
  • the optical network terminal 100 also includes a circuit board 105 provided in the casing, a cage 106 provided on the surface of the circuit board 105, a heat sink 107 provided on the cage 106, and a power supply provided in the cage 106.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has fins and other protruding structures that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the optical module 200 is fixed by the cage 106.
  • the heat generated by the optical module 200 is conducted to the cage 106, and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector in the cage 106, so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a shell, a circuit board 300 disposed in the shell, a light emitting component 400 and a light receiving component 500 . But it is not limited thereto.
  • the optical module 200 includes the light emitting component 400 but does not include the light receiving component 500 , or the optical module 200 includes the light receiving component 500 but does not include the light emitting component 400 .
  • the housing includes an upper housing 201 and a lower housing 202.
  • the upper housing 201 is covered on the lower housing 202 to form the above-mentioned housing with two openings 204 and 205; the outer contour of the housing generally presents a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 covers the lower case. on the two lower side plates 2022 of 202 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the upper case 201 includes a cover plate 2011, and two lower side plates 2022 located on both sides of the cover plate 2011.
  • the two upper side plates arranged perpendicularly to the cover plate 2011 are combined with the two lower side plates 2022 to realize that the upper housing 201 is covered on the lower housing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the left end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the right end of FIG. 3 ).
  • the opening 204 is located at an end of the optical module 200 and the opening 205 is located at a side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger 301 of the circuit board 300 extends from the electrical port 204 and is inserted into the host computer (for example, the optical network terminal 100); the opening 205 is an optical port configured to access the external optical fiber 101, so that The optical fiber 101 connects the light emitting component 400 and the light receiving component 500 in the optical module 200 .
  • the assembly method of combining the upper housing 201 and the lower housing 202 is used to facilitate the installation of the circuit board 300, the light emitting component 400, the light receiving component 500 and other devices into the above housing.
  • the upper housing 201 and the lower housing 202 pair These devices form a package for protection.
  • the deployment of positioning components, heat dissipation components, and electromagnetic shielding components of these components is facilitated, which is conducive to automated production.
  • the upper housing 201 and the lower housing 202 are made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the light module 200 also includes an unlocking component 203 located outside its housing.
  • the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer.
  • the unlocking component 203 is located outside the two lower side plates 2022 of the lower housing 202 and has a snap component that matches the cage of the host computer (for example, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage 106, the optical module 200 is fixed in the cage 106 by the engaging parts of the unlocking part 203; when the unlocking part 203 is pulled, the engaging parts of the unlocking part 203 move accordingly, thereby changing the relationship between the engaging parts and the cage 106.
  • the connection relationship between the host computer and the host computer is released to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out of the cage 106 .
  • the circuit board 300 includes circuit wiring, electronic components, chips, etc.
  • the electronic components and chips are connected together according to the circuit design through the circuit wiring to realize functions such as power supply, electrical signal transmission, and grounding.
  • Electronic components may include, for example, capacitors, resistors, transistors, and Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • the chip may include, for example, a microcontroller unit (Microcontroller Unit, MCU), a laser driver chip, a transimpedance amplifier (Transimpedance Amplifier, TIA), a limiting amplifier (limiting amplifier), a clock data recovery chip (Clock and Data Recovery, CDR), and a power supply.
  • Management chip digital signal processing (Digital Signal Processing, DSP) chip.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also perform a load-bearing function. For example, the rigid circuit board can smoothly carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the cage 106 of the host computer. in the electrical connector.
  • the circuit board 300 also includes a gold finger 301 formed on an end surface thereof, and the gold finger 301 is composed of a plurality of mutually independent pins.
  • the circuit board 300 is inserted into the cage 106 and is electrically connected to the electrical connector in the cage 106 by the gold finger 301 .
  • the gold finger 301 can be disposed only on one side of the circuit board 300 (for example, the upper surface shown in FIG. 4 ), or can be disposed on the upper and lower surfaces of the circuit board 300 to adapt to situations where a large number of pins are required.
  • the golden finger 301 is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards may also be used in some optical modules 200 .
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • Figure 5 is a structural diagram of a light emitting component according to some embodiments.
  • the light emitting component 400 provided by some embodiments of the present disclosure includes a first laser 401, a first coupler 402, a first modulator 403, a second modulator 404 and a vortex mode.
  • the first laser 401 has a light emitting end, and the first laser 401 is configured to emit first emission light.
  • the first coupler 402 is disposed on the light output side of the first laser 401 .
  • the first coupler 402 has an optical input terminal and an optical output terminal.
  • the optical input end of the first coupler 402 faces the first laser 401, and the optical output end of the first coupler 402 is the end opposite to the optical input end.
  • the optical input end of the first coupler 402 is connected to the optical emission end of the first laser 401 .
  • the first coupler 402 includes a plurality of output ports located at the optical output end.
  • the first coupler 402 includes three output ports, which are a first output port 4021, a second output port 4022, and a third output port 4023 respectively. It should be noted that this disclosure does not limit the number of output ports of the first coupler 402. It may be 3 as shown in some embodiments of the disclosure, or it may be 2, 4, 5 or other. .
  • the first coupler 402 is configured to receive the first emitted light and divide the first emitted light into multiple sub-emitted lights. For example, the first coupler 402 divides one channel of first emitted light into three channels of sub-emitted light, which are respectively the first sub-emitted light, the second sub-emitted light and the third sub-emitted light. The number of multiple sub-emitted lights is equal to the number of multiple output ports of the first coupler 402 . For example, the light output from the first output port 4021 of the first coupler 402 is the first sub-emitted light, the light output from the second output port 4022 is the second sub-emitted light, and the light output from the third output port 4023 Emit light for the third son.
  • the first modulator 403 is disposed on a side of the first coupler 402 away from the first laser 401 .
  • the first modulator 403 has an optical input terminal and an optical output terminal.
  • the optical input end of the first modulator 403 faces the optical output end of the first coupler 402, and the optical output end of the first modulator 403 is an end opposite to its optical input end.
  • the optical input end of the first modulator 403 is connected to the first output port 4021 of the first coupler 402 .
  • the first modulator 403 is configured to receive the first sub-emitted light and modulate the first sub-emitted light to generate a first optical signal.
  • the second modulator 404 is disposed on a side of the first coupler 402 away from the first laser 401 .
  • the second modulator 404 has an optical input terminal and an optical output terminal.
  • the optical input end of the second modulator 404 faces the optical output end of the first coupler 402, and the optical output end of the second modulator 404 is an end opposite to its optical input end.
  • the optical input end of the second modulator 404 is connected to the second output port 4022 of the first coupler 402 .
  • the second modulator 404 is configured to receive the second sub-emitted light and modulate the second sub-emitted light to generate a second optical signal.
  • the vortex mode multiplexing component 406 is disposed on the side of the first modulator 403 and the second modulator 404 away from the first coupler 402 .
  • the vortex mode multiplexing component 406 has an optical input end and an optical output end.
  • the optical input end of the vortex mode multiplexing component 406 faces the optical output end of the first modulator 403, the second modulator 404 and the first coupler 402, and the optical output end of the vortex mode multiplexing component 406 is in direct contact with its optical input end. Opposite end.
  • the vortex mode multiplexing component 406 includes a plurality of input ports located at the optical input end.
  • the swirl mode multiplexing component 406 includes three input ports, namely a first input port 40601, a second input port 40602, and a third input port 40603.
  • the first input port 40601 of the vortex mode multiplexing component 406 is connected to the optical output end of the first modulator 403, the second input port 40602 is connected to the optical output end of the second modulator 404, and the third input port 40603 is connected to the optical output end of the second modulator 404.
  • a third output port 4023 of the coupler 402 is connected.
  • the vortex mode multiplexing component 406 is configured to receive the first optical signal, the second optical signal and the third sub-emitted light, and convert the first optical signal, the second optical signal and the third sub-emitted light to have different vortices. mode of light, and multiplexing the light with different vortex modes into a beam of vortex emission light.
  • the first modulator and the second modulator respectively modulate the first sub-emitted light and the second sub-emitted light to form an optical signal
  • the third sub-emitted light is used as the pilot light, which is complexed through the vortex mode.
  • Component 406 is used to convert the optical signal and pilot light into vortex light with different angular momentum, and different vortex mode channels are used to transmit the optical signal and pilot light.
  • the pilot light is used as local oscillator light to achieve self-homogeneous coherent detection. It eliminates the influence of frequency offset and phase noise, eliminates the need for complex carrier recovery algorithms, reduces the complexity, power consumption and cost of the coherent detection system, and breaks through the limitations of high power consumption, high complexity and high cost of traditional coherent detection. .
  • Figure 6 is an optical path diagram of a light emitting component according to some embodiments.
  • arrows indicate the propagation direction of light
  • the light indicated by the solid arrow is the light of the Gaussian mode
  • the light indicated by the dotted arrow is the light of the vortex mode.
  • the light emitting end of the first laser 401 emits first emitted light.
  • the first emitted light is light that does not carry information and is used as a light source.
  • the first emitted light is incident on the light input end of the first coupler 402 and is divided into multiple emitted lights by the first coupler 402 .
  • the multiple emitted lights emitted through the optical output end of the first coupler 402 are respectively used as information-carrying light or pilot light.
  • the first sub-emitted light and the second sub-emitted light output through the first output port 4021 and the second output port 4022 are used as light carrying information
  • the third sub-emitted light output through the third output port 4023 is used as the first sub-emitted light. Pilot light.
  • the first sub-emitted light is incident on the optical input end of the first modulator 403; the second sub-emitted light is incident on the optical input end of the second modulator 404; the third sub-emitted light is incident on the vortex as the first pilot light.
  • the first modulator 403 modulates the first sub-emitted light to form a first optical signal, and the first optical signal emitted through the optical output end of the first modulator 403 is light carrying first data information.
  • the second modulator 404 modulates the second sub-emitted light to form a second optical signal, and the second optical signal emitted through the optical output end of the second modulator 404 is light carrying second data information.
  • the first optical signal and the second optical signal are respectively incident on the first input port 40601 and the second input port 40602 of the vortex mode multiplexing component 406.
  • the vortex mode multiplexing component 406 converts the first optical signal, the second optical signal and the first pilot light into different vortex modes and multiplexes them to generate vortex emission light.
  • the light emitting assembly 400 also includes a emitting optical fiber 407 .
  • One end of the emitting optical fiber 407 is connected to the light output end of the vortex mode multiplexing component 406 .
  • Emission fiber 407 is configured to transmit the vortex emission light to the exterior of optical module 200 .
  • launch fiber 407 is a vortex ring fiber.
  • the light emitting assembly 400 further includes a fiber optic extension cord 405 .
  • the optical fiber extension 405 is disposed between the first coupler 402 and the vortex mode multiplexing component 406 .
  • One end of the optical fiber extension line 405 is connected to the third output port 4023 of the first coupler 402 , and the other end is connected to the third input port 40603 of the vortex mode multiplexing component 406 .
  • the optical fiber extension 405 is configured such that the path length of the third sub-emitted light (ie, the first pilot light) from the first coupler 402 to the vortex mode multiplexing component 406 is the same as the path length of the first sub-emitted light from the first coupler.
  • the light emitting component 400 includes a first modulator 403 or a second modulator 404; the two channels of emitted light emitted through the light output end of the first coupler 402 are used as information-carrying light and pilot light respectively.
  • Figure 7 is a structure and optical path diagram of a vortex mode multiplexing component according to some embodiments.
  • arrows indicate the propagation direction of light
  • the light indicated by the solid arrow is the light of the Gaussian mode
  • the light indicated by the dotted arrow is the light of the vortex mode.
  • the vortex mode multiplexing component 406 is a free space optical device vortex mode multiplexing component 406, including multiple (eg, 3) collimators, multiple polarizers, and multiple spatial light modulators. and at least one combiner.
  • Each collimator is configured to collimate and output the Gaussian mode light in the single-mode optical fiber to a corresponding polarizer in free space.
  • Each polarizer is configured to adjust the polarization direction of the collimated Gaussian mode light to the corresponding polarization direction in which one spatial light modulator operates.
  • Each spatial light modulator is configured to convert a polarized Gaussian mode of light into a vortex mode of light.
  • Each combiner is configured to multiplex light from multiple (eg, 2) vortex modes produced.
  • the number of multiple collimators is equal to the number of output ports of the first coupler 402, and multiple polarizers and multiple spatial light modulators are arranged in one-to-one correspondence with the multiple collimators.
  • the following description takes the example that the vortex mode multiplexing component 406 includes 3 collimators, 3 polarizers, 3 spatial light modulators and 2 beam combiners.
  • three collimators are respectively the first collimator 4061, the second collimator 4065 and the third collimator 4069.
  • the first collimator 4061 is disposed on the outgoing optical path of the first optical signal.
  • the first collimator 4061 has an optical input end and an optical output end.
  • the light input end of the first collimator 4061 faces the first modulator 403, and the light output end of the first collimator 4061 is the end opposite to its light input end.
  • the optical input end of the first collimator 4061 is connected to the optical output end of the first modulator 403 .
  • the first collimator 4061 is configured to collimate the first optical signal.
  • the second collimator 4065 is disposed on the outgoing optical path of the second optical signal.
  • the second collimator 4065 has an optical input end and an optical output end.
  • the light input end of the second collimator 4065 faces the second modulator 404, and the light output end of the second collimator 4065 is the end opposite to its light input end.
  • the optical input end of the second collimator 4065 is connected to the optical output end of the second modulator 404.
  • the second collimator 4065 is configured to collimate the second optical signal.
  • the third collimator 4069 is disposed on the outgoing optical path of the first pilot light.
  • the third collimator 4069 has an optical input end and an optical output end.
  • the optical input end of the third collimator 4069 faces the first coupler 402, and the optical output end of the third collimator 4069 is the end opposite to its optical input end.
  • the optical input end of the third collimator 4069 is connected to the optical output end of the first coupler 402 .
  • the third collimator 4069 is configured to collimate the first pilot light.
  • the three spatial light modulators are the first spatial light modulator 4063, the second spatial light modulator 4067, and the third spatial light modulator 40611 respectively.
  • the first spatial light modulator 4063, the second spatial light modulator 4067 and the third spatial light modulator 40611 are respectively provided at the light output ends of the first collimator 4061, the second collimator 4065 and the third collimator 4069. one side.
  • the first spatial light modulator 4063 is configured to modulate the first optical signal into a first sub-vortex optical signal;
  • the second spatial light modulator 4067 is configured to modulate the second optical signal into a second sub-vortex optical signal;
  • the third spatial light modulator 40611 is configured to convert the first pilot light modulation into a first pilot vortex light.
  • the spatial light modulator is a reflective spatial light modulator, and the angle between the light input to the spatial light modulator and the light output by the spatial light modulator is configured to be as small as possible.
  • the three polarizing plates are the first polarizing plate 4062, the second polarizing plate 4066, and the third polarizing plate 40610.
  • the first polarizer 4062 is disposed between the first spatial light modulator 4063 and the first collimator 4061 and is configured to adjust the polarization direction of the first optical signal to the working direction of the first spatial light modulator 4063.
  • the second polarizer 4066 is disposed between the second spatial light modulator 4067 and the second collimator 4065, and is configured to adjust the polarization direction of the second optical signal to the working direction of the second spatial light modulator 4067.
  • the third polarizer 40610 is disposed between the third spatial light modulator 40611 and the third collimator 4069, and is configured to adjust the polarization direction of the first pilot light to the working direction of the third spatial light modulator 40611.
  • the two combiners are the first combiner 4068 and the second combiner 40612 respectively.
  • the first beam combiner 4068 is disposed on the output optical path of the first spatial light modulator 4063 and the second spatial light modulator 4067, and is configured to combine the first sub-vortex optical signal and the second sub-vortex optical signal into a first Vortex light signal.
  • the first beam combiner 4068 reflects the first sub-vortex optical signal and transmits the second sub-vortex optical signal, so that the first sub-vortex optical signal and the second sub-vortex optical signal pass through the first beam combiner 4068 and then combined into a first vortex light signal.
  • the second beam combiner 40612 is disposed on the outgoing optical path of the third spatial light modulator 40611 and the first beam combiner 4068, and is configured to combine the first vortex optical signal and the first pilot vortex light into one vortex beam. Emit light.
  • the vortex mode multiplexing component 406 only includes 2 collimators, 2 polarizers, 2 spatial modulators and 1 beam splitter.
  • the first collimator is connected to the first modulator and is configured to collimate the first optical signal; the first polarizer is disposed on the light exit side of the first collimator; the first spatial light modulator is disposed on the first polarization
  • the plate is disposed on the light exit side of the second collimator; the second spatial light modulator is disposed on the light exit side of the second polarizing plate and is configured to convert the first pilot light into the first pilot vortex light; the first beam combiner
  • the detector is disposed on the light output path of the first spatial light modulator and the second spatial light modulator, and is configured to combine the first pilot vortex light and the first sub-vortex light signal into a beam of vortex emission light.
  • the first optical signal, the second optical signal and the first pilot light are respectively converted by the collimator, polarizer, spatial light modulator and other devices in the vortex mode multiplexing component 406 to form vortices with different Mode of light, the light with different vortex modes is multiplexed by a beam combiner and other devices in the vortex mode multiplexing component 406 to generate a beam of vortex emission light.
  • the spot of the vortex emitted light combined by the second beam combiner 40612 is larger.
  • the light emitting component 400 further includes a converging lens 40613.
  • the converging lens 40613 is disposed on the outgoing optical path of the second beam combiner 40612, that is, between the second beam combiner 40612 and the emitting optical fiber 407.
  • Converging lens 40613 is configured to couple the vortex emitted light to emission fiber 407. In this way, the light spot condensed by the converging lens 40613 is located on the end face of the emitting optical fiber 407 close to the converging lens 40613, so as to improve the communication accuracy of the optical communication system.
  • the vortex mode used to transmit the first pilot light may be a 0th order vortex mode, a 1st order vortex mode, or other order vortex modes.
  • the first optical signal, the second optical signal and the first pilot light are multiplexed and transmitted through vortex modes of different orders in the vortex ring fiber.
  • the crosstalk between the above-mentioned vortex modes of different orders is less than -15dB
  • the crosstalk between the first optical signal, the second optical signal and the first pilot light can be reduced, thereby helping to improve optical communication. System communication quality.
  • FIG. 8 is a cross-sectional view of a vortex ring optical fiber according to some embodiments.
  • the vortex annular optical fiber includes a central region 601 , an annular core 602 and a cladding 603 arranged sequentially from the inside to the outside.
  • the annular core 602 covers the outside of the central area 601, and the cladding 603 covers the outside of the annular core 602.
  • the cladding layer 603 is made using a fluorine doping process.
  • the refractive index of the cladding layer 603 is smaller than the refractive index of the silicon dioxide, and the relative refractive index difference between the cladding layer 603 and the silicon dioxide does not exceed 0.7%.
  • the relative refractive index difference between cladding 603 and silicon dioxide is 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, or 0.7%.
  • the refractive index of the central region 601 and the cladding 603 are the same.
  • the refractive index of the annular core 602 is greater than that of the cladding 603, and the relative refractive index difference between the annular core 602 and the cladding 603 does not exceed 1%.
  • the relative refractive index difference between the annular core 602 and the cladding 603 is 0.01%, 0.02%, 0.03%, 0.05%, 0.07%, 0.08%, 0.09%, or 1%.
  • the inner diameter of the annular core 602 (ie, the diameter of the central region 601) is 2 ⁇ m to 10 ⁇ m, for example, it may be 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 8 ⁇ m, or 10 ⁇ m.
  • the width of the annular core 602 is 1 ⁇ m to 20 ⁇ m, and may be, for example, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, or 20 ⁇ m.
  • the width of the annular core 602 is defined as half the difference between the outer diameter of the annular core 602 and the inner diameter of the annular core 602 in the annular cross-section shown in FIG. 8 .
  • the vortex ring fiber only supports multi-channel radial first-order vortex modes, and the multi-channel radial first-order vortex modes are divided into multiple different mode groups.
  • the first module group in multiple different module groups contains 2 modes, each module group except the first module group contains 4 modes, and except for the first two module groups, multiple different module groups
  • the effective refractive index differences between the remaining mode groups in the mode group are all greater than 10 -4 .
  • FIG 9 is a structural diagram of another vortex mode multiplexing assembly according to some embodiments. As shown in Figure 9, some embodiments of the present disclosure also provide another vortex mode multiplexing component 406.
  • vortex mode multiplexing component 406 includes a first fiber mode coupler and a second fiber mode coupler.
  • the first optical fiber mode coupler includes a first single-mode optical fiber 40620 and a first vortex ring optical fiber 40621.
  • One end of the first single-mode optical fiber 40620 is connected to the light output end of the first modulator 403, and the other end is connected to one end of the first vortex ring optical fiber 40621.
  • the first single-mode optical fiber 40620 is configured to transmit a first optical signal.
  • the first vortex ring optical fiber 40621 is configured to convert the first optical signal of the Gaussian mode into the first sub-vortex optical signal of the OAM 01 mode. It should be noted that the connection method between the first single-mode optical fiber 40620 and the first vortex ring optical fiber 40621 is not limited.
  • the first single-mode optical fiber 40620 and the first vortex ring optical fiber 40621 are connected through a welding process, and the above two optical fibers are welded to the welding point 600 .
  • the first fiber mode coupler also includes a second single mode optical fiber 40622.
  • One end of the second single-mode optical fiber 40622 is connected to the optical output end of the second modulator 404, and the second single-mode optical fiber 40622 is configured to transmit the second optical signal.
  • the first optical fiber mode coupler also includes a first tapered coupler 40623 and a second vortex ring optical fiber 40624.
  • the first tapered coupler 40623 has a first input terminal 406231 and a second input terminal 406232, and a first output terminal 406233 and a second output terminal 406234.
  • the first input terminal 406231 and the second input terminal 406232 are located at one end of the first tapered coupler 40623, and the first output terminal 406233 and the second output terminal 406234 are located at the other end of the first tapered coupler 40623.
  • the first input end 406231 of the first tapered coupler 40623 is connected to the other end of the first vortex ring optical fiber 40621, the second input end 406232 is connected to the other end of the second single-mode optical fiber 40622, and the first output end 406233 is connected to the other end of the first vortex ring optical fiber 40621.
  • One end of the two vortex ring optical fibers 40624 is connected, and the second output end 406234 is connected to a single-mode optical fiber.
  • the first tapered coupler 40623 is configured to receive the second optical signal and the first sub-vortex optical signal, convert the second optical signal of the Gaussian mode into the second sub-vortex optical signal of the OAM 11 mode, and convert the second optical signal of the OAM 01 mode into The first sub-vortex optical signal and the second sub-vortex optical signal of the OAM 11 mode are multiplexed into a first vortex optical signal.
  • the second fiber mode coupler includes a third vortex ring fiber 40625.
  • One end of the third vortex ring optical fiber 40625 is connected to the other end of the second vortex ring optical fiber 40624.
  • the third vortex ring optical fiber 40625 is configured to transmit the first vortex optical signal.
  • the connection method between the third vortex ring optical fiber 40625 and the second vortex ring optical fiber 40624 is not limited.
  • the third vortex ring optical fiber 40625 and the second vortex ring optical fiber 40624 are connected through a welding process, and the above two vortex ring optical fibers are welded to the solder joint 700 to realize the second fiber mode coupler and the cascade between the first fiber mode couplers.
  • the second fiber mode coupler also includes a third single mode optical fiber 40626.
  • One end of the third single-mode optical fiber 40626 is connected to the third output port 4023 of the first coupler 402 or the output end of the optical fiber delay line 405 .
  • the third single-mode optical fiber 40626 is configured to transmit the first pilot light.
  • the second optical fiber mode coupler also includes a second tapered coupler 40627 and a fourth vortex ring optical fiber 40628.
  • the second tapered coupler 40627 has a first input terminal 406271 and a second input terminal 406272, and a first output terminal 406273 and a second output terminal 406274. It should be noted that the second tapered coupler 40627 has the same structure as the first tapered coupler 40623, and will not be described again here.
  • the first input end 406271 of the second tapered coupler 40627 is connected to the other end of the third vortex ring optical fiber 40625, the second input end 406272 is connected to the other end of the third single-mode optical fiber 40626, and the first output end 406273 is connected to the other end of the third vortex ring optical fiber 40625.
  • the four-vortex ring optical fiber 40628 is connected, and the second output end 406274 is connected to another single-mode optical fiber.
  • the second tapered coupler 40627 is configured to receive the first pilot light and the first vortex light signal, convert the first pilot light in the Gaussian mode into the first pilot vortex light in the OAM 21 mode, and convert the first pilot light in the OAM 21 mode into The first pilot vortex light and the first vortex light signal are multiplexed into a beam of vortex emission light.
  • first vortex ring fiber 40621 the structural cross-sectional views of the first vortex ring fiber 40621, the second vortex ring fiber 40624, the third vortex ring fiber 40625 and the fourth vortex ring fiber 40628 are shown in Figure 8 .
  • the vortex mode multiplexing component 406 only includes the first fiber mode coupler.
  • the second single-mode optical fiber of the first fiber mode coupler is connected to the first coupler and configured to transmit the first pilot light.
  • a tapered coupler (such as the first tapered coupler 40623 or the second tapered coupler 40627) is used to first perform pre-taper matching on the single-mode optical fiber, The coupling area between the single-mode fiber and the vortex ring fiber is then tapered and welded to achieve selective coupling of the vortex modes. Multiplexing of light in three vortex modes can be achieved by cascading two fiber mode couplers (for example, the first fiber mode coupler and the second fiber mode coupler).
  • the first single-mode optical fiber 40620 and the first vortex ring-shaped optical fiber 40621 are welded to the solder joint 600, so that the first optical signal in the Gaussian mode is transmitted to the first vortex ring-shaped optical fiber 40621 through the first single-mode optical fiber 40620 to excite the generated
  • the first sub-vortex optical signal of the OAM 01 mode, the second optical signal of the Gaussian mode input by the second single-mode optical fiber 40622 is transmitted to the tapered coupling area 1 of the first tapered coupler 40623, thereby coupling to generate the OAM 11 mode
  • the second sub-vortex optical signal so that the two sub-vortex optical signals of the OAM 01 mode and the OAM 11 mode are multiplexed and transmitted in the second vortex ring optical fiber 40624; the second vortex ring at the output end of the first fiber mode coupler
  • the optical fiber 40624 and the third vortex ring optical fiber 40625 input from the second optical fiber mode coupler are welded to the soldering point 700
  • the first pilot light of the Gaussian mode input by the third single-mode fiber 40626 of the second optical fiber mode coupler is transmitted to the tapered coupling area 2 of the second tapered coupler 40627, thereby coupling to generate the OAM 21 mode.
  • the first pilot vortex light enables the OAM 21 mode to be multiplexed and transmitted together with the vortex light of the OAM 01 mode and OAM 11 mode, thereby realizing the multiplexing of the three vortex modes of light.
  • the first modulator 403 and the second modulator 404 respectively load data on the first sub-emitted light and the second sub-emitted light to form a first optical signal and a second optical signal
  • the third sub-emitted light output from the third output port 4023 of the first coupler 402 is used as the first pilot light
  • the first optical signal, the second optical signal and the first pilot light are converted into Vortex light with different angular momentum enables the transmission of optical signals and pilot light using different vortex mode channels.
  • Figure 10 is a structural diagram of a light receiving component according to some embodiments.
  • Figure 11 is an optical path diagram of a light receiving component according to some embodiments.
  • arrows indicate the propagation direction of light, the light indicated by the solid arrow is the light of the Gaussian mode, and the light indicated by the dotted arrow is the light of the vortex mode.
  • a light receiving assembly 500 provided by some embodiments of the present disclosure includes a receiving optical fiber 507 .
  • the receiving optical fiber 507 is configured to receive the vortex receiving light.
  • the vortex receiving light transmitted in the receiving optical fiber 507 is a mixed vortex light of optical signals with different vortex modes and pilot light.
  • the vortex mode demultiplexing component 501 can receive vortex light from outside the optical module 200 (for example, the vortex light sent by the opposite end optical module). For convenience of description, this vortex light is called vortex received light. .
  • the light receiving component 500 also includes a vortex mode demultiplexing component 501 .
  • the vortex mode demultiplexing component 501 has an optical input end and an optical output end arranged oppositely.
  • the vortex mode demultiplexing component 501 includes a plurality (for example, 3) output ports located at its optical output end, and the plurality of output ports are a first output port 50101, a second output port 50102, and a third output port 50103 respectively.
  • the present disclosure does not limit the number of output ports of the swirl mode demultiplexing component 501. It can be 3 as shown in some embodiments of the present disclosure, or it can be 2, 4, or 5. or others.
  • the optical input end of the vortex mode demultiplexing component 501 is connected to the receiving optical fiber 507 .
  • the vortex mode demultiplexing component 501 is configured to receive the vortex received light, demultiplex the vortex received light, and demultiplex the vortex received light into the first sub-received light signal and the third sub-received light signal of the Gaussian mode.
  • the two receivers receive optical signals and receive pilot light.
  • the light output by the first output port 50101 of the vortex mode demultiplexing component 501 is the first sub-receiving optical signal
  • the light output by the second output port 50102 is the receiving pilot light
  • the light output by the third output port 50103 is the second sub-receiving optical signal.
  • the sub-receiver of optical signals is the first sub-receiving optical signal.
  • the light receiving assembly 500 also includes a second coupler 502 .
  • the second coupler 502 is disposed on the light output end side of the vortex mode demultiplexing component 501 .
  • the second coupler 502 has an optical input end and an optical output end arranged oppositely.
  • the optical input end of the second coupler 502 is connected to the second output port 50102 of the vortex mode demultiplexing component 501 .
  • the second coupler 502 is configured to couple the received pilot light into first sub-pilot light and second sub-pilot light.
  • the second coupler 502 includes a plurality of output ports at its optical output end.
  • the second coupler 502 includes two output ports, namely a first output port 5021 and a second output port 5022.
  • the second coupler 502 specifically couples the receiving pilot light into several channels, which can be set according to actual needs. It can be 3 channels as shown in some embodiments of the present disclosure, or it can be 4 channels, 5 channels, or other.
  • Light receiving component 500 also includes a first coherent receiver.
  • One end of the first coherent receiver is connected to the first output port 50101 of the vortex mode demultiplexing component 501 and the first output port 5021 of the second coupler 502 .
  • the first coherent receiver is configured to receive the first sub-received optical signal and the first sub-pilot light, and perform frequency mixing and balance detection on the first sub-received optical signal and the first sub-pilot light.
  • the first coherent receiver includes a first mixer 503.
  • the first mixer 503 has an optical input terminal and an optical output terminal arranged oppositely.
  • the first mixer 503 includes a plurality of input ports at its optical input.
  • the first mixer 503 includes two input ports, namely a first input port 5031 and a second input port 5032.
  • the first input port 5031 of the first mixer 503 is connected to the first output port 50101 of the vortex mode demultiplexing component 501, and the second input port 5032 is connected to the first output port 5021 of the second coupler 502.
  • the first mixer 503 is configured to receive the first sub-received optical signal and the first sub-pilot light, and couple the first sub-received optical signal and the first sub-pilot light to form the first received mixed light.
  • the first coherent receiver also includes a first detector 504 .
  • the first detector 504 has a light input end and a light output end arranged oppositely.
  • the optical input end of the first detector 504 is connected to the optical output end of the first mixer 503 .
  • the first detector 504 is configured to receive the first mixed signal light and convert the first received mixed signal into a first electrical signal.
  • first detector 504 is a balanced detector.
  • circuit board 300 also includes digital processor 310.
  • the first detector 504 is also configured to transmit the first electrical signal to the digital processor 310 .
  • the digital processor 310 is configured to sample the first electrical signal and then recover and demodulate the signal through digital signal processing, so as to implement autohomodyne coherent detection based on vortex mode multiplexing.
  • the light receiving component 500 also includes a second coherent receiver.
  • One end of the second coherent receiver is connected to the third output port 50103 of the vortex mode demultiplexing component 501 and the second output port 5022 of the second coupler 502 .
  • the second coherent receiver is configured to receive the second sub-received optical signal and the second sub-pilot light, and perform frequency mixing and balance detection on the second sub-received optical signal and the second sub-pilot light.
  • the second coherent receiver includes a second mixer 505.
  • the second mixer 505 has an optical input terminal and an optical output terminal arranged oppositely.
  • the second mixer 505 includes a plurality of input ports at its optical input.
  • the second mixer 505 includes two input ports, namely a first input port 5051 and a second input port 5052.
  • the first input port 5051 of the second mixer 505 is connected to the third output port 50103 of the vortex mode demultiplexing component 501, and the second input port 5052 is connected to the second output port 5022 of the second coupler 502.
  • the second mixer 505 is configured to receive the second sub-received optical signal and the second sub-pilot light, and mix the second sub-received optical signal and the second sub-pilot light to form a second received mixed light.
  • the second coherent receiver also includes a second detector 506 .
  • the second detector 506 has a light input end and a light output end arranged oppositely.
  • the optical input terminal of the second detector 506 is connected to the optical output terminal of the second mixer 505 .
  • the second detector 506 is configured to receive the second received mixed frequency light, perform balanced detection on the second received mixed frequency light and convert it into a second electrical signal, and transmit the second electrical signal to the digital processor 310 .
  • the digital processor 310 is further configured to sample the second electrical signal and then recover and demodulate the signal through digital signal processing to implement self-homodyne coherent detection based on vortex mode multiplexing.
  • the second detector 506 is a balanced detector.
  • receive optical fiber 507 is also connected to external optical fiber 101 .
  • the receiving optical fiber 507 is also configured to transmit the vortex received light emitted by the opposite end optical module.
  • the vortex mode demultiplexing component 501 and the vortex mode multiplexing component 406 have the same structure and are used to demultiplex the vortex received light. It should be noted that the structures and settings of the swirl mode demultiplexing component 501 and the swirl mode multiplexing component 406 are the same and will not be described again here.
  • Figure 12 is a structure and optical path diagram of a vortex mode demultiplexing component according to some embodiments.
  • arrows indicate the propagation direction of light
  • the light indicated by the solid arrow is the light of the Gaussian mode
  • the light indicated by the dotted arrow is the light of the vortex mode.
  • the vortex mode demultiplexing component 501 is a free space optical device vortex mode demultiplexing component 501 .
  • vortex mode demultiplexing component 501 includes a collimating lens 5011.
  • the collimating lens 5011 has a light input end and a light output end arranged oppositely.
  • the light input end of the collimating lens 5011 is connected to the output end of the receiving optical fiber 507, and the collimating lens 5011 is configured to collimate the vortex received light.
  • the vortex mode demultiplexing component 501 also includes a first beam splitter 5012.
  • the first beam splitter 5012 is disposed on the light output path of the collimating lens 5011, that is, on the side of the light output end of the collimating lens 5011.
  • the first beam splitter 5012 is configured to split the vortex received light to generate a first vortex received pilot light and a second vortex received light signal.
  • the first beam splitter 5012 has a first light output optical path and a second light output optical path.
  • the vortex mode demultiplexing component 501 also includes a fourth spatial light modulator 5013.
  • the fourth spatial light modulator 5013 is disposed on the first light output optical path of the first beam splitter 5012 and is configured to convert the first vortex receiving pilot light of the vortex mode into the receiving pilot light of the Gaussian mode. It should be noted that the fourth spatial light modulator 5013 has the same structure as the first spatial light modulator 4063, and will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a first converging lens 5015.
  • the first condensing lens 5015 is disposed on the output optical path of the fourth spatial light modulator 5013.
  • the first condensing lens 5015 is configured to focus the received pilot light.
  • the first converging lens 5015 is located at the second output port 50102 of the vortex mode demultiplexing component 501 and is connected to the optical input end of the second coupler 502 .
  • the first converging lens 5015 is further configured to transmit the focused received pilot light to the second coupler 502 . It should be noted that the first converging lens 5015 and the converging lens 40613 have the same structure, which will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a fourth polarizing plate 5014.
  • the fourth polarizing plate 5014 is disposed between the fourth spatial light modulator 5013 and the first condensing lens 5015, and is configured to adjust the polarization direction of the received pilot light and eliminate the polarization state. It should be noted that the fourth polarizing plate 5014 has the same structure as the first polarizing plate 4062, which will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a second beam splitter 5016.
  • the second beam splitter 5016 is disposed on the second light output path of the first beam splitter 5012 and is configured to divide the second vortex received optical signal into two beams, namely the first sub-vortex received optical signal and the second sub-vortex received optical signal.
  • the sub-vortex receives the light signal.
  • the first sub-vortex receives the optical signal
  • the second sub-vortex receives the optical signal in a vortex mode, and they are different vortex modes.
  • the first beam splitter 5012 has a first light output optical path and a second light output optical path. It should be noted that the second beam splitter 5016 has the same structure as the first beam splitter 5012, and will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a fifth spatial light modulator 5017.
  • the fifth spatial light modulator 5017 is disposed on the first light output optical path of the second beam splitter 5016 and is configured to convert the first sub-vortex received optical signal of the vortex mode into the first sub-received optical signal of the Gaussian mode. It should be noted that the fifth spatial light modulator 5017 has the same structure as the first spatial light modulator 4063, and will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a second converging lens 5019.
  • the second condensing lens 5019 is disposed on the output optical path of the fifth spatial light modulator 5017.
  • the second condensing lens 5019 is configured to focus the first sub-received optical signal.
  • the second converging lens 5019 is located at the first output port 50101 of the vortex mode demultiplexing component 501 and is connected to the first input port 5031 of the first mixer 503 .
  • the second condensing lens 5019 is also configured to transmit the focused first sub-received optical signal to the first mixer 503 . It should be noted that the second converging lens 5019 has the same structure as the converging lens 40613, and will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a fifth polarizer 5018.
  • the fifth polarizing plate 5018 is disposed between the fifth spatial light modulator 5017 and the second condensing lens 5019, and is configured to adjust the polarization direction of the first sub-received light signal and eliminate the polarization state. It should be noted that the fifth polarizing plate 5018 has the same structure as the first polarizing plate 4062, which will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a sixth spatial light modulator 50110.
  • the sixth spatial light modulator 50110 is disposed on the second light output optical path of the second beam splitter 5016 and is configured to convert the second sub-vortex received optical signal of the vortex mode into the second sub-received optical signal of the Gaussian mode. It should be noted that the sixth spatial light modulator 50110 has the same structure as the first spatial light modulator 4063, which will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a third converging lens 50112.
  • the third condensing lens 50112 is disposed on the output optical path of the sixth spatial light modulator 50110.
  • the third condensing lens 50112 is configured to focus the second sub-received optical signal.
  • the third converging lens 50112 is located at the third output port 50103 of the vortex mode demultiplexing component 501 and is connected to the first input port 5051 of the second mixer 505 .
  • the third condensing lens 50112 is further configured to transmit the focused second sub-received optical signal to the second mixer 505 . It should be noted that the third condensing lens 50112 has the same structure as the condensing lens 40613, and will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a sixth polarizing plate 50111.
  • the sixth polarizing plate 50111 is disposed between the sixth spatial light modulator 50110 and the third condensing lens 50112, and is configured to adjust the polarization direction of the second sub-received light signal and eliminate the polarization state. It should be noted that the structure of the sixth polarizing plate 50111 is the same as that of the first polarizing plate 4062, which will not be described again here.
  • the vortex receiving light received by the optical input end of the vortex mode demultiplexing component 501 is a mixed mode of signal light and pilot light with different vortex modes, and the light output by the output end is a Gaussian mode.
  • the first output port 50101 outputs the first sub-received optical signal in Gaussian mode
  • the second output port 50102 outputs the receiving pilot light in Gaussian mode
  • the third output port 50103 outputs the second sub-received optical signal in Gaussian mode.
  • Figure 13 is a structural diagram of another swirl mode demultiplexing component according to some embodiments. As shown in Figure 13, some embodiments of the present disclosure also provide another swirl mode demultiplexing component 501.
  • the vortex mode demultiplexing component 501 includes a third tapered coupler 50122.
  • the third tapered coupler 50122 has first and second input terminals, and first and second output terminals. It should be noted that the third tapered coupler 50122 has the same structure as the first tapered coupler 40623, which will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a first receiving vortex ring fiber 50120, a first receiving single mode fiber 50121, a second receiving single mode fiber 50123, and a second receiving vortex ring fiber 50124.
  • the first input end of the third tapered coupler 50122 is connected to the first receiving vortex ring optical fiber 50120, and the second input end is connected to the first receiving single mode optical fiber 50121.
  • Inside the first receiving vortex annular fiber 50120 is a mixed light of pilot light and receiving light signals with different vortex modes.
  • the first receiving vortex ring fiber 50120 includes the first sub-receiving optical signal of the vortex mode OAM1, the receiving pilot light of OAM2, and the second sub-receiving optical signal of OAM3.
  • the second output end of the third tapered coupler 50122 is connected to the second receiving single-mode optical fiber 50123.
  • the second receiving single-mode optical fiber 50123 is the first output port 50101 of the vortex mode multiplexing component 501, and the output is the Gaussian mode.
  • the first sub-unit receives the optical signal.
  • the first output end of the third tapered coupler 50122 is connected to the second receiving vortex ring fiber 50124.
  • the second receiving vortex ring fiber 50124 contains the receiving pilot light of the vortex mode OAM2 and the second sub-receiving signal of OAM3. Light.
  • the vortex mode demultiplexing component 501 also includes a fourth tapered coupler 50125.
  • the fourth tapered coupler 50125 has a first input terminal and a second input terminal, and a first output terminal and a second output terminal. It should be noted that the fourth tapered coupler 50125 has the same structure as the first tapered coupler 40623, and will not be described again here.
  • the vortex mode demultiplexing component 501 also includes a third receiving vortex ring fiber 50126, a third receiving single mode fiber 50129, a fourth receiving vortex ring fiber 50127, and a fourth receiving single mode fiber 50128.
  • the first input end of the fourth tapered coupler 50125 is connected to the third receiving vortex ring optical fiber 50126, and the second input end is connected to the third receiving single mode optical fiber 50129.
  • the third receiving vortex annular fiber 50126 and the second receiving vortex annular fiber 50124 are connected at the solder joint 800.
  • the third receiving vortex annular fiber 50126 contains the receiving pilot light of the vortex mode OAM2 and the third receiving pilot light of OAM3.
  • the second son receives the light signal. There is no light input in the third receiving single-mode optical fiber 50129.
  • the second output end of the fourth tapered coupler 50125 is connected to the fourth receiving single-mode optical fiber 50128.
  • the fourth receiving single-mode optical fiber 50128 is the third output port 50103 of the vortex mode multiplexing component 501, and the output is Gaussian mode.
  • the second sub-unit receives the light signal.
  • the first output end of the fourth tapered coupler 50125 is connected to the fourth receiving vortex ring fiber 50127, and the fourth receiving vortex ring fiber 50127 contains the receiving pilot light of the vortex mode OAM2.
  • the vortex mode demultiplexing component 501 also includes a fifth receive single mode optical fiber 50130.
  • the fifth receiving single-mode fiber 50130 is connected to the fourth receiving vortex ring fiber 50127, and the fifth receiving single-mode fiber 50130 is configured to convert the receiving pilot light of the vortex mode OAM2 from the vortex mode to the Gaussian mode.
  • the fifth receiving single-mode optical fiber 50130 is located at the second output port 50102 of the vortex mode multiplexing component 501.
  • the received vortex received light can be demultiplexed into the first sub-received light signal and the second sub-received light signal of the Gaussian mode through the vortex mode demultiplexing component 501 signal and received pilot light, the second coupler 502 is used to split the received pilot light, and the first sub-pilot light and the second sub-pilot light obtained after splitting are used as local oscillator light and are respectively combined with the first sub-receiver light.
  • the second sub-unit receives the optical signal for coherent detection, thereby achieving self-homogeneous coherent detection of multiple sets of data signals emitted by the opposite end optical module at the same time, eliminating the effects of frequency offset and phase noise, and eliminating the need for complex carriers
  • the recovery algorithm reduces the complexity, power consumption and cost of the coherent detection system, breaking through the limitations of high power consumption, high complexity and high cost of traditional coherent detection.
  • Figure 14 is a structural diagram of a homodyne coherent detection system according to some embodiments. As shown in Figure 14, some embodiments of the present disclosure also provide a homodyne coherent detection system, which includes: a transmitting optical module and a receiving optical module.
  • the emitting light module includes a light emitting component
  • the receiving light module includes a light receiving component.
  • the transmitting optical module is configured to transmit a mixed vortex optical signal.
  • the receiving optical module is configured to receive the mixed vortex optical signal of the transmitting optical module, and demultiplex the mixed vortex optical signal to obtain the receiving pilot light and the receiving optical signal.
  • the light emitting component may be the light emitting component 400 described in the previous embodiments of this disclosure.
  • the light receiving component may be the light receiving component 500 described in the previous embodiments of this disclosure. I won’t go into details here.
  • the Gaussian emitted light output by the first laser 401 is split into N channels of emitted light and pilot light by the first coupler 402.
  • the N channels of emitted light are loaded with signals by the modulator to form N channels of optical signals.
  • N The path light signal and the pilot light are converted into light with N+1 vortex modes through the vortex mode multiplexing component 406 and are multiplexed and transmitted in the vortex ring fiber.
  • the vortex mode demultiplexing component 501 will have N+
  • the light in one vortex mode is converted into N channels of Gaussian optical signals and one channel of Gaussian pilot light.
  • the pilot light is divided into N channels and used as local oscillator light.
  • the N channels of optical signals are coherently detected through N coherent receivers.
  • the self-homodyne coherent detection system of some embodiments of the present disclosure breaks through the limitations of traditional coherent detection such as high complexity, high power consumption and high cost, and has broad application prospects in the fields of vortex mode spatial division multiplexing and short- and medium-distance optical interconnection systems. The application prospects fill the gaps in related technical fields.
  • Figure 15 is a schematic diagram of a pilot optical path and signal optical path length alignment component in autohomodyne coherent detection based on vortex mode multiplexing according to some embodiments.
  • components for aligning the length of the pilot light path and the signal light path in homodyne coherent detection based on vortex mode multiplexing include: a first laser 401, a first coupler 402, a first I/Q Modulator 403, arbitrary waveform generator 4031, fiber extension line 405, second sub-coupler 19, vortex mode multiplexing component 406, vortex ring fiber 507, vortex mode demultiplexing component 501, third coupler 23 , coherent receiver, second laser 13, fourth coupler 14, fifth coupler 15, sixth coupler 16, third photodetector 17, fourth photodetector 18.
  • the first laser 401 outputs Gaussian light to the first I/Q modulator 403, the arbitrary waveform generator 4031 outputs a 10Gbaud QPSK signal to the first I/Q modulator 403, and the first I/Q modulator 403 generates Gaussian light based on the QPSK signal. Modulation is performed to form a QPSK optical signal.
  • the first coupler 402 divides the QPSK optical signal into two channels. One QPSK optical signal passes through the first optical signal transmission path to form N channels of QPSK optical signals.
  • the first optical signal transmission path includes the second I/Q modulator 3, the second Sub-coupler 19, vortex mode multiplexing component 406, vortex ring fiber 507, vortex mode demultiplexing component 501, at this time the second I/Q modulator 3 does not load electrical signals.
  • Another QPSK optical signal passes through a second optical signal transmission path to form N QPSK optical signals.
  • the second optical signal transmission path includes an optical fiber extension line 405, a vortex mode multiplexing component 406, a vortex ring optical fiber 507, and a vortex mode demultiplexer. Multiplexing component 501, third coupler 23. In the vortex ring optical fiber 507, optical signals with N+1 vortex modes are multiplexed and transmitted.
  • the second laser 13 outputs Gaussian light as the local oscillator light of the path alignment module.
  • the local oscillator light is divided into 2N channels through the fourth coupler 14.
  • the 2N local oscillator light and 2N QPSK optical signals pass through the coupler.
  • a total of 2N couplers from 15 to coupler 16 perform mixing.
  • a total of 2N photodetectors from photodetector 17 to photodetector 18 convert the mixed light into 2N electrical signals.
  • Each electrical signal is sampled, and then Digital signal processing, using the Minn algorithm to calculate the symbol number difference between the starting bits of a frame of 2N QPSK symbols, calculating the mismatch length of the signal light and pilot light paths based on the symbol rate and the transmission rate of light in the optical fiber, and adjusting The optical extension line realizes that the optical signal and the pilot optical path length are equal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括第一激光器、第一耦合器、至少一个调制器和涡旋模式复用组件。所述第一激光器发射第一发射光,所述第一发射光为高斯模式的光。所述第一耦合器设置在所述第一激光器的出光侧,被配置为接收所述第一发射光,将所述第一发射光分为至少一路子发射光和第一导频光。所述至少一个调制器与所述第一耦合器连接,被配置为对所述至少一路子发射光进行调制,生成至少一个光信号。所述涡旋模式复用组件,与所述至少一个调制器和所述第一耦合器连接,被配置为将所述至少一个光信号和所述第一导频光分别转换为不同的涡旋模式,并合为一束涡旋发射光。

Description

光模块
本申请要求于2022年4月1日提交的、申请号为202210348504.7的中国专利申请和2022年4月1日提交的、申请号为202210348603.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频会议等新型业务和应用模式发展,光通信技术的发展进步变得愈加重要。在光通信技术中,光模块是实现光信号和电信号相互转换的工具,是光通信设备中的关键器件之一。
新兴的高速数据通信业务的快速发展导致全球数据流量呈现出指数级别的增长趋势,数据中心和城域网等中短距离光通信系统面临着巨大的网络流量压力。在光模块中,将相干光通信技术与波分复用、偏振复用、时分复用、空分复用等技术结合,可以提升中短距离光通信系统的通信容量与频谱效率。
发明内容
本公开一些实施例提供一种光模块。所述光模块包括第一激光器、第一耦合器、至少一个调制器和涡旋模式复用组件。所述第一激光器发射第一发射光,所述第一发射光为高斯模式的光。所述第一耦合器设置在所述第一激光器的出光侧,被配置为接收所述第一发射光,将所述第一发射光分为至少一路子发射光和第一导频光。所述至少一个调制器与所述第一耦合器连接,被配置为对所述至少一路子发射光进行调制,生成至少一个光信号。所述涡旋模式复用组件,与所述至少一个调制器和所述第一耦合器连接,被配置为将所述至少一个光信号和所述第一导频光分别转换为不同的涡旋模式,并合为一束涡旋发射光。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解结构图;
图5为根据一些实施例的一种光发射组件的结构图;
图6为根据一些实施例的一种光发射组件光路图;
图7为根据一些实施例的一种涡旋模式复用组件的结构及光路图;
图8为根据一些实施例的一种涡旋环形光纤的截面图;
图9为根据一些实施例的另一种涡旋模式复用组件的结构图;
图10为根据一些实施例的一种光接收组件的结构图;
图11为根据一些实施例的一种光接收组件的光路图;
图12为根据一些实施例的一种涡旋模式解复用组件的结构及光路图;
图13为根据一些实施例的另一种涡旋模式解复用组件的结构图;
图14为根据一些实施例的一种自零差相干探测系统的结构图;
图15为根据一些的一种基于涡旋模式复用的自零差相干探测中导频光路径与信号光路径长度对准组件的示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的 实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术中,使用光信号携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。常见的信息处理设备包括路由器、交换机、电子计算机等。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实 现与光网络终端(例如,光猫)之间的电连接,电连接主要用于供电、二线制同步串行(Inter-Integrated Circuit,I2C)信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图。为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105的表面的笼子106、设置于笼子106上的散热器107、以及设置在笼子106中的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106中的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解结构图。如图3和图4所示,光模块200包括壳体(shell)、设置于壳体中的电路板300、光发射组件400与光接收组件500。但并不局限于此,在一些实施例中,光模块200包括光发射组件400但不包括光接收组件500,或者,光模块200包括光接收组件500 但不包括光发射组件400。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的左端),开口205也位于光模块200的端部(图3的右端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从电口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200中的光发射组件400与光接收组件500。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射组件400、光接收组件500等器件安装到上述壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300、光发射组件400与光接收组件500等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203。解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外侧,具有与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入笼子106里,由解锁部件203的卡合部件将光模块200固定在笼子106里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从笼子106里抽出。
电路板300包括电路走线、电子元件及芯片等,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;硬性电路板还可以插入上位机的笼子106中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器电连接。金手指301可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块200中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5为根据一些实施例的一种光发射组件的结构图。如图5所示,为提高光通信容量, 本公开一些实施例提供的光发射组件400包括第一激光器401、第一耦合器402、第一调制器403、第二调制器404和涡旋模式复用组件406。
第一激光器401具有光发射端,第一激光器401被配置为发射第一发射光。
第一耦合器402设置于第一激光器401的出光侧。第一耦合器402具有光输入端和光输出端。第一耦合器402的光输入端朝向第一激光器401,第一耦合器402的光输出端为与其光输入端相对的一端。第一耦合器402的光输入端与第一激光器401的光发射端连接。第一耦合器402包括位于光输出端的多个输出端口。示例地,第一耦合器402包括3个输出端口,分别为第一输出端口4021、第二输出端口4022和第三输出端口4023。需要说明的是,本公开对第一耦合器402的输出端口的数量不做限定,其可以是本公开一些实施例所示出的3个,也可以是2个、4个、5个或其它。
第一耦合器402被配置为接收第一发射光,并将一路第一发射光分为多路子发射光。示例地,第一耦合器402将一路第一发射光分为3路子发射光,分别为第一子发射光、第二子发射光和第三子发射光。多路子发射光的数量与第一耦合器402的多个输出端口的数量相等。示例地,从第一耦合器402的第一输出端口4021输出的光为第一子发射光,从第二输出端口4022输出的光为第二子发射光,从第三输出端口4023输出的光为第三子发射光。
第一调制器403设置于第一耦合器402远离第一激光器401的一侧。第一调制器403具有光输入端和光输出端。第一调制器403的光输入端朝向第一耦合器402的光输出端,第一调制器403的光输出端为与其光输入端相对的一端。第一调制器403的光输入端与第一耦合器402的第一输出端口4021连接。第一调制器403被配置为接收第一子发射光并对第一子发射光进行调制,生成第一光信号。
第二调制器404设置于第一耦合器402远离第一激光器401的一侧。第二调制器404具有光输入端和光输出端。第二调制器404的光输入端朝向第一耦合器402的光输出端,第二调制器404的光输出端为与其光输入端相对的一端。第二调制器404的光输入端与第一耦合器402的第二输出端口4022连接。第二调制器404被配置为接收第二子发射光并对第二子发射光进行调制,生成第二光信号。
涡旋模式复用组件406设置于第一调制器403和第二调制器404远离第一耦合器402的一侧。涡旋模式复用组件406具有光输入端和光输出端。涡旋模式复用组件406的光输入端朝向第一调制器403、第二调制器404和第一耦合器402的光输出端,涡旋模式复用组件406的光输出端为与其光输入端相对的一端。涡旋模式复用组件406包括位于光输入端的多个输入端口。示例地,涡旋模式复用组件406包括3个输入端口,分别为第一输入端口40601、第二输入端口40602和第三输入端口40603。涡旋模式复用组件406的第一输入端口40601与第一调制器403的光输出端连接,第二输入端口40602与第二调制器404的光输出端连接、以及第三输入端口40603与第一耦合器402的第三输出端口4023连接。涡旋模式复用组件406被配置为接收第一光信号、第二光信号和第三子发射光,将第一光信号、第二光信号和第三子发射光转换为具有不同的涡旋模式的光,并将所述具有不同的涡旋模式的光复用为一束涡旋发射光。
在公开一些实施例中,第一调制器和第二调制器分别对第一子发射光和第二子发射光进行调制形成光信号,第三子发射光作为导频光,通过涡旋模式复用组件406将光信号和导频光转换为具有不同角动量的涡旋光,用不同的涡旋模式信道传输光信号与导频光,导频光用作本振光实现自零差相干探测,消除了频率偏移以及相位噪声的影响,无需复杂的载波恢复算法,降低相干探测系统的复杂度、功耗与成本,突破了传统相干探测的高功耗、高复杂度与高成本的局限性。
图6为根据一些实施例的一种光发射组件的光路图。图6中,箭头表示光的传播方向,实线箭头所示的光为高斯模式的光,虚线箭头所示的光为涡旋模式的光。
第一激光器401的光发射端发出第一发射光,第一发射光为不携带信息的光,被用作光源。第一发射光入射至第一耦合器402的光输入端,并经第一耦合器402分成多路子发射光。
经第一耦合器402的光输出端出射的多路子发射光分别被用作携带信息的光或导频光。示例地,经第一输出端口4021和第二输出端口4022输出的第一子发射光和第二子发射光作为携带信息的光,经第三输出端口4023输出的第三子发射光作为第一导频光。第一子发射光入射至第一调制器403的光输入端;第二子发射光入射至第二调制器404的光输入端;第三子发射光作为第一导频光,入射至涡旋模式复用组件406的第三输入端口40603。
第一调制器403对第一子发射光进行调制形成第一光信号,经第一调制器403的光输出端出射的第一光信号为携带第一数据信息的光。第二调制器404对第二子发射光进行调制形成第二光信号,经第二调制器404的光输出端出射的第二光信号为携带第二数据信息的光。第一光信号和第二光信号分别入射至涡旋模式复用组件406的第一输入端口40601和第二输入端口40602。涡旋模式复用组件406将第一光信号、第二光信号和第一导频光转换为不同的涡旋模式并复用,生成涡旋发射光。
如图5和图6所示,光发射组件400还包括发射光纤407。发射光纤407的一端与涡旋模式复用组件406的光输出端连接。发射光纤407被配置为将涡旋发射光传输至光模块200的外部。在一些实施例中,发射光纤407为涡旋环形光纤。
在一些实施例中,如图5和图6所示,光发射组件400还包括光纤延长线405。光纤延长线405设置在第一耦合器402与涡旋模式复用组件406之间。光纤延长线405的一端与第一耦合器402的第三输出端口4023连接、另一端与涡旋模式复用组件406的第三输入端口40603连接。光纤延长线405被配置为使得第三子发射光(即第一导频光)由第一耦合器402到涡旋模式复用组件406的路径长度,与第一子发射光由第一耦合器402经第一调制器403到涡旋模式复用组件406的路径长度、或者与第二子发射光由第二耦合器403经第二调制器404到涡旋模式复用组件406的长度相等。这样可以消除频偏与相位噪声的影响,使得发送出去的光信号与导频光具有相同的相位变化量,从而降低光通信系统的复杂度、功耗与成本。
需要说明的是,本公开对光发射组件400中调制器的数量不做限定,其可以是一个或者多个。示例地,当第一耦合器402仅具有2个输出端口时,光发射组件400包括第一调制器403或者第二调制器404;经第一耦合器402的光输出端出射的2路子发射光分别被用作携带信息的光和导频光。
图7为根据一些实施例的一种涡旋模式复用组件的结构及光路图。图7中,箭头表示光的传播方向,实线箭头所示的光为高斯模式的光,虚线箭头所示的光为涡旋模式的光。
在一些实施例中,涡旋模式复用组件406为自由空间光器件涡旋模式复用组件406,包括多个(例如,3个)准直器、多个偏振片、多个空间光调制器和至少一个合束器。每个准直器被配置为将单模光纤中高斯模式的光准直输出到自由空间内对应的一个偏振片上。每个偏振片被配置为将准直后的高斯模式的光的偏振方向调整为对应的一个空间光调制器工作的偏振方向。每个空间光调制器被配置为将偏振后的高斯模式的光转换为一种涡旋模式的光。每个合束器被配置为将产生的多种(例如,2种)涡旋模式的光复用。多个准直器的数量与第一耦合器402的输出端口的数量相等,多个偏振片和多个空间光调制器与多个准直器一一对应设置。以下均以涡旋模式复用组件406包括3个准直器,3个偏振片,3个空间光调制器和2个合束器为例进行说明。
在一些实施例中,3个准直器,分别为第一准直器4061、第二准直器4065和第三准直器4069。
第一准直器4061设置于第一光信号的出射光路上。第一准直器4061具有光输入端和光输出端。第一准直器4061的光输入端朝向第一调制器403,第一准直器4061的光输出端为与其光输入端相对的一端。第一准直器4061的光输入端与第一调制器403的光输出端连接。第一准直器4061被配置为对第一光信号进行准直。
第二准直器4065设置于第二光信号的出射光路上。第二准直器4065具有光输入端和光输出端。第二准直器4065的光输入端朝向第二调制器404,第二准直器4065的光输出端为与其光输入端相对的一端。第二准直器4065的光输入端与第二调制器404的光输出 端连接。第二准直器4065被配置为对第二光信号进行准直。
第三准直器4069设置于第一导频光的出射光路上。第三准直器4069具有光输入端和光输出端。第三准直器4069的光输入端朝向第一耦合器402,第三准直器4069的光输出端为与其光输入端相对的一端。第三准直器4069的光输入端与第一耦合器402的光输出端连接。第三准直器4069被配置为对第一导频光进行准直。
在一些实施例中,3个空间光调制器分别为第一空间光调制器4063、第二空间光调制器4067和第三空间光调制器40611。第一空间光调制器4063、第二空间光调制器4067和第三空间光调制器40611分别设置于第一准直器4061、第二准直器4065和第三准直器4069的光输出端一侧。第一空间光调制器4063被配置为将第一光信号调制转换为第一子涡旋光信号;第二空间光调制器4067被配置为将第二光信号调制转换为第二子涡旋光信号;第三空间光调制器40611被配置为将第一导频光调制转换为第一导频涡旋光。在一些实施例中,空间光调制器为反射式空间光调制器,且输入至空间光调制器的光与该空间光调制器输出的光之间的夹角被配置为尽可能地小。
在一些实施例中,3个偏振片分别为第一偏振片4062、第二偏振片4066和第三偏振片40610。第一偏振片4062设置于第一空间光调制器4063与第一准直器4061之间,被配置为将第一光信号的偏振方向调整至第一空间光调制器4063的工作方向。
第二偏振片4066设置于第二空间光调制器4067与第二准直器4065之间,被配置为将第二光信号的偏振方向调整至第二空间光调制器4067的工作方向。
第三偏振片40610设置于第三空间光调制器40611与第三准直器4069之间,被配置为将第一导频光的偏振方向调整至第三空间光调制器40611的工作方向。
在一些实施例中,2个合束器分别为第一合束器4068和第二合束器40612。
第一合束器4068设置于第一空间光调制器4063和第二空间光调制器4067的出射光路上,被配置为将第一子涡旋光信号和第二子涡旋光信号合束为第一涡旋光信号。示例地,第一合束器4068对第一子涡旋光信号进行反射,对第二子涡旋光信号进行透射,使得第一子涡旋光信号与第二子涡旋光信号经过第一合束器4068后合束成一束第一涡旋光信号。
第二合束器40612设置于第三空间光调制器40611和第一合束器4068的出射光路上,被配置为将第一涡旋光信号和第一导频涡旋光合束为一束涡旋发射光。
可以理解的是,当第一耦合器将第一激光器发出的第一发射光分成两路子发射光,一路子发射光经第一调制器进行调制后形成第一光信号,一路子发射光作为第一导频光,此时,涡旋模式复用组件406仅包括2个准直器、2个偏振片、2个空间调制器和1个分束器。第一准直器与第一调制器连接,被配置为对第一光信号进行准直;第一偏振片设置于第一准直器的出光侧;第一空间光调制器设置于第一偏振片的出光侧,被配置为将第一光信号转换为第一子涡旋光信号;第二准直器与第一耦合器连接,被配置为对第一导频光进行准直;第二偏振片设置于第二准直器的出光侧;第二空间光调制器设置于第二偏振片的出光侧,被配置为将第一导频光转换为第一导频涡旋光;第一合束器,设置于第一空间光调制器和第二空间光调制器的出光光路上,被配置为将第一导频涡旋光和第一子涡旋光信号合并为一束涡旋发射光。如此,第一光信号、第二光信号和第一导频光分别经过涡旋模式复用组件406中的准直器、偏振片、空间光调制器等器件转换后,形成具有不同的涡旋模式的光,所述具有不同的涡旋模式的光经过涡旋模式复用组件406中的合束器等器件复用后,生成一束涡旋发射光。
在一些实施例中,经第二合束器40612合束后的涡旋发射光的光斑较大。基于此,光发射组件400还包括会聚透镜40613。会聚透镜40613设置于第二合束器40612的出射光路上,即位于第二合束器40612与发射光纤407之间。会聚透镜40613被配置为将所述涡旋发射光耦合至发射光纤407。这样,经会聚透镜40613会聚后的光斑位于发射光纤407靠近会聚透镜40613的端面上,以提高光通信系统的通信准确性。
在一些实施例中,用于传输第一导频光的涡旋模式可以是0阶涡旋模式,可以是1阶涡旋模式,也可以是其他阶次的涡旋模式。
在一些实施例中,第一光信号、第二光信号与第一导频光通过涡旋环形光纤中不同阶 数的涡旋模式进行复用传输。示例地,当上述不同阶数的涡旋模式之间的串扰小于-15dB时,可以减少第一光信号、第二光信号与第一导频光之间的串扰,从而有助于提高光通信系统的通信质量。
图8为根据一些实施例的一种涡旋环形光纤的截面图。如图8所示在一些实施例中,所述涡旋环形光纤包括由内向外依次设置的中心区域601、环形纤芯602和包层603。环形纤芯602包覆于中心区域601的外侧,包层603包覆于环形纤芯602的外侧。
在一些实施例中,包层603采用掺氟工艺制作而成。包层603的折射率小于二氧化硅的折射率,且包层603与二氧化硅之间的相对折射率差不超过0.7%。示例地,包层603与二氧化硅之间的相对折射率差为0.1%、0.2%、0.3%、0.4%、0.5%、0.6%或0.7%。
中心区域601与包层603的折射率相同。环形纤芯602的折射率大于与包层603的折射率,且环形纤芯602与包层603之间的相对折射率差不超过1%。示例地,环形纤芯602与包层603之间的相对折射率差为0.01%、0.02%、0.03%、0.05%、0.07%、0.08%、0.09%或1%。
在一些实施例中,环形纤芯602的内径(即中心区域601的直径)为2μm~10μm,例如,可以为2μm、3μm、4μm、5μm、6μm、8μm或10μm。环形纤芯602的宽度为1μm~20μm,例如,可以为1μm、3μm、5μm、8μm、10μm、12μm、15μm、18μm或20μm。环形纤芯602的宽度被定义为在图8所示的环形截面上,环形纤芯602的外径与环形纤芯602的内径的差值的一半。
在一些实施例中,涡旋环形光纤仅支持多通道径向一阶涡旋模式,且多通道径向一阶涡旋模式被划分为多个不同的模群。多个不同的模群中的第一个模群包含2种模式,除第一个模群以外的其他每个模群均包含4种模式,且除前两个模群以外,多个不同的模群中的其余模群之间的有效折射率差均大于10 -4
图9为根据一些实施例的另一种涡旋模式复用组件的结构图。如图9所示,本公开一些实施例还提供了另一种涡旋模式复用组件406。
在一些实施例中,涡旋模式复用组件406包括第一光纤模式耦合器和第二光纤模式耦合器。
所述第一光纤模式耦合器包括第一单模光纤40620和第一涡旋环形光纤40621。第一单模光纤40620的一端与第一调制器403的光输出端连接、另一端与第一涡旋环形光纤40621的一端连接。第一单模光纤40620被配置为传输第一光信号。第一涡旋环形光纤40621被配置为将高斯模式的第一光信号转换为OAM 01模式的第一子涡旋光信号。需要说明的是,对第一单模光纤40620与第一涡旋环形光纤40621之间的连接方式不做限定。示例地,第一单模光纤40620与第一涡旋环形光纤40621之间通过焊接工艺连接,且上述两种光纤焊接于焊点600。
所述第一光纤模式耦合器还包括第二单模光纤40622。第二单模光纤40622的一端与第二调制器404的光输出端连接,第二单模光纤40622被配置为传输第二光信号。
所述第一光纤模式耦合器还包括第一拉锥耦合器40623和第二涡旋环形光纤40624。第一拉锥耦合器40623具有第一输入端406231和第二输入端406232、第一输出端406233和第二输出端406234。第一输入端406231和第二输入端406232位于第一拉锥耦合器40623的一端,第一输出端406233和第二输出端406234位于第一拉锥耦合器40623的另一端。第一拉锥耦合器40623的第一输入端406231与第一涡旋环形光纤40621的另一端连接,第二输入端406232与第二单模光纤40622的另一端连接,第一输出端406233与第二涡旋环形光纤40624的一端连接,第二输出端406234与一单模光纤连接。第一拉锥耦合器40623被配置为接收第二光信号、第一子涡旋光信号,将高斯模式的第二光信号转换为OAM 11模式的第二子涡旋光信号,并将OAM 01模式的第一子涡旋光信号与OAM 11模式的第二子涡旋光信号复用为第一涡旋光信号。
所述第二光纤模式耦合器包括第三涡旋环形光纤40625。第三涡旋环形光纤40625的一端与第二涡旋环形光纤40624的另一端连接。第三涡旋环形光纤40625被配置为传输第一涡旋光信号。需要说明的是,对第三涡旋环形光纤40625与第二涡旋环形光纤40624之 间的连接方式不做限定。示例地,第三涡旋环形光纤40625与第二涡旋环形光纤40624之间通过焊接工艺连接,且上述两涡旋环形光纤焊接于焊点700,以实现所述第二光纤模式耦合器与所述第一光纤模式耦合器之间的级联。
所述第二光纤模式耦合器还包括第三单模光纤40626。第三单模光纤40626的一端与第一耦合器402的第三输出端口4023或者光纤延时线405的输出端连接。第三单模光纤40626被配置为传输第一导频光。
所述第二光纤模式耦合器还包括第二拉锥耦合器40627和第四涡旋环形光纤40628。第二拉锥耦合器40627具有第一输入端406271和第二输入端406272、第一输出端406273和第二输出端406274。需要说明的是,第二拉锥耦合器40627与第一拉锥耦合器40623的结构相同,在此不再赘述。
第二拉锥耦合器40627的第一输入端406271与第三涡旋环形光纤40625的另一端连接,第二输入端406272与第三单模光纤40626的另一端连接,第一输出端406273与第四涡旋环形光纤40628连接,第二输出端406274与另一单模光纤连接。第二拉锥耦合器40627被配置为接收第一导频光、第一涡旋光信号,将高斯模式的第一导频光转换为OAM 21模式的第一导频涡旋光,并将OAM 21模式的第一导频涡旋光与第一涡旋光信号复用为一束涡旋发射光。
需要说明的是,上述第一涡旋环形光纤40621、第二涡旋环形光纤40624、第三涡旋环形光纤40625与第四涡旋环形光纤40628的结构截面图均如图8所示。
可以理解的是,当第一耦合器将第一激光器发出的第一发射光分成两路子发射光,一路子发射光经第一调制器进行调制后形成第一光信号,一路子发射光作为第一导频光,此时,涡旋模式复用组件406仅包括第一光纤模式耦合器。第一光纤模式耦合器的第二单模光纤与第一耦合器连接,被配置为传输第一导频光。
在本公开一些实施例的涡旋模式复用组件406中,采用拉锥耦合器(例如第一拉锥耦合器40623或第二拉锥耦合器40627)先对单模光纤进行预拉锥匹配,再对单模光纤与涡旋环形光纤之间的耦合区域进行拉锥熔接,以实现涡旋模式的选择性耦合。采用两个光纤模式耦合器(例如所述第一光纤模式耦合器和所述第二光纤模式耦合器)进行级联的方式可以实现三种涡旋模式的光的复用。第一单模光纤40620与第一涡旋环形光纤40621焊接于焊点600,使得高斯模式的所述第一光信号经过第一单模光纤40620传输至第一涡旋环形光纤40621,以激发产生OAM 01模式的第一子涡旋光信号,第二单模光纤40622输入的高斯模式的所述第二光信号传输至第一拉锥耦合器40623的拉锥耦合区域1,从而耦合产生OAM 11模式的第二子涡旋光信号,使得OAM 01模式与OAM 11模式的两种子涡旋光信号在第二涡旋环形光纤40624中复用传输;所述第一光纤模式耦合器输出端的第二涡旋环形光纤40624与所述第二光纤模式耦合器输入的第三涡旋环形光纤40625焊接于焊点700,以实现上述两个光纤模式耦合器之间的级联。所述第二光纤模式耦合器的第三单模光纤40626输入的高斯模式的所述第一导频光传输至第二拉锥耦合器40627的拉锥耦合区域2,从而耦合产生OAM 21模式的第一导频涡旋光,使得OAM 21模式与OAM 01模式、OAM 11模式的涡旋光一起复用传输,从而实现三种涡旋模式的光的复用。
本公开一些实施例提供的光发射组件400中,第一调制器403和第二调制器404分别对第一子发射光和第二子发射光加载数据形成第一光信号和第二光信号,第一耦合器402第三输出端口4023输出的第三子发射光作为第一导频光,通过涡旋模式复用组件406将第一光信号、第二光信号和第一导频光转换为具有不同角动量的涡旋光,从而实现用不同的涡旋模式信道传输光信号与导频光。
图10为根据一些实施例的一种光接收组件的结构图。图11为根据一些实施例的一种光接收组件的光路图。图11中,箭头表示光的传播方向,实线箭头所示的光为高斯模式的光,虚线箭头所示的光为涡旋模式的光。
如图10和图11所示,本公开一些实施例提供的光接收组件500包括接收光纤507。接收光纤507被配置为接收涡旋接收光。接收光纤507内传递的涡旋接收光为一束具有不同涡旋模式的光信号与导频光的混合涡旋光。需要说明的是,涡旋模式解复用组件501可 以接收来自光模块200外部的涡旋光(例如,对端光模块发送的涡旋光),为方便表述,将该涡旋光称为涡旋接收光。
光接收组件500还包括涡旋模式解复用组件501。涡旋模式解复用组件501具有相对设置的光输入端和光输出端。涡旋模式解复用组件501包括位于其光输出端的多个(例如,3个)输出端口,所述多个输出端口分别为第一输出端口50101、第二输出端口50102和第三输出端口50103。需要说明的是,本公开对涡旋模式解复用组件501的输出端口的数量不做限定,其可以是本公开一些实施例所示出的3个,也可以是2个、4个、5个或其它。涡旋模式解复用组件501的光输入端与接收光纤507连接。涡旋模式解复用组件501被配置为接收涡旋接收光,对该涡旋接收光进行解复用,并将该涡旋接收光解复用为高斯模式的第一子接收光信号、第二子接收光信号和接收导频光。涡旋模式解复用组件501的第一输出端口50101输出的光为第一子接收光信号,第二输出端口50102输出的光为接收导频光,第三输出端口50103输出的光为第二子接收光信号。
光接收组件500还包括第二耦合器502。第二耦合器502设置于涡旋模式解复用组件501的光输出端一侧。第二耦合器502具有相对设置的光输入端和光输出端。第二耦合器502的光输入端与涡旋模式解复用组件501的第二输出端口50102连接。第二耦合器502被配置为将接收导频光耦合为第一子导频光和第二子导频光。第二耦合器502包括位于其光输出端的多个输出端口。示例地,第二耦合器502包括两个输出端口,分别为第一输出端口5021和第二输出端口5022。在一些实施例中,第二耦合器502具体将接收导频光耦合为几路,可根据实际需要进行设置,可以为本公开一些实施例示出的3路,也可以为4路、5路或其它。
光接收组件500还包括第一相干接收机。所述第一相干接收机的一端与涡旋模式解复用组件501的第一输出端口50101、第二耦合器502的第一输出端口5021连接。所述第一相干接收机被配置为接收第一子接收光信号与第一子导频光,并对第一子接收光信号与第一子导频光进行混频与平衡探测。
在一些实施例中,所述第一相干接收机包括第一混频器503。第一混频器503具有相对设置的光输入端和光输出端。第一混频器503包括位于其光输入端的多个输入端口。示例地,第一混频器503包括两个输入端口,分别为第一输入端口5031和第二输入端口5032。第一混频器503的第一输入端口5031与涡旋模式解复用组件501的第一输出端口50101连接,第二输入端口5032与第二耦合器502的第一输出端口5021连接。第一混频器503被配置为接收第一子接收光信号与第一子导频光,并将第一子接收光信号与第一子导频光耦合形成第一接收混频光。
所述第一相干接收机还包括第一探测器504。第一探测器504具有相对设置的光输入端和光输出端。第一探测器504的光输入端与第一混频器503的光输出端连接。第一探测器504被配置为接收第一混合信号光,将第一接收混频光转换为第一电信号。在一些实施例中,第一探测器504为平衡探测器。
在一些实施例中,电路板300还包括数字处理器310。第一探测器504还被配置为将第一电信号传输至数字处理器310。数字处理器310被配置为对第一电信号进行采样后经数字信号处理恢复并解调信号,以实现基于涡旋模式复用的自零差相干探测。
光接收组件500还包括第二相干接收机。所述第二相干接收机的一端与涡旋模式解复用组件501的第三输出端口50103、第二耦合器502的第二输出端口5022连接。所述第二相干接收机被配置为接收第二子接收光信号与第二子导频光,并对第二子接收光信号与第二子导频光进行混频与平衡探测。
在一些实施例中,所述第二相干接收机包括第二混频器505。第二混频器505具有相对设置的光输入端和光输出端。第二混频器505包括位于其光输入端的多个输入端口。示例地,第二混频器505包括两个输入端口,分别为第一输入端口5051和第二输入端口5052。第二混频器505的第一输入端口5051与涡旋模式解复用组件501的第三输出端口50103连接,第二输入端口5052与第二耦合器502的第二输出端口5022连接。第二混频器505被配置为接收第二子接收光信号与第二子导频光,并将第二子接收光信号与第二子导频光 混频形成第二接收混频光。
所述第二相干接收机还包括第二探测器506。第二探测器506具有相对设置的光输入端和光输出端。第二探测器506的光输入端与第二混频器505的光输出端连接。第二探测器506被配置为接收第二接收混频光,对第二接收混频光进行平衡探测转换为第二电信号,并将第二电信号传送至数字处理器310。数字处理器310还被配置为对第二电信号进行采样后经数字信号处理恢复并解调信号,以实现基于涡旋模式复用的自零差相干探测。在一些实施例中,第二探测器506为平衡探测器。
在一些实施例中,接收光纤507还与外部光纤101连接。接收光纤507还被配置为传送对端光模块发射的涡旋接收光。
根据光的可逆性,涡旋模式解复用组件501和涡旋模式复用组件406结构相同,用于实现对涡旋接收光的解复用。需要说明的是,对于涡旋模式解复用组件501与涡旋模式复用组件406结构及设置相同的部分,在此不再赘述。
图12为根据一些实施例的一种涡旋模式解复用组件的结构及光路图。图12中,箭头表示光的传播方向,实线箭头所示的光为高斯模式的光,虚线箭头所示的光为涡旋模式的光。
在一些实施例中,如图12所示,涡旋模式解复用组件501为自由空间光器件涡旋模式解复用组件501。
在一些实施例中,涡旋模式解复用组件501包括准直透镜5011。准直透镜5011具有相对设置的光输入端和光输出端。准直透镜5011的光输入端与接收光纤507的输出端连接,准直透镜5011被配置为对涡旋接收光进行准直。
涡旋模式解复用组件501还包括第一分束器5012。第一分束器5012设置于准直透镜5011的出光光路上,即位于准直透镜5011的光输出端一侧。第一分束器5012被配置为对涡旋接收光进行分束,生成第一涡旋接收导频光和第二涡旋接收光信号。第一分束器5012具有第一出光光路和第二出光光路。
涡旋模式解复用组件501还包括第四空间光调制器5013。第四空间光调制器5013设置于第一分束器5012的第一出光光路上,被配置为将涡旋模式的第一涡旋接收导频光转化为高斯模式的接收导频光。需要说明的是,第四空间光调制器5013与第一空间光调制器4063的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第一会聚透镜5015。第一会聚透镜5015设置于第四空间光调制器5013的出射光路上。第一会聚透镜5015被配置为对接收导频光进行聚焦。在一些实施例中,第一会聚透镜5015位于涡旋模式解复用组件501的第二输出端口50102处,且与第二耦合器502的光输入端连接。第一会聚透镜5015还被配置为将聚焦后的接收导频光传输至第二耦合器502。需要说明的是,第一会聚透镜5015与会聚透镜40613的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第四偏振片5014。第四偏振片5014设置于第四空间光调制器5013与第一会聚透镜5015之间,被配置为调节接收导频光的偏振方向,消除偏振态。需要说明的是,第四偏振片5014与第一偏振片4062的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第二分束器5016。第二分束器5016设置于第一分束器5012的第二出光光路上,被配置为将第二涡旋接收光信号分为两束,分别为第一子涡旋接收光信号和第二子涡旋接收光信号。此时第一子涡旋接收光信号和第二子涡旋接收光信号为涡旋模式,且为不同的涡旋模式。第一分束器5012具有第一出光光路和第二出光光路。需要说明的是,第二分束器5016与第一分束器5012的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第五空间光调制器5017。第五空间光调制器5017设置于第二分束器5016的第一出光光路上,被配置为将涡旋模式的第一子涡旋接收光信号转化为高斯模式的第一子接收光信号。需要说明的是,第五空间光调制器5017与第一空间光调制器4063的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第二会聚透镜5019。第二会聚透镜5019设置于第五空间光调制器5017的出射光路上。第二会聚透镜5019被配置为对第一子接收光信号进行 聚焦。在一些实施例中,第二会聚透镜5019位于涡旋模式解复用组件501的第一输出端口50101处,且与第一混频器503的第一输入端口5031连接。第二会聚透镜5019还被配置为将聚焦后的第一子接收光信号传输至第一混频器503。需要说明的是,第二会聚透镜5019与会聚透镜40613的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第五偏振片5018。第五偏振片5018设置于第五空间光调制器5017与第二会聚透镜5019之间,被配置为调节第一子接收光信号的偏振方向,消除偏振态。需要说明的是,第五偏振片5018与第一偏振片4062的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第六空间光调制器50110。第六空间光调制器50110设置于第二分束器5016的第二出光光路上,被配置为将涡旋模式的第二子涡旋接收光信号转化为高斯模式的第二子接收光信号。需要说明的是,第六空间光调制器50110与第一空间光调制器4063的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第三会聚透镜50112。第三会聚透镜50112设置于第六空间光调制器50110的出射光路上。第三会聚透镜50112被配置为对第二子接收光信号进行聚焦。在一些实施例中,第三会聚透镜50112位于涡旋模式解复用组件501的第三输出端口50103处,且与第二混频器505的第一输入端口5051连接。第三会聚透镜50112还被配置为将聚焦后的第二子接收光信号传输至第二混频器505。需要说明的是,第三会聚透镜50112与会聚透镜40613的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第六偏振片50111。第六偏振片50111设置于第六空间光调制器50110与第三会聚透镜50112之间,被配置为调节第二子接收光信号的偏振方向,消除偏振态。需要说明的是,第六偏振片50111与第一偏振片4062的结构相同,在此不再赘述。
如此,涡旋模式解复用组件501的光输入端接收的涡旋接收光,为一束具有不同涡旋模式的信号光和导频光的混合模式,其输出端输出的光为高斯模式,示例地,第一输出端口50101输出高斯模式的第一子接收光信号,第二输出端口50102输出高斯模式的接收导频光,第三输出端口50103输出高斯模式的第二子接收光信号。
图13为根据一些实施例的另一种涡旋模式解复用组件的结构图。如图13所示,本公开一些实施例还提供了另一种涡旋模式解复用组件501。
在一些实施例中,涡旋模式解复用组件501包括第三拉锥耦合器50122。第三拉锥耦合器50122具有第一输入端和第二输入端、第一输出端和第二输出端。需要说明的是,第三拉锥耦合器50122与第一拉锥耦合器40623的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第一接收涡旋环形光纤50120、第一接收单模光纤50121、第二接收单模光纤50123和第二接收涡旋环形光纤50124。
第三拉锥耦合器50122的第一输入端与第一接收涡旋环形光纤50120连接,第二输入端与第一接收单模光纤50121连接。第一接收涡旋环形光纤50120内为一束具有不同涡旋模式的导频光与接收光信号的混合光。如图13所示,第一接收涡旋环形光纤50120包含涡旋模式OAM1的第一子接收光信号、OAM2的接收导频光、OAM3的第二子接收光信号。
第三拉锥耦合器50122的第二输出端与第二接收单模光纤50123连接,第二接收单模光纤50123为涡旋模式复用组件501的第一输出端口50101,输出的为高斯模式的第一子接收光信号。第三拉锥耦合器50122的第一输出端与第二接收涡旋环形光纤50124连接,第二接收涡旋环形光纤50124内包含涡旋模式OAM2的接收导频光、OAM3的第二子接收信号光。
涡旋模式解复用组件501还包括第四拉锥耦合器50125。第四拉锥耦合器50125具有第一输入端和第二输入端、第一输出端和第二输出端。需要说明的是,第四拉锥耦合器50125与第一拉锥耦合器40623的结构相同,在此不再赘述。
涡旋模式解复用组件501还包括第三接收涡旋环形光纤50126、第三接收单模光纤50129、第四接收涡旋环形光纤50127和第四接收单模光纤50128。
第四拉锥耦合器50125的第一输入端与第三接收涡旋环形光纤50126连接,第二输入端与第三接收单模光纤50129连接。示例地,第三接收涡旋环形光纤50126与第二接收涡旋环形光纤50124于焊点800处连接,第三接收涡旋环形光纤50126内包含涡旋模式OAM2的接收导频光、OAM3的第二子接收光信号。第三接收单模光纤50129内无光输入。第四拉锥耦合器50125的第二输出端与第四接收单模光纤50128连接,第四接收单模光纤50128为涡旋模式复用组件501的第三输出端口50103,输出的是高斯模式的第二子接收光信号。第四拉锥耦合器50125的第一输出端与第四接收涡旋环形光纤50127连接,第四接收涡旋环形光纤50127内包含涡旋模式OAM2的接收导频光。
涡旋模式解复用组件501还包括第五接收单模光纤50130。第五接收单模光纤50130与第四接收涡旋环形光纤50127连接,第五接收单模光纤50130被配置为将涡旋模式OAM2的接收导频光由涡旋模式转换为高斯模式。第五接收单模光纤50130位于涡旋模式复用组件501的第二输出端口50102。
本公开一些实施例提供的光接收组件500中,可通过涡旋模式解复用组件501将接收到的涡旋接收光解复用为高斯模式的第一子接收光信号、第二子接收光信号和接收导频光,利用第二耦合器502将接收导频光进行分束,分束后得到的第一子导频光和第二子导频光作为本振光分别与第一子接收光信号、第二子接收光信号进行相干探测,从而实现同时对对端光模块发射的多组数据信号进行自零差相干探测,消除了频率偏移以及相位噪声的影响,且无需复杂的载波恢复算法,降低了相干探测系统的复杂度、功耗与成本,突破了传统相干探测的高功耗、高复杂度与高成本的局限性。
图14为根据一些实施例的一种自零差相干探测系统的结构图。如图14所示,本公开一些实施例还提供了一种自零差相干探测系统,该自零差相干探测系统包括:发射光模块和接收光模块。发射光模块包括光发射组件,接收光模块包括光接收组件。发射光模块被配置为发射混频涡旋光信号。接收光模块被配置为接收发射光模块的混频涡旋光信号,并通过对混频涡旋光信号解复用得到接收导频光和接收光信号。通过将接收导频光用作本振光,可以实现自零差相干传输,从而消除了频率偏移以及相位噪声的影响,且无需复杂的载波恢复算法,降低了相干探测系统的复杂度、功耗与成本,突破了传统相干探测的高功耗、高复杂度与高成本的局限性。
在一些实施例中,光发射组件可以为本公开前述实施例所述的光发射组件400。光接收组件可以为本公开前述实施例所述的光接收组件500。在此不再赘述。
在一些实施例中,第一激光器401输出的高斯发射光经第一耦合器402分束为N路子发射光与导频光,N路子发射光经调制器加载信号后形成N路光信号,N路光信号与导频光通过涡旋模式复用组件406转换为具有N+1个涡旋模式的光并在涡旋环形光纤中复用传输,涡旋模式解复用组件501将具有N+1个涡旋模式的光转换为N路高斯光信号及一路高斯导频光,导频光被分为N路,用作本振光,与N路光信号通过N个相干接收机进行相干探测,从而实现基于涡旋模式复用的自零差相干探测。本公开一些实施例的自零差相干探测系统突破了传统相干探测复杂度高、功耗高与成本高的局限,其在涡旋模式空分复用与中短距离光互连系统领域具有广阔应用前景,填补了相关技术领域的空白。
图15为根据一些实施例的一种基于涡旋模式复用的自零差相干探测中导频光路径与信号光路径长度对准组件的示意图。如图15所示,基于涡旋模式复用的自零差相干探测中导频光路径与信号光路径长度对准组件,包括:第一激光器401、第一耦合器402、第一I/Q调制器403、任意波形发生器4031、光纤延长线405、第二子耦合器19、涡旋模式复用组件406、涡旋环形光纤507、涡旋模式解复用组件501、第三耦合器23、相干接收机、第二激光器13、第四耦合器14、第五耦合器15、第六耦合器16、第三光电探测器17、第四光电探测器18。第一激光器401输出高斯光至第一I/Q调制器403,任意波形发生器4031输出10Gbaud QPSK信号至第一I/Q调制器403,第一I/Q调制器403基于QPSK信号对高斯光进行调制形成QPSK光信号。第一耦合器402将QPSK光信号分为两路,一路QPSK光信号经过第一光信号传输路径形成N路QPSK光信号,第一光信号传输路径包括第二I/Q调制器3、第二子耦合器19、涡旋模式复用组件406、涡旋环形光纤507、涡旋模 式解复用组件501,此时第二I/Q调制器3不加载电信号。另一路QPSK光信号经过第二光信号传输路径形成N路QPSK光信号,该第二光信号传输路径包括光纤延长线405、涡旋模式复用组件406、涡旋环形光纤507、涡旋模式解复用组件501、第三耦合器23。涡旋环形光纤507中,具有N+1个涡旋模式的光信号复用传输。在接收端,第二激光器13输出高斯光作为路径对准模块的本振光,经过第四耦合器14将本振光分为2N路,2N路本振光与2N路QPSK光信号经过耦合器15至耦合器16共2N个耦合器进行混频,光电探测器17至光电探测器18共2N个光电探测器将混频光转换为2N路电信号,对每一路电信号进行采样,随后进行数字信号处理,通过Minn算法计算2N路QPSK符号的一帧起始位之间的符号个数差,根据符号速率以及光在光纤中的传输速率计算信号光与导频光路径失配长度,调节所述光延长线实现光信号与导频光路径长度相等。
由于以上实施方式均是在其他方式之上引用结合进行说明,不同实施例之间均具有相同的部分,本说明书中各个实施例之间相同、相似的部分互相参见即可。在此不再详细阐述。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种光模块,包括:
    第一激光器,发射第一发射光,所述第一发射光为高斯模式的光;
    第一耦合器,设置在所述第一激光器的出光侧,被配置为接收所述第一发射光,将所述第一发射光分为至少一路子发射光和第一导频光;
    至少一个调制器,与所述第一耦合器连接,被配置为对所述至少一路子发射光进行调制,生成至少一个光信号;
    涡旋模式复用组件,与所述至少一个调制器和所述第一耦合器连接,被配置为将所述至少一个光信号和所述第一导频光分别转换为不同的涡旋模式,并合为一束涡旋发射光。
  2. 根据权利要求1所述的光模块,其中,所述至少一路子发射光包括第一子发射光;
    所述至少一个调制器包括第一调制器,所述第一调制器与所述第一耦合器连接,被配置为对所述第一子发射光进行调制形成第一光信号。
  3. 根据权利要求2所述的光模块,其中,所述涡旋模式复用组件包括:
    第一准直器,与所述第一调制器连接,被配置为对所述第一光信号进行准直;
    第一偏振片,设置于所述第一准直器的出光侧;
    第一空间光调制器,设置于所述第一偏振片的出光侧,被配置为将所述第一光信号转换为第一子涡旋光信号;
    第二准直器,与所述第一耦合器连接,被配置为对所述第一导频光进行准直;
    第二偏振片,设置于所述第二准直器的出光侧;
    第二空间光调制器,设置于所述第二偏振片的出光侧,被配置为将所述第一导频光转换为第一导频涡旋光;
    第一合束器,设置于所述第一空间光调制器和所述第二空间光调制器的出光光路上,被配置为将所述第一导频涡旋光和所述第一子涡旋光信号合并为一束涡旋发射光。
  4. 根据权利要求2所述的光模块,其中,所述涡旋模式复用组件包括:
    第一单模光纤,所述第一单模光纤的第一端与所述第一调制器连接;
    第一涡旋环形光纤,所述第一涡旋环形光纤的第一端与所述第一单模光纤的第二端连接,被配置为将所述第一光信号转换为第一子涡旋光信号;
    第二单模光纤,所述第二单模光纤的第一端与所述第一耦合器连接;
    第一拉锥耦合器,所述第一拉锥耦合器的第一输入端与所述第一涡旋环形光纤的第二端连接,第二输入端与所述第二单模光纤的第二端连接,被配置为将所述第一导频光转换为第一导频涡旋光,且将所述第一导频涡旋光和所述第一子涡旋光信号合并为一束涡旋发射光;
    第二涡旋环形光纤,与所述第一拉锥耦合器的输出端连接,被配置为传输所述涡旋发射光。
  5. 根据权利要求1所述的光模块,其中,所述至少一路子发射光包括第一子发射光和第二子发射光;
    所述至少一个调制器包括:
    第一调制器,与所述第一耦合器连接,被配置为对所述第一子发射光进行调制形成第一光信号;
    第二调制器,与所述第一耦合器连接,被配置为对所述第二子发射光进行调制形成第二光信号。
  6. 根据权利要求5所述的光模块,其中,所述涡旋模式复用组件包括:
    第一准直器,与所述第一调制器连接,被配置为对所述第一光信号进行准直;
    第一偏振片,设置于所述第一准直器的出光侧;
    第一空间光调制器,设置于所述第一偏振片的出光侧,被配置为将所述第一光信号转换为第一子涡旋光信号;
    第二准直器,与所述第二调制器连接,被配置为对所述第二光信号进行准直;
    第二偏振片,设置于所述第二准直器的出光侧;
    第二空间光调制器,设置于所述第二偏振片的出光侧,被配置为将所述第二光信号转 换为第二子涡旋光信号;
    第三准直器,与所述第一耦合器连接,被配置为对所述第一导频光进行准直;
    第三偏振片,设置于所述第三准直器的出光侧;
    第三空间光调制器,设置于所述第三偏振片的出光侧,被配置为将所述第一导频光转换为第一导频涡旋光;
    第一合束器,设置于所述第一空间光调制器和所述第二空间光调制器的出光光路上,被配置为将所述第一子涡旋光信号和所述第二子涡旋光信号合并为第一涡旋光信号;
    第二合束器,设置于所述第三空间光调制器和所述第一合束器的出光光路上,被配置为将所述第一涡旋光信号和所述第一导频涡旋光合并为一束涡旋发射光。
  7. 根据权利要求5所述的光模块,其中,所述涡旋模式复用组件包括:
    第一单模光纤,所述第一单模光纤的第一端与所述第一调制器连接;
    第一涡旋环形光纤,所述第一涡旋环形光纤的第一端与所述第一单模光纤的第二端连接,被配置为将所述第一光信号转换为第一子涡旋光信号;
    第二单模光纤,所述第二单模光纤的第一端与所述第二调制器连接;
    第一拉锥耦合器,所述第一拉锥耦合器的第一输入端与所述第一涡旋环形光纤的第二端连接,第二输入端与所述第二单模光纤的第二端连接,被配置为将所述第二光信号转换为第二子涡旋光信号,且将所述第一子涡旋光信号和所述第二子涡旋光信号合并第一涡旋光信号;
    第二涡旋环形光纤,所述第二涡旋环形光纤的第一端与所述第一拉锥耦合器的输出端连接;
    第三涡旋环形光纤,所述第三涡旋环形光纤的第一端与所述第二涡旋环形光纤的第二端连接;
    第三单模光纤,所述第三单模光纤的第一端与所述第一耦合器连接;
    第二拉锥耦合器,所述第二拉锥耦合器的第一输入端与所述第三涡旋环形光纤的第二端连接,第二输入端与所述第三单模光纤的第二端连接,被配置为将所述第一导频光转换成第一导频涡旋光,且将所述第一导频涡旋光与所述第一涡旋光信号合并为一束涡旋发射光;
    第四涡旋环形光纤,与所述第二拉锥耦合器的输出端连接,被配置为传输所述涡旋发射光。
  8. 根据权利要求1所述的光模块,还包括:
    光纤延长线,所述光纤延长线的一端与所述第一耦合器连接,另一端与所述涡旋模式复用组件连接;
    所述光纤延长线使得所述至少一路子发射光由所述第一耦合器、经所述至少一个调制器到所述涡旋模式复用组件的路径长度,等于所述第一导频光由所述第一耦合器到所述涡旋模式复用组件的路径长度。
  9. 根据权利要求1所述的光模块,还包括:
    发射光纤,与所述涡旋模式复用组件连接,被配置为将所述涡旋发射光传输至所述光模块的外部,所述发射光纤为涡旋环形光纤。
  10. 根据权利要求9所述的光模块,其中,所述发射光纤包括:
    中心区域;
    环形纤芯,包覆于所述中心区域的外侧;
    包层,包覆于所述环形纤芯的外侧;
    所述中心区域与所述包层具有相同的折射率;
    所述环形纤芯的折射率大于所述包层的折射率。
  11. 根据权利要求1所述的光模块,还包括:
    涡旋模式解复用组件,被配置为接收来自所述光模块外部的涡旋接收光,并将所述涡旋接收光解复用为高斯模式的第一子接收光信号、第二子接收光信号和接收导频光;
    第二耦合器,与所述涡旋模式解复用组件连接,被配置为将所述接收导频光分为第一 子导频光和第二子导频光;
    第一相干接收机,与所述涡旋模式解复用组件和所述第二耦合器连接,被配置为对所述第一子接收光信号和所述第一子导频光进行混频形成第一接收混频光,并将所述第一接收混频光转换为第一电信号;
    第二相干接收机,与所述涡旋模式解复用组件和所述第二耦合器连接,被配置为将所述第二子接收光信号和第二子导频光进行混频形成第二接收混频光,并将所述第二接收混频光转换为第二电信号。
  12. 根据权利要求11所述的光模块,其中,所述涡旋模式解复用组件包括:
    第一分束器,被配置为接收所述涡旋接收光,将所述涡旋接收光进行分束,输出第一涡旋接收导频光和第二涡旋接收光信号;
    第四空间光调制器,设置于所述第一分束器的第一出光光路上,被配置为将所述第一涡旋接收导频光转换为所述接收导频光;
    第二分束器,设置在所述第一分束器的第二出光光路上,被配置为将所述第二涡旋接收光信号分为第一子涡旋接收光信号和第二子涡旋接收光信号;
    第五空间光调制器,设置于所述第二分束器的第一出光光路上,被配置为将所述第一子涡旋接收光信号转换成所述第一子接收光信号;
    第六空间光调制器,设置于所述第二分束器的第二出光光路上,被配置为将所述第二子涡旋接收光信号转换成所述第二子接收光信号。
  13. 根据权利要求12所述的光模块,其中,所述第四空间光调制器、所述第五空间光调制器和所述第六空间光调制器为反射式空间光调制器。
  14. 根据权利要求12所述的光模块,其中,所述涡旋模式解复用组件还包括:
    第四偏振片,设置于所述第四空间光调制器的出光光路上,被配置为消除所述接收导频光的偏振态;
    第五偏振片,设置于所述第五空间光调制器的出光光路上,被配置为消除所述第一子接收光信号的偏振态;
    第六偏振片,设置在所述第六空间光调制器的出光光路上,被配置为消除所述第二子接收光信号的偏振态。
  15. 根据权利要求14所述的光模块,其中,所述涡旋模式解复用组件还包括:
    第一会聚透镜,设置在所述第四偏振片的出光侧,被配置为对所述接收导频光进行聚焦;
    第二会聚透镜,设置在所述第五偏振片的出光侧,被配置为对所述第一子接收光信号进行聚焦;
    第三会聚透镜,设置在所述第六偏振片的出光侧,被配置为对所述第二子接收光信号进行聚焦。
  16. 根据权利要求11所述的光模块,其中,所述涡旋模式解复用组件包括:
    第一接收涡旋环形光纤,被配置为接收所述涡旋接收光;
    第三拉锥耦合器,所述第三拉锥耦合器的输入端与第一接收涡旋环形光纤的第二端连接;
    第二接收涡旋环形光纤,所述第二接收涡旋环形光纤的第一端与所述第三拉锥耦合器的第一输出端连接,被配置为传输涡旋模式的接收导频光和第二子接收光信号;
    第二接收单模光纤,与所述第三拉锥耦合器的第二输出端连接,被配置为输出高斯模式的第一子接收光信号;
    第三接收涡旋环形光纤,所述第三接收涡旋环形光纤的第一端与所述第二接收涡旋环形光纤的第二端连接;第四拉锥耦合器,所述第四拉锥耦合器的输入端与所述第三接收涡旋环形光纤的第二端连接;
    第四接收单模光纤,与所述第四拉锥耦合器的第二输出端连接,被配置为输出高斯模式的第二子接收光信号;
    第四接收涡旋环形光纤,所述第四接收涡旋环形光纤的第一端与所述第四拉锥耦合器 的第一输出端连接,被配置为传输涡旋模式的接收导频光;
    第五接收单模光纤,与所述第四接收涡旋环形光纤的第二端连接,被配置为输出高斯模式的接收导频光。
  17. 根据权利要求11所述的光模块,其中,所述第一相干接收机包括:
    第一混频器,与所述涡旋模式解复用组件和所述第二耦合器连接,被配置为将所述第一子接收光信号和所述第一子导频光混频,形成所述第一接收混频光;
    第一平衡探测器,与所述第一混频器连接,被配置为将所述第一接收混频光转换为所述第一电信号。
  18. 根据权利要求17所述的光模块,其中,所述第二相干接收机包括:
    第二混频器,与所述涡旋模式解复用组件和所述第二耦合器连接,被配置为将所述第二子接收光信号和所述第二子导频光混频,形成所述第二接收混频光;
    第二平衡探测器,与所述第二混频器连接,被配置为将所述第二接收混频光转换为所述第二电信号。
  19. 根据权利要求11所述的光模块,还包括:
    接收光纤,与所述涡旋模式解复用组件连接,所述接收光纤为涡旋环形光纤。
  20. 根据权利要求19所述的光模块,其中,所述接收光纤包括:
    中心区域;
    环形纤芯,包覆于所述中心区域的外侧;
    包层,包覆于所述环形纤芯的外侧;
    所述中心区域与所述包层具有相同的折射率;
    所述环形纤芯的折射率大于所述包层的折射率。
PCT/CN2022/123453 2022-04-01 2022-09-30 光模块 WO2023184919A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210348603.5 2022-04-01
CN202210348504.7A CN116931186A (zh) 2022-04-01 2022-04-01 一种光模块
CN202210348603.5A CN116931187A (zh) 2022-04-01 2022-04-01 一种光模块
CN202210348504.7 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023184919A1 true WO2023184919A1 (zh) 2023-10-05

Family

ID=88198964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123453 WO2023184919A1 (zh) 2022-04-01 2022-09-30 光模块

Country Status (1)

Country Link
WO (1) WO2023184919A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282630A (zh) * 2015-09-10 2016-01-27 深圳大学 一种新型涡旋达曼光栅模型及动态可重构路由系统
CN107024768A (zh) * 2017-05-31 2017-08-08 华侨大学 一种基于涡旋光束的光斑形状调制系统及方法
CN109066279A (zh) * 2018-09-07 2018-12-21 华南理工大学 一种基于轨道角动量模式谐振的全光纤涡旋光激光器
US20200083668A1 (en) * 2017-11-14 2020-03-12 Lightwave Logic Inc. Guide transition device with digital grating deflectors and method
CN112162445A (zh) * 2020-10-12 2021-01-01 中国人民解放军国防科技大学 基于光纤激光相干合成的涡旋光阵列产生方法
CN112255782A (zh) * 2020-10-12 2021-01-22 中国人民解放军国防科技大学 倾斜可控相干光纤激光阵列产生涡旋光束的系统及方法
CN112946605A (zh) * 2021-02-04 2021-06-11 哈尔滨工业大学 基于gs相位恢复与轨道角动量调制的光子外差探测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282630A (zh) * 2015-09-10 2016-01-27 深圳大学 一种新型涡旋达曼光栅模型及动态可重构路由系统
CN107024768A (zh) * 2017-05-31 2017-08-08 华侨大学 一种基于涡旋光束的光斑形状调制系统及方法
US20200083668A1 (en) * 2017-11-14 2020-03-12 Lightwave Logic Inc. Guide transition device with digital grating deflectors and method
CN109066279A (zh) * 2018-09-07 2018-12-21 华南理工大学 一种基于轨道角动量模式谐振的全光纤涡旋光激光器
CN112162445A (zh) * 2020-10-12 2021-01-01 中国人民解放军国防科技大学 基于光纤激光相干合成的涡旋光阵列产生方法
CN112255782A (zh) * 2020-10-12 2021-01-22 中国人民解放军国防科技大学 倾斜可控相干光纤激光阵列产生涡旋光束的系统及方法
CN112946605A (zh) * 2021-02-04 2021-06-11 哈尔滨工业大学 基于gs相位恢复与轨道角动量调制的光子外差探测方法

Similar Documents

Publication Publication Date Title
US7941053B2 (en) Optical transceiver for 40 gigabit/second transmission
WO2022110965A1 (zh) 一种光模块
US6951426B2 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
CN110989099B (zh) 一种光模块
CN110830119B (zh) 一种光模块
CN112965190A (zh) 一种光模块
CN112782812B (zh) 一种光模块
WO2022037511A1 (zh) 光源模块和光通信设备
CN113885143B (zh) 一种光模块
CN114035285A (zh) 一种光模块
WO2024060818A1 (zh) 多通道有源光缆光子集成芯片及有源光缆
WO2020191844A1 (zh) 一种高速并行双向传输光模块
CN218037458U (zh) 一种光模块
CN217879744U (zh) 一种光模块
CN215678864U (zh) 一种光模块
CN112782811B (zh) 一种光模块
CN112817098A (zh) 一种光模块
CN112782813B (zh) 一种光模块
WO2023184919A1 (zh) 光模块
US20230421262A1 (en) Optical module
US20230418006A1 (en) Optical module
WO2023035711A1 (zh) 光模块
WO2022007428A1 (zh) 一种光模块
CN116931186A (zh) 一种光模块
CN116931187A (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934737

Country of ref document: EP

Kind code of ref document: A1