WO2020191844A1 - 一种高速并行双向传输光模块 - Google Patents

一种高速并行双向传输光模块 Download PDF

Info

Publication number
WO2020191844A1
WO2020191844A1 PCT/CN2019/083930 CN2019083930W WO2020191844A1 WO 2020191844 A1 WO2020191844 A1 WO 2020191844A1 CN 2019083930 W CN2019083930 W CN 2019083930W WO 2020191844 A1 WO2020191844 A1 WO 2020191844A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
speed parallel
grooves
units
optical module
Prior art date
Application number
PCT/CN2019/083930
Other languages
English (en)
French (fr)
Inventor
胡定坤
张健
杨现文
吴天书
李林科
Original Assignee
武汉联特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910234609.8A external-priority patent/CN109991705B/zh
Application filed by 武汉联特科技有限公司 filed Critical 武汉联特科技有限公司
Publication of WO2020191844A1 publication Critical patent/WO2020191844A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the invention relates to the technical field of optical modules, in particular to a high-speed parallel bidirectional transmission optical module.
  • data center optical module is to provide higher access density through smaller volume and lower cost, and ultimately increase user access capacity.
  • High-speed parallel transmission optical modules have broad market application prospects.
  • High-speed parallel transmission optical modules optical intercommunication is realized through parallel optical modules and ribbon optical cables.
  • the optical interface adopts standard MPO/MTP optical cable, 4 transmission and 4 reception channels.
  • Parallel receiving and light emitting modules can provide larger transmission bandwidth in a smaller space and lower energy consumption, and the corresponding research and development has begun to accelerate.
  • each optical fiber in the optical cable can transmit and receive optical signals in two directions at the same time, and the optical signals in both directions do not interfere with each other.
  • the conventional two-way transmission multi-channel optical module only transmits optical signals in the same direction in each optical fiber of the optical cable. In this way, two optical fibers are needed to realize two-way communication.
  • the single-fiber bidirectional technology uses only one fiber to complete the work that can be done by the original two fibers, and doubles the transmission capacity of the existing fiber, thus greatly saving fiber resources.
  • the single-fiber bidirectional technology doubles the transmission capacity under the same number of optical cables (optical fibers) in the high-speed parallel bidirectional transmission of multi-channel optical modules in the data center, which is in line with the design idea of the data center optical module.
  • optical module packaging lies in the need to integrate multiple chips and multiple optical components in a package with a limited protocol requirement, which poses a higher challenge to packaging technology.
  • the object of the present invention is to provide a high-speed parallel bidirectional transmission optical module, which saves transmission fiber resources, realizes two-way signal transmission back and forth in a single-mode fiber, and the corresponding high-speed parallel bidirectional transmission optical module divides the package of the optical module into Several units are assembled and positioned according to the position of the groove, which is beneficial to the quality and cost control of the optical package.
  • a high-speed parallel bidirectional transmission optical module including a heat sink carrier, and also including two receiving units for receiving optical signals and two transmitters for transmitting optical signals Unit, the upper surface of the heat sink carrier is recessed inward to form two first grooves, the two first grooves are arranged side by side, and the two emitting units are respectively arranged in the two first grooves
  • a PCB is installed on one side of the heat sink carrier, and the two receiving units are respectively electrically connected to the PCB through two first flexible circuit boards.
  • each of the emission units includes an LD chip set sequentially arranged in the corresponding first groove, a first optical lens set for shaping the divergent light into parallel light, and a light for isolating the reflected light.
  • An isolator a beam splitting prism for splitting and outputting optical signals, and a second optical lens group for coupling optical signals.
  • the optical signals emitted by the LD chip group sequentially pass through the first optical lens group and the optical isolator , The dichroic prism and the second optical lens group.
  • each of the LD chipset includes four LD chips arranged side by side.
  • each of the first optical lens group and each of the second optical lens group includes four lenses arranged side by side, and the four LD chips are arranged in a one-to-one correspondence with the four lenses.
  • the optical signals passing through the second optical lens group are coupled to an optical fiber array
  • the optical fiber array includes four single-mode optical fibers arranged side by side, and the four single-mode optical fibers and the four LD chips are one by one.
  • each LD chip and its corresponding single-mode fiber form an optical path, and the input light of the four optical paths is ⁇ 1 , and the output light is ⁇ 2 .
  • the distance between two adjacent single-mode fibers is not less than 750 ⁇ m.
  • each of the receiving units includes four PD chips for converting the four optical signals emitted by the four LD chips into electrical signals, and the four PD chips are arranged side by side and connected to the four LD chips.
  • the chips are configured in one-to-one correspondence, and the four PD chips are all connected with transimpedance amplifiers.
  • the lower surface of the heat sink carrier is recessed to form two second grooves, each of the second grooves is provided with a backlight monitoring unit, and the two backlight monitoring units respectively pass through two second grooves.
  • the flexible circuit board is electrically connected to the PCB; the two backlight monitoring units and the two emitting units are arranged in a one-to-one correspondence.
  • the two first grooves correspond to the two second grooves one-to-one
  • the heat sink carrier has a first groove penetrating one of the first grooves and the second groove corresponding to it.
  • a through hole the heat sink carrier also has a second through hole that penetrates the other first groove and the second groove corresponding to it; wherein the light emitted by one of the emission units passes through the first The through hole is partially reflected to the corresponding backlight monitoring unit, and the light emitted by the other emitting unit is partially reflected to the corresponding backlight monitoring unit through the second through hole.
  • each of the backlight monitoring units includes four MPD chips arranged side by side, and each MPD chip is packaged on the second flexible circuit board through a semiconductor packaging process.
  • the present invention has the beneficial effects of saving transmission fiber resources, realizing back and forth two-way signal transmission in a single-mode fiber, corresponding high-speed parallel bidirectional transmission optical modules, and dividing the package of the optical module into several Each unit is assembled and positioned according to the position of the groove, which is beneficial to the quality and cost control of the optical package.
  • FIG. 1 is a first view structural schematic diagram of a high-speed parallel bidirectional transmission optical module provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a second view angle of a high-speed parallel bidirectional transmission optical module according to an embodiment of the present invention
  • FIG. 3 is a first view structural schematic diagram of the connection between the heat sink carrier and the PCB of a high-speed parallel bidirectional transmission optical module according to an embodiment of the present invention
  • FIG. 4 is a second view structural schematic diagram of a heat sink carrier of a high-speed parallel bidirectional transmission optical module according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a partial structure of a high-speed parallel bidirectional transmission optical module provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical fiber array of a high-speed parallel bidirectional transmission optical module provided by an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the traveling direction of the optical path in the first groove of a high-speed parallel bidirectional transmission optical module according to an embodiment of the present invention.
  • an embodiment of the present invention provides a high-speed parallel bidirectional transmission optical module, including a heat sink carrier 3, two receiving units 1 for receiving optical signals, and two transmitting units for transmitting optical signals 2.
  • the upper surface of the heat sink carrier 3 is recessed inward to form two first grooves 30, the two first grooves 30 are arranged side by side, and the two emitting units 2 are respectively arranged in the two first grooves.
  • a PCB 4 is installed on one side of the heat sink carrier 3, and the two receiving units 1 are electrically connected to the PCB 4 through two first flexible circuit boards 5, respectively.
  • transmission fiber resources are saved, a single-mode fiber realizes two-way signal transmission back and forth, and each part in the optical module of the prior art is divided and formed into several sub-units, namely, two receiving units 1 and The two transmitting units 2, of course, as the speed increases, if there are more receiving units 1 and transmitting units 2, they can also be arranged in this form.
  • the first grooves 30 and the second grooves 31 arranged side by side are all strip grooves, which can facilitate the assembly and positioning of the emitting unit 2, thereby improving the efficiency of packaging, which is conducive to mass production.
  • Each of the emitting units 2 includes an LD chip set 20 sequentially arranged in the corresponding first groove 30, and a device for shaping the divergent light into parallel light.
  • the optical signal from the group passes through the first optical lens group 21, the optical isolator 22, the dichroic prism 23, and the second optical lens group 24 in sequence.
  • each of the LD chip sets 20 includes four LD chips arranged side by side.
  • the LD chip set 20 emits a light signal, which is shaped into parallel light after passing through the first optical lens, and then transmits the optical isolator 22.
  • the optical isolator 22 can prevent the light on the optical path from being reflected back to the LD chip.
  • the optical signal is then transmitted through the wind prism, and the optical signal with multiple wavelengths is decomposed into multiple parallel lights with a single wavelength and output to the first optical lens group 21.
  • the first optical lens group 21 focuses and couples the optical signal to the four cores.
  • the LD chip is specifically an electro-absorption semiconductor laser chip (EML).
  • each of the first optical lens group 21 and each of the second optical lens group 24 includes four lenses arranged side by side, and the four LD chips correspond to the four lenses one to one. Configuration.
  • the four lenses can respectively converge and couple the four optical signals after the splitting prism 23 is split.
  • the optical signal passing through the second optical lens group 24 is coupled to the optical fiber array 6.
  • the optical fiber array 6 includes four single-mode optical fibers arranged side by side. Each of the single-mode fibers is configured in a one-to-one correspondence with the four LD chips, and each LD chip and its corresponding single-mode fiber form an optical path.
  • the input light of the four optical paths is ⁇ 1
  • the output light is uniform. Is ⁇ 2 .
  • the optical fiber array 6 is a four-core optical fiber array. As shown in Fig. 7, the arrow is the direction of the optical signal. It is parallel light.
  • the dichroic prism 23 After the four parallel lights pass through the dichroic prism 23, they are all reflected by the dichroic prism 23 to reach the receiving unit 1 respectively.
  • the distance between two adjacent single-mode optical fibers is not less than 750 ⁇ m.
  • the input light of the four optical paths is 1270 nm, and the output light is 1330 nm.
  • each receiving unit 1 includes four PD chips for converting the four optical signals emitted by the four LD chips into electrical signals, and the four PDs (receiving ) The chips are arranged side by side and configured in a one-to-one correspondence with the four LD chips, and the four PD chips are all connected with transimpedance amplifiers.
  • four PD chips can convert four optical signals into electrical signals for output, and amplify them through a transimpedance amplifier.
  • FIG. 2, FIG. 3 and FIG. 4 The lower surface of the heat sink carrier 3 is recessed to form two second grooves 31, each of the second grooves 31 A backlight monitoring unit 7 is arranged inside, and the two backlight monitoring units 7 are respectively electrically connected to the PCB 4 through two second flexible circuit boards 8; two backlight monitoring units 7 and two emitting units 2 One to one configuration.
  • the backlight monitoring unit 7 can monitor the emitted light power of the LD chip.
  • the two second grooves 31 are also strip-shaped grooves. On the one hand, they can be easily positioned, and on the other hand, they FPC (flexible circuit board) can also be installed.
  • the two first grooves 30 correspond to the two second grooves 31 one-to-one, and the heat sink carrier 3 has a through hole.
  • the first groove 30 and the corresponding first through hole 32 of the second groove 31, the heat sink carrier 3 further has the second groove 30 and the corresponding second The second through hole 33 of the groove 31; one of the light emitted by the emitting unit 2 is partially reflected by the first through hole 32 to the corresponding backlight monitoring unit 7, and the other emitting unit 2 emits Part of the light is reflected through the second through hole 33 to the backlight monitoring unit 7 corresponding thereto.
  • the first groove 30 and the second groove 31 on the upper and lower surfaces of the heat sink carrier 3 are penetrated by through holes, and the first through holes 32 and the second through holes 33 are both square through holes.
  • the above-mentioned prism reflects the incident light signal in the optical path to the receiving unit 1 and at the same time reflects part of the light emitted by the LD chip to the backlight monitoring unit 7. At this time, the emitted light signal passes through the through hole to the backlight monitoring unit 7.
  • Each of the backlight monitoring units 7 includes four MPD chips arranged side by side, and each MPD chip is packaged on the second flexible circuit board through a semiconductor packaging process. 8 on.
  • the aforementioned backlight monitoring unit uses an MPD (backlight detector) chip for monitoring.
  • both the MPD chip and the TIA chip are fixed to the FPC through the Die Bonding process of the semiconductor package, and the PD chip and the FPC are electrically connected through Wire Bonding realization of semiconductor packaging process.

Abstract

本发明涉及光模块技术领域,提供了一种高速并行双向传输光模块,包括热沉载体,还包括用于接收光信号的两个接收单元以及用于发射光信号的两个发射单元,所述热沉载体的上表面向内凹陷形成两个第一凹槽,两个所述第一凹槽并排设置,两个所述发射单元分别设于两个所述第一凹槽内;所述热沉载体一侧安装有PCB,两个所述接收单元分别通过两个第一柔性电路板与所述PCB电连接。本发明节省传输光纤资源,一根单模光纤中实现来回两路信号传输,对应的高速并行双向传输光模块,通过将光模块的封装分割成几个单元,再将各单元按照凹槽的位置组装定位,有利于光学封装的质量和成本控制。

Description

一种高速并行双向传输光模块 技术领域
本发明涉及光模块技术领域,具体为一种高速并行双向传输光模块。
背景技术
伴随着数字化的进程,数据的处理、存储和传输得到了飞速的发展。大数据量的搜索服务和视频业务的迅猛增长,极大地带动了以超级计算机和存储为基础的数据中心的发展。数据中心光模块的设计思想是通过更小的体积和更低的成本,提供更高的接入密度,最终提高用户接入容量。
高速并行传输光模块作为短距离数据中心互联应用的主要产品,有着广阔的市场应用前景。高速并行传输光模块,光互通通过并行光模块和带状光缆来实现。通常情况下,光接口采用标准的MPO/MTP光缆,4路发射和4路接收通道。并行收发光模块由于能在更小的空间更低的能耗占用下能提供更大的传输带宽,对应的研究发展开始日益加快。
高速并行双向传输多通道光模块,在光缆的每根光纤中可以同时传输收发两个方向的光信号,正反两个方向的光信号互不干扰。而常规的双向传输多通道光模块,在光缆的每根光纤中只传输同一方向的光信号,这样要实现双向的通信就需要两根光纤。相比较而言,单纤双向技术只使用一根光纤就完成了原来两根光纤才能完成的工作,将现有光纤的传输量提高了一倍,从而大大节省了光纤资源。单纤双向技术在数据中心高速并行双向传输多通道光模块中,在相同数量的光缆(光纤)下,将传输容量放大一倍,非常契合数据中心光模块的设计思想。
但是高速并行双向传输多通道光模块光学封装元件非常多。光模块封装的难点又在于由于要在协议要求有限的封装尺寸管壳内集成多路芯片以及多路光学组件,这就对封装技术提出了较高的挑战。
发明内容
本发明的目的在于提供一种高速并行双向传输光模块,节省传输光纤资源,一根单模光纤中实现来回两路信号传输,对应的高速并行双向传输光模块,通过将光模块的封装分割成几个单元,再将各单元按照凹槽的位置组装定位,有利于光学封装的质量和成本控制。
为实现上述目的,本发明实施例提供如下技术方案:一种高速并行双向传输光模块,包括热沉载体,还包括用于接收光信号的两个接收单元以及用于发射光信号的两个发射单元,所述热沉载体的上表面向内凹陷形成两个第一凹槽,两个所述第一凹槽并排设置,两个所述发射单元分别设于两个所述第一凹槽内;所述热沉载体一侧安装有PCB,两个所述接收单元分别通过两个第一柔性电路板与所述PCB电连接。
进一步,每一所述发射单元均包括依次设置于对应的所述第一凹槽中的LD芯片组、用于将发散光整形成平行光的第一光学透镜组、用于隔离反射光的光隔离器、用于将光信号分光输出的分光棱镜以及用于耦合光信号的第二光学透镜组,所述LD芯片组发出的光信号依次穿过所述第一光学透镜组、所述光隔离器、所述分光棱镜以及所述第二光学透镜组。
进一步,每一所述LD芯片组均包括并排设置的四个LD芯片。
进一步,每一所述第一光学透镜组和每一所述第二光学透镜组均包括并排设置的四个透镜,四个所述LD芯片与四个所述透镜一一对应配置。
进一步,穿过所述第二光学透镜组的光信号耦合至光纤阵列中,所述光纤阵列包括并排设置的四个单模光纤,四个所述单模光纤与四个所述LD芯片一一对应配置,每一所述LD芯片与其对应的所述单模光纤形成光路,四条所述光路的输入光均为λ 1,输出光均为λ 2
进一步,相邻两个单模光纤之间的距离不小于750μm。
进一步,每一所述接收单元均包括用于将四个所述LD芯片发射的四路光信号转换为电信号的四个PD芯片,四个所述PD芯片并排设置且与四个所述 LD芯片一一对应配置,四个所述PD芯片均连接有跨阻放大器。
进一步,所述热沉载体的下表面向内凹陷形成两个第二凹槽,每一所述第二凹槽内均安置有背光监控单元,两个所述背光监控单元分别通过两个第二柔性电路板与所述PCB电连接;两个所述背光监控单元与两个所述发射单元一一对应配置。
进一步,两个所述第一凹槽与两个所述第二凹槽一一对应,所述热沉载体具有贯通其中一个所述第一凹槽和与其对应的所述第二凹槽的第一通孔,所述热沉载体还具有贯通另一个所述第一凹槽和与其对应的所述第二凹槽的第二通孔;其中一个所述发射单元发射的光通过所述第一通孔部分反射至与其对应的所述背光监控单元中,另一个所述发射单元发射的光通过所述第二通孔部分反射至与其对应的所述背光监控单元中。
进一步,每一所述背光监控单元均包括并排设置的四个MPD芯片,各所述MPD芯片通过半导体封装工艺封装在所述第二柔性电路板上。
与现有技术相比,本发明的有益效果是:节省传输光纤资源,一根单模光纤中实现来回两路信号传输,对应的高速并行双向传输光模块,通过将光模块的封装分割成几个单元,再将各单元按照凹槽的位置组装定位,有利于光学封装的质量和成本控制。
附图说明
图1为本发明实施例提供的一种高速并行双向传输光模块的第一视角结构示意图;
图2为本发明实施例提供的一种高速并行双向传输光模块的第二视角结构示意图;
图3为本发明实施例提供的一种高速并行双向传输光模块的热沉载体和PCB连接的第一视角结构示意图;
图4为本发明实施例提供的一种高速并行双向传输光模块的热沉载体的 第二视角结构示意图;
图5为本发明实施例提供的一种高速并行双向传输光模块的局部结构示意图;
图6为本发明实施例提供的一种高速并行双向传输光模块的光纤阵列的结构示意图;
图7为本发明实施例提供的一种高速并行双向传输光模块的第一凹槽中光路的行走方向示意图;
附图标记中:1-接收单元;2-发射单元;20-LD芯片组;21-第一光学透镜组;22-光隔离器;23-分光棱镜;24-第二光学透镜组;3-热沉载体;30-第一凹槽;31-第二凹槽;32-第一通孔;33-第二通孔;4-PCB;5-第一柔性电路板;6-光纤阵列;7-背光监控单元;8-第二柔性电路板。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1-7,本发明实施例提供一种高速并行双向传输光模块,包括热沉载体3,用于接收光信号的两个接收单元1,以及用于发射光信号的两个发射单元2,所述热沉载体3的上表面向内凹陷形成两个第一凹槽30,两个所述第一凹槽30并排设置,两个所述发射单元2分别设于两个所述第一凹槽30内;所述热沉载体3一侧安装有PCB4,两个所述接收单元1分别通过两个第一柔性电路板5与所述PCB4电连接。在本实施例中,节省传输光纤资源,一根单模光纤中实现来回两路信号传输,且将现有技术的光模块中的各部分分割并组成若干个子单元,即两个接收单元1和两个发射单元2,当然随着速率的提高,若存在更多的接收单元1和发射单元2,也可以按照此形式来布局。 并排的第一凹槽30和第二凹槽31均为条状凹槽,它们可以便于发射单元2的组装定位,进而提高封装的效率,有利于批量化大规模生产。
以下为具体实施例:
优化上述方案,请参阅图5和图7,每一所述发射单元2均包括依次设置于对应的所述第一凹槽30中的LD芯片组20、用于将发散光整形成平行光的第一光学透镜组21、用于隔离反射光的光隔离器22、用于将光信号分光输出的分光棱镜23以及用于耦合光信号的第二光学透镜组24,所述LD(发射)芯片组发出的光信号依次穿过所述第一光学透镜组21、所述光隔离器22、所述分光棱镜23以及所述第二光学透镜组24。优选的,每一所述LD芯片组20均包括并排设置的四个LD芯片。在本实施例中,LD芯片组20发出光信号,经过第一光学透镜后被整形为平行光,再透射光隔离器22,该光隔离器22可以防止光路上的光反射回LD芯片,接着光信号再透射风光棱镜,将具有多个波长的光信号分解为具有单个波长的多路平行光并输出至第一光学透镜组21,该第一光学透镜组21将光信号聚焦耦合至四芯FA中的单模光纤。优选的,LD芯片具体为电吸收半导体激光器芯片(EML)。
进一步优化上述方案,每一所述第一光学透镜组21和每一所述第二光学透镜组24均包括并排设置的四个透镜,四个所述LD芯片与四个所述透镜一一对应配置。在本实施例中,四个透镜可以分别对分光棱镜23分解后的四路光信号进行汇聚耦合。
作为本发明实施例的优化方案,请参阅图7,穿过所述第二光学透镜组24的光信号耦合至光纤阵列6中,所述光纤阵列6包括并排设置的四个单模光纤,四个所述单模光纤与四个所述LD芯片一一对应配置,每一所述LD芯片与其对应的所述单模光纤形成光路,四条所述光路的输入光均为λ 1,输出光均为λ 2。在本实施例中,光纤阵列6为四芯光纤阵列,如图7所示,箭头为光信号的方向,输出的光信号经过第二光学透镜组24整形后,由一定发散 角的发散光转变为平行光,四束平行光经过分光棱镜23后,由分光棱镜23全部反射分别到达接收单元1。优选的,相邻两个单模光纤之间的距离不小于750μm。优选的,四条光路的输入光均为1270nm,输出光均为1330nm。
作为本发明实施例的优化方案,每一所述接收单元1均包括用于将四个所述LD芯片发射的四路光信号转换为电信号的四个PD芯片,四个所述PD(接收)芯片并排设置且与四个所述LD芯片一一对应配置,四个所述PD芯片均连接有跨阻放大器。在本实施例中,四个PD芯片可以将四路光信号转化为电信号输出,并通过跨阻放大器放大。
作为本发明实施例的优化方案,请参阅图2、图3和图4,所述热沉载体3的下表面向内凹陷形成两个第二凹槽31,每一所述第二凹槽31内均安置有背光监控单元7,两个所述背光监控单元7分别通过两个第二柔性电路板8与所述PCB4电连接;两个所述背光监控单元7与两个所述发射单元2一一对应配置。在本实施例中,设此背光监控单元7可以对LD芯片的发射光光功率进行监控,两个第二凹槽31也为条形凹槽,一方面它们可以方便定位,另一方面它们中还可以安装FPC(柔性电路板)。
进一步优化上述方案,请参阅图2、图3和图4,两个所述第一凹槽30与两个所述第二凹槽31一一对应,所述热沉载体3具有贯通其中一个所述第一凹槽30和与其对应的所述第二凹槽31的第一通孔32,所述热沉载体3还具有贯通另一个所述第一凹槽30和与其对应的所述第二凹槽31的第二通孔33;其中一个所述发射单元2发射的光通过所述第一通孔32部分反射至与其对应的所述背光监控单元7中,另一个所述发射单元2发射的光通过所述第二通孔33部分反射至与其对应的所述背光监控单元7中。在本实施例中,在热沉载体3的上下表面上的第一凹槽30和第二凹槽31由通孔贯通,该第一通孔32和第二通孔33均为方形通孔,上述棱镜将光路中的入射光信号反射至接收单元1,同时将LD芯片发射光部分比例反射至背光监控单元7,此时 发射的光信号即从通孔中通过至背光监控单元7中。
作为本发明实施例的优化方案,请参阅图2,每一所述背光监控单元7均包括并排设置的四个MPD芯片,各所述MPD芯片通过半导体封装工艺封装在所述第二柔性电路板8上。在本实施例中,上述背光监控单元采用MPD(背光探测器)芯片进行监控,优选的,MPD芯片和TIA芯片均通过半导体封装的Die Bonding工艺与FPC实现固定,PD芯片与FPC的电气连接通过半导体封装工艺的Wire Bonding实现。优选的,FPC背面有补强板,补强板为金属片或者陶瓷基板。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种高速并行双向传输光模块,包括热沉载体,其特征在于:包括用于接收光信号的两个接收单元以及用于发射光信号的两个发射单元,所述热沉载体的上表面向内凹陷形成两个第一凹槽,两个所述第一凹槽并排设置,两个所述发射单元分别设于两个所述第一凹槽内;所述热沉载体一侧安装有PCB,两个所述接收单元分别通过两个第一柔性电路板与所述PCB电连接。
  2. 如权利要求1所述的一种高速并行双向传输光模块,其特征在于:每一所述发射单元均包括依次设置于对应的所述第一凹槽中的LD芯片组、用于将发散光整形成平行光的第一光学透镜组、用于隔离反射光的光隔离器、用于将光信号分光输出的分光棱镜以及用于耦合光信号的第二光学透镜组,所述LD芯片组发出的光信号依次穿过所述第一光学透镜组、所述光隔离器、所述分光棱镜以及所述第二光学透镜组。
  3. 如权利要求2所述的一种高速并行双向传输光模块,其特征在于:每一所述LD芯片组均包括并排设置的四个LD芯片。
  4. 如权利要求3所述的一种高速并行双向传输光模块,其特征在于:每一所述第一光学透镜组和每一所述第二光学透镜组均包括并排设置的四个透镜,四个所述LD芯片与四个所述透镜一一对应配置。
  5. 如权利要求3所述的一种高速并行双向传输光模块,其特征在于:穿过所述第二光学透镜组的光信号耦合至光纤阵列中,所述光纤阵列包括并排设置的四个单模光纤,四个所述单模光纤与四个所述LD芯片一一对应配置,每一所述LD芯片与其对应的所述单模光纤形成光路,四条所述光路的输入光均为λ 1,输出光均为λ 2
  6. 如权利要求5所述的一种高速并行双向传输光模块,其特征在于:相邻两个单模光纤之间的距离不小于750μm。
  7. 如权利要求3所述的一种高速并行双向传输光模块,其特征在于:每一所述接收单元均包括用于将四个所述LD芯片发射的四路光信号转换为电信 号的四个PD芯片,四个所述PD芯片并排设置且与四个所述LD芯片一一对应配置,四个所述PD芯片均连接有跨阻放大器。
  8. 如权利要求1所述的一种高速并行双向传输光模块,其特征在于:所述热沉载体的下表面向内凹陷形成两个第二凹槽,每一所述第二凹槽内均安置有背光监控单元,两个所述背光监控单元分别通过两个第二柔性电路板与所述PCB电连接;两个所述背光监控单元与两个所述发射单元一一对应配置。
  9. 如权利要求8所述的一种高速并行双向传输光模块,其特征在于:两个所述第一凹槽与两个所述第二凹槽一一对应,所述热沉载体具有贯通其中一个所述第一凹槽和与其对应的所述第二凹槽的第一通孔,所述热沉载体还具有贯通另一个所述第一凹槽和与其对应的所述第二凹槽的第二通孔;其中一个所述发射单元发射的光通过所述第一通孔部分反射至与其对应的所述背光监控单元中,另一个所述发射单元发射的光通过所述第二通孔部分反射至与其对应的所述背光监控单元中。
  10. 如权利要求8所述的一种高速并行双向传输光模块,其特征在于:每一所述背光监控单元均包括并排设置的四个MPD芯片,各所述MPD芯片通过半导体封装工艺封装在所述第二柔性电路板上。
PCT/CN2019/083930 2019-03-26 2019-04-23 一种高速并行双向传输光模块 WO2020191844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910234609.8 2019-03-26
CN201910234609.8A CN109991705B (zh) 2019-03-26 一种高速并行双向传输光模块

Publications (1)

Publication Number Publication Date
WO2020191844A1 true WO2020191844A1 (zh) 2020-10-01

Family

ID=67131632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083930 WO2020191844A1 (zh) 2019-03-26 2019-04-23 一种高速并行双向传输光模块

Country Status (1)

Country Link
WO (1) WO2020191844A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242075A (zh) * 2008-01-30 2008-08-13 福州高意通讯有限公司 一种光学结构及其应用
CN103984066A (zh) * 2014-05-20 2014-08-13 昆山柯斯美光电有限公司 用于高速传输的多路并行光组件及其组装方法
CN104395796A (zh) * 2012-07-30 2015-03-04 惠普发展公司,有限责任合伙企业 光波导
CN204349203U (zh) * 2014-12-31 2015-05-20 武汉华工正源光子技术有限公司 具备链路偏振光监控功能的可调谐激光器组件
US10386592B2 (en) * 2017-11-01 2019-08-20 Fujitsu Component Limited Optical engine and optical module
CN209525489U (zh) * 2019-03-26 2019-10-22 武汉联特科技有限公司 一种高速并行双向传输光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242075A (zh) * 2008-01-30 2008-08-13 福州高意通讯有限公司 一种光学结构及其应用
CN104395796A (zh) * 2012-07-30 2015-03-04 惠普发展公司,有限责任合伙企业 光波导
CN103984066A (zh) * 2014-05-20 2014-08-13 昆山柯斯美光电有限公司 用于高速传输的多路并行光组件及其组装方法
CN204349203U (zh) * 2014-12-31 2015-05-20 武汉华工正源光子技术有限公司 具备链路偏振光监控功能的可调谐激光器组件
US10386592B2 (en) * 2017-11-01 2019-08-20 Fujitsu Component Limited Optical engine and optical module
CN209525489U (zh) * 2019-03-26 2019-10-22 武汉联特科技有限公司 一种高速并行双向传输光模块

Also Published As

Publication number Publication date
CN109991705A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2021115129A1 (zh) 一种光模块
US10914903B2 (en) Optical module
US20130330080A1 (en) Wavelength Division Multiplexing/De-Multiplexing Optical Assembly for High Speed Parallel Long Distance Transmission
WO2019105113A1 (zh) 光收发器件
CN114035285B (zh) 一种光模块
WO2022142171A1 (zh) 一种基于mlg2.0协议的单模光模块
CN210864119U (zh) 多通道并行光模块
CN112965183A (zh) 一种硅光模块
KR100627701B1 (ko) 병렬 광접속 모듈
CN112346181A (zh) 一种光模块
CN209525489U (zh) 一种高速并行双向传输光模块
CN210347999U (zh) 一种多通道的光收发模块
WO2024001684A1 (zh) 多通道光收发组件及光模块
WO2020191844A1 (zh) 一种高速并行双向传输光模块
US20230418006A1 (en) Optical module
JP7144786B2 (ja) 小型光トランシーバ
CN113296199A (zh) 一种单纤双向光组件和光模块
CN217521402U (zh) 光模块
CN218547061U (zh) 一种光模块
CN109991705B (zh) 一种高速并行双向传输光模块
WO2022083040A1 (zh) 一种光模块
CN115236811A (zh) 双输出硅光芯片、光收发模块、分光线缆及分光方法
TW201608293A (zh) 雙向光傳輸次組件
CN114895411A (zh) 光模块
WO2023245966A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921228

Country of ref document: EP

Kind code of ref document: A1