WO2023245966A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2023245966A1
WO2023245966A1 PCT/CN2022/131779 CN2022131779W WO2023245966A1 WO 2023245966 A1 WO2023245966 A1 WO 2023245966A1 CN 2022131779 W CN2022131779 W CN 2022131779W WO 2023245966 A1 WO2023245966 A1 WO 2023245966A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
array
filter
circuit board
Prior art date
Application number
PCT/CN2022/131779
Other languages
English (en)
French (fr)
Inventor
慕建伟
吴涛
杨思更
何鹏
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210730675.6A external-priority patent/CN114879324B/zh
Priority claimed from CN202210731036.1A external-priority patent/CN114994839B/zh
Priority claimed from CN202210731028.7A external-priority patent/CN115079356B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023245966A1 publication Critical patent/WO2023245966A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, and in particular, to an optical module.
  • the present disclosure provides an optical module, including: a circuit board with a data processor disposed on it; a light emitting component electrically connected to the data processor, including a laser array and a first lens component, the laser array being disposed on
  • the circuit board is configured to emit multiple optical signals, which are synthesized into multiple composite lights in the first lens component;
  • a light receiving component is electrically connected to the data processor and includes a detector array and a second lens component, the detector array is disposed on the circuit board, the second lens component is configured to split the input multi-channel composite light, and the split received light is respectively converged to the detector Array; fiber optic adapter, connected to the light transmitting component through a transmitting fiber array, connected to the light receiving component through a receiving fiber array, and configured to transmit multiple optical signals;
  • the data processor includes: a reverse gearbox , configured to receive high-speed electrical signals from the circuit board, decode the high-speed electrical signals into multiple low-speed electrical signals, and the number of output electrical signal channels is twice the number of input
  • the low-speed electrical signals drives the laser array to generate multiple optical signals;
  • the gearbox is configured to receive the multiple low-speed electrical signals output by the detector array, encode the multiple low-speed electrical signals into multiple high-speed electrical signals, and output
  • the number of electrical signal paths is half of the number of input electrical signal paths, and multiple high-speed electrical signals are transmitted on the circuit board.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Figure 3 is a structural diagram of an optical module according to some embodiments.
  • Figure 4 is an exploded view of an optical module according to some embodiments.
  • Figure 5 is a schematic diagram of the assembly of a circuit board, a light emitting component and a light receiving component in an optical module according to some embodiments;
  • Figure 6 is a schematic diagram of a data processor in an optical module according to some embodiments.
  • Figure 7 is a diagram 1 showing a principle example of a data processor, a light emitting component and a light receiving component in an optical module according to some embodiments;
  • Figure 8 is Figure 2 of a principle example of a data processor, a light emitting component and a light receiving component in an optical module according to some embodiments;
  • Figure 9 is a schematic diagram 2 of the assembly of a circuit board, a light emitting component and a light receiving component in an optical module according to some embodiments;
  • Figure 10 is a partially exploded schematic diagram of a circuit board and a light emitting component in an optical module according to some embodiments
  • Figure 11 is a schematic structural diagram of a first lens component in an optical module according to some embodiments.
  • Figure 12 is a schematic diagram 2 of the structure of the first lens component in an optical module according to some embodiments.
  • Figure 13 is a schematic structural diagram three of the first lens assembly in an optical module according to some embodiments.
  • Figure 14 is a cross-sectional view of a light emitting component in an optical module according to some embodiments.
  • Figure 15 is a partial assembly cross-sectional view of the circuit board, light emitting component and emitting optical fiber array in an optical module according to some embodiments;
  • Figure 16 is an exploded schematic diagram of a light receiving component in an optical module according to some embodiments.
  • Figure 17 is a schematic structural diagram of a second lens assembly in an optical module according to some embodiments.
  • Figure 18 is a schematic diagram 2 of the structure of a second lens assembly in an optical module according to some embodiments.
  • Figure 19 is a schematic structural diagram 3 of a second lens assembly in an optical module according to some embodiments.
  • Figure 20 is a cross-sectional view of a light receiving component in an optical module according to some embodiments.
  • Figure 21 is a partial assembly cross-sectional view of the circuit board, light receiving component and receiving optical fiber array in an optical module according to some embodiments;
  • Figure 22 is a schematic diagram 3 of the assembly of a circuit board, a light emitting component and a light receiving component in an optical module according to some embodiments;
  • Figure 23 is a partially exploded schematic diagram 2 of a circuit board and a light-emitting component in an optical module according to some embodiments;
  • Figure 24 is a schematic structural diagram 4 of a first lens assembly in an optical module according to some embodiments.
  • Figure 25 is a schematic structural diagram 5 of a first lens assembly in an optical module according to some embodiments.
  • Figure 26 is a schematic diagram 6 of the structure of the first lens assembly in an optical module according to some embodiments.
  • Figure 27 is a cross-sectional view 2 of a light emitting component in an optical module according to some embodiments.
  • Figure 28 is a partial assembly cross-sectional view of the circuit board, light emitting component and emitting optical fiber array in an optical module according to some embodiments;
  • Figure 29 is a partially exploded schematic diagram 2 of a circuit board and a light receiving component in an optical module according to some embodiments;
  • Figure 30 is a schematic structural diagram 4 of a second lens assembly in an optical module according to some embodiments.
  • Figure 31 is a schematic structural diagram 5 of a second lens assembly in an optical module according to some embodiments.
  • Figure 32 is a schematic diagram 6 of the structure of a second lens assembly in an optical module according to some embodiments.
  • Figure 33 is a second cross-sectional view of a light receiving component in an optical module according to some embodiments.
  • Figure 34 is a partial assembly cross-sectional view of the circuit board, light receiving components and receiving optical fiber array in an optical module according to some embodiments.
  • optical communication technology light is used to carry information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by computers and other information processing equipment are electrical signals. Therefore, in order to distinguish between information transmission equipment such as optical fibers or optical waveguides and computers and other information processing equipment To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • Optical modules realize the mutual conversion function of the above-mentioned optical signals and electrical signals in the field of optical fiber communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection It is mainly configured to realize power supply, I2C signal transmission, data signal transmission, grounding, etc.; the optical network terminal transmits electrical signals to computers and other information processing equipment through network cables or wireless fidelity technology (Wi-Fi).
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, local information processing equipment 2000, optical network terminal 100, optical module 200, optical fiber 101 and network cable 103;
  • the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of thousands of meters (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long-distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers, or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: router, switch, computer, mobile phone, tablet computer, television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection;
  • the electrical port is configured to be connected to the optical network terminal 100, so that the optical module 200 and the optical network terminal 100 establish a bidirectional connection. electrical signal connection.
  • the optical module 200 realizes mutual conversion between optical signals and electrical signals, thereby establishing a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101.
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 provided on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 Establish a two-way electrical signal connection.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100 serves as the host computer of the optical module 200 and can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT), etc.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101, the optical module 200, the optical network terminal 100 and the network cable 103.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments. In order to clearly show the connection relationship between the optical module 200 and the optical network terminal 100, Figure 2 only shows the parts of the optical network terminal 100 related to the optical module 200. structure. As shown in FIG. 2 , the optical network terminal 100 also includes a PCB circuit board 105 provided in the housing, a cage 106 provided on the surface of the PCB circuit board 105 , and an electrical connector provided inside the cage 106 . The electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has fins and other protrusions that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the optical module 200 is fixed by the cage 106.
  • the heat generated by the optical module 200 is conducted to the cage 106, and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 includes a shell, a circuit board 300 and an optical transceiver component arranged in the shell.
  • the housing includes an upper housing 201 and a lower housing 202.
  • the upper housing 201 is covered on the lower housing 202 to form the above-mentioned housing with two openings; the outer contour of the housing generally presents a square body.
  • the lower case 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate; the upper case 201 includes a cover plate, and the cover plate covers both sides of the lower case 202 . a lower side plate to form the above-mentioned shell.
  • the lower shell 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper shell 201 includes a cover plate and two lower side plates located on both sides of the cover plate and perpendicular to the cover plate. The two upper side plates are combined with the two lower side plates to realize that the upper housing 201 is covered on the lower housing 202.
  • the direction of the connection line between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at an end of the optical module 200 and the opening 205 is located at a side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger 301 of the circuit board 300 extends from the electrical port and is inserted into the host computer (for example, the optical network terminal 100); the opening 205 is an optical port, configured to access the external optical fiber 101, so that the external The optical fiber 101 connects the optical transceiver components inside the optical module 200 .
  • the assembly method of combining the upper housing 201 and the lower housing 202 facilitates the installation of the circuit board 300, optical transceiver components and other components into the housing, and the upper housing 201 and the lower housing 202 form packaging protection for these components.
  • the upper housing 201 and the lower housing 202 form packaging protection for these components.
  • the upper housing 201 and the lower housing 202 are generally made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the optical module 200 also includes an unlocking component 203 located outside its housing.
  • the unlocking component 203 is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the connection between the optical module 200 and the host computer. fixed connection.
  • the unlocking component 203 is located on the outer walls of the two lower side panels of the lower housing 202 and has a snap component that matches the upper computer cage (for example, the cage 106 of the optical network terminal 100).
  • the optical module 200 When the optical module 200 is inserted into the cage of the host computer, the optical module 200 is fixed in the cage of the host computer by the engaging parts of the unlocking part 203; when the unlocking part 203 is pulled, the engaging parts of the unlocking part 203 move accordingly, thereby changing
  • the connection relationship between the engaging component and the host computer is to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit wiring, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit wiring to realize functions such as power supply, electrical signal transmission, and grounding.
  • Electronic components include, for example, capacitors, resistors, transistors, and Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • Chips include, for example, Microcontroller Unit (MCU), laser driver chip, limiting amplifier (limiting amplifier), clock and data recovery (Clock and Data Recovery, CDR) chip, power management chip, digital signal processing (Digital Signal Processing, DSP) chip.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also perform a load-bearing function. For example, the rigid circuit board can smoothly carry the above-mentioned electronic components and chips; when the optical transceiver component is located on the circuit board, the rigid circuit board The circuit board can also provide smooth loading; the rigid circuit board can also be inserted into the electrical connector in the host computer cage.
  • the circuit board 300 also includes a gold finger 301 formed on an end surface thereof, and the gold finger 301 is composed of a plurality of mutually independent pins.
  • the circuit board 300 is inserted into the cage 106 and is electrically connected to the electrical connector in the cage 106 by the gold finger 301 .
  • the gold finger 301 can be disposed only on one side of the circuit board 300 (for example, the upper surface shown in FIG. 4 ), or can be disposed on the upper and lower surfaces of the circuit board 300 to adapt to situations where a large number of pins are required.
  • the golden finger 301 is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • a flexible circuit board can be used to connect the rigid circuit board and the optical transceiver component.
  • FIG. 5 is a schematic diagram 1 of the assembly of a circuit board, a light emitting component and a light receiving component in an optical module according to some embodiments.
  • the optical transceiver component includes a light emitting component 400a and a light receiving component 400b.
  • the light emitting component 400a includes a first lens component.
  • the circuit board 300 is provided with a light emitting chip and a laser driver chip (shielded by the first lens component). (not marked), etc., and the light emitting component 400a is disposed on an end of the circuit board 300 close to the optical port.
  • the first lens assembly is disposed above the light-emitting chip in a cover manner.
  • the first lens assembly and the circuit board 300 form a cavity surrounding the light-emitting chip, the laser driver chip, etc., and the light-emitting chip is located in the cavity.
  • high-rate data transmission requires that the light-emitting chip and its driver chip be placed in close proximity to shorten the connection between the chips and reduce the signal loss caused by the connection.
  • the light-emitting chip and the laser driver chip are placed close to each other and connected by wire bonding.
  • the first lens component cover is disposed above the light emitting chip, laser driver chip and other chips.
  • An optical structure is provided on the upper surface of the first lens component and is configured to realize optical connection between the optical chip and the emitting fiber array 500a.
  • the light emitting direction of the light emitting chip is relatively perpendicular to the transmission direction of the emitting optical fiber array 500a. That is, the light emitting direction of the light emitting chip is perpendicular to the surface of the circuit board.
  • the emitting optical fiber array 500a is above the light emitting chip. After changing the light emitting direction of the light emitting chip, , input into the transmitting optical fiber array 500a, and the transmitting optical signal transmitted by the transmitting optical fiber array 500a is emitted through the optical fiber adapter 600.
  • the upper surface of the first lens component has a groove structure, and an optical structural component is provided in the groove structure.
  • the optical structural component can be a bevel/reflective surface with light reflection function, and the bevel/reflective surface can be coated with an optical film; the optical structural component It can also be a light filter (filter) to play a role in light reflection.
  • the light-emitting chip can be silicon photonics, EML (Electro-absorption Modulated Laser) laser, DML (Directly Modulated Laser) laser, or VCSEL laser, but the VCSEL laser is a vertical cavity surface
  • EML Electro-absorption Modulated Laser
  • DML Directly Modulated Laser
  • VCSEL laser a vertical cavity surface
  • the emitting laser emits laser light perpendicularly to the top surface.
  • Multiple VCSEL lasers can be integrated in an array. Its integration level is much higher than other types of light sources, and it is easier to achieve miniaturization.
  • the typical driving current of VCSEL laser is 7 ⁇ 10mA, and the typical driving current of EML laser is 80mA. Therefore, the driving current of VCSEL laser is much smaller than other light sources, and VCSEL laser uses direct modulation, which makes it lower power consumption and easier to use. Achieve the overall power consumption target of the optical module.
  • VCSEL lasers have significant features such as low cost and low power consumption, and have significant economic value in short-range applications.
  • the light-emitting chip used in this disclosure is a VCSEL laser.
  • the first lens assembly is required to change the transmission direction of the emitted optical signal, that is, the first lens assembly is configured to transmit Beam and change the direction of beam transmission during transmission.
  • the first lens assembly not only functions to seal the light-emitting chip, but also establishes an optical connection between the light-emitting chip and the optical fiber. That is, the light emitted by the light-emitting chip passes through the first lens. The components are transmitted and reflected into the optical fiber to achieve light emission.
  • the light receiving component 400b includes a second lens component.
  • the circuit board 300 is provided with a light receiving chip, a transimpedance amplifier, etc., and the light receiving component 400b is provided at an end of the circuit board 300 close to the optical port.
  • the second lens component is disposed above the light-receiving chip in a cover manner.
  • the second lens component and the circuit board 300 form a cavity surrounding the light-receiving chip, the transimpedance amplifier, etc., and the light-receiving chip is located in the cavity.
  • the light-receiving chip can be a detector, the light-receiving surface of the detector is located on the top surface of the detector (the surface facing away from the circuit board 300), and the receiving light beam is incident into the detector perpendicularly to the top surface, so Multiple detectors can be integrated in an array, making it easier to achieve miniaturization.
  • the second lens component is configured to transmit the light beam and change the direction of the light beam transmission during the transmission process.
  • the light from the optical fiber enters the light receiving chip after being reflected by the second lens component, so that the received light signal is injected into the light receiving chip to achieve Reception of light.
  • high-rate data transmission requires that the light-receiving chip and its transimpedance amplifier be placed in close proximity to shorten the connection between the chips and reduce the signal loss caused by the connection.
  • the light receiving chip and the transimpedance amplifier are placed close to each other and connected by wire bonding.
  • the light incident direction of the light receiving chip is relatively perpendicular to the transmission direction of the optical fiber. That is, the light incident direction of the light receiving chip is perpendicular to the surface of the circuit board.
  • the second lens assembly is above the light receiving chip.
  • the optical fiber adapter 600 transmits the received light from the outside.
  • the second lens assembly changes the direction of the received light from the receiving optical fiber array 500b and then injects it into the light receiving chip.
  • the upper surface of the second lens component has a groove structure, and an optical structural component is provided in the groove structure.
  • the optical structural component can be a bevel/reflective surface with light reflection function, and the bevel/reflective surface can be coated with an optical film; the optical structural component It can also be a light filter (filter) to play a role in light reflection.
  • the light emitting component 400a and the light receiving component 400b can be disposed on the circuit board 300 along the left-right direction, that is, the light receiving component 400b is close to the fiber optic adapter 600, and the light emitting component 400a is disposed on the right side of the light receiving component 400b.
  • the emitting optical fiber array 500a connected to the light emitting component 400a is connected to the optical fiber adapter 600 across the light receiving component 400b.
  • the light emitting component 400a and the light receiving component 400b can also be arranged side by side on the circuit board 300 along the front and back direction, that is, according to the width size of the circuit board 300, the light emitting component 400a and the light receiving component 400b are arranged side by side,
  • the transmitting optical fiber array 500a and the receiving optical fiber array 500b are also connected to the optical fiber adapter 600 side by side.
  • the transmission rate of a single electrical signal is small, and the optical port rate is generally greater than or equal to the electrical port rate.
  • multiple electrical signals need to be superimposed so that the superimposed
  • the electrical transmission rate is the same as the optical transmission rate, so the number of circuits is generally greater than the number of optical paths.
  • the electrical port rate can be 100Gb/s.
  • the circuit rate is the same as the optical path rate, and the number of circuits is the same as the number of optical paths.
  • the electrical port rate can also be 50Gb/s.
  • the electrical port rate is the same as the optical port rate.
  • the number of circuits is twice the number of optical channels.
  • the electrical port rate can also be 25Gb/s. In this case, the electrical port rate is the same as the optical port rate after four circuits are superimposed. , the number of circuit paths is four times the number of optical paths.
  • the electrical port rate When constructing the electrical rate of 200Gb/s, the electrical port rate can be divided into two superimposed 100Gb/s, so that the two 100Gb/s optical port channels are superimposed; the electrical port rate can also be divided into four superimposed 50Gb/s, so that four 50Gb/s optical port channels can be superimposed; the electrical port rate can also be divided into eight superimposed 25Gb/s, so that eight 25Gb/s optical port channels can be superimposed.
  • the more optical channel data there is the cost of the optical module will increase, the manufacturing yield will decrease, and the volume occupied will be larger.
  • FIG. 6 is a schematic diagram of a data processor in an optical module according to some embodiments.
  • a data processor 310 is provided on the circuit board 300.
  • the data processor 310 is electrically connected to the VCSEL laser on the circuit board 300. In this way, the electrical signal output by the data processor 310 drives the VCSEL laser through the laser driver chip. Emit light signals.
  • the data processor 310 includes a reverse gearbox, which is electrically connected to the golden finger 301 through a signal line, so that the golden finger 301 transmits the signal transmitted by the host computer to the reverse gearbox through the signal line, and the reverse gearbox can process the received signal.
  • the signal is decoded to reduce the transmission rate of the electrical signal.
  • the reverse gearbox can decode one high-speed electrical signal into two low-speed electrical signals.
  • the number of electrical signal channels output by the reverse gearbox is twice the number of input signal channels.
  • Each electrical signal output by the gearbox corresponds to a light-emitting chip, and the light-emitting chip converts the electrical signal output by the reverse gearbox into an optical signal.
  • the electrical signal input by the golden finger is transmitted to the reverse gearbox at 200Gb/s through the signal line.
  • the reverse gearbox can decode one 200G high-speed electrical signal into two 100G low-speed electrical signals.
  • the VCSEL laser with an optical port rate of 100G b/s generates an emitted optical signal driven by a 100G low-speed electrical signal.
  • the emitted optical signal is coupled to the emitting fiber array 500a after being reflected by the first lens assembly of the optical emitting assembly to transmit light at 200G high speed. Under the condition of high speed, it solves the problem that the ultimate transmission bandwidth of VCSEL laser cannot match the high-speed electrical transmission rate.
  • the data processor 310 is also electrically connected to the light receiving chip on the circuit board 300, so that the received light signal input by the optical fiber array 500b is reflected by the second lens assembly of the light receiving component and then is injected into the light receiving chip, and the light receiving chip transmits the light.
  • the signal is converted into a low-speed electrical signal, and the low-speed electrical signal is transmitted to the data processor 310 .
  • the data processor 310 also includes a gearbox, which is electrically connected to the gold finger through a signal line, so that after the light receiving chip converts the optical signal into a low-speed electrical signal, the low-speed electrical signal is transmitted to the data processor 310, and the gearbox can receive
  • the received low-speed electrical signals are encoded and processed.
  • each input electrical signal of the gearbox corresponds to an optical receiving chip.
  • the low-speed electrical signal output by the optical receiving chip is transmitted to the gearbox.
  • the gearbox can encode the two low-speed electrical signals into one high-speed electrical signal. signal, the number of electrical signal channels output by the gearbox is half of the number of input signal channels.
  • the electrical signal output by the optical receiving chip is transmitted to the gearbox at 100Gb/s.
  • the gearbox can encode two 100G low-speed electrical signals into one 200G high-speed electrical signal.
  • Figure 7 is a schematic diagram 1 of the principles of a data processor, a light emitting component and a light receiving component in an optical module according to some embodiments.
  • eight 200G PAM4 electrical signals are input from the electrical port of the optical module through the golden finger, and the eight 200G electrical signals are passed through the data processor 310
  • the reverse gearbox is decoded into 16 channels of 100G electrical signals.
  • the 16 channels of 100G electrical signals are processed by the 16 channels of laser driver chip, the 16 channels of VCSEL laser are driven to generate 16 channels of emitted optical signals.
  • the 16 channels of emitted optical signals are coupled through mature multi-mode fiber coupling technology. It is injected into the 16-channel multi-mode optical fiber and emitted through the 16-channel multi-mode optical fiber array to realize the emission of light.
  • the 16 optical signals input from the optical port of the optical module through the 16 multimode optical fiber array are received and converted into 16 100G PAM4 electrical signals by the 16 detectors, and then amplified by the 16 transimpedance amplifiers.
  • the amplified 16 One channel of 100G PAM4 electrical signals is injected into the data processor 310.
  • the 16 channels of 100G PAM4 electrical signals are encoded into 8 channels of 200G PAM4 electrical signals through the gearbox.
  • the 8 channels of 200G PAM4 electrical signals are transmitted to the host computer through the gold finger, realizing light reception.
  • the VCSEL laser array is used as the emission source
  • the detector array is used as the receiving source
  • the multi-mode optical fiber array is used as the transmission medium, making the entire optical system very simple and the coupling process easier to achieve.
  • the overall optical goals can be achieved using a single injection molded part and a passive assembly process, which makes the component cost and production cost of optical modules far lower than single-mode optical systems.
  • the optical communication port occupies a total of 32 optical fibers, which greatly increases the cost of multi-mode optical fiber. It does not utilize the optical fiber with high reliability, low power consumption and low cost. module.
  • SWDM4 short wave wavelength division multiplexing technology
  • SWDM4 short wave wavelength division multiplexing technology
  • FIG 8 is a schematic diagram 2 of the principle of a data processor, a light emitting component and a light receiving component in an optical module according to some embodiments.
  • the light emitting component 400a also includes multiple wavelength division multiplexers.
  • Each wavelength division multiplexer includes multiple input terminals and an output terminal.
  • One input terminal of the wavelength division multiplexer is connected to a laser.
  • the emitted light of different wavelengths emitted by multiple lasers is injected into the wavelength division multiplexer through the input end.
  • the wavelength division multiplexer combines the multiple emitted lights into one composite light.
  • the composite light passes through the output of the wavelength division multiplexer.
  • the end is coupled to the launch fiber array 500a.
  • the light emitting component 400a includes four wavelength division multiplexers.
  • Each wavelength division multiplexer includes four input terminals and one output terminal.
  • Four VCSEL lasers that emit light of different wavelengths are arranged in a row, so that the four emitting VCSEL lasers with different wavelengths form a laser group, and 16 lasers form four identical laser groups.
  • the four laser groups are arranged on the surface of the circuit board 300 along the left and right directions.
  • each laser group emits four channels of emitted light with wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, and the four emitted lights are respectively injected into the wavelength division multiplexer through four input terminals of a wavelength division multiplexer.
  • the wavelength division multiplexer multiplexes four channels of emitted light with wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 into one composite emitted light containing wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • 16 channels of emitted light are multiplexed into four channels of composite emitted light through four wavelength division multiplexers. Only four multimode optical fibers are needed to transmit 16 channels of emitted light, which can greatly reduce the occupation of optical fibers.
  • the wavelength ⁇ 1 may be 850 nm
  • the wavelength ⁇ 2 may be 880 nm
  • the wavelength ⁇ 3 may be 910 nm
  • the wavelength ⁇ 4 may be 940 nm.
  • the optical receiving component 400b also includes a plurality of wavelength decomposition multiplexers. Each wavelength decomposition multiplexer includes an input end and multiple output ends. An output end of the wavelength decomposition multiplexer is connected to an optical receiving chip, thus receiving the optical fiber. Multiple channels of received light of different wavelengths transmitted by the array 500b are injected into the wave decomposition multiplexer through the input end.
  • the wave demultiplexer demultiplexes one channel of received light into multiple channels of split light. Each channel of split light is reflected by the second lens assembly and then emitted. to the corresponding light receiving chip.
  • the light receiving component 400b includes four wavelength decomplexers, and the receiving optical fiber array 500b transmits 16 channels of received light through four optical fibers, and each optical fiber transmits one channel of composite received light containing four channels of different wavelengths; each optical fiber transmits 16 channels of received light.
  • a wavelength decomposition multiplexer includes an input end and four output ends. A composite receiving light is injected into a wavelength decomposition multiplexer through the input end. The wavelength decomposition multiplexer combines four different wavelengths contained in a composite receiving light. The received light is split, so that the wavelength decomposition multiplexer outputs four channels of received light with different wavelengths. The four channels of received light with different wavelengths are reflected by the second lens component and then injected into the corresponding light receiving chip, achieving 16 channels of received light. of reception.
  • the receiving optical fiber array 500b transmits 4 channels of composite receiving light containing 16 channels of different wavelengths through 4 optical fibers, so that 4 multi-mode optical fibers can transmit 16 channels of receiving light, which can greatly reduce the occupation of optical fibers.
  • the optical transmitting component 400a contains four SWDM4 wavelength division multiplexers.
  • One SWDM4 wavelength division multiplexer combines four channels of emitted light with different wavelengths into one channel of composite light, and couples it into a multi-mode optical fiber for emission.
  • the multiplexing of the transmitting optical fiber is realized;
  • the optical receiving component 400b contains four SWMD wave demultiplexers, and a SWDM4 wave demultiplexer is used to demultiplex one channel of composite light transmitted by a multi-mode optical fiber into four different channels.
  • the receiving light of the wavelength realizes the multiplexing of the receiving optical fiber. In this way, the number of optical fibers in the transmitting optical fiber array 500a and the receiving optical fiber array 500b is reduced to 1/4 of the transmitting channel and the receiving channel, thereby saving optical fiber costs.
  • Figure 9 is a second assembly schematic view of a circuit board, a light emitting component and a light receiving component in an optical module according to some embodiments.
  • Figure 10 is a partially exploded schematic view of the first circuit board and light emitting component in an optical module according to some embodiments.
  • the light emitting component 400a includes a laser array 410a, a collimating lens holder 430a, an optical multiplexing component 440a and a first lens component 420a.
  • the first lens component 420a is usually a transparent plastic part and is generally integrated. Injection molding.
  • the first lens assembly 420a and the circuit board 300 form a first accommodation cavity.
  • a laser array 410a, a collimating lens holder 430a and an optical multiplexing assembly 440a are arranged in the first accommodation cavity from bottom to top, and the top of the first lens assembly 420a
  • the surface is provided with a reflective surface configured to reflect signal light incident thereon to reflectively couple the emission light emitted by the laser array 410a to the emission fiber array 500a.
  • the laser array 410a includes a plurality of lasers configured to emit multiple channels of emitted light with different wavelengths.
  • the plurality of lasers are divided into several identical laser groups in rows or columns.
  • Each laser group includes multiple lasers, and the multiple laser groups are arranged side by side on the surface of the circuit board 300, so that the multiple lasers in each laser group emit light respectively. Multiple channels of emitted light of different wavelengths.
  • the surface of the circuit board 300 has a bearing surface that can carry multiple lasers.
  • the multiple lasers are arranged in the form of an array.
  • the circuit board 300 is provided with lasers in both the length direction and the width direction, where A row of lasers in the length direction is set as one group, so that multiple groups of lasers can be set.
  • the direction from left to right is defined as the length direction of the circuit board 300
  • the direction from front to back is defined as the width direction of the circuit board 300 .
  • the laser array 410a includes 16 lasers, 4 lasers are arranged side by side in the length direction of the circuit board 300, that is, a row of 4 lasers is a group, and 4 groups are arranged in the width direction of the circuit board 300. Lasers, so 16 lasers are arranged in a 4 ⁇ 4 array.
  • the collimating lens holder 430a includes a plurality of collimating lenses.
  • the collimating lenses are arranged in one-to-one correspondence with the laser and are configured to convert the emitted light emitted by the laser into collimated light.
  • the collimating lens support 430a is covered above the laser array 410a.
  • the number of lenses in the collimating lens support 430a depends on the number of lasers in the laser array 410a. Generally, the number of lenses in the collimating lens support 430a is equal to the number of lasers in the laser array 410a. quantity.
  • the collimating lens support 430a is a support-type structure, including a main board and a side plate supporting the main board.
  • the side boards are provided on the circuit board 300.
  • the main board is provided with an array of protrusions capable of condensing light.
  • the protrusions can carry multiple collimating lenses.
  • the support structure has strong stability and good alignment effect.
  • the collimating lens support 430a includes a main board and two side plates located on both sides of the main board.
  • the main board and the two side plates form a support structure after being assembled.
  • the two side plates and the circuit board 300 contact, a plurality of collimating lenses are provided on the surface of the main board, and the arrangement of the multiple collimating lenses is consistent with the arrangement of the lasers in the laser array 410a, that is, each collimating lens is arranged in the form of an array, and the length direction of the circuit board 300 is Collimating lenses are provided above the width direction, and a row of collimating lenses in the length direction is set as one group, so that multiple groups of collimating lenses can be installed.
  • Multiple sets of collimating lenses receive emitted light of different wavelengths from the laser array 410a, and perform convergence processing on each emitted light to converge the divergent signal light into parallel light.
  • optical multiplexing component 440a In order to achieve light beam combining, it can be realized by the optical multiplexing component 440a alone.
  • the optical multiplexing component 440a is arranged in the light emitting direction of the collimating lens support 430a, and the optical multiplexing component 440a is arranged on the inner wall of the first accommodation cavity in the first lens assembly 420a. on, configured to combine multiple beams of light into one.
  • the surface of the optical multiplexing component 440a facing the collimating lens holder 430a is a filtering surface, and the surface facing the first lens component 420a includes a reflective surface. Multiple different positions of the filtering surface respectively transmit multiple single beams of light from the collimating lens holder 430a.
  • the reflective surface can reflect the light from the filter surface to the filter surface, and the filter surface can reflect the light from the reflective surface. Therefore, the filtering surface and the reflecting surface of the optical multiplexing component 440a cooperate to combine multiple light beams into one light beam.
  • the optical multiplexing component 440a usually includes multiple optical filters, which form a filtering surface.
  • the optical filter uses different film layers on both sides and at different positions to allow the transmission of signal light of a specific wavelength and the transmission of signal light of other wavelengths. Reflection to achieve the combination of multiple beams of light.
  • the optical multiplexing component 440a coordinates and selects the number of reflections of each beam of light according to the number of combined light beams, and finally achieves the combining of signal lights of different wavelengths.
  • the first lens component 420a in order to achieve beam combining, can also be implemented in cooperation with the optical multiplexing component 440a, that is, the surface of the optical multiplexing component 440a facing the collimating lens support 430a is a filtering surface, and the surface facing the first lens component
  • the surface of 420a is a light-transmitting surface; the upper surface of the first lens component 420a includes a reflective surface, and multiple single beams of light from the collimating lens support 430a are projected at multiple different positions on the filtering surface.
  • the light-transmitting surface can transmit the light from the filtering surface.
  • the reflective surface can reflect the light from the filter surface to the filter surface, and the filter surface can reflect the light from the reflective surface. In this way, multiple beams of light are combined into one beam by the cooperation of the filtering surface and the reflecting surface.
  • Figure 11 is a schematic structural diagram of the first lens component in the optical module according to some embodiments.
  • Figure 12 is a schematic structural diagram of the first lens component in the optical module according to some embodiments.
  • Figure 13 is a schematic diagram of the optical module according to some embodiments.
  • Figure 14 is a cross-sectional view of the first lens component in the optical module according to some embodiments.
  • the first lens assembly 420a includes a first lens body 4217a.
  • the first lens body 4217a is covered on the circuit board 300.
  • the top surface of the first lens body 4217a is provided with
  • the first optical fiber rack 4218a includes a first surface 4219a, which faces the emitting optical fiber array 500a; a wrapping cavity is provided on the first surface 4219a, and a first optical fiber hole 4220a is provided in the wrapping cavity. , the first optical fiber hole 4220a extends from the first surface 4219a to the inside of the first lens assembly 420a.
  • the first optical fiber hole 4220a includes a first hole 4220a-1, a second hole 4220a-2, and a third hole 4220a-3.
  • the third hole 4220a-3 is configured to be plugged into the optical fiber cladding.
  • the two holes 4220a-2 are configured to be plugged into the optical fiber protective layer;
  • the first hole 4220a-1 has a receiving cavity, which can accommodate and wrap each transmitting optical fiber through the wiring component, and then insert the wiring component into the first hole 4220a-1
  • the line gathering component may be a sleeve wrapping the emitting optical fiber. Each emitting optical fiber is inserted into the sleeve, and then the sleeve is inserted into the accommodation cavity of the first hole 4220a-1.
  • the inner diameters of the first hole 4220a-1, the second hole 4220a-2 and the third hole 4220a-3 are all different, and there is a transition connection portion at the interface of the first hole 4220a-1 and the second hole 4220a-2. There is also a filter connection part at the interface between the second hole 4220a-2 and the third hole 4220a-3.
  • the shape of the first optical fiber socket 4202a is consistent with the structure of the optical fiber.
  • the optical fiber includes the core layer, the cladding and the protective layer in order from the inside to the outside.
  • the cladding of the optical fiber is placed in the third hole 4220a-3, and the protective layer of the optical fiber is placed in the second hole 4220a-2.
  • the number of optical fibers is large and the optical fiber is soft. , therefore the first hole 4220a-1 is required to be configured to gather and fix optical fibers.
  • the first optical fiber hole 4220a and the first lens assembly 420a can be integrally formed, which can ensure that the relative position of the emitting optical fiber array 500a and the first lens assembly 420a is fixed. There will be no positional deviation, which helps to improve the coupling accuracy of the emitted light to the optical fiber after combining, thereby increasing the optical coupling efficiency of the emitted light from the first lens assembly 420a to the emitting fiber array 500a, and ultimately realizing the emission of multiple different wavelengths.
  • Light can be transmitted out of the optical module using a shared optical fiber, enabling simultaneous transmission of multiple wavelengths of emitted light in a single optical fiber.
  • the first fiber optic frame 4218a also includes a second surface, which is opposite to the first surface 4219a, and the second surface is inclined, that is, along the light emission direction, the distance between the second surface and the surface of the circuit board 300 is gradually increase.
  • the second surface is an inclined first converging reflective surface 4221a
  • a first converging lens group 4222a is provided on the first converging reflective surface 4221a.
  • the first converging lens group 4222a can combine the light from the light multiplexing component 440a. The light is concentrated and reflected toward the first optical fiber hole 4220a to reflect and converge the composite receiving light output from the optical multiplexing component 440a to the transmitting optical fiber array 500a.
  • the first lens body 4217a also includes a first main reflective surface 4223a.
  • the first main reflective surface 4223a and the first converging reflective surface 4221a are located on the same side of the first lens body 4217a.
  • the first main reflective surface 4223a is an inclined surface, that is, along the In the direction of light emission, the distance between the first main reflective surface 4223a and the surface of the circuit board 300 gradually increases.
  • the first main reflective surface 4223a is tilted at a certain angle with the circuit board 300.
  • the first main reflective surface 4223a is related to the tilt angle of the optical multiplexing component 440a, lasers of different wavelengths, and the thickness of the optical multiplexing component 440a.
  • the inclination angle between the first main reflective surface 4223a and the optical multiplexing component 440a is 4° ⁇ 17°.
  • the projection of the optical multiplexing component 440a in the direction of the circuit board 300 covers each laser in the laser array 410a, and the projection of the first main reflective surface 4223a in the direction of the circuit board 300 covers the optical multiplexing component 440a, so , the emitted light emitted by the laser in the laser array 410a is in a divergent state, and is a divergent beam.
  • the divergent beam is converted into a parallel beam through the collimating lens support 430a, and the parallel beam is transmitted to the optical multiplexing component 440a and the first main reflective surface 4223a in turn.
  • the parallel light emitted by each collimating lens is input to different positions of the optical multiplexing component 440a.
  • the first main reflective surface 4223a receives the emitted light from the optical multiplexing component 440a and then changes the propagation direction of the light and reflects it to the surface of the optical multiplexing component 440a.
  • the wavelength The emitted light is combined with the emitted light from other positions of the optical multiplexing component 440a and is incident on the first main reflective surface 4223a, and finally the emitted light of different wavelengths is combined into a bundle of composite light.
  • a beam of composite light is transmitted to the first converging reflective surface 4221a through the optical multiplexing component 440a.
  • the first converging reflective surface 4221a reflects and changes the propagation direction of the composite light.
  • the reflected composite light is converged and coupled to the emitting fiber array through the first converging lens group 4222a. 500a to emit the emitted light to the outside of the optical module.
  • the first main reflective surface 4223a is a total reflection surface, and the emitted light emitted by the laser in the laser array 410a is transmitted to the first main reflective surface 4223a to undergo total reflection.
  • the first converging reflective surface 4221a is set as an inclined surface. After the combined composite light is transmitted to the first converging reflective surface 4221a, the first converging reflective surface 4221a needs to achieve reflection and convergence at the same time. In order to achieve reflection at the same time, multiple convex structures can be provided on the surface of the first converging reflective surface 4221a.
  • the inclined surface of the first converging reflective surface 4221a has the function of reflecting composite light, and the convex structures can achieve the function of converging the composite light.
  • one end of the first converging reflective surface 4221a can also be connected to the first main reflective surface 4223a, and the other end of the first converging reflective surface 4221a is connected to a converging lens. Set up a converging lens to achieve converging effect.
  • the first lens body 4217a also includes a third surface 4224a.
  • the third surface 4224a is opposite to the first main reflective surface 4223a.
  • the third surface 4224a is provided with a first accommodation cavity 4225a.
  • the first accommodation cavity 4225a is composed of a third The surface 4224a extends toward the direction of the first main reflective surface 4223a.
  • the laser array 410a, the collimating lens holder 430a and the optical multiplexing component 440a are disposed in the first containing cavity 4225a.
  • Figure 15 is a partial assembly cross-sectional view of the circuit board, light emitting component and emitting optical fiber array in the optical module according to some embodiments.
  • the collimating lens holder 430a is placed on the circuit board 300, so that each laser in the collimating lens holder 430a
  • the straight lens is located above each laser in the laser array 410a, so that the collimating lens converts the divergent light emitted by the laser into parallel light; then the optical multiplexing component 440a is fixed on the inner wall of the first accommodation cavity 4225a in the first lens body 4217a,
  • the optical multiplexing component 440a is arranged corresponding to the first main reflective surface 4223a; then the first lens body 4217a is covered above the laser array 410a and the collimating lens holder 430a, so that the laser array 410a and the collimating lens holder 430a are located In the first receiving cavity 4225a of the first lens body
  • a group of lasers arranged along the length direction of the circuit board 300 respectively emits emitted light with wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the emitted light is converted into collimated light through the corresponding collimating lens in the collimating lens support 430a.
  • the four-way collimated light The direct light irradiates to different positions of the optical multiplexing component 440a respectively.
  • the emitted light ⁇ 4 passes through the optical multiplexing component 440a through the filter surface and the light-transmitting surface to the first main reflective surface 4223a, and is reflected to the filtering surface of the optical multiplexing component 440a via the first main reflective surface 4223a.
  • the reflected emitted light ⁇ 4 It is combined with the emitted light ⁇ 3 to form the first composite light; the first composite light passes through the optical multiplexing component 440a through the light-transmitting surface and is emitted to the first main reflective surface 4223a, and is reflected to the filter of the optical multiplexing component 440a via the first main reflective surface 4223a.
  • the second composite light is transmitted through the light-transmitting surface through the optical multiplexing component 440a to the first main reflective surface 4223a, and passes through the first main reflective surface 4223a is reflected to the filtering surface of the optical multiplexing component 440a, and the reflected second composite light is combined with the emitted light ⁇ 1 to form a third composite light;
  • the third composite light is transmitted through the light-transmitting surface through the optical multiplexing component 440a to the first convergence reflection Surface 4221a, the third composite light is reflected by the first converging reflection surface 4221a, condensed, and then coupled into the emitting optical fiber inserted into the first optical fiber socket 4202a.
  • the four emission lights of different wavelengths emitted by a group of four lasers are combined and emitted through a common optical fiber
  • the four groups of emission light of different wavelengths emitted by the four groups of 16 lasers are combined into a four-way composite beam.
  • Light, four-way composite light is emitted through four optical fibers, so that the emitted light of 16 wavelengths in the four optical fibers in the emitting optical fiber array 500a is transmitted simultaneously.
  • Figure 16 is an exploded schematic diagram of a light receiving component in an optical module according to some embodiments.
  • the light receiving component 400b includes a detector array 410b, a converging lens holder 430b, a photodemultiplexing component 440b and a second lens component 420b.
  • the second lens component 420b is usually a transparent plastic part, generally using integrated injection molding. forming.
  • the second lens assembly 420b and the circuit board 300 form a second accommodation cavity.
  • the detector array 410b, the convergence lens support 430b and the optical demultiplexing assembly 540a are arranged in the second accommodation cavity from bottom to top.
  • the second lens assembly 420b The top surface is provided with a reflective surface, and the reflective surface is configured to reflect the received light transmitted by the receiving optical fiber array 500b, so as to reflect and converge the received light to the detector array 410b.
  • the detector array 410b includes a plurality of detectors and is configured to receive multiple channels of received light with different wavelengths.
  • the plurality of detectors are divided into several identical detector groups in rows or columns.
  • Each detector group includes multiple detectors, and multiple detector groups are arranged side by side on the surface of the circuit board 300, so that multiple detectors in each group Each detector receives multiple channels of receiving light with different wavelengths.
  • the surface of the circuit board 300 has a bearing surface that can carry multiple detectors.
  • the multiple detectors are arranged in an array, and the circuit board 300 is provided with detectors in both the length direction and the width direction. detector, in which a row of detectors in the length direction is set as one group, so that multiple groups of detectors can be set.
  • the detector array 410b includes 16 detectors, and 4 detectors are arranged side by side in the length direction of the circuit board 300, that is, a row of 4 detectors is a group, and in the width direction of the circuit board 300 There are 4 sets of detectors, so 16 detectors are arranged in a 4 ⁇ 4 array.
  • the converging lens holder 430b includes several converging lenses.
  • the converging lenses are arranged in one-to-one correspondence with the detector and are configured to convert the received light reflected by the second lens assembly 420b into condensed light to facilitate converging the condensed light to the detector.
  • the converging lens support 430b is covered above the detector array 410b.
  • the number of lenses in the converging lens support 430b depends on the number of detectors in the detector array 410b. Generally, the number of lenses in the converging lens support 430b is equal to that in the detector array 410b. Number of detectors.
  • the condensing lens support 430b is a support-type structure, including a main board and a side plate supporting the main board.
  • the side boards are provided on the circuit board 300.
  • the main board is provided with a protruding array capable of condensing light.
  • the protruding array Capable of carrying multiple converging lenses.
  • the support structure has strong stability and good convergence effect.
  • the converging lens support 430b includes a main board and two side plates located on both sides of the main board.
  • the main board and the two side boards form a support structure after being assembled.
  • the two side boards are connected to the circuit board.
  • 300 contact, multiple converging lenses are provided on the surface of the main board.
  • the arrangement of the multiple converging lenses is consistent with the arrangement of the detectors in the detector array 410b, that is, each converging lens is arranged in the form of an array.
  • the length direction and width of the circuit board 300 Converging lenses are provided above the direction, and a row of converging lenses in the length direction is set as one group, so that multiple groups of converging lenses can be installed.
  • Multiple sets of converging lenses receive received light of different wavelengths from the second lens assembly 420b, perform convergence processing on each received light, and converge the received light to the corresponding detector.
  • optical demultiplexing component 440b In order to achieve beam splitting, it can be realized by the optical demultiplexing component 440b alone.
  • the optical demultiplexing component 440b is arranged in the light incident direction of the condensing lens support 430b, and the optical demultiplexing component 440b is arranged in the second lens component 420b.
  • the inner wall of the second accommodation cavity is configured to demultiplex one beam of composite light into multiple beams of received light.
  • the surface of the optical demultiplexing component 440b facing the condensing lens support 430b is a filtering surface, and the surface facing the second lens component 420b includes a reflective surface. Multiple different positions of the filtering surface respectively transmit multiple single beams of light from the second lens component 420b.
  • the reflective surface can reflect the light from the filter surface to the filter surface, and the filter surface can filter and reflect the light from the reflective surface. Therefore, the filtering surface and the reflecting surface of the optical demultiplexing component 440b cooperate to decompose one beam of light into multiple beams of light.
  • the optical demultiplexing component 440b usually includes multiple optical filters, which form a filter surface.
  • the optical filter uses different film layers on both sides and at different positions to allow the transmission of signal light of a specific wavelength and signal light of other wavelengths. reflection to achieve the splitting of a beam of light.
  • the optical demultiplexing component 440b coordinates and selects the number of reflections of the composite light according to the number of split light beams, and finally achieves splitting of signal light of different wavelengths.
  • Figure 17 is a schematic structural diagram of the second lens component in the optical module according to some embodiments.
  • Figure 18 is a schematic structural diagram of the second lens component in the optical module according to some embodiments.
  • Figure 19 is a schematic diagram of the optical module according to some embodiments.
  • Figure 20 is a cross-sectional view of the light receiving component in the optical module according to some embodiments.
  • the second lens assembly 420b includes a second lens body 4217b.
  • the second lens body 4217b is covered on the circuit board 300.
  • the top surface of the second lens body 4217b is provided with
  • the second optical fiber rack 4218b includes a fourth surface 4219b facing the receiving optical fiber array 500b; a wrapping cavity is provided on the fourth surface 4219b, and a second optical fiber hole 4220b is provided in the wrapping cavity. , the second optical fiber hole 4220b extends from the fourth surface 4219b to the inside of the second lens assembly 420b.
  • the second optical fiber hole 4220b includes a fourth hole 4220b-1, a fifth hole 4220b-2, and a sixth hole 4220b-3.
  • the sixth hole 4220b-3 is configured to be plugged into the optical fiber cladding.
  • the five holes 4220b-2 are configured to be plugged into the optical fiber protective layer;
  • the fourth hole 4220b-1 has a receiving cavity that can accommodate and wrap each receiving optical fiber through the wiring component, and then insert the wiring component into the fourth hole 4220b-1
  • the line gathering component may be a sleeve that wraps the receiving optical fiber. Each receiving optical fiber is inserted into the sleeve, and then the sleeve is inserted into the accommodation cavity of the fourth hole 4220b-1.
  • the inner diameters of the fourth hole 4220b-1, the fifth hole 4220b-2 and the sixth hole 4220b-3 are all different, and there is a transition connection at the interface of the fourth hole 4220b-1 and the fifth hole 4220b-2. There is also a filter connection part at the interface between the fifth hole 4220b-2 and the sixth hole 4220b-3, and the shape of the first optical fiber socket 4202a is consistent with the structure of the optical fiber.
  • the optical fiber includes the core layer, cladding and protective layer in order from the inside to the outside.
  • the cladding of the optical fiber is placed in the sixth hole 4220b-3, and the protective layer of the optical fiber is placed in the fifth hole 4220b-2.
  • the number of optical fibers is large and the optical fiber is soft. , therefore the fourth hole 4220b-1 is required to be configured to gather and fix optical fibers.
  • the second optical fiber hole 4220b and the second lens assembly 420b can be integrally formed, which can ensure that the relative position of the receiving optical fiber array 500b and the second lens assembly 420b is fixed. There will be no positional deviation, which helps to improve the coupling accuracy of the combined received light to the second lens assembly 420b, thereby increasing the optical coupling efficiency of the received light from the receiving fiber array 500b to the second lens assembly 420b, ultimately achieving multiple different
  • the received light of the wavelength can be transmitted to the second lens component 420b using a shared optical fiber, thereby realizing the simultaneous transmission of the received light of multiple wavelengths in a single optical fiber.
  • the second fiber optic frame 4218b also includes a fifth surface, which is disposed opposite to the fourth surface 4219b, and the fifth surface is disposed obliquely, that is, along the light receiving direction, the distance between the fifth surface and the surface of the circuit board 300 slowing shrieking.
  • the fifth surface is an inclined second converging reflection surface 4221b
  • a second condensing lens group 4222b is provided on the second converging reflection surface 4221b.
  • the second condensing lens group 4222b can combine the light from the receiving fiber array 500b. The light is condensed and reflected toward the optical demultiplexing component 440b to reflect the composite light transmitted by the receiving optical fiber array 500b to the optical demultiplexing component 440b.
  • the second lens body 4217b also includes a second main reflective surface 4223b.
  • the second main reflective surface 4223b and the second converging reflective surface 4221b are located on the same side of the second lens body 4217b.
  • the second main reflective surface 4223b is an inclined surface, that is, along the In the light receiving direction, the distance between the second main reflective surface 4223b and the surface of the circuit board 300 gradually decreases.
  • the second main reflective surface 4223b is tilted at a certain angle with the circuit board 300.
  • the second main reflective surface 4223b is related to the tilt angle of the optical demultiplexing component 440b, detectors of different wavelengths, and the thickness of the optical demultiplexing component 440b.
  • the tilt angle between the second main reflective surface 4223b and the optical demultiplexing component 440b is 4° ⁇ 17°.
  • the projection of the photodemultiplexing component 440b in the direction of the circuit board 300 covers each detector in the detector array 410b, and the projection of the second main reflective surface 4223b in the direction of the circuit board 300 covers the photolysis Multiplexing component 440b, in this way, the received light transmitted by the receiving optical fiber array 500b is in a divergent state and is a divergent beam.
  • the divergent beam is converted into a parallel beam through the second converging lens group 4222b, and the composite light is sequentially transmitted to the optical demultiplexing component 440b and On the second main reflective surface 4223b, multiple channels of composite light are input to different positions of the optical demultiplexing component 440b, and the filter surface of the optical demultiplexing component 440b demultiplexes one channel of composite light into multiple channels of split light.
  • the second main reflective surface 4223b is a total reflection surface, and the received light reflected by the optical demultiplexing component 440b is totally reflected on the second main reflective surface 4223b.
  • the second lens body 4217b also includes a sixth surface 4224b.
  • the sixth surface 4224b is opposite to the second main reflective surface 4223b.
  • the sixth surface 4224b is provided with a second accommodation cavity 4225b.
  • the second accommodation cavity 4225b is composed of a sixth The surface 4224b extends in the direction of the second main reflective surface 4223b, and the detector array 410b, the focusing lens support 430b and the optical demultiplexing component 440b are disposed in the second accommodation cavity 4225b.
  • Figure 21 is a partial assembly cross-sectional view of the circuit board, light receiving component and receiving optical fiber array in the optical module according to some embodiments.
  • the converging lens holder 430b is placed on the circuit board 300, so that each detector in the converging lens holder 430b converges The lens is located above each detector in the detector array 410b; then the optical demultiplexing component 440b is fixed on the inner wall of the second accommodation cavity 4225b in the second lens body 4217b, so that the optical demultiplexing component 440b is in contact with the second main reflection Surface 4223b is set correspondingly; and then the second lens body 4217b is covered above the detector array 410b and the convergence lens holder 430b, so that the detector array 410b and the convergence lens holder 430b are located in the second receiving cavity of the second lens body 4217b 4225b, and the split lights output at different positions of the optical demultiplexing
  • One optical fiber in the receiving optical fiber array 500b transmits composite light containing wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the composite light is converged and reflected by the second converging lens group 4222b, and the first composite light is reflected to the optical demultiplexing component.
  • 440b in which the received light ⁇ 1 passes through the optical demultiplexing component 440b through the light-transmitting surface and the filtering surface, and the second composite light with wavelengths ⁇ 2, ⁇ 3, and ⁇ 4 is reflected to the second main reflecting surface 4223b through the filtering surface.
  • the reflective surface 4223b reflects the second composite light to the filtering surface of the optical demultiplexing component 440b, and the received light ⁇ 2 passes through the optical demultiplexing component 440b through the filtering surface; the third composite light with wavelengths ⁇ 3 and ⁇ 4 is reflected to the filtering surface through the filtering surface.
  • the second main reflective surface 4223b reflects the third composite light to the filtering surface of the optical demultiplexing component 440b.
  • the received light ⁇ 3 passes through the filtering surface and passes through the optical demultiplexing component 440b; the received light ⁇ 4 passes through the filtering surface.
  • the second main reflective surface 4223b reflects the received light ⁇ 4 to the filtering surface of the optical demultiplexing component 440b, and passes through the optical demultiplexing component 440b through the filtering surface.
  • the composite light transmitted by such an optical fiber is reflected and split by the optical demultiplexing component 440b and the second main reflective surface 4223b, and then divided into four channels of received light, thereby realizing the simultaneous transmission of multiple wavelengths of received light in a single optical fiber.
  • the multi-channel received light output by the optical demultiplexing component 440b is converted into condensed light through the condensing lens support 430b, and the multi-channel condensed light is respectively converged to the corresponding detector in the detector array 410b, thereby realizing the reception of the multi-channel received light.
  • the 16 channels of received light are The converging lens support 430b is converged and then injected into 16 detectors respectively, so that the received light of 16 wavelengths in the four optical fibers in the receiving optical fiber array 500b is transmitted simultaneously.
  • the structures of the light-emitting component and the light-receiving component are not limited to the above-mentioned structures, as long as the light-emitting component can apply light combining and splitting technology to reduce the occupation of optical fibers.
  • Figure 22 is a schematic diagram 3 of the assembly of the circuit board, light emitting component and light receiving component in the optical module according to some embodiments.
  • Figure 23 is a partially exploded schematic diagram 2 of the circuit board and light emitting component in the optical module according to some embodiments.
  • the light emitting component 400a includes a laser array 410a and a first lens component 420a.
  • the first lens component 420a and the circuit board 300 form a first containing cavity, and the laser array 410a is disposed in the first containing cavity;
  • a groove is provided on the top surface of the first lens assembly 420a, and a plurality of reflective surfaces are provided in the groove.
  • the multiple emission lights emitted by the laser array 410a are combined through the multiple reflective surfaces.
  • the laser array 410a includes a plurality of lasers configured to emit multiple channels of emitted light with different wavelengths.
  • the plurality of lasers are divided into several identical laser groups in rows or columns.
  • Each laser group includes multiple lasers, and the multiple laser groups are arranged side by side on the surface of the circuit board 300, so that the multiple lasers in each laser group are respectively Emit multiple channels of emitted light with different wavelengths.
  • the surface of the circuit board 300 has a bearing surface that can carry multiple lasers.
  • the multiple lasers are arranged in the form of an array.
  • the circuit board 300 is provided with lasers in both the length direction and the width direction, where A row of lasers in the length direction is set as one group, so that multiple groups of lasers can be set.
  • the direction from left to right is defined as the length direction of the circuit board 300
  • the direction from front to back is defined as the width direction of the circuit board 300 .
  • the laser array 410a includes 16 lasers, 4 lasers are arranged side by side in the length direction of the circuit board 300, that is, a row of 4 lasers is a group, and 4 groups are arranged in the width direction of the circuit board 300. Lasers, so 16 lasers are arranged in a 4 ⁇ 4 array.
  • a launch fiber holder 510a is provided at one end of the launch fiber array 500a.
  • the light incident surface of the launch fiber array 500a protrudes from the launch fiber holder 510a.
  • the launch fiber holder 510a is inserted into the first lens assembly 420a, so that the launch fiber array 500a is in contact with the first lens assembly.
  • 420a is fixedly connected, so that the laser light emitted by the laser array 410a is reflected by the first lens component 420a and then injected into the emission fiber array 500a.
  • Figure 24 is a schematic diagram 4 of the structure of the first lens component in the optical module according to some embodiments.
  • Figure 25 is a schematic diagram 5 of the structure of the first lens component in the optical module according to some embodiments.
  • Figure 26 is a schematic diagram of the optical module according to some embodiments.
  • Figure 27 is a cross-sectional view of a light emitting component in an optical module according to some embodiments.
  • a package cavity is provided at one end of the first lens assembly 420a close to the light outlet.
  • a first optical fiber socket 4202a is provided in the package cavity, and the launch fiber holder 510a is inserted into the package. In the cavity, the emission fiber array 500a fixed in the emission fiber bracket 510a is inserted into the first lens assembly 420a.
  • the first lens assembly 420a includes a first side 4201a
  • the wrapping cavity extends from the first side 4201a to the inside of the first lens assembly 420a
  • the first optical fiber socket 4202a includes a first connecting portion 4202a-1, the second connection part 4202a-2 and the third connection part 4202a-3, the first connection part 4202a-1, the second connection part 4202a-2 and the third connection part 4202a-3 are arranged in sequence, the first connection The portion 4202a-1 is close to the first side surface 4201a, and the first connecting portion 4202a-1, the second connecting portion 4202a-2 and the third connecting portion 4202a-3 are connected.
  • the inner diameters of the first connecting part 4202a-1, the second connecting part 4202a-2 and the third connecting part 4202a-3 are different, and the inner diameter of the first connecting part 4202a-1 is larger than the inner diameter of the second connecting part 4202a-2. , the inner diameter of the second connecting part 4202a-2 is larger than the inner diameter of the third connecting part 4202a-3.
  • the shape of the first optical fiber socket 4202a is consistent with the structure of each optical fiber in the launch fiber array 500a.
  • the optical fiber includes a core layer, a cladding and a protective layer from the inside to the outside.
  • the cladding of the optical fiber is placed on
  • the third connection part 4202a-3 is configured to be plugged into the optical fiber cladding;
  • the protective layer of the optical fiber is placed in the second connection part 4202a-2, and the second connection part 4202a-2 is configured to Plug into the optical fiber protective layer.
  • the launch fiber array 500a Since there are a large number of optical fibers in the launch fiber array 500a and the fibers are relatively soft, it is necessary to insert one end of the launch fiber holder 510a into the first connection part 4202a-1, and fix the launch fiber holder 510a through the first connection part 4202a-1 so that it protrudes The optical fiber in the transmitting optical fiber bracket 510a is inserted into the first optical fiber socket 4202a.
  • the light input end of the third connection part 4202a-3 may be provided with a first lens 4210a.
  • the first lens 4210a is configured to convert the signal light reflected by the first lens assembly 420a into condensed light, so as to couple the condensed light to the first
  • the optical fiber in the optical fiber socket 4202a can improve the coupling accuracy between the reflected emitted light and the optical fiber.
  • the first optical fiber socket 4202a and the first lens assembly 420a are integrally formed, which can ensure that the relative position of the emitting optical fiber array 500a and the first lens assembly 420a is fixed. There will be no positional deviation, which helps to improve the coupling accuracy of the reflected emitted light to the optical fiber, thereby increasing the optical coupling efficiency of the emitted light coupled from the first lens assembly 420a to the emitting optical fiber array 500a.
  • the first lens assembly 420a also includes a first top surface 4204a.
  • a first optical port groove 4205a may be provided on the first top surface 4204a.
  • the first optical port groove 4205a extends from the first top surface 4204a toward the surface of the circuit board 300.
  • a first bevel 4211a, a second bevel 4213a, a third bevel 4215a and a first reflective surface 4209a may be provided in the first optical slot 4205a.
  • the first bevel 4211a, the second bevel 4211a, the second bevel 4215a and the first reflective surface 4209a may be provided in the first optical slot 4205a.
  • the distance between the inclined surface 4213a, the third inclined surface 4215a, the first reflective surface 4209a and the circuit board 300 gradually increases, so that the first inclined surface 4211a, the second inclined surface 4213a, the third inclined surface 4215a, the first reflective surface 4209a and the first optical fiber socket 4202a relative setting.
  • a first hole 4212a is opened on the first slope 4211a.
  • a first filter 4301a is provided in the first hole 4212a.
  • the first filter 4301a has the functions of reflection and transmission.
  • the light emitted by the corresponding laser passes through the first filter 4301a. After reflection, it is injected into the first optical fiber socket 4202a.
  • a second hole 4214a is opened on the second slope 4213a.
  • a second filter 4302a is provided in the second hole 4214a.
  • the second filter 4302a has the functions of reflection and transmission. The light emitted by the corresponding laser passes through the second filter 4302a. After reflection, it passes through the first filter 4301a and enters the first optical fiber socket 4202a.
  • a third hole 4216a is opened on the third slope 4215a.
  • a third filter 4303a is provided in the third hole 4216a.
  • the third filter 4303a has the functions of reflection and transmission. The light emitted by the corresponding laser passes through the third filter 4303a. After reflection, it passes through the second filter 4302a and the first filter 4301a in sequence and enters the first optical fiber socket 4202a.
  • the first reflective surface 4209a has the function of reflection. After the light emitted by the corresponding laser is reflected by the first reflective surface 4209a, it then sequentially passes through the third filter 4303a, the second filter 4302a, and the first filter 4301a and is injected into the first optical fiber. In socket 4202a.
  • the first top surface 4204a may also be provided with a first groove, a second groove, a third groove, and a fourth groove.
  • the first groove, the second groove, the third groove It is connected to the fourth groove, and a first filter 4301a is provided in the first groove, a second filter 4302a is provided in the second groove, and a third filter 4303a is provided in the third groove.
  • the laser array The multi-path emitted light emitted by 410a is combined after being reflected and transmitted by the first filter 4301a, the second filter 4302a, the third filter 4303a, and the first reflective surface 4209a.
  • the first lens assembly 420a further includes a first bottom surface 4206a, which is opposite to the first top surface 4204a, and the first bottom surface 4206a is fixedly connected to the surface of the circuit board 300.
  • a first cavity 4207a is provided on the first bottom surface 4206a.
  • the first cavity 4207a extends from the first bottom surface 4206a to the first top surface 4204a.
  • the first cavity 4207a and the surface of the circuit board 300 form a sealed cavity.
  • the laser array 410a is located in the sealed cavity.
  • a collimating lens array 4208a is disposed on the inner wall of the first cavity 4207a.
  • the collimating lens array 4208a is disposed corresponding to the laser array 410a, that is, a collimating lens of the collimating lens array 4208a is disposed corresponding to a laser of the laser array 410a, and
  • the collimating lens array 4208a is located below the first filter 4301a, the second filter 4302a, the third filter 4303a and the first reflective surface 4209a, so that the laser light emitted by the laser array 410a is converted into multi-channel collimated light through the collimating lens array 4208a. Direct light and multi-channel collimated light respectively hit the first filter 4301a, the second filter 4302a, the third filter 4303a and the first reflective surface 4209a and are reflected.
  • FIG 28 is a partial assembly cross-sectional view of the circuit board, light emitting component and emitting optical fiber array in the optical module according to some embodiments.
  • each laser in the laser array 410a is fixed on the circuit board 300 in an array, and the 16 lasers in the laser array 410a are divided into 4 identical laser groups; then the first lens assembly 420a is covered
  • the host computer inputs 8 channels of 200G G PAM4 electrical signals to the circuit board 300 through the gold finger 301, and the 8 channels of 200G PAM4 electrical signals are decoded into 16 channels of 100G electrical signals through the reverse gearbox of the data processor 310.
  • a group of lasers arranged along the length direction of the circuit board 300 emits emitted light with wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 respectively under the driving of four 100G electrical signals.
  • the emitted light is converted into Collimated light, the four-way collimated light is respectively irradiated to the first filter 4301a, the second filter 4302a, the third filter 4303a and the first reflective surface 4209a.
  • the emission wavelength ⁇ 4 is irradiated to the first reflective surface 4209a, and passes through the After being reflected by a reflective surface 4209a, it passes through the third filter 4303a, the second filter 4302a and the first filter 4301a in sequence; the emission wavelength ⁇ 3 is transmitted to the third filter 4303a, is reflected by the third filter 4303a, and then passes through the third filter 4301a in sequence.
  • the reflected emission wavelength ⁇ 1 and the emission wavelengths ⁇ 2, ⁇ 3, and ⁇ 4 transmitted through the first filter 4301a are combined into a composite light.
  • four channels of emitted light with different wavelengths are combined by the first filter 4301a, the second filter 4302a, the third filter 4303a and the first reflective surface 4209a, and then are transmitted out of the optical module through a common optical fiber, thereby realizing multiple optical fibers in a single optical fiber.
  • the emitted light of two wavelengths is transmitted simultaneously.
  • the four emission lights of different wavelengths emitted by a group of four lasers are combined and emitted through a common optical fiber
  • the four groups of emission light of different wavelengths emitted by the four groups of 16 lasers are combined into a four-way composite beam.
  • Light, four-way composite light is emitted through four optical fibers, so that the emitted light of 16 wavelengths in the four optical fibers in the emitting optical fiber array 500a is transmitted simultaneously.
  • Figure 29 is a partially exploded schematic diagram 2 of a circuit board and a light receiving component in an optical module according to some embodiments.
  • the light receiving assembly 400b includes a detector array 410b and a second lens assembly 420b.
  • the second lens assembly 420b and the circuit board 300 form a second accommodation cavity, and the detector array 410b is disposed in the second accommodation cavity;
  • the top surface of the second lens assembly 420b is provided with a groove, and multiple reflective surfaces are provided in the groove. The received light reflected by the second lens assembly 420b is split through the multiple reflective surfaces.
  • the detector array 410b includes a plurality of detectors and is configured to receive multiple channels of received light with different wavelengths.
  • the plurality of detectors are divided into several identical detector groups in rows or columns.
  • Each detector group includes multiple detectors, and the multiple detector groups are arranged side by side on the surface of the circuit board 300, so that each detector group Multiple detectors in the detector receive multiple channels of receiving light with different wavelengths.
  • the surface of the circuit board 300 has a bearing surface that can carry multiple detectors.
  • the multiple detectors are arranged in an array, and the circuit board 300 is provided with detectors in both the length direction and the width direction. detector, in which a row of detectors in the length direction is set as one group, so that multiple groups of detectors can be set.
  • the detector array 410b includes 16 detectors, and 4 detectors are arranged side by side in the length direction of the circuit board 300, that is, a row of 4 detectors is a group, and in the width direction of the circuit board 300 There are 4 sets of detectors, so 16 detectors are arranged in a 4 ⁇ 4 array.
  • One end of the receiving optical fiber array 500b is provided with a receiving optical fiber bracket 510b.
  • the light exit surface of the receiving optical fiber array 500b protrudes from the receiving optical fiber bracket 510b.
  • the receiving optical fiber bracket 510b is inserted into the second lens assembly 420b, so that the receiving optical fiber array 500b and the second lens assembly 420b are connected. Fixed connection, such that the received light transmitted by the receiving optical fiber array 500b is reflected by the second lens assembly 420b and then enters the detector array 410b.
  • Figure 30 is a schematic diagram 4 of the structure of the second lens component in the optical module according to some embodiments.
  • Figure 31 is a schematic diagram 5 of the structure of the second lens component in the optical module according to some embodiments.
  • Figure 32 is a schematic diagram of the optical module according to some embodiments.
  • Figure 33 is a cross-sectional view of the light receiving component in the optical module according to some embodiments.
  • a package cavity is provided at one end of the second lens assembly 420b close to the light outlet.
  • a second fiber optic socket 4202b is provided in the package cavity, and the receiving optical fiber bracket 510b is inserted into the package. In the cavity, the receiving optical fiber array 500b fixed in the receiving optical fiber bracket 510b is inserted into the second lens assembly 420b.
  • the second lens assembly 420b includes a second side 4201b
  • the wrapping cavity extends from the second side 4201b to the inside of the second lens assembly 420b
  • the second optical fiber socket 4202b includes a first insertion portion 4202b-1, the second insertion part 4202b-2 and the third insertion part 4202b-3, the first insertion part 4202b-1, the second insertion part 4202b-2 and the third insertion part 4202b-3 are arranged in sequence, the first insertion part Part 4202b-1 is close to the second side 4201b, and the first insertion part 4202b-1, the second insertion part 4202b-2 and the third insertion part 4202b-3 are connected.
  • the inner diameters of the first insertion part 4202b-1, the second insertion part 4202b-2 and the third insertion part 4202b-3 are different, and the inner diameter of the first insertion part 4202b-1 is larger than the inner diameter of the second insertion part 4202b-2. , the inner diameter of the second insertion part 4202b-2 is larger than the inner diameter of the third insertion part 4202b-3.
  • the shape of the second optical fiber socket 4202b is consistent with the structure of each optical fiber in the receiving optical fiber array 500b.
  • the optical fiber includes a core layer, a cladding and a protective layer from the inside to the outside.
  • the cladding of the optical fiber is placed on
  • the third insertion part 4202b-3 is configured to be inserted into the optical fiber cladding; the protective layer of the optical fiber is placed in the second insertion part 4202b-2, and the second insertion part 4202b-2 is configured to Plug into the optical fiber protective layer.
  • the optical fiber receiving the optical fiber bracket 510b is inserted into the second optical fiber socket 4202b.
  • the light output end of the third insertion part 4202b-3 may be provided with a second lens 4210b.
  • the second lens 4210b is configured to convert the received light transmitted from the receiving optical fiber array 500b to the second lens assembly 420b into collimated light.
  • the collimated light Reflection splitting is performed via the reflective surface of the second lens assembly 420b.
  • the second optical fiber socket 4202b and the second lens assembly 420b are integrally formed, which can ensure that the relative position of the receiving optical fiber array 500b and the second lens assembly 420b is fixed. There will be no positional deviation, which helps to improve the coupling accuracy of the received light to the second lens component 420b, thereby increasing the light coupling efficiency of the received light coupled from the receiving fiber array 500b to the second lens component 420b.
  • the second lens assembly 420b further includes a second top surface 4204b.
  • a second optical port groove 4205b may be provided on the second top surface 4204b.
  • the second optical port groove 4205b extends from the second top surface 4204b toward the surface of the circuit board 300.
  • a fourth inclined surface 4211b, a fifth inclined surface 4213b, a sixth inclined surface 4215b and a second reflective surface 4209b may be provided in the second optical port groove 4205b.
  • the fourth inclined surface 4211b, the fifth inclined surface 4211b, the fifth inclined surface 4215b and the second reflective surface 4209b may be provided in the second optical port groove 4205b.
  • the distance between the inclined surface 4213b, the sixth inclined surface 4215b, the second reflective surface 4209b and the circuit board 300 gradually increases, so that the fourth inclined surface 4211b, the fifth inclined surface 4213b, the sixth inclined surface 4215b, the second reflective surface 4209b and the second optical fiber socket 4202b Relative settings.
  • a fourth hole 4212b is opened on the fourth inclined surface 4211b, and a fifth filter 4301b is provided in the fourth hole 4212b.
  • the fifth filter 4301b has the functions of reflection and transmission, and the received light incident on the second lens assembly 420b passes through The fifth filter 4301b is reflected and then injected into the corresponding detector.
  • a fifth hole 4214b is opened on the fifth inclined surface 4213b.
  • the fifth hole 4214b is provided with a sixth filter 4302b.
  • the sixth filter 4302b has the functions of reflection and transmission. The received light incident on the second lens assembly 420b is transmitted through. After passing through the fifth filter 4301b, it is reflected by the sixth filter 4302b and then enters the corresponding detector.
  • a sixth hole 4216b is opened on the sixth inclined surface 4215b.
  • a seventh filter 4303b is provided in the sixth hole 4216b.
  • the seventh filter 4303b has the functions of reflection and transmission.
  • the received light incident on the second lens assembly 420b is sequentially It passes through the fifth filter 4301b and the sixth filter 4302b, is reflected by the seventh filter 4303b, and then enters the corresponding detector.
  • the second reflective surface 4209b has the function of reflection.
  • the received light incident on the second lens assembly 420b sequentially passes through the fifth filter 4301b, the sixth filter 4302b, and the seventh filter 4303b, and then is reflected by the second reflective surface 4209b. into the corresponding detector.
  • a first groove, a second groove, a third groove and a fourth groove may also be provided on the second top surface 4204b.
  • the first groove, the second groove, the third groove and The fourth grooves are connected, and a fifth filter 4301b is provided in the first groove, a sixth filter 4302b is provided in the second groove, and a seventh filter 4303b is provided in the third groove to receive the optical fiber array.
  • 500b The received light incident on the second lens assembly 420b is reflected and transmitted by the fifth filter 4301b, the sixth filter 4302b, the seventh filter 4303b and the second reflective surface 4209b, and then is split.
  • the second lens assembly 420b further includes a second bottom surface 4206b.
  • the second bottom surface 4206b is opposite to the second top surface 4204b, and the second bottom surface 4206b is fixedly connected to the surface of the circuit board 300.
  • a second cavity 4207b is provided on the second bottom surface 4206b.
  • the second cavity 4207b extends from the second bottom surface 4206b to the second top surface 4204b, and the second cavity 4207b and the surface of the circuit board 300 form a sealed cavity.
  • the detector Array 410b is located within the sealed cavity.
  • a converging lens array 4208b is provided on the inner wall of the second cavity 4207b.
  • the converging lens array 4208b is disposed corresponding to the detector array 410b. That is, a converging lens of the converging lens array 4208b is disposed corresponding to a detector of the detector array 410b, and the converging lens array 4208b is disposed corresponding to a detector of the detector array 410b.
  • the lens array 4208b is located below the fifth filter 4301b, the sixth filter 4302b, the seventh filter 4303b and the second reflective surface 4209b, so that through the fifth filter 4301b, the sixth filter 4302b, the seventh filter 4303b and The four-channel received light reflected and split by the second reflective surface 4209b is converted into four-channel condensed light through the converging lens array 4208b, and the four-channel condensed light is respectively emitted to the corresponding detectors in the detector array 410b.
  • FIG 34 is a partial assembly cross-sectional view of the circuit board, light receiving component and receiving optical fiber array in the optical module according to some embodiments.
  • each detector in the detector array 410b is fixed on the circuit board 300 in an array, and the 16 detectors in the detector array 410b are divided into 4 identical detector groups; then the second The lens assembly 420b is covered on the detector array 410b, so that the fifth filter 4301b, the sixth filter 4302b, the seventh filter 4303b and the second reflective surface 4209b in the second lens assembly 420b are in contact with a set of detector groups.
  • the detectors are arranged relative to each other; and then the receiving optical fiber array 500b is inserted into the second optical fiber socket 4202b of the second lens assembly 420b.
  • One optical fiber in the receiving optical fiber array 500b transmits the first composite light containing wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the first composite light is injected into the second lens assembly 420b through the second optical fiber socket 4202b, and the first composite light is emitted to
  • the fifth filter 4301b is used, the received light ⁇ 1 is reflected at the fifth filter 4301b, and the reflected received light ⁇ 1 is converged to the corresponding detector through the converging lens array 4208b; including the second composite light with wavelengths ⁇ 2, ⁇ 3, and ⁇ 4
  • the light passes through the fifth filter 4301b and reaches the sixth filter 4302b.
  • the received light ⁇ 2 is reflected at the sixth filter 4302b.
  • the reflected received light ⁇ 2 is converged to the corresponding detector through the condensing lens array 4208b; the wavelength is The third composite light of ⁇ 3 and ⁇ 4 sequentially passes through the fifth filter 4301b and the sixth filter 4302b and is emitted to the seventh filter 4303b.
  • the received light ⁇ 3 is reflected at the seventh filter 4303b, and the reflected received light ⁇ 3 passes through The converging lens array 4208b converges to the corresponding detector; the received light ⁇ 4 passes through the fifth filter 4301b, the sixth filter 4302b, and the seventh filter 4303b in sequence and is emitted to the second reflective surface 4209b, and the received light ⁇ 4 is reflected on the second reflective surface 4209b is reflected, and the reflected received light ⁇ 4 is concentrated to the corresponding detector through the condensing lens array 4208b.
  • four channels of composite light with different wavelengths share a single optical fiber and are transmitted to the second lens assembly 420b.
  • the composite light is reflected and split by the fifth filter 4301b, the sixth filter 4302b, the seventh filter 4303b, and the second reflective surface 4209b.
  • the simultaneous transmission of received light of multiple wavelengths in a single optical fiber is achieved.
  • the four-channel composite light transmitted by the four optical fibers in the receiving optical fiber array 500b is reflected by the second lens assembly 420b and divided into 16 channels of received light.
  • the 16 channels of received light are converted into 16 channels of 100G electrical signals by the detector array 410b.
  • the 16 channels of 100G electrical signals pass through
  • the 16-channel transimpedance amplifier amplifies, and the amplified 16-channel 100G PAM4 electrical signals are injected into the data processor 310.
  • the 16-channel 100G PAM4 electrical signals are encoded into 8-channel 200G PAM4 electrical signals through the gearbox, and the 8-channel 200G PAM4 electrical signals pass through the gold
  • the finger is transmitted to the host computer to realize the reception of 16 channels of receiving optical signals.
  • the data processor changes the input and output electrical port rates and uses the mature and reliable VCSEL technology to solve the problem.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括电路板,其上设置有数据处理器(310);光发射组件(400a),与数据处理器(310)电连接,包括激光器阵列(410a)与第一透镜组件(420a),激光器阵列(410a)设置于电路板(300)上,被配置为发射多路光信号,多路光信号在第一透镜组件(420a)内合成多路复合光;光接收组件(400b),与数据处理器(310)电连接,包括探测器阵列(410b)与第二透镜组件(420b),探测器阵列(410b)设置于电路板(300)上,第二透镜组件(420b)被配置为将输入的多路复合光进行分光,分光后的接收光分别汇聚至探测器阵列(410b);光纤适配器(600),通过发射光纤阵列(500a)与光发射组件(400a)连接,通过接收光纤阵列(550b)与光接收组件(400b)连接,被配置为传输多路光信号。

Description

光模块
相关申请的交叉引用
本公开要求在2022年06月24日提交中国专利局、申请号为202210731028.7的专利优先权,其全部内容通过引用结合在本公开中;要求在2022年06月24日提交中国专利局、申请号为202210731036.1,在2022年06月24日提交中国专利局、申请号为202210730675.6的专利优先权,其部分内容通过引用结合在本公开中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
在大型超大规模和云数据中心提供商的推动下,信号技术和收发器技术的进步推动了下一代传输速度的发展,实现光电转换功能的光模块的传输速率在快速提升,如1.6T/3.2T等超高速率逐渐成为行业焦点。
发明内容
本公开提供了一种光模块,包括:电路板,其上设置有数据处理器;光发射组件,与所述数据处理器电连接,包括激光器阵列与第一透镜组件,所述激光器阵列设置于所述电路板上,被配置为发射多路光信号,多路光信号在所述第一透镜组件内合成多路复合光;光接收组件,与所述数据处理器电连接,包括探测器阵列与第二透镜组件,所述探测器阵列设置于所述电路板上,所述第二透镜组件被配置为将输入的多路复合光进行分光,分光后的接收光分别汇聚至所述探测器阵列;光纤适配器,通过发射光纤阵列与所述光发射组件连接,通过接收光纤阵列与所述光接收组件连接,被配置为传输多路光信号;其中,所述数据处理器包括:逆向变速箱,被配置为接收来自所述电路板的高速电信号,将所述高速电信号解码为多路低速电信号,其输出的电信号路数为输入电信号路数的两倍,所述低速电信号驱动所述激光器阵列产生多路光信号;变速箱,被配置为接收所述探测器阵列输出的多路低速电信号,将多路所述低速电信号编码为多路高速电信号,其输出电信号路数为输入电信号路数的一半,多路所述高速电信号在所述电路板上传输。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开一些实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光模块中电路板、光发射组件与光接收组件的装配示意图一;
图6为根据一些实施例的一种光模块中数据处理器的原理示意图;
图7为根据一些实施例的一种光模块中数据处理器、光发射组件与光接收组件的原理示例图一;
图8为根据一些实施例的一种光模块中数据处理器、光发射组件与光接收组件的原理示例图二;
图9为根据一些实施例的一种光模块中电路板、光发射组件与光接收组件的装配示意图二;
图10为根据一些实施例的一种光模块中电路板与光发射组件的局部分解示意图一;
图11为根据一些实施例的一种光模块中第一透镜组件的结构示意图一;
图12为根据一些实施例的一种光模块中第一透镜组件的结构示意图二;
图13为根据一些实施例的一种光模块中第一透镜组件的结构示意图三;
图14为根据一些实施例的一种光模块中光发射组件的剖视图一;
图15为根据一些实施例的一种光模块中电路板、光发射组件与发射光纤阵列的局部装配剖视图一;
图16为根据一些实施例的一种光模块中光接收组件的分解示意图;
图17为根据一些实施例的一种光模块中第二透镜组件的结构示意图一;
图18为根据一些实施例的一种光模块中第二透镜组件的结构示意图二;
图19为根据一些实施例的一种光模块中第二透镜组件的结构示意图三;
图20为根据一些实施例的一种光模块中光接收组件的剖视图一;
图21为根据一些实施例的一种光模块中电路板、光接收组件与接收光纤阵列的局部装配剖视图一;
图22为根据一些实施例的一种光模块中电路板、光发射组件与光接收组件的装配示意图三;
图23为根据一些实施例的一种光模块中电路板与光发射组件的局部分解示意图二;
图24为根据一些实施例的一种光模块中第一透镜组件的结构示意图四;
图25为根据一些实施例的一种光模块中第一透镜组件的结构示意图五;
图26为根据一些实施例的一种光模块中第一透镜组件的结构示意图六;
图27为根据一些实施例的一种光模块中光发射组件的剖视图二;
图28为根据一些实施例的一种光模块中电路板、光发射组件与发射光纤阵列的局部装配剖视图二;
图29为根据一些实施例的一种光模块中电路板与光接收组件的局部分解示意图二;
图30为根据一些实施例的一种光模块中第二透镜组件的结构示意图四;
图31为根据一些实施例的一种光模块中第二透镜组件的结构示意图五;
图32为根据一些实施例的一种光模块中第二透镜组件的结构示意图六;
图33为根据一些实施例的一种光模块中光接收组件的剖视图二;
图34为根据一些实施例的一种光模块中电路板、光接收组件与接收光纤阵列的局部装配剖视图二。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要被配置为实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块 200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3、图4所示,光模块200包括壳体(shell),设置于壳体内的电路板300及光收发组件。壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓一般呈现方形体。在本公开的一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,盖板盖合在下壳体202的两个下侧板上,以形成上述壳体。
在一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板以及位于盖板两侧、与盖板垂直设置的两个上侧板,由两个上侧板与两个下侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从 电口伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光收发组件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发组件等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300和光收发组件等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。示例地,解锁部件203位于下壳体202的两个下侧板的外壁上,具有与上位机笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、限幅放大器(limiting amplifier)、时钟数据恢复(Clock and Data Recovery,CDR)芯片、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳地承载;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。例如,硬性电路板与光收发组件之间可以采用柔性电路板连接。
图5为根据一些实施例的光模块中电路板、光发射组件与光接收组件的装配示意图一。如图5所示,光收发组件包括光发射组件400a与光接收组件400b,光发射组件400a包括第一透镜组件,电路板300上设置有光发射芯片、激光驱动芯片(被第一透镜组件遮挡未标出)等,且光发射组件400a设置在电路板300靠近光口的一端。第一透镜组件采用罩设式的方式设置在光发射芯片的上方,第一透镜组件与电路板300形成包裹光发射芯片、激光驱动芯片等的腔体,光发射芯片位于该腔体中。
在一些实施例中,高速率数据传输要求光发射芯片及其驱动芯片之间近距离设置,以缩短芯片之间的连线,减小连线造成的信号损失。在本公开的某一些实施例中,光发射芯片与激光驱动芯片之间近距离放置,采用打线的方式连接。
第一透镜组件罩设在光发射芯片、激光驱动芯片等芯片的上方,在第一透镜组件的上表面设置光学结构,被配置为实现了光芯片与发射光纤阵列500a之间的光连接。光发射芯片的出光方向与发射光纤阵列500a的传输方向相对垂直,即光发射芯片的出光方向垂直于电路板表面,发射光纤阵列500a在光发射芯片的上方,将光发射芯片的出光方向改变后,输入发射光纤阵列500a中,发射光纤阵列500a传输的发射光信号经由光纤适配器600发射出去。
第一透镜组件的上表面具有凹槽结构,在凹槽结构内设置有光学结构件,光学结构件可以是具有光反射作用的斜面/反射面,斜面/反射面可以镀光学膜;光学结构件也可以是滤光片(滤波片),以起到光反射作用。
在一些实施例中,对于100m以内的短距应用,光发射芯片可为硅光子、EML(Electro-absorption Moduled Laser)激光器、DML(Directly Modulated Laser)激光器、VCSEL激光器,但是VCSEL激光器为垂直腔面发射激光器,其发射激光垂直于顶面射出,可将多个VCSEL激光器以阵列式进行集成,其集成度远高于其他类型光源,更易实现小型化。
另外,VCSEL激光器的典型驱动电流在7~10mA,EML激光器的典型驱动电流在80mA,如此VCSEL激光器的驱动电流远小于其他光源,且VCSEL激光器采用直接调制方式,使得其功耗更低,更易于实现光模块的整体功耗目标。
如此,VCSEL激光器具有成本低、功耗小等显著特点,在短距应用中有显著的经济价值,本公开中采用的光发射芯片为VCSEL激光器。
由于VCSEL激光器发射的光信号垂直于电路板300,而发射光纤阵列500a的接收方向平行于电路板300,如此需要第一透镜组件改变发射光信号的传输方向,即第一透镜组件被配置为传输光束并在传输过程中改变光束传输方向。
在本公开的某一些实施例中,第一透镜组件不仅起到密封光发射芯片的作用,同时也建立了光发射芯片与光纤之间的光连接,即光发射芯片发出的光经第一透镜组件传输并反射后进入光纤中,以实现光的发射。
光接收组件400b包括第二透镜组件,电路板300上设置有光接收芯片、跨阻放大器等,且光接收组件400b设置在电路板300靠近光口的一端。第二透镜组件采用罩设式的方式设置在光接收芯片的上方,第二透镜组件与电路板300形成包裹光接收芯片、跨阻放大器等的腔体,光接收芯片位于该腔体中。
在一些实施例中,光接收芯片可为探测器,该探测器的接收光面位于探测器的顶面(背向电路板300的表面),接收光束垂直于顶面射入探测器内,如此可将多个探测器以阵列式进行集成,更易实现小型化。
由于光接收芯片设置在电路板300的表面上,其接收方向垂直于电路板300,而接收光纤阵列500b的接收方向平行于电路板300,如此需要第二透镜组件改变接收光信号的传输 方向,即第二透镜组件被配置为传输光束并在传输过程中改变光束传输方向,来自光纤的光经第二透镜组件反射后进入光接收芯片中,使得接收光信号射入光接收芯片中,以实现光的接收。
在一些实施例中,高速率数据传输要求光接收芯片及其跨阻放大器之间近距离设置,以缩短芯片之间的连线,减小连线造成的信号损失。在本公开的某一些实施例中,光接收芯片与跨阻放大器之间近距离放置,采用打线方式连接。
光接收芯片的入光方向与光纤的传输方向相对垂直,即光接收芯片的入光方向垂直于电路板表面,第二透镜组件在光接收芯片的上方,光纤适配器600将来自外部的接收光传输至接收光纤阵列500b,第二透镜组件将来自接收光纤阵列500b的接收光方向改变后,射入光接收芯片中。
第二透镜组件的上表面具有凹槽结构,在凹槽结构内设置有光学结构件,光学结构件可以是具有光反射作用的斜面/反射面,斜面/反射面可以镀光学膜;光学结构件也可以是滤光片(滤波片),以起到光反射作用。
在一些实施例中,光发射组件400a与光接收组件400b可沿着左右方向设置在电路板300上,即光接收组件400b靠近光纤适配器600,光发射组件400a设置在光接收组件400b的右侧,连接光发射组件400a的发射光纤阵列500a跨过光接收组件400b与光纤适配器600连接。
在一些实施例中,光发射组件400a与光接收组件400b也可沿着前后方向并排设置在电路板300上,即根据电路板300的宽度尺寸,光发射组件400a与光接收组件400b并排排列,发射光纤阵列500a、接收光纤阵列500b也并排连接至光纤适配器600。
目前光模块中,由于电信号对电路要求较高,单路电信号的传输速率较小,而光口速率一般大于或等于电口速率,一般需对多路电信号进行叠加,以使叠加后的电传输速率与光传输速率相同,因此电路路数一般大于光路路数。
如,光口速率为100b/s时,电口速率可为100Gb/s,此时电路速率与光路速率相同,电路路数与光路路数相同;电口速率也可为50Gb/s,此时两路电路叠加后电口速率与光口速率相同,电路路数为光路路数的两倍;电口速率也可为25Gb/s,此时四路电路叠加后电口速率与光口速率相同,电路路数为光路路数的四倍。
但是,在大型超大规模和云数据中心提供商的推动下,信号技术和收发器技术的进步推动了下一代传输速度的发展,可插拔光模块的传输速率在快速提升。近期1.65T/3.2T逐渐成为行业焦点,此时电口传输速率大大提升,单路电信号传输速率可达到200Gb/s;而VCSEL激光器在光口速率为100Gb/s时已经到达其带宽极限,此时电口速率大于光口速率,为了能够驱动光口速率为100Gb/s的VCSEL激光器,需降低电口速率,使得驱动VCSEL激光器的电口速率等于或小于100Gb/s。
在构造200Gb/s的电速率时,可以将电口速率分为2个叠加的100Gb/s,使得2个100Gb/s的光口通道进行叠加;也可以将电口速率分为4个叠加的50Gb/s,使得4个50Gb/s的光口通道进行叠加;也可以将电口速率分为8个叠加的25Gb/s,使得8个25Gb/s的光口通道进行叠加。但是光通道数据越多,那么光模块的成本会增加,制造良率会下降,占 用的体积会更大。
数据中心中,传输距离100m的有源光缆以及短距光模块被广泛部署应被配置为交换机与服务器互联,短距光模块对功耗以及成本都有非常严格的要求,长期以来,VCSEL激光器被广泛被配置为此类产品中。目前业界普遍认为,基于VCSEL激光器的短距光模块在光口速率100Gb/s已经达到其带宽极限,因此本公开将一路200Gb/s的电口速率分成2路100Gb/s的电口速率,以驱动100Gb/s光口速率的VCSEL激光器。
图6为根据一些实施例的光模块中数据处理器的原理示意图。如图6所示,电路板300上设置有数据处理器310,该数据处理器310与电路板300上的VCSEL激光器电连接,如此数据处理器310输出的电信号通过激光驱动芯片来驱动VCSEL激光器发射光信号。
数据处理器310包括逆向变速箱,该逆向变速箱通过信号线与金手指301电连接,如此金手指301将上位机传输的信号通过信号线传输至逆向变速箱,逆向变速箱可对接收到的信号进行解码处理,以降低电信号的传输速率,如逆向变速箱可将一路高速电信号解码为两路低速电信号,逆向变速箱输出的电信号路数为输入信号路数的两倍,逆向变速箱每一路输出电信号对应一光发射芯片,光发射芯片将逆向变速箱输出的一路电信号转换为光信号。如金手指输入的电信号经由信号线以200Gb/s传输至逆向变速箱,逆向变速箱可将一路200G高速电信号解码为两路100G低速电信号。
光口速率为100G b/s的VCSEL激光器在100G低速电信号的驱动下产生发射光信号,发射光信号经光发射组件的第一透镜组件的反射后耦合至发射光纤阵列500a,以在200G高速率情况下,解决VCSEL激光器极限传输带宽无法匹配高速率电传输速率的问题。
数据处理器310还与电路板300上的光接收芯片电连接,如此接收光纤阵列500b输入的接收光信号经光接收组件的第二透镜组件的反射后射入光接收芯片,光接收芯片将光信号转换为低速电信号,低速电信号传输至数据处理器310。
数据处理器310还包括变速箱,该变速箱通过信号线与金手指电连接,如此光接收芯片将光信号转换为低速电信号后,低速电信号传输至数据处理器310,变速箱可对接收到的低速电信号进行编码处理,如变速箱每一路输入电信号对应一光接收芯片,光接收芯片输出的低速电信号传输至变速箱,变速箱可将两路低速电信号编码为一路高速电信号,变速箱输出的电信号路数为输入信号路数的一半。如光接收芯片输出的电信号以100Gb/s传输至变速箱,变速箱可将两路100G低速电信号编码为一路200G高速电信号。
图7为根据一些实施例的一种光模块中数据处理器、光发射组件与光接收组件的原理示意图一。如图7所示,为了在200G电传输速率情况下,实现1.6T短距传输,从光模块的电口经由金手指输入8路200G PAM4电信号,8路200G电信号经由数据处理器310的逆向变速箱解码为16路100G电信号,16路100G电信号经过16路激光驱动芯片处理后,驱动16路VCSEL激光器产生16路发射光信号,16路发射光信号通过成熟的多模光纤耦合技术射入16路多模光纤中,通过16路多模光纤阵列发射出去,实现了光的发射。
从光模块的光口经由16路多模光纤阵列输入的16路光信号,在经过16路探测器接收转换为16路100G PAM4电信号,再通过16路跨阻放大器进行放大,放大后的16路100G PAM4电信号射入数据处理器310,16路100G PAM4电信号经由变速箱编码为8路200G  PAM4电信号,8路200G PAM4电信号经由金手指传输至上位机,实现了光的接收。
在短距传输中,采用VCSEL激光器阵列作为发射源,探测器阵列作为接收源,多模光纤阵列作为传输介质,使得整个光学系统非常简单,耦合工艺更易达成。使用单个注塑部件和无源装配过程即可实现整体光学目标,这使得光模块的器件成本和生产成本远远低于单模光学系统。
在上述方案中,由于各通道均占用1根光纤,光通信端口共占用32根光纤,这大大增加了多模光纤所占用的成本,不利用构造高可靠性、低功耗、低成本的光模块。
为了降低光模块的功耗、成本,可同时应用SWDM4(短波)波分复用技术,实现4个波长光信号共用同一根光纤,使得光纤数量减少为通道数的1/4,节省光纤成本。
图8为根据一些实施例的光模块中数据处理器、光发射组件与光接收组件的原理示意图二。如图8所示,光发射组件400a还包括多个波分复用器,每个波分复用器包括多个输入端、一个输出端,波分复用器的一个输入端与一个激光器连接,如此多个激光器发射的不同波长的发射光经由输入端射入波分复用器,波分复用器将多路发射光合并为一路复合光,该复合光经由波分复用器的输出端耦合至发射光纤阵列500a。
如,光发射组件400a包括四个波分复用器,每个波分复用器包括四个输入端与一个输出端,四个发射不同波长光的VCSEL激光器排成一排,使得四个发射不同波长光的VCSEL激光器形成一激光器组,16个激光器形成四组相同的激光器组,四组激光器组沿左右方向设置于电路板300表面上。
在一些实施例中,每组激光器组发射波长为λ1、λ2、λ3、λ4的四路发射光,四路发射光经由一个波分复用器的四个输入端分别射入波分复用器,波分复用器将波长为λ1、λ2、λ3、λ4的四路发射光复用为一路包含波长λ1、λ2、λ3、λ4的复合发射光。如此,16路发射光经四个波分复用器复用为四路复合发射光,只需4根多模光纤即可传输16路发射光,可以大大减少对光纤的占用量。
在一些实施例中,波长λ1可为850nm,波长λ2可为880nm,波长λ3可为910nm,波长λ4可为940nm。光接收组件400b还包括多个波分解复用器,每个波分解复用器包括一个输入端与多个输出端,波分解复用器的一个输出端与一个光接收芯片连接,如此接收光纤阵列500b传输的多路不同波长的接收光经由输入端射入波分解复用器,波分解复用器将一路接收光解复用为多路分光,每路分光经由第二透镜组件反射后射至相应的光接收芯片。
在一些实施例中,光接收组件400b包括四个波分解复用器,接收光纤阵列500b通过四根光纤传输16路接收光,每根光纤中传输包含四路不同波长的一路复合接收光;每个波分解复用器包括一个输入端与四个输出端,一路复合接收光经由输入端射入一个波分解复用器中,波分解复用器将一路复合接收光中包含的四路不同波长的接收光进行分光,使得波分解复用器输出四路不同波长的接收光,四路不同波长的接收光经第二透镜组件的反射后射入对应的光接收芯片,实现了16路接收光的接收。
在一些实施例中,接收光纤阵列500b通过4根光纤传输包含16路不同波长的4路复合接收光,使得4根多模光纤能够传输16路接收光,可以大大减少对光纤的占用量。
在光发射组件400a中包含四个SWDM4波分复用器,通过一个SWDM4波分复用器将四路不同波长的发射光合并为一路复合光,并耦合进一根多模光纤中进行发射,实现了发射光纤的复用;在光接收组件400b中包含四个SWMD波分解复用器,通过一个SWDM4波分解复用器将一根多模光纤传输的一路复合光解复用为四路不同波长的接收光,实现了接收光纤的复用。如此,发射光纤阵列500a与接收光纤阵列500b的光纤数量减少为发射通道、接收通道的1/4,节省了光纤成本。
图9为根据一些实施例的光模块中电路板、光发射组件与光接收组件的装配示意图二,图10为根据一些实施例的光模块中电路板与光发射组件的局部分解示意图一。如图9、图10所示,光发射组件400a包括激光器阵列410a、准直透镜支座430a、光复用组件440a与第一透镜组件420a,第一透镜组件420a通常为透明塑料件,一般采用一体注塑成型。第一透镜组件420a和电路板300形成第一容纳腔,第一容纳腔内由下至上依次设置有激光器阵列410a、准直透镜支座430a与光复用组件440a,且第一透镜组件420a的顶部表面设有反射面,该反射面被配置为反射入射至其上的信号光,以将激光器阵列410a发射的发射光反射耦合至发射光纤阵列500a。
激光器阵列410a包括多个激光器,被配置为发射出多路不同波长的发射光。多个激光器以行或列分成几组相同的激光器组,每组激光器组包括多个激光器,且多组激光器组并排设置在电路板300表面上,如此每组激光器组中的多个激光器分别发射多路不同波长的发射光。
在本公开的某一些实施例中,电路板300的表面具有承载面,可以承载多个激光器,多个激光器以阵列的形式进行排列,电路板300长度方向和宽度方向上均设有激光器,其中长度方向上一行激光器设为一组,这样可以实现设置多组激光器。
关于电路板300的长度方向和宽度方向,图10中方向从左至右定义为电路板300的长度方向,方向从前至后定义为电路板300的宽度方向。
在一些实施例中,激光器阵列410a包括16个激光器,在电路板300的长度方向上并排设置有4个激光器,即一行4个激光器为一组,在电路板300的宽度方向上设置有4组激光器,如此将16个激光器以4×4的阵列形式进行排列。
准直透镜支座430a包括若干个准直透镜,准直透镜与激光器一一对应设置,被配置为将激光器发射的发射光转换为准直光。准直透镜支座430a罩设在激光器阵列410a的上方,准直透镜支座430a的透镜数量取决于激光器阵列410a中激光器的数量,通常准直透镜支座430a的透镜数量等于激光器阵列410a中激光器的数量。
在一些实施例中,准直透镜支座430a为支座式结构,包括主板及支撑主板的侧板,侧板设置在电路板300上,主板设置有能够汇聚光的凸起阵列,该凸起阵列能够承载多个准直透镜。支座式结构稳定性强,准直效果好。
在本公开的某一些实施例中,准直透镜支座430a包括主板及设于主板两侧的两个侧板,主板和两侧板组装后构成支座式结构,两个侧板与电路板300接触,主板的表面设置有多个准直透镜,多个准直透镜的排列和激光器阵列410a中激光器的排列方式一致,即各准直透镜以阵列的形式进行排列,电路板300长度方向和宽度方向的上方均设有准直透镜,其 中长度方向上一行准直透镜设为一组,这样可以实现设置多组准直透镜。多组准直透镜接收来自激光器阵列410a的不同波长的发射光,并对各发射光进行汇聚处理,将发散状态的信号光汇聚为平行光。
为了实现光合束,可以单独由光复用组件440a实现,光复用组件440a设置在准直透镜支座430a的出光方向上,且光复用组件440a设置于第一透镜组件420a中第一容纳腔的内壁上,被配置为将多束光合并为一束光。
光复用组件440a朝向准直透镜支座430a的表面为滤波面,朝向第一透镜组件420a的表面包括反射面,滤波面多个不同位置分别透射来自准直透镜支座430a的多个单束光,反射面能够将来自滤波面的光反射向滤波面,滤波面能够反射来自反射面的光。因此,由光复用组件440a的滤波面及反射面配合实现多束光合为一束光。
光复用组件440a通常包括多个滤光片,由多个滤光片形成滤波面,滤光片利用其两侧以及不同位置设置不同的膜层允许特定波长信号光的透射和其他波长信号光的反射,以实现多束光的合光。光复用组件440a根据合束光的束数协调选择每束光的反射次数,最终实现不同波长信号光的合束。
在一些实施例中,为了实现合束,还可以由第一透镜组件420a与光复用组件440a配合实现,即光复用组件440a朝向准直透镜支座430a的表面为滤波面,朝向第一透镜组件420a的表面为透光面;第一透镜组件420a的上表面包括反射面,滤波面多个不同位置分别投射来自准直透镜支座430a的多个单束光,透光面能够透射来自滤波面及反射面的光,反射面能够将来自滤波面的光反射向滤波面,滤波面能够反射来自反射面的光。如此,由滤波面及反射面配合实现多束光合为一束光。
图11为根据一些实施例的光模块中第一透镜组件的结构示意图一,图12为根据一些实施例的光模块中第一透镜组件的结构示意图二,图13为根据一些实施例的光模块中第一透镜组件的结构示意图三,图14为根据一些实施例的光模块中第一透镜组件的剖视图一。如图11、图12、图13、图14所示,第一透镜组件420a包括第一透镜主体4217a,第一透镜主体4217a罩设在电路板300上,第一透镜主体4217a的顶面设置有第一光纤架4218a,第一光纤架4218a包括第一表面4219a,该第一表面4219a朝向发射光纤阵列500a;第一表面4219a上设置有包裹腔体,该包裹腔体内设置有第一光纤孔4220a,该第一光纤孔4220a由第一表面4219a向第一透镜组件420a的内部延伸。
在一些实施例中,第一光纤孔4220a包括第一孔4220a-1、第二孔4220a-2与第三孔4220a-3,第三孔4220a-3被配置为与光纤包层插接,第二孔4220a-2被配置为与光纤保护层插接;第一孔4220a-1具有容纳腔体,可以通过集线部件容纳包裹各发射光纤,然后将集线部件插入第一孔4220a-1的容纳腔体中,其中集线部件可以为包裹发射光纤的套筒,各发射光纤插入套筒中,然后将套筒插入第一孔4220a-1的容纳腔体中。
第一孔4220a-1、第二孔4220a-2与第三孔4220a-3的内径大小均不同,且第一孔4220a-1、第二孔4220a-2的交界面处有过渡连接部,第二孔4220a-2与第三孔4220a-3的交界面处同样有过滤连接部,第一光纤插口4202a的形状与光纤的结构一致。
光纤从内向外依次包括芯层、包层与保护层,光纤的包层置于第三孔4220a-3,光纤 的保护层置于第二孔4220a-2,且光纤数量较多且光纤较软,因此需要第一孔4220a-1被配置为聚集和固定光纤。
在一些实施例中,第一光纤孔4220a与第一透镜组件420a可一体成型,这样可以保证发射光纤阵列500a与第一透镜组件420a相对位置固定,发射光纤阵列500a与第一透镜组件420a之间不会出现位置偏差,有助于提高合束后发射光到光纤的耦合精度,进而发射光从第一透镜组件420a耦合至发射光纤阵列500a时光耦合效率增大,最终实现多个不同波长的发射光可共用一根光纤传输出光模块,实现单光纤中多个波长的发射光同时传输。
第一光纤架4218a还包括第二表面,该第二表面与第一表面4219a相对设置,且该第二表面倾斜设置,即沿着光发射方向,第二表面与电路板300表面之间的距离逐渐增加。
在一些实施例中,第二表面为倾斜的第一汇聚反射面4221a,第一汇聚反射面4221a上设置有第一汇聚透镜组4222a,该第一汇聚透镜组4222a能够将来自光复用组件440a的光汇聚并反射向第一光纤孔4220a,以将光复用组件440a输出的复合接收光反射汇聚至发射光纤阵列500a。
第一透镜主体4217a还包括第一主反射面4223a,该第一主反射面4223a与第一汇聚反射面4221a位于第一透镜主体4217a的同一侧,第一主反射面4223a为倾斜面,即沿着光发射方向,第一主反射面4223a与电路板300表面之间的距离逐渐增加。
第一主反射面4223a与电路板300成一定角度倾斜设置,第一主反射面4223a和光复用组件440a的倾斜角度大小、不同波长的激光器、光复用组件440a的厚度有关。在一些实施例中,第一主反射面4223a与光复用组件440a之间的倾斜角度为4°~17°。
在本公开的某一些实施例中,光复用组件440a在电路板300方向的投影覆盖激光器阵列410a中的各个激光器,第一主反射面4223a在电路板300方向的投影覆盖光复用组件440a,如此,激光器阵列410a中激光器发出的发射光呈发散状态,为发散光束,通过准直透镜支座430a将发散光束转换为平行光束,平行光束依次传输至光复用组件440a与第一主反射面4223a,各个准直透镜发出的平行光输入至光复用组件440a的不同位置,第一主反射面4223a接收来自光复用组件440a的发射光后改变光的传播方向反射至光复用组件440a的表面,该波长的发射光与光复用组件440a其他位置处的发射光合并入射至第一主反射面4223a,最终将不同波长的发射光合并为一束复合光。
一束复合光经由光复用组件440a传输至第一汇聚反射面4221a,第一汇聚反射面4221a反射改变复合光的传播方向,反射后的复合光经由第一汇聚透镜组4222a汇聚耦合至发射光纤阵列500a,以将发射光发射至光模块外部。在一些实施例中,第一主反射面4223a为全反射面,激光器阵列410a中激光器发射的发射光传输至第一主反射面4223a发生全反射。
在一些实施例中,第一汇聚反射面4221a设为倾斜面,合束后的复合光传输至第一汇聚反射面4221a后,第一汇聚反射面4221a需同时实现反射和汇聚,为了同时实现反射和汇聚作用,可在第一汇聚反射面4221a的表面设置多个凸起结构,第一汇聚反射面4221a的倾斜面具有反射复合光的作用,凸起结构可以实现汇聚复合光的作用。
为了同时实现第一汇聚反射面4221a的反射和汇聚作用,还可在第一汇聚反射面4221a的一端与第一主反射面4223a连接,第一汇聚反射面4221a的另一端连接有汇聚透镜,通 过设置汇聚透镜实现汇聚作用。
第一透镜主体4217a还包括第三表面4224a,该第三表面4224a与第一主反射面4223a相对设置,该第三表面4224a上设置有第一容纳腔4225a,该第一容纳腔4225a由第三表面4224a向第一主反射面4223a的方向延伸,激光器阵列410a、准直透镜支座430a与光复用组件440a设置于该第一容纳腔4225a内。
图15为根据一些实施例的光模块中电路板、光发射组件与发射光纤阵列的局部装配剖视图一。如图15所示,将激光器阵列410a中的各个激光器以阵列式固定于电路板300上后,将准直透镜支座430a放置于电路板300上,使得准直透镜支座430a中的各准直透镜位于激光器阵列410a中各激光器的上方,使得准直透镜将激光器发射的发散光转换为平行光;然后将光复用组件440a固定在第一透镜主体4217a中第一容纳腔4225a的内壁上,使得光复用组件440a与第一主反射面4223a对应设置;然后将第一透镜主体4217a罩设于激光器阵列410a、准直透镜支座430a的上方,使得激光器阵列410a、准直透镜支座430a位于第一透镜主体4217a的第一容纳腔4225a内,且准直透镜支座430a射出的各路平行光射至光复用组件440a的不同位置。
沿电路板300长度方向设置的一组激光器分别发射波长为λ1、λ2、λ3、λ4的发射光,发射光经过准直透镜支座430a中相应的准直透镜转换为准直光,四路准直光分别射至光复用组件440a的不同位置处。其中,发射光λ4经由滤波面、透光面透过光复用组件440a射至第一主反射面4223a,经由第一主反射面4223a反射至光复用组件440a的滤波面,反射后的发射光λ4与发射光λ3合束形成第一复合光;第一复合光经由透光面透过光复用组件440a射至第一主反射面4223a,经由第一主反射面4223a反射至光复用组件440a的滤波面,反射后的第一复合光与发射光λ2合束形成第二复合光;第二复合光经由透光面透过光复用组件440a射至第一主反射面4223a,经由第一主反射面4223a反射至光复用组件440a的滤波面,反射后的第二复合光与发射光λ1合束形成第三复合光;第三复合光经由透光面透过光复用组件440a射至第一汇聚反射面4221a,第三复合光经第一汇聚反射面4221a反射、汇聚后耦合至插入第一光纤插口4202a的发射光纤内。如此,四路不同波长的发射光经光复用组件440a、第一主反射面4223a合光后共用一根光纤传输出光模块,实现了单光纤中多个波长的发射光同时传输。
在一些实施例中,由于一组四个激光器发射的四路不同波长的发射光合束后共用一根光纤发射出去,如此四组16个激光器发射的四组不同波长的发射光合束为四路复合光,四路复合光经由四根光纤发射出去,使得发射光纤阵列500a中四根光纤中16个波长的发射光同时传输。
图16为根据一些实施例的光模块中光接收组件的分解示意图。如图16所示,光接收组件400b包括探测器阵列410b、汇聚透镜支座430b、光解复用组件440b与第二透镜组件420b,第二透镜组件420b通常为透明塑料件,一般采用一体注塑成型。第二透镜组件420b与电路板300形成第二容纳腔,第二容纳腔内由下至上依次设置有探测器阵列410b、汇聚透镜支座430b与光解复用组件540a,且第二透镜组件420b的顶部表面设置有反射面,该反射面被配置为反射接收光纤阵列500b传输的接收光,以将接收光反射汇聚至探测器 阵列410b。
探测器阵列410b包括多个探测器,被配置为接收多路不同波长的接收光。多个探测器以行或列分成几组相同的探测器组,每组探测器组包括多个探测器,且多组探测器并排设置在电路板300表面上,如此每组探测器中的多个探测器分别接收多路不同波长的接收光。
在本公开的某一些实施例中,电路板300的表面具有承载面,可以承载多个探测器,多个探测器以阵列的形式进行排列,电路板300长度方向和宽度方向上均设有探测器,其中长度方向上一行探测器设为一组,这样可以设置多组探测器。
在一些实施例中,探测器阵列410b包括16个探测器,在电路板300的长度方向上并排设置有4个探测器,即一行4个探测器为一组,在电路板300的宽度方向上设置有4组探测器,如此将16个探测器以4×4的阵列形式进行排列。
汇聚透镜支座430b包括若干个汇聚透镜,汇聚透镜与探测器一一对应设置,被配置为将第二透镜组件420b反射的接收光转换为汇聚光,以方便将汇聚光汇聚至探测器。汇聚透镜支座430b罩设在探测器阵列410b的上方,汇聚透镜支座430b的透镜数量取决于探测器阵列410b中探测器的数量,通常汇聚透镜支座430b的透镜数量等于探测器阵列410b中探测器的数量。
在一些实施例中,汇聚透镜支座430b为支座式结构,包括主板及支撑主板的侧板,侧板设置在电路板300上,主板设置有能够汇聚光的凸起阵列,该凸起阵列能够承载多个汇聚透镜。支座式结构稳定性强,汇聚效果好。
在本公开的某一些实施例中,汇聚透镜支座430b包括主板及设于主板两侧的;两个侧板,主板和两侧板组装后构成支座式结构,两个侧板与电路板300接触,主板的表面设置有多个汇聚透镜,多个汇聚透镜的排列和探测器阵列410b中探测器的排列方式一致,即各汇聚透镜以阵列的形式进行排列,电路板300长度方向和宽度方向的上方均设有汇聚透镜,其中长度方向上一行汇聚透镜设为一组,这样可以实现设置多组汇聚透镜。多组汇聚透镜接收来自第二透镜组件420b的不同波长的接收光,并对各接收光进行汇聚处理,将接收光汇聚至相应的探测器。
为了实现分束,可以单独由光解复用组件440b实现,光解复用组件440b设置在汇聚透镜支座430b的入光方向上,且光解复用组件440b设置于第二透镜组件420b中第二容纳腔的内壁上,被配置为将一束复合光解复用为多束接收光。
光解复用组件440b朝向汇聚透镜支座430b的表面为滤波面,朝向第二透镜组件420b的表面包括反射面,滤波面多个不同位置分别透射来自第二透镜组件420b的多个单束光,反射面能够将来自滤波面的光反射向滤波面,滤波面能够滤波、反射来自反射面的光。因此,由光解复用组件440b的滤波面及反射面配合实现一束光分解为多束光。
光解复用组件440b通常包括多个滤光片,由多个滤光片形成滤波面,滤光片利用两侧以及不同位置设置不同的膜层允许特定波长信号光的透射和其他波长信号光的反射,以实现一束光的分光。光解复用组件440b根据分束光的束数协调选择复合光的反射次数,最终实现不同波长信号光的分束。
图17为根据一些实施例的光模块中第二透镜组件的结构示意图一,图18为根据一些实施例的光模块中第二透镜组件的结构示意图二,图19为根据一些实施例的光模块中第二透镜组件的结构示意图三,图20为根据一些实施例的光模块中光接收组件的剖视图一。如图17、图18、图19与图20所示,第二透镜组件420b包括第二透镜主体4217b,第二透镜主体4217b罩设在电路板300上,第二透镜主体4217b的顶面设置有第二光纤架4218b,第二光纤架4218b包括第四表面4219b,该第四表面4219b朝向接收光纤阵列500b;第四表面4219b上设置有包裹腔体,该包裹腔体内设置有第二光纤孔4220b,该第二光纤孔4220b由第四表面4219b向第二透镜组件420b的内部延伸。
在一些实施例中,第二光纤孔4220b包括第四孔4220b-1、第五孔4220b-2与第六孔4220b-3,第六孔4220b-3被配置为与光纤包层插接,第五孔4220b-2被配置为与光纤保护层插接;第四孔4220b-1具有容纳腔体,可以通过集线部件容纳包裹各接收光纤,然后将集线部件插入第四孔4220b-1的容纳腔体内,其中集线部件可以为包裹接收光纤的套筒,各接收光纤插入套筒中,然后将套筒插入第四孔4220b-1的容纳腔体中。
第四孔4220b-1、第五孔4220b-2与第六孔4220b-3的内径大小均不同,且第四孔4220b-1、第五孔4220b-2的交界面处有过渡连接部,第五孔4220b-2与第六孔4220b-3的交界面处同样有过滤连接部,第一光纤插口4202a的形状与光纤的结构一致。
光纤从内向外依次包括芯层、包层与保护层,光纤的包层置于第六孔4220b-3,光纤的保护层置于第五孔4220b-2,且光纤数量较多且光纤较软,因此需要第四孔4220b-1被配置为聚集和固定光纤。
在一些实施例中,第二光纤孔4220b与第二透镜组件420b可一体成型,这样可以保证接收光纤阵列500b与第二透镜组件420b相对位置固定,接收光纤阵列500b与第二透镜组件420b之间不会出现位置偏差,有助于提高合束接收光到第二透镜组件420b的耦合精度,进而接收光从接收光纤阵列500b耦合至第二透镜组件420b时光耦合效率增大,最终实现多个不同波长的接收光可共用一根光纤传输至第二透镜组件420b,实现单光纤中多个波长的接收光同时传输。
第二光纤架4218b还包括第五表面,该第五表面与第四表面4219b相对设置,且该第五表面倾斜设置,即沿着光接收方向,第五表面与电路板300表面之间的距离逐渐减小。
在一些实施例中,第五表面为倾斜的第二汇聚反射面4221b,第二汇聚反射面4221b上设置有第二汇聚透镜组4222b,该第二汇聚透镜组4222b能够将来自接收光纤阵列500b的光汇聚并反射向光解复用组件440b,以将接收光纤阵列500b传输的复合光反射至光解复用组件440b。
第二透镜主体4217b还包括第二主反射面4223b,该第二主反射面4223b与第二汇聚反射面4221b位于第二透镜主体4217b的同一侧,第二主反射面4223b为倾斜面,即沿着光接收方向,第二主反射面4223b与电路板300表面之间的距离逐渐减小。
第二主反射面4223b与电路板300成一定角度倾斜设置,第二主反射面4223b和光解复用组件440b的倾斜角度大小、不同波长的探测器、光解复用组件440b的厚度有关。在一些实施例中,第二主反射面4223b与光解复用组件440b之间的倾斜角度为4°~17°。
在本公开的某一些实施例中,光解复用组件440b在电路板300方向的投影覆盖探测器阵列410b中的各个探测器,第二主反射面4223b在电路板300方向的投影覆盖光解复用组件440b,如此,接收光纤阵列500b传输的接收光呈发散状态,为发散光束,通过第二汇聚透镜组4222b将发散光束转换为平行光束,复合光依次传输至光解复用组件440b与第二主反射面4223b,多路复合光输入至光解复用组件440b的不同位置,光解复用组件440b的滤波面将一路复合光解复用为多路分光。
在一些实施例中,第二主反射面4223b为全反射面,光解复用组件440b反射的接收光在第二主反射面4223b发生全反射。
第二透镜主体4217b还包括第六表面4224b,该第六表面4224b与第二主反射面4223b相对设置,该第六表面4224b上设置有第二容纳腔4225b,该第二容纳腔4225b由第六表面4224b向第二主反射面4223b的方向延伸,探测器阵列410b、汇聚透镜支座430b与光解复用组件440b设置于该第二容纳腔4225b内。
图21为根据一些实施例的光模块中电路板、光接收组件与接收光纤阵列的局部装配剖视图一。如图21所示,将探测器阵列410b中的各个探测器以阵列式固定于电路板300上后,将汇聚透镜支座430b放置于电路板300上,使得汇聚透镜支座430b中的各个汇聚透镜位于探测器阵列410b中各探测器的上方;然后将光解复用组件440b固定在第二透镜主体4217b中第二容纳腔4225b的内壁上,使得光解复用组件440b与第二主反射面4223b对应设置;然后将第二透镜主体4217b罩设于探测器阵列410b、汇聚透镜支座430b的上方,使得探测器阵列410b、汇聚透镜支座430b位于第二透镜主体4217b的第二容纳腔4225b内,且光解复用组件440b不同位置处输出的分光分别射至相应的汇聚透镜。
接收光纤阵列500b中的一根光纤传输包含波长为λ1、λ2、λ3、λ4的复合光,复合光经第二汇聚透镜组4222b进行汇聚反射,将一路第一复合光反射至光解复用组件440b,其中,接收光λ1经由透光面、滤波面透过光解复用组件440b,波长为λ2、λ3、λ4的第二复合光经由滤波面反射至第二主反射面4223b,第二主反射面4223b将第二复合光反射至光解复用组件440b的滤波面,接收光λ2经由滤波面透过光解复用组件440b;波长为λ3、λ4的第三复合光经由滤波面反射至第二主反射面4223b,第二主反射面4223b将第三复合光反射至光解复用组件440b的滤波面,接收光λ3经由滤波面透过光解复用组件440b;接收光λ4经由滤波面反射至第二主反射面4223b,第二主反射面4223b将接收光λ4反射至光解复用组件440b的滤波面,经由滤波面透过光解复用组件440b。如此一根光纤传输的复合光经光解复用组件440b、第二主反射面4223b反射分光后分成四路接收光,实现了单光纤中多个波长的接收光同时传输。
光解复用组件440b输出的多路接收光经由汇聚透镜支座430b转换为汇聚光,多路汇聚光分别汇聚至探测器阵列410b中相应的探测器,实现了多路接收光的接收。
在一些实施例中,由于接收光纤阵列500b中四根光纤中的四路复合光经光解复用组件440b、第二主反射面4223b的反射分光后分成16路接收光,16路接收光经汇聚透镜支座430b汇聚后分别射入16个探测器,如此接收光纤阵列500b中四根光纤中16个波长的接收光同时传输。
在一些实施例中,光发射组件、光接收组件的结构并不仅限于上述结构,只要光发射组件能够应用合分光技术减少对光纤的占用量即可。
图22为根据一些实施例的光模块中电路板、光发射组件与光接收组件的装配示意图三,图23为根据一些实施例的光模块中电路板与光发射组件的局部分解示意图二。如图22、图23所示,光发射组件400a包括激光器阵列410a与第一透镜组件420a,第一透镜组件420a和电路板300形成第一容纳腔,激光器阵列410a设置于第一容纳腔内;第一透镜组件420a的顶面设置有凹槽,该凹槽内设置有多个反射面,经由多个反射面将激光器阵列410a发射的多路发射光进行合光。
激光器阵列410a包括多个激光器,被配置为发射多路不同波长的发射光。多个激光器以行或列分成几组相同的激光器组,每组激光器组包括多个激光器,且多组激光器组并排设置在电路板300的表面上,如此每组激光器组中的多个激光器分别发射多路不同波长的发射光。
在本公开的某一些实施例中,电路板300的表面具有承载面,可以承载多个激光器,多个激光器以阵列的形式进行排列,电路板300长度方向和宽度方向上均设有激光器,其中长度方向上一行激光器设为一组,这样可以实现设置多组激光器。
关于电路板300的长度方向和宽度方向,图23中方向从左至右定义为电路板300的长度方向,方向从前至后定义为电路板300的宽度方向。
在一些实施例中,激光器阵列410a包括16个激光器,在电路板300的长度方向上并排设置有4个激光器,即一行4个激光器为一组,在电路板300的宽度方向上设置有4组激光器,如此将16个激光器以4×4的阵列形式进行排列。
发射光纤阵列500a的一端设置有发射光纤支架510a,发射光纤阵列500a的入光面突出于发射光纤支架510a,发射光纤支架510a插入第一透镜组件420a内,使得发射光纤阵列500a与第一透镜组件420a固定连接,如此激光器阵列410a发射的激光经第一透镜组件420a反射后射入发射光纤阵列500a内。
图24为根据一些实施例的光模块中第一透镜组件的结构示意图四,图25为根据一些实施例的光模块中第一透镜组件的结构示意图五,图26为根据一些实施例的光模块中第一透镜组件的结构示意图六,图27为根据一些实施例的一种光模块中光发射组件的剖视图二。如图24、图25、图26与图27所示,第一透镜组件420a靠近出光口的一端设置有包裹腔体,该包裹腔体内设置有第一光纤插口4202a,发射光纤支架510a插入该包裹腔体内,使得固定在发射光纤支架510a内的发射光纤阵列500a插入第一透镜组件420a内。
在本公开的某一些实施例中,第一透镜组件420a包括第一侧面4201a,包裹腔体由第一侧面4201a向第一透镜组件420a的内部延伸,且第一光纤插口4202a包括第一连接部4202a-1、第二连接部4202a-2与第三连接部4202a-3,第一连接部4202a-1、第二连接部4202a-2与第三连接部4202a-3顺序排布,第一连接部4202a-1靠近第一侧面4201a,且第一连接部4202a-1、第二连接部4202a-2与第三连接部4202a-3相连通。
第一连接部4202a-1、第二连接部4202a-2与第三连接部4202a-3的内径尺寸不相同,第一连接部4202a-1的内径尺寸大于第二连接部4202a-2的内径尺寸,第二连接部4202a-2 的内径尺寸大于第三连接部4202a-3的内径尺寸。
第一光纤插口4202a的形状与发射光纤阵列500a中每根光纤的结构一致,光纤从内向外依次包括芯层、包层与保护层,光纤插入第一光纤插口4202a时,光纤的包层置于第三连接部4202a-3,第三连接部4202a-3被配置为与光纤包层插接;光纤的保护层置于第二连接部4202a-2内,第二连接部4202a-2被配置为与光纤保护层插接。由于发射光纤阵列500a中光纤数量较多且光纤较软,因此需要将发射光纤支架510a的一端插入第一连接部4202a-1,通过第一连接部4202a-1来固定发射光纤支架510a,使得突出于发射光纤支架510a的光纤插入第一光纤插口4202a内。
第三连接部4202a-3的入光端可设置有第一透镜4210a,该第一透镜4210a被配置为将第一透镜组件420a反射的信号光转换为汇聚光,以将汇聚光耦合至第一光纤插口4202a内的光纤内,能够提高反射后发射光与光纤的耦合精度。
在一些实施例中,第一光纤插口4202a与第一透镜组件420a一体成型,这样可以保证发射光纤阵列500a与第一透镜组件420a的相对位置固定,发射光纤阵列500a与第一透镜组件420a之间不会出现位置偏差,有助于提高反射后发射光到光纤的耦合精度,进而发射光从第一透镜组件420a耦合至发射光纤阵列500a时光耦合效率增大。
第一透镜组件420a还包括第一顶面4204a,该第一顶面4204a上可设置有第一光口槽4205a,该第一光口槽4205a由第一顶面4204a向电路板300表面延伸,第一光口槽4205a内可设置有第一斜面4211a、第二斜面4213a、第三斜面4215a与第一反射面4209a,沿着第一透镜组件420a内光发射方向,第一斜面4211a、第二斜面4213a、第三斜面4215a、第一反射面4209a与电路板300之间的距离逐渐增加,使得第一斜面4211a、第二斜面4213a、第三斜面4215a、第一反射面4209a与第一光纤插口4202a相对设置。
第一斜面4211a上开设有第一孔洞4212a,该第一孔洞4212a内设置有第一滤波片4301a,该第一滤波片4301a具有反射、透射的作用,相应激光器发射的光通过第一滤波片4301a反射后射入第一光纤插口4202a内。第二斜面4213a上开设有第二孔洞4214a,该第二孔洞4214a内设置有第二滤波片4302a,该第二滤波片4302a具有反射、透射的作用,相应激光器发射的光通过第二滤波片4302a反射后,再透过第一滤波片4301a射入第一光纤插口4202a内。
第三斜面4215a上开设有第三孔洞4216a,该第三孔洞4216a内设置有第三滤波片4303a,该第三滤波片4303a具有反射、透射的作用,相应激光器发射的光通过第三滤波片4303a反射后,再依次透过第二滤波片4302a、第一滤波片4301a射入第一光纤插口4202a内。
第一反射面4209a具有反射的作用,相应激光器发射的光通过第一反射面4209a反射后,再依次透过第三滤波片4303a、第二滤波片4302a、第一滤波片4301a射入第一光纤插口4202a内。在一些实施例中,第一顶面4204a上还可设置有第一凹槽、第二凹槽、第三凹槽与第四凹槽,第一凹槽、第二凹槽、第三凹槽与第四凹槽相连通,且第一凹槽内设置有第一滤波片4301a,第二凹槽内设置有第二滤波片4302a,第三凹槽内设置有第三滤波片4303a,激光器阵列410a发出的多路发射光经由第一滤波片4301a、第二滤波片4302a、第 三滤波片4303a、第一反射面4209a的反射、透射后进行合光。
第一透镜组件420a还包括第一底面4206a,该第一底面4206a与第一顶面4204a相对设置,且第一底面4206a与电路板300的表面固定连接。第一底面4206a上设置有第一空腔4207a,该第一空腔4207a由第一底面4206a向第一顶面4204a延伸,且第一空腔4207a与电路板300的表面形成密封腔,激光器阵列410a位于该密封腔内。
第一空腔4207a的内壁上设置有准直透镜阵列4208a,准直透镜阵列4208a与激光器阵列410a对应设置,即准直透镜阵列4208a的一个准直透镜与激光器阵列410a的一个激光器对应设置,且准直透镜阵列4208a位于第一滤波片4301a、第二滤波片4302a、第三滤波片4303a与第一反射面4209a的下方,如此激光器阵列410a发射的激光经由准直透镜阵列4208a转换为多路准直光,多路准直光分别射至第一滤波片4301a、第二滤波片4302a、第三滤波片4303a与第一反射面4209a发生反射。
图28为根据一些实施例的光模块中电路板、光发射组件与发射光纤阵列的局部装配剖视图二。如图28所示,将激光器阵列410a中的各个激光器以阵列式固定在电路板300上,将激光器阵列410a中的16个激光器分成4组相同的激光器组;然后将第一透镜组件420a罩设在激光器阵列410a上,上位机经由金手指301向电路板300输入8路200G G PAM4电信号,8路200G PAM4电信号经由数据处理器310的逆向变速箱解码为16路100G电信号。
沿电路板300长度方向设置的一组激光器在4路100G电信号驱动下分别发射波长为λ1、λ2、λ3、λ4的发射光,发射光经过准直透镜阵列4208a中相应的准直透镜转换为准直光,四路准直光分别射至第一滤波片4301a、第二滤波片4302a、第三滤波片4303a与第一反射面4209a,如发射波长λ4射至第一反射面4209a,经第一反射面4209a反射后依次透过第三滤波片4303a、第二滤波片4302a与第一滤波片4301a;发射波长λ3射至第三滤波片4303a,经第三滤波片4303a反射后依次透过第二滤波片4302a与第一滤波片4301a;发射波长λ2射至第二滤波片4302a,经第二滤波片4302a反射后透过第一滤波片4301a;发射波长λ1射至第一滤波片4301a,经第一滤波片4301a反射后,反射后的发射波长λ1与透过第一滤波片4301a的发射波长λ2、λ3、λ4合并为一束复合光。如此,四路不同波长的发射光经第一滤波片4301a、第二滤波片4302a、第三滤波片4303a与第一反射面4209a合光后共用一根光纤传输出光模块,实现了单光纤中多个波长的发射光同时传输。
在一些实施例中,由于一组四个激光器发射的四路不同波长的发射光合束后共用一根光纤发射出去,如此四组16个激光器发射的四组不同波长的发射光合束为四路复合光,四路复合光经由四根光纤发射出去,使得发射光纤阵列500a中四根光纤中16个波长的发射光同时传输。
图29为根据一些实施例的光模块中电路板与光接收组件的局部分解示意图二。如图29所示,光接收组件400b包括探测器阵列410b与第二透镜组件420b,第二透镜组件420b与电路板300形成第二容纳腔,探测器阵列410b设置于第二容纳腔内;第二透镜组件420b的顶面设置有凹槽,该凹槽内设置有多个反射面,经由多个反射面将第二透镜组件420b 反射的接收光进行分光。
探测器阵列410b包括多个探测器,被配置为接收多路不同波长的接收光。多个探测器以行或列分成几组相同的探测器组,每组探测器组包括多个探测器,且多组探测器组并排设置在电路板300的表面上,如此每组探测器组中的多个探测器分别接收多路不同波长的接收光。
在本公开的某一些实施例中,电路板300的表面具有承载面,可以承载多个探测器,多个探测器以阵列的形式进行排列,电路板300长度方向和宽度方向上均设有探测器,其中长度方向上一行探测器设为一组,这样可以实现设置多组探测器。
在一些实施例中,探测器阵列410b包括16个探测器,在电路板300的长度方向上并排设置有4个探测器,即一行4个探测器为一组,在电路板300的宽度方向上设置有4组探测器,如此将16个探测器以4×4的阵列形式进行排列。
接收光纤阵列500b的一端设置有接收光纤支架510b,接收光纤阵列500b的出光面突出于接收光纤支架510b,接收光纤支架510b插入第二透镜组件420b内,使得接收光纤阵列500b与第二透镜组件420b固定连接,如此接收光纤阵列500b传输的接收光经第二透镜组件420b反射后射入探测器阵列410b。
图30为根据一些实施例的光模块中第二透镜组件的结构示意图四,图31为根据一些实施例的光模块中第二透镜组件的结构示意图五,图32为根据一些实施例的光模块中第二透镜组件的结构示意图六,图33为根据一些实施例的光模块中光接收组件的剖视图二。如图30、图31、图32、图33所示,第二透镜组件420b靠近出光口的一端设置有包裹腔体,该包裹腔体内设置有第二光纤插口4202b,接收光纤支架510b插入该包裹腔体内,使得固定在接收光纤支架510b内的接收光纤阵列500b插入第二透镜组件420b内。
在本公开的某一些实施例中,第二透镜组件420b包括第二侧面4201b,包裹腔体由第二侧面4201b向第二透镜组件420b的内部延伸,且第二光纤插口4202b包括第一插入部4202b-1、第二插入部4202b-2与第三插入部4202b-3,第一插入部4202b-1、第二插入部4202b-2与第三插入部4202b-3顺序排布,第一插入部4202b-1靠近第二侧面4201b,且第一插入部4202b-1、第二插入部4202b-2与第三插入部4202b-3相连通。
第一插入部4202b-1、第二插入部4202b-2与第三插入部4202b-3的内径尺寸不相同,第一插入部4202b-1的内径尺寸大于第二插入部4202b-2的内径尺寸,第二插入部4202b-2的内径尺寸大于第三插入部4202b-3的内径尺寸。
第二光纤插口4202b的形状与接收光纤阵列500b中每根光纤的结构一致,光纤从内向外依次包括芯层、包层与保护层,光纤插入第二光纤插口4202b时,光纤的包层置于第三插入部4202b-3,第三插入部4202b-3被配置为与光纤包层插接;光纤的保护层置于第二插入部4202b-2内,第二插入部4202b-2被配置为与光纤保护层插接。由于接收光纤阵列500b中光纤数量较多且光纤较软,因此需要将接收光纤支架510b的一端插入第一插入部4202b-1,通过第一插入部4202b-1来固定接收光纤支架510b,使得突出于接收光纤支架510b的光纤插入第二光纤插口4202b内。
第三插入部4202b-3的出光端可设置有第二透镜4210b,该第二透镜4210b被配置为 将接收光纤阵列500b传输至第二透镜组件420b的接收光转换为准直光,准直光经由第二透镜组件420b的反射面进行反射分光。
在一些实施例中,第二光纤插口4202b与第二透镜组件420b一体成型,这样可以保证接收光纤阵列500b与第二透镜组件420b的相对位置固定,接收光纤阵列500b与第二透镜组件420b之间不会出现位置偏差,有助于提高接收光到第二透镜组件420b的耦合精度,进而接收光从接收光纤阵列500b耦合至第二透镜组件420b时光耦合效率增大。
第二透镜组件420b还包括第二顶面4204b,该第二顶面4204b上可设置有第二光口槽4205b,该第二光口槽4205b由第二顶面4204b向电路板300表面延伸,第二光口槽4205b内可设置有第四斜面4211b、第五斜面4213b、第六斜面4215b与第二反射面4209b,沿着第二透镜组件420b内光接收方向,第四斜面4211b、第五斜面4213b、第六斜面4215b、第二反射面4209b与电路板300之间的距离逐渐增加,使得第四斜面4211b、第五斜面4213b、第六斜面4215b、第二反射面4209b与第二光纤插口4202b相对设置。
第四斜面4211b上开设有第四孔洞4212b,该第四孔洞4212b内设置有第五滤波片4301b,该第五滤波片4301b具有反射、透射的作用,射入第二透镜组件420b的接收光通过第五滤波片4301b反射后射入相应的探测器。
第五斜面4213b上开设有第五孔洞4214b,该第五孔洞4214b被设置有第六滤波片4302b,该第六滤波片4302b具有反射、透射的作用,射入第二透镜组件420b的接收光透过第五滤波片4301b,再经由第六滤波片4302b反射后射入相应的探测器。
第六斜面4215b上开设有第六孔洞4216b,该第六孔洞4216b内设置有第七滤波片4303b,该第七滤波片4303b具有反射、透射的作用,射入第二透镜组件420b的接收光依次透过第五滤波片4301b、第六滤波片4302b,再经由第七滤波片4303b反射后射入相应的探测器。
第二反射面4209b具有反射的作用,射入第二透镜组件420b的接收光依次透过第五滤波片4301b、第六滤波片4302b、第七滤波片4303b,再经由第二反射面4209b反射后射入相应的探测器。
在一些实施例中,第二顶面4204b上还可设置第一凹槽、第二凹槽、第三凹槽与第四凹槽,第一凹槽、第二凹槽、第三凹槽与第四凹槽相连通,且第一凹槽内设置有第五滤波片4301b,第二凹槽内设置有第六滤波片4302b,第三凹槽内设置有第七滤波片4303b,接收光纤阵列500b射入第二透镜组件420b的接收光经由第五滤波片4301b、第六滤波片4302b、第七滤波片4303b与第二反射面4209b的反射、透射后进行分光。
第二透镜组件420b还包括第二底面4206b,第二底面4206b与第二顶面4204b相对设置,且第二底面4206b与电路板300的表面固定连接。第二底面4206b上设置有第二空腔4207b,该第二空腔4207b由第二底面4206b向第二顶面4204b延伸,且第二空腔4207b与电路板300的表面形成密封腔,探测器阵列410b位于该密封腔内。
第二空腔4207b的内壁上设置有汇聚透镜阵列4208b,汇聚透镜阵列4208b与探测器阵列410b对应设置,即汇聚透镜阵列4208b的一个汇聚透镜与探测器阵列410b的一个探测器对应设置,且汇聚透镜阵列4208b位于第五滤波片4301b、第六滤波片4302b、第七 滤波片4303b与第二反射面4209b的下方,如此经第五滤波片4301b、第六滤波片4302b、第七滤波片4303b与第二反射面4209b反射分光的四路接收光经由汇聚透镜阵列4208b转换为四路汇聚光,四路汇聚光分别射至探测器阵列410b中相应的探测器。
图34为根据一些实施例的光模块中电路板、光接收组件与接收光纤阵列的局部装配剖视图二。如图34所示,将探测器阵列410b中的各个探测器以阵列式固定在电路板300上,将探测器阵列410b中的16个探测器分成4组相同的探测器组;然后将第二透镜组件420b罩设在探测器阵列410b上,使得第二透镜组件420b内的第五滤波片4301b、第六滤波片4302b、第七滤波片4303b与第二反射面4209b与一组探测器组的各探测器相对设置;然后将接收光纤阵列500b插入第二透镜组件420b的第二光纤插口4202b内。
接收光纤阵列500b中一根光纤传输包含波长为λ1、λ2、λ3、λ4的第一复合光,第一复合光经由第二光纤插口4202b射入第二透镜组件420b内,第一复合光射至第五滤波片4301b时,接收光λ1在第五滤波片4301b处发生反射,反射后的接收光λ1经由汇聚透镜阵列4208b汇聚至相应的探测器;包含波长为λ2、λ3、λ4的第二复合光透过第五滤波片4301b射至第六滤波片4302b,接收光λ2在第六滤波片4302b处发生反射,反射后的接收光λ2经由汇聚透镜阵列4208b汇聚至相应的探测器;包含波长为λ3、λ4的第三复合光依次透过第五滤波片4301b、第六滤波片4302b射至第七滤波片4303b,接收光λ3在第七滤波片4303b处发生反射,反射后的接收光λ3经由汇聚透镜阵列4208b汇聚至相应的探测器;接收光λ4依次透过第五滤波片4301b、第六滤波片4302b、第七滤波片4303b射至第二反射面4209b,接收光λ4在第二反射面4209b发生反射,反射后的接收光λ4经由汇聚透镜阵列4208b汇聚至相应的探测器。如此,四路不同波长的复合光共用一根光纤传输至第二透镜组件420b,复合光经第五滤波片4301b、第六滤波片4302b、第七滤波片4303b、第二反射面4209b反射分光,实现了单光纤中多个波长的接收光同时传输。
接收光纤阵列500b中四根光纤传输的四路复合光经第二透镜组件420b反射分成16路接收光,16路接收光经探测器阵列410b转换为16路100G电信号,16路100G电信号通过16路跨阻放大器进行放大,放大后的16路100G PAM4电信号射入数据处理器310,16路100G PAM4电信号经由变速箱编码为8路200G PAM4电信号,8路200G PAM4电信号经由金手指传输至上位机,以实现16路接收光信号的接收。
本公开在高速率电口速率(200Gb/s)大于低速光口速率(100Gb/s)情况下,通过数据处理器改变输入、输出的电口速率,使用已有成熟、可靠的VCSEL技术,解决了光口速率为100Gb/s的VCSEL激光器极限传输带宽无法匹配高速率电口速率的问题;采用SWDM4波分复用技术,将4路不同波长的光信号共用同一根光纤,使得光纤数量减少为通道数的1/4;从而实现了1.6T短距传输的低成本要求,构造成低功耗、集成度高、结构简单和高可靠性的光模块。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光模块,包括:
    电路板,其上设置有数据处理器;
    光发射组件,与所述数据处理器电连接,包括激光器阵列与第一透镜组件,所述激光器阵列设置于所述电路板上,被配置为发射多路光信号,多路光信号在所述第一透镜组件内合成多路复合光;
    光接收组件,与所述数据处理器电连接,包括探测器阵列与第二透镜组件,所述探测器阵列设置于所述电路板上,所述第二透镜组件被配置为将输入的多路复合光进行分光,分光后的接收光分别汇聚至所述探测器阵列;
    光纤适配器,通过发射光纤阵列与所述光发射组件连接,通过接收光纤阵列与所述光接收组件连接,被配置为传输多路光信号;
    其中,所述数据处理器包括:
    逆向变速箱,被配置为接收来自所述电路板的高速电信号,将所述高速电信号解码为多路低速电信号,其输出的电信号路数为输入电信号路数的两倍,所述低速电信号驱动所述激光器阵列产生多路光信号;
    变速箱,被配置为接收所述探测器阵列输出的多路低速电信号,将多路所述低速电信号编码为多路高速电信号,其输出电信号路数为输入电信号路数的一半,多路所述高速电信号在所述电路板上传输。
  2. 根据权利要求1所述的光模块,其中,所述高速电信号为200Gb/s电信号,所述低速电信号为100Gb/s电信号。
  3. 根据权利要求1所述的光模块,其中,所述光发射组件还包括:
    第一透镜组件,其内设置有第一容纳腔,所述激光器阵列位于所述第一容纳腔内;其一端设置有第一主反射面与第一汇聚透镜反射面,所述第一主反射面在所述电路板方向的投影覆盖所述激光器阵列,所述第一汇聚透镜反射面被配置为将所述复合光汇聚反射至所述发射光纤阵列;
    准直透镜支座,位于所述第一容纳腔内,被配置为对所述激光器阵列发射的多路发射光进行准直;
    波分复用组件,位于所述第一容纳腔内,其在所述电路板方向的投影覆盖所述准直透镜支座、所述激光器阵列,被配置为与所述第一主反射面配合对多路发射光进行反射合光,合光后的复合光射至所述第一汇聚透镜反射面。
  4. 根据权利要求3所述的光模块,其中,所述第一主反射面倾斜设置,所述波分复用组件固定于所述第一容纳腔倾斜设置的内壁上。
  5. 根据权利要求1所述的光模块,其中,所述第一透镜组件的顶面上设置有第一光口槽,所述第一光口槽内并排设置有第一斜面、第二斜面、第三斜面与第一反射面,所述第一斜面、所述第二斜面、所述第三斜面与所述第一反射面在所述电路板方向的投影覆盖所述激光器阵列;所述第一斜面内设置有第一滤波片,所述第二斜面内设置有第二滤波片, 所述第三斜面内设置有第三滤波片;
    所述第一反射面被配置为对所述激光器阵列中相应激光器发出的发射光进行反射,反射后的发射光依次透过所述第三滤波片、所述第二滤波片与所述第一滤波片;
    所述第三滤波片被配置为对所述激光器阵列中相应激光器发出的发射光进行反射,反射后的发射光依次透过所述第二滤波片与所述第一滤波片;
    所述第二滤波片被配置为对所述激光器阵列中相应激光器发出的发射光进行反射,反射后的发射光透过所述第一滤波片;
    所述第一滤波片被配置为对所述激光器阵列中相应激光器发出的发射光进行反射,反射后的发射光与透过所述第一滤波片的发射光进行合光。
  6. 根据权利要求1所述的光模块,其中,所述光接收组件还包括:
    第二透镜组件,其内设置有第二容纳腔,所述探测器阵列位于所述第二容纳腔内;其一端设置有第二主反射面与第二汇聚透镜反射面,所述第二主反射面在所述电路板方向的投影覆盖所述探测器阵列,所述第二汇聚透镜反射面被配置为将所述接收光纤阵列传输的复合光反射至所述第二容纳腔内;
    波分解复用组件,位于所述第二容纳腔内,其在所述电路板方向的投影覆盖所述探测器阵列,被配置为接收所述复合光,与所述第二主反射面配合对多路所述复合光进行反射分光;
    汇聚透镜支座,位于所述第二容纳腔内,被配置为将分光后的接收光分别汇聚至所述探测器阵列。
  7. 根据权利要求6所述的光模块,其中,所述第二主反射面倾斜设置,所述波分解复用组件固定于所述第二容纳腔倾斜设置的内壁上。
  8. 根据权利要求1所述的光模块,其中,所述第二透镜组件的顶面上设置有第二光口槽,所述第二光口槽内并排设置有第四斜面、第五斜面、第六斜面与第二反射面,所述第四斜面、所述第五斜面、所述第六斜面与所述第二反射面在所述电路板方向的投影覆盖所述探测器阵列;
    所述第四斜面内设置有第五滤波片,所述第五斜面内设置有第六滤波片,所述第六斜面内设置有第七滤波片,所述第五滤波片、所述第六滤波片、所述第七滤波片与所述第二反射面被配置为所述复合光依次进行滤波、反射分光。
  9. 根据权利要求1所述的光模块,其中,所述激光器阵列为VCSEL激光器阵列。
  10. 根据权利要求1所述的光模块,其中,所述光接收组件还包括跨阻放大器阵列,所述跨阻放大器阵列的一端与所述探测器阵列一一对应设置,所述跨阻放大器阵列的另一端与所述变速箱的输入端一一对应连接。
PCT/CN2022/131779 2022-06-24 2022-11-14 光模块 WO2023245966A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210730675.6A CN114879324B (zh) 2022-06-24 2022-06-24 光模块
CN202210731028.7 2022-06-24
CN202210731036.1 2022-06-24
CN202210730675.6 2022-06-24
CN202210731036.1A CN114994839B (zh) 2022-06-24 2022-06-24 光模块
CN202210731028.7A CN115079356B (zh) 2022-06-24 2022-06-24 光模块

Publications (1)

Publication Number Publication Date
WO2023245966A1 true WO2023245966A1 (zh) 2023-12-28

Family

ID=89379097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131779 WO2023245966A1 (zh) 2022-06-24 2022-11-14 光模块

Country Status (1)

Country Link
WO (1) WO2023245966A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148155A1 (en) * 2007-12-06 2009-06-11 Latchman Ryan S OPTIMIZED CDR APPLICATION FOR VARIABLE DATA RATE SIGNALS IN SFPs FOR JITTER REDUCTION
WO2021115454A1 (zh) * 2019-12-13 2021-06-17 华为技术有限公司 光电信号转换器、光驱动处理和接收模组及网络交互设备
CN113009654A (zh) * 2021-03-31 2021-06-22 飞昂创新科技南通有限公司 一种高性能的光纤互连系统
CN114371536A (zh) * 2020-10-19 2022-04-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN114384642A (zh) * 2020-10-19 2022-04-22 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022083041A1 (zh) * 2020-10-19 2022-04-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN114879324A (zh) * 2022-06-24 2022-08-09 青岛海信宽带多媒体技术有限公司 光模块
CN114994839A (zh) * 2022-06-24 2022-09-02 青岛海信宽带多媒体技术有限公司 光模块
CN115079356A (zh) * 2022-06-24 2022-09-20 青岛海信宽带多媒体技术有限公司 光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148155A1 (en) * 2007-12-06 2009-06-11 Latchman Ryan S OPTIMIZED CDR APPLICATION FOR VARIABLE DATA RATE SIGNALS IN SFPs FOR JITTER REDUCTION
WO2021115454A1 (zh) * 2019-12-13 2021-06-17 华为技术有限公司 光电信号转换器、光驱动处理和接收模组及网络交互设备
CN114371536A (zh) * 2020-10-19 2022-04-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN114384642A (zh) * 2020-10-19 2022-04-22 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022083041A1 (zh) * 2020-10-19 2022-04-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN113009654A (zh) * 2021-03-31 2021-06-22 飞昂创新科技南通有限公司 一种高性能的光纤互连系统
CN114879324A (zh) * 2022-06-24 2022-08-09 青岛海信宽带多媒体技术有限公司 光模块
CN114994839A (zh) * 2022-06-24 2022-09-02 青岛海信宽带多媒体技术有限公司 光模块
CN115079356A (zh) * 2022-06-24 2022-09-20 青岛海信宽带多媒体技术有限公司 光模块

Similar Documents

Publication Publication Date Title
US10466432B2 (en) High speed optical transceiver module
CN101266325B (zh) 光学系统连接构造、光学部件及光传输模块
US8469610B2 (en) Optical connection system with plug having optical turn
WO2019184100A1 (zh) 一种光模块
CN115079356B (zh) 光模块
CN215895036U (zh) 一种光模块
KR102619650B1 (ko) 초소형 광송신 모듈
CN216013740U (zh) 一种光模块
WO2021223448A1 (zh) 一种光模块
CN114879324B (zh) 光模块
CN114994839B (zh) 光模块
WO2024001684A1 (zh) 多通道光收发组件及光模块
WO2023245966A1 (zh) 光模块
WO2022083040A1 (zh) 一种光模块
WO2022083041A1 (zh) 一种光模块
CN115016074B (zh) 一种光模块
CN114371536A (zh) 一种光模块
CN114384642A (zh) 一种光模块
CN114384644A (zh) 一种光模块
WO2022057100A1 (zh) 一种光模块
CN114384643B (zh) 一种光模块
CN218272816U (zh) 光模块
CN115016073B (zh) 一种光模块
WO2022127059A1 (zh) 一种光模块
CN114200594B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947702

Country of ref document: EP

Kind code of ref document: A1