WO2022057100A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022057100A1
WO2022057100A1 PCT/CN2020/134054 CN2020134054W WO2022057100A1 WO 2022057100 A1 WO2022057100 A1 WO 2022057100A1 CN 2020134054 W CN2020134054 W CN 2020134054W WO 2022057100 A1 WO2022057100 A1 WO 2022057100A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
light receiving
lens
receiving
Prior art date
Application number
PCT/CN2020/134054
Other languages
English (en)
French (fr)
Inventor
刘学儒
张洪浩
唐毅
王斌
叶书华
傅钦豪
谢一帆
张加傲
黄绪杰
董本正
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010989983.1A external-priority patent/CN114200601B/zh
Priority claimed from CN202010989984.6A external-priority patent/CN114200602B/zh
Priority claimed from CN202010988113.2A external-priority patent/CN114200594B/zh
Priority claimed from CN202010988117.0A external-priority patent/CN114200595B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022057100A1 publication Critical patent/WO2022057100A1/zh
Priority to US18/122,534 priority Critical patent/US20230228955A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in the optical communication equipment.
  • the transmission rate of the optical module continues to increase.
  • optical module is improved to include two sets of light emitting sub-modules (each group emits light of one wavelength) and two sets of light receiving sub-modules (each group receives light of one wavelength).
  • optical module is improved to include two sets of light emitting sub-modules (each group emits light of one wavelength) and two sets of light receiving sub-modules (each group receives light of one wavelength).
  • an optical module provided by the present disclosure includes: a circuit board; a light receiving sub-module electrically connected to the circuit board for converting received signal light into a current signal; the light receiving sub-module includes: The light-receiving cavity includes a bottom plate for carrying and setting devices; the device includes a reflective prism and a light-receiving assembly, the light-receiving assembly includes a plurality of light-receiving chips, and the reflective prism covers the light-receiving device provided on the light-receiving assembly On the chip, the signal light is reflected to the light receiving chip of the light receiving component.
  • an optical module includes: a light receiving sub-module electrically connected to a circuit board for converting received signal light into a current signal;
  • the light receiving sub-module includes: a light receiving cavity body, including a bottom plate for carrying and setting devices;
  • the device includes a first reflecting prism, a second reflecting prism, a first light-receiving assembly and a second light-receiving assembly;
  • the first light-receiving assembly includes several light-receiving chips,
  • the second light-receiving assembly includes a plurality of light-receiving chips;
  • the first reflecting prism is covered on the light-receiving chips of the first light-receiving assembly, and is used for reflecting toward the light-receiving chips of the first light-receiving assembly Signal light;
  • the second reflecting prism cover is provided on the light receiving chip of the second light receiving component, and reflects the signal light to the light receiving chip of the second light receiving component.
  • the present disclosure provides an optical module, comprising: a circuit board; a light receiving sub-module electrically connected to the circuit board for converting received signal light into a current signal; the light receiving sub-module includes: a light-receiving cavity for carrying and setting devices; wherein the light-receiving cavity comprises a bottom plate and a side wall surrounding the bottom plate, and the bottom plate and the side wall surrounding the bottom plate form a cavity structure; the A lens mounting column and a demultiplexing component mounting column are arranged on the bottom plate, the lens mounting column is used for setting the first lens and the second lens, and the demultiplexing component mounting column is used for setting the first DeMUX and the second lens DeMUX.
  • the present disclosure provides an optical module, comprising: a circuit board; a light emitting sub-module electrically connected to the circuit board for generating signal light; and an optical receiving sub-module electrically connected to the circuit board for receiving
  • the received signal light is converted into a current signal, and the light-emitting sub-module and the light-receiving sub-module are arranged on top of each other;
  • the light-receiving sub-module includes: a second optical fiber adapter for transmitting the signal light of the external optical fiber of the optical module Displacement assembly, one end is connected to the second optical fiber adapter, used to transmit and adjust the optical path height of the output signal light through the second optical fiber adapter; light receiving cavity, connected to the other end of the displacement assembly, used to transmit and receive the optical path height Adjusted signal light.
  • the present disclosure provides an optical module, comprising: a circuit board; a light receiving sub-module electrically connected to the circuit board for converting received signal light into a current signal;
  • the light receiving sub-module includes: The light receiving cavity is used for carrying the setting device; the second optical fiber adapter is connected with the light receiving cavity and is used for transmitting the signal light of the external optical fiber of the optical module to the light receiving cavity;
  • the device includes a first lens group, A demultiplexing component group and a light receiving chip; the first lens group is used to split the signal light transmitted to the light receiving cavity through the second optical fiber adapter for the first time according to the wavelength band, and split the first time
  • the signal light after the first splitting is correspondingly transmitted to the demultiplexing component group; the signal light after the first splitting is correspondingly split by the wavelength for the second time according to the wavelength;
  • the light receiving chip is used for receiving the signal light after the second beam splitting of the demultiplexing component group and converting it into a current signal.
  • Fig. 1 is a schematic diagram of the connection relationship of optical communication terminals
  • Fig. 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 4 provides a schematic diagram of an exploded structure of an optical module according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view of the structure of an optical module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of separation of an optical transmitting sub-module and an optical receiving sub-module according to an embodiment of the present disclosure
  • FIG. 7 is a working principle diagram of a DeMUX provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a light receiving sub-module with a cover plate hidden in an embodiment of the present disclosure
  • Fig. 9 is a partial exploded view at A place in Fig. 8;
  • FIG. 10 is a top view of a light receiving sub-module with a cover plate hidden in an embodiment of the present disclosure
  • FIG. 11 is a transmission diagram of a transmission optical path of a first lens assembly according to an embodiment of the present disclosure.
  • FIG. 13 provides a partial exploded view of a light receiving sub-module according to an embodiment of the present disclosure
  • FIG. 14 provides a cross-sectional view 1 of another light receiving sub-module at the light receiving cavity according to an embodiment of the present disclosure
  • FIG. 16 provides a first structural schematic diagram of a light receiving cavity according to an embodiment of the present disclosure
  • FIG. 17 provides a second structural schematic diagram of a light receiving cavity according to an embodiment of the present disclosure.
  • FIG. 18 is a state diagram of an assembly and use state of a light receiving cavity provided by an embodiment of the present disclosure.
  • 19 is a cross-sectional view of an assembled and used state of a light-receiving cavity provided by an embodiment of the present disclosure.
  • FIG. 20 is a cross-sectional view of a light receiving cavity provided by an embodiment of the present disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to transmit in information transmission equipment such as optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can realize low-cost, low-loss information transmission; while computers and other information processing equipment Electrical signals are used.
  • the optical module realizes the mutual conversion function of the above-mentioned optical and electrical signals in the technical field of optical fiber communication, and the mutual conversion of the optical signal and the electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.
  • the electrical connection method realized by the gold finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of pins on the gold finger has formed a variety of industry protocols/norms.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101 and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing device.
  • the connection between the local information processing device and the remote server is completed by the connection between the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101, and a two-way optical signal connection is established with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100, and a two-way electrical signal connection is established with the optical network terminal 100;
  • the optical module realizes mutual conversion between optical signals and electrical signals, so as to establish an information connection between the optical fiber and the optical network terminal; in an embodiment of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to access the optical module 200 and establish a two-way electrical signal connection with the optical module 200; Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module.
  • the optical network terminal is used as the host computer of the optical module to monitor the work of the optical module.
  • the remote server has established a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the host computer of the optical module, providing data signals to the optical module and receiving data signals from the optical module.
  • FIG. 2 is a schematic structural diagram of an optical network terminal.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for connecting to an optical module electrical port such as a golden finger;
  • the cage 106 is provided with a radiator 107 , and the radiator 107 has raised portions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106 , and the optical port of the optical module is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage, so that the interior of the cage is provided with electrical connectors; the optical module is inserted into the cage, the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage. 106 and then diffuse through a heat sink 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an exploded optical module according to an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 , a light emitting sub-module 400 and an optical receiving sub-module 500 .
  • the upper casing 201 is covered on the lower casing 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square body.
  • the two side walls on both sides of the plate and the two side walls vertically arranged with the cover plate are combined with the two side plates to realize that the upper casing is covered on the lower casing.
  • the two openings may be openings (204, 205) at both ends in the same direction, or may be two openings in different directions; one of the openings is an electrical port 204, and the gold fingers of the circuit board protrude from the electrical port 204.
  • the other opening is an optical port 205, which is used for external optical fiber access to connect the optical transceiver device 400 inside the optical module; the circuit board 300, the optical transceiver device 400 and other optoelectronic devices are located in the package cavity. middle.
  • the combination of the upper casing and the lower casing is adopted to facilitate the installation of the circuit board 300, the optical transceiver device 400 and other devices into the casing, and the upper casing and the lower casing form the outermost encapsulation protection casing of the optical module ;
  • the upper casing and the lower casing are generally made of metal materials, which are conducive to electromagnetic shielding and heat dissipation; generally, the casing of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding Parts cannot be installed and are not conducive to production automation.
  • the unlocking part 203 is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part matched with the cage of the upper computer; pulling the end of the unlocking part can make the unlocking part move relatively on the surface of the outer wall; the optical module is inserted into the cage of the upper computer, and the optical module is moved by the engaging part of the unlocking part. It is fixed in the cage of the upper computer; by pulling the unlocking part, the engaging part of the unlocking part moves with it, thereby changing the connection relationship between the engaging part and the upper computer, so as to release the engaging relationship between the optical module and the upper computer, so that the The optical module is pulled out from the cage of the host computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP), etc.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP, etc.
  • the circuit board connects the electrical components in the optical module according to the circuit design through the circuit wiring, so as to realize the electrical functions such as power supply, electrical signal transmission and grounding.
  • the chip on the circuit board 300 can be a multi-functional integrated chip, for example, the laser driver chip and the MCU chip can be integrated into one chip, or the laser driver chip, the limiting amplifier chip and the MCU can be integrated into one chip.
  • the chip is the integration of the circuit. , but the function of each circuit has not disappeared because of the collection, but the circuit appearance has changed, and the chip still has the circuit shape. Therefore, when the circuit board is provided with three independent chips, the MCU, the laser driver chip and the limiting amplifier chip, the solution is equivalent to that of a single chip with three functions in one on the circuit board 300 .
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is located on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector. Connector connections; these are inconvenient to implement with flexible circuit boards.
  • Flexible circuit boards are also used in some optical modules as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceivers.
  • the light-emitting sub-module and the light-receiving sub-module may be collectively referred to as an optical sub-module.
  • the optical module provided by the embodiment of the present disclosure includes an optical transmitting sub-module 400 and an optical receiving sub-module 500 .
  • the optical transmitting sub-module 400 and the optical receiving sub-module 500 are located at the edge of the circuit board 300 , and the optical transmitting sub-module is located at the edge of the circuit board 300 .
  • 400 and the light receiving sub-module 500 are arranged on top of each other.
  • the light-emitting sub-module 400 is closer to the upper casing 201 than the light-receiving sub-module 500 , but it is not limited to this, and the light-receiving sub-module 500 may be closer to the upper than the light-emitting sub-module 400 housing 201 .
  • the light-emitting sub-module 400 and the light-receiving sub-module 500 are respectively physically separated from the circuit board 300 and connected to the circuit board 300 through a flexible circuit board or an electrical connector, respectively.
  • the light-emitting sub-module 400 When the light-emitting sub-module 400 is closer to the upper casing 201 than the light-receiving sub-module 500 , the light-emitting sub-module 400 and the light-receiving sub-module 500 are disposed in a wrapping cavity formed by the upper and lower casings.
  • the lower case 202 can support the light receiving sub-module 500 ; in an embodiment of the present disclosure, the lower case 202 supports the light receiving sub-module 500 through a spacer, and the light receiving sub-module 500 supports the light emitting sub-module 400 .
  • FIG. 5 is a cross-sectional view of a structure of an optical module according to an embodiment of the present disclosure.
  • the optical module provided by the embodiment of the present disclosure includes a lower casing 202 , a circuit board 300 , a light emitting sub-module 400 and an optical receiving sub-module 500 .
  • a first optical fiber adapter 410 is provided at the end of the optical transmitting sub-module 400 away from the circuit board 300, and the first optical fiber adapter 410 is used to transmit the signal light generated by the optical transmitting sub-module 400 to the outside of the optical module; the optical receiving sub-module 500 is far away from the optical module.
  • the end of the circuit board 300 is provided with a second optical fiber adapter 510 , and the second optical fiber adapter 510 is used to transmit the signal light from the outside of the optical module to the inside of the light receiving sub-module 500 .
  • the circuit board 300 is electrically connected to the light-emitting sub-module 400 and the light-receiving sub-module 500 through corresponding flexible circuit boards, respectively.
  • the optical transmitting sub-module 400 and the optical receiving sub-module 500 are large in size and cannot be installed on the circuit board, so the use of separate The way of setting, realize the electrical connection and transfer through the flexible circuit board.
  • the first optical fiber adapter 410 and the second optical fiber adapter 510 are located at the same height compared to the bottom surface of the lower housing 202 .
  • the first optical fiber adapter 410 and the second optical fiber adapter 510 are respectively used to connect with the optical fiber connector outside the optical module; and the optical fiber connector outside the optical module is a standard part commonly used in the industry, and the shape and size of the external optical fiber connector limit the optical fiber connector.
  • the positions of the two fiber optic adapters inside the module, so the first fiber optic adapter 410 and the second fiber optic adapter 510 are set at the same height in the product.
  • FIG. 6 is a schematic structural diagram of separation of an optical transmitting sub-module and an optical receiving sub-module according to an embodiment of the present disclosure.
  • the light-emitting sub-module 400 and the light-receiving sub-module 500 are arranged in layers; the light-receiving sub-module 500 provided by the embodiment of the present disclosure further includes a light-receiving cavity 520 and a light-receiving cover plate 520a.
  • the receiving cover plate 520a is closed on the light receiving cavity 520 from above.
  • the light receiving cavity 520 is provided with a lens, a light receiving chip, a transimpedance amplifier and other devices related to light receiving.
  • One end of the light-receiving cavity 520 is connected to the second optical fiber adapter 510, and the signal light from the outside of the optical module is received through the second optical fiber adapter 510, and the received signal light is transmitted to the optical device such as a lens arranged in the light-receiving cavity 520.
  • Light receiving chip an opening 521 is provided on the side wall of the other end of the light receiving cavity 520 for insertion of the flexible circuit board 310 .
  • One end of the flexible circuit is inserted into and fixed in the light receiving cavity 520 and is electrically connected with electrical devices such as a light receiving chip and a transimpedance amplifier, and the other end of the flexible circuit is used for electrical connection with the circuit board 300 .
  • the light-receiving cavity 520 and the light-receiving cover plate 520a can be made of metal structural parts, such as metal parts processed by die casting and milling.
  • An opening 521 is provided on the side wall of the other end of the light-receiving cavity 520, and an electrical connector, such as a metallized circuit composed of a multi-layer substrate, can be arranged at the opening; the flexible circuit board is connected with the electrical connector to realize the circuit board and the light receiving Electrical connection of the submodule 500 .
  • an electrical connector such as a metallized circuit composed of a multi-layer substrate
  • the optical receiving sub-module 500 is configured to receive signal light of various wavelengths, and the signal light of different wavelengths is transmitted to the optical receiving cavity 520 through the second optical fiber adapter 510,
  • the reflection and refraction of optical devices such as different lenses in the cavity 520 realize beam splitting according to wavelength, and the signal light after splitting according to wavelength is finally transmitted to the photosensitive surface of the light receiving chip, and the light receiving chip receives the signal light through its photosensitive surface.
  • one light-receiving chip is used to receive signal light of one wavelength
  • the light-receiving sub-module 500 provided by the embodiment of the present disclosure includes a plurality of light-receiving chips.
  • the light-receiving sub-module 500 when the light-receiving sub-module 500 is used to receive signal lights of four different wavelengths, the light-receiving sub-module 500 includes four light-receiving chips for correspondingly receiving the signal lights of the four wavelengths; when the light-receiving sub-module 500 uses When receiving signal light with 8 different wavelengths, the light receiving sub-module 500 includes 8 light receiving chips for correspondingly receiving the signal light with the 8 wavelengths.
  • the light receiving cavity 520 includes optical devices such as a first lens group and a demultiplexing component (DeMUX); the number of DeMUX is usually not unique, and the demultiplexing component (DeMUX) is used.
  • the multiplexing component group such as the demultiplexing component, includes two DeMUXs.
  • the first lens group includes a plurality of lenses, and the signal light transmitted by the second optical fiber adapter 510 to the light receiving cavity 520 is first split according to the wavelength band through the cooperation of the lenses, for example, into two beams according to the wavelength band.
  • the wavelength band generally includes multiple wavelengths; for example, the light receiving sub-module 500 is used to receive signal light with eight different wavelengths of ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8;
  • the wavelengths of ⁇ 2, ⁇ 3 and ⁇ 4 are relatively similar and are located in the same band (referred to as the first band), and the wavelengths of ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8 are relatively similar and are located in the same band (referred to as the second band); then in the first lens assembly
  • the lenses cooperate with each other to divide the signal light into two beams, that is, the lenses in the first lens assembly 530 cooperate with each other to divide the signal light belonging to the first wavelength band into the first signal light and the signal light belonging to the second wavelength band.
  • the first lens assembly provided in the embodiment of the present disclosure can also divide the signal light into three beams according to the wavelength band, and so on.
  • the signal light split by the first lens group according to the wavelength band is correspondingly transmitted to the corresponding DeMUX, the DeMUX splits the split signal light for the second time according to the wavelength, and finally transmits the signal light split according to the wavelength to the corresponding light receiving chip.
  • FIG. 7 is a working principle diagram of a DeMUX for beam splitting including four wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4) according to an embodiment of the present disclosure; wherein, the right side of the DeMUX includes a DeMUX for incident signal light with multiple wavelengths
  • the light inlet port on the left side includes a plurality of light outlet ports for emitting light, and each light outlet port is used for emitting signal light of one wavelength.
  • the signal light enters the DeMUX through the incident light port of the DeMUX, and the ⁇ 1 signal light passes through six different positions of the DeMUX and undergoes six different reflections to reach its light outlet; the ⁇ 2 signal light passes through four different positions of the DeMUX.
  • the ⁇ 3 signal light passes through two different positions of the DeMUX for two different reflections to reach its light outlet; the ⁇ 4 signal light enters the DeMUX and directly transmits to its light outlet.
  • signal lights of different wavelengths can enter the DeMUX through the same light entrance and output through different light exits, thereby realizing the splitting of signal lights of different wavelengths.
  • DeMUX is not limited to using beam splitting including four wavelength beams, and can be selected according to actual needs.
  • optical receiving sub-module provided by the embodiment of the present disclosure will be described in detail below with reference to a specific example.
  • the optical receiving sub-module is used to receive signal light of 8 different wavelengths. ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8.
  • FIG. 8 is a schematic structural diagram of a light receiving sub-module with a cover plate hidden in an embodiment of the present disclosure.
  • one end of the light receiving cavity 520 is further provided with a first through hole 522 , and the first through hole 522 is used for connecting the second optical fiber adapter 510 and the light receiving cavity 520 .
  • a first lens assembly 530 , a first DeMUX 540 , a second DeMUX 550 , a first light receiving assembly 580 and a second light receiving assembly 590 are arranged in the light receiving cavity 520 .
  • a single wavelength band includes 4 wavelengths of light
  • the first lens assembly 530 performs the first beam splitting according to the wavelength band of the signal light, that is, it is divided into two parts according to the wavelength band of the signal light.
  • the first beam of signal light and the second beam of signal light is transmitted to the first DeMUX540, and the first beam of signal light is divided into the first four-way signal light by the first DeMUX540; the second beam of signal light The light is transmitted to the second DeMUX550, and the second signal light is divided into the second four-way signal light by the first DeMUX540; the first four-way signal light is transmitted to the first light receiving component 580, and the second four-way signal light transmitted to the second light receiving component 590 .
  • the first light receiving component 580 and the second light receiving component 590 respectively have several light receiving chips, and the light receiving chips are PD (photodetector), such as APD (avalanche diode), PIN-PD (photodiode) ), etc., are used to convert the received signal light into photocurrent.
  • PD photodetector
  • APD avalanche diode
  • PIN-PD photodiode
  • the light-receiving chips in the first light-receiving assembly 580 and the second light-receiving assembly 590 are respectively disposed on the surface of the metallized ceramic, and the metallized ceramic surface forms a circuit pattern, which can supply power to the light-receiving chip, Then, the metallized ceramic provided with the light-receiving chip is mounted on the flexible circuit board 310 ; or, the light-receiving chip is directly mounted on the flexible circuit board 310 .
  • the first light receiving component 580 and the second light receiving component 590 further include transimpedance amplifiers, respectively, the transimpedance amplifiers are mounted on the flexible circuit board 310, and the transimpedance amplifiers are connected to the corresponding light receiving chips , receive the current signal generated by the light receiving chip and convert the received current signal into a voltage signal.
  • the transimpedance amplifier may also be disposed on the electrical connector, within the light receiving cavity 520 .
  • the transimpedance amplifier is connected to the corresponding light-receiving chip by wire bonding, for example, through a semiconductor bonding wire (Gold Wire Bonding).
  • FIG. 9 is a partial exploded view at A in FIG. 8 .
  • the first light receiving component 580 includes a first ceramic substrate 581 and a first transimpedance amplifier 582, and the first transimpedance amplifier 582 is disposed on one side of the first ceramic substrate 581; wherein the first ceramic substrate 581 Four light-receiving chips 583 are arranged thereon, and the first ceramic substrate 581 facilitates the installation and installation of the light-receiving chips 583 .
  • the first ceramic substrate 581 is connected to the first transimpedance amplifier 582 by wire bonding, so as to realize the connection between the light receiving chip 583 and the first transimpedance amplifier 582 .
  • the light-receiving chip 583 and the first transimpedance amplifier 582 are as close as possible to reduce the wire bonding length and ensure the quality of signal transmission. Furthermore, the first transimpedance amplifier 582 is arranged on one side of the first ceramic substrate 581 to make the first ceramic substrate 581 as close as possible. The substrate 581 is close to the first transimpedance amplifier 582 .
  • the first ceramic substrate 581 is also used to elevate the light-receiving chip 583, so that the electrodes of the light-receiving chip 583 and the pins on the first transimpedance amplifier 582 are on the same plane to ensure that the light-receiving chip
  • the bonding wire between 583 and the first transimpedance amplifier 582 is the shortest.
  • the second light receiving component 590 includes a second ceramic substrate 591 and a second transimpedance amplifier 592 , and the second transimpedance amplifier 592 is disposed on one side of the second ceramic substrate 591 ;
  • Four light-receiving chips 593 are disposed on the ceramic substrate 591 , and the second ceramic substrate 591 facilitates the installation and installation of the light-receiving chips 593 .
  • the second ceramic substrate 591 is connected to the second transimpedance amplifier 592 by wire bonding, so as to realize the connection between the light receiving chip 593 and the second transimpedance amplifier 592 .
  • the second ceramic substrate 591 is as close to the second transimpedance amplifier 592 as possible to reduce the wire length; at the same time, the second ceramic substrate 591 also pads the light-receiving chip 593, so that the electrodes of the light-receiving chip 593
  • the pins on the second transimpedance amplifier 592 are on the same plane to ensure the shortest bonding wire between the light receiving chip 593 and the second transimpedance amplifier 592 .
  • the first transimpedance amplifier 582 and the second transimpedance amplifier 592 may use one transimpedance amplifier chip. Furthermore, four light-receiving chips 583 and four light-receiving chips 593 may be disposed on one ceramic substrate.
  • a second lens assembly 560 and a third lens assembly 570 are further arranged in the light receiving cavity 520; wherein, the second lens assembly 560 is used to transmit the first four-way signal light to the first light receiving assembly
  • the third lens assembly 570 is used for the adjustment of the optical path in the process of transmitting the second four-way signal light to the second light receiving assembly 590 .
  • the optical axes of the first four-way signal light and the second four-way signal light are parallel to the bottom surface of the light-receiving cavity 520 , and the photosensitive surfaces of the light-receiving chip 583 and the light-receiving chip 593 are also parallel to the light-receiving cavity 520 . Therefore, in order to ensure that the light receiving chip 583 and the light receiving chip 593 receive the signal light normally, as shown in FIG.
  • the first reflection prism 561 is arranged above the first ceramic substrate 581, and four light-receiving chips 583 are arranged on the cover of the first ceramic substrate 581, and the optical axis of the first four-way signal light is changed by the reflection surface of the first reflection prism 561 direction, so that the optical axis of the first four-way signal light is converted from being parallel to the bottom surface of the light-receiving cavity 520 to being perpendicular to the bottom surface of the light-receiving cavity 520, so that the first four-way signal light is vertically incident to the corresponding light receiving cavity
  • the photosensitive surface of the chip 583 is arranged above the first ceramic substrate 581, and four light-receiving chips 583 are arranged on the cover of the first ceramic substrate 581, and the optical axis of the first four-way signal light is changed by the reflection surface of the first reflection prism 561 direction, so that the optical axis of the first four-way signal light is converted from being parallel to the bottom surface of the light
  • the second reflecting prism 571 is disposed above the second ceramic substrate 591, and four light-receiving chips 593 are disposed on the second ceramic substrate 591 covering the second ceramic substrate 591, and the second four-way signal light is changed by the reflecting surface of the second reflecting prism 571.
  • the direction of the optical axis of the second four-way signal light is changed from being parallel to the bottom surface of the light-receiving cavity 520 to being perpendicular to the bottom surface of the light-receiving cavity 520, so that the second four-way signal light is perpendicular to the Corresponding to the photosensitive surface of the light receiving chip 593 .
  • the first reflection prism 561 and the second reflection prism 571 are both 45° reflection prisms, that is, the first reflection prism 561 and the second reflection prism 571 respectively include a 45° reflection surface; the first reflection prism 561
  • the 45° reflective surface of the second reflective prism 571 covers the first ceramic substrate 581 with 4 light-receiving chips 583
  • the 45° reflective surface of the second reflective prism 571 covers the second ceramic substrate 591 with 4 light-receiving chips 593 .
  • the first lens assembly 530 includes a plurality of lenses arranged and combined, and the signal light is divided into a first beam of signal light according to ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4, and ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8 are divided into a second beam of signals through the mutual cooperation of the lenses.
  • the first lens assembly 530 includes four lenses arranged in sequence, and the surfaces of the lenses are coated to reflect or refract the signal light in each wavelength band, thereby achieving beam splitting of the signal light according to the wavelength band. .
  • FIG. 10 is a top view of a light receiving sub-module with a cover plate hidden in an embodiment of the present disclosure.
  • the first lens assembly 530 includes a first lens 531 , a second lens 532 , a third lens 533 and a fourth lens 534 arranged in sequence.
  • FIG. 11 is a transmission diagram of a transmission optical path of a first lens assembly according to an embodiment of the present disclosure. 10 and 11, the wavelengths of the signal light transmitted into the light receiving cavity 520 through the second optical fiber adapter 510 include ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8. The signal light of the wavelength is transmitted to the second surface of the first lens 531, the signal light is completely reflected on the surface of the first lens 531, and the first lens 531 changes the transmission direction of the signal light.
  • the signal light whose direction is changed by the first lens 531 is transmitted to the second lens 532 and is incident on the second lens 532 , and is incident on the first surface of the second lens 532 and the second surface of the second lens 532 in turn.
  • the signal light of 532 is respectively refracted once.
  • the light beam refracted by the second lens 532 is transmitted to the first surface of the third lens 533, and the signal light of the first wavelength band in the signal light is reflected on the first surface of the third lens 533 to separate the first beam of signal light;
  • the signal light of the second wavelength band is incident on the third lens 533 and is refracted on the first surface of the third lens 533 to separate the second signal light.
  • the first signal light reflected by the first surface of the third lens 533 is retransmitted to the second surface of the second lens 532 and reflected to the light entrance of the first DeMUX 540 through the second surface of the second lens 532 .
  • the second signal light refracted by the first surface of the third lens 533 is incident into the third lens 533 and is refracted by the third lens 533 on the second surface of the third lens 533; the third lens 533 is refracted; The second signal light of the lens 533 is transmitted to the fourth lens 534 and then reflected to the light entrance of the second DeMUX 550 through the first surface of the fourth lens 534 .
  • the first surface and the second surface of the lens are only used to distinguish the main working surfaces on both sides of the lens.
  • the surface of the lens that is close/downward is the first surface, which is different from the first surface.
  • the surface opposite/facing upward is the second surface.
  • the signal light is generally incident into the light-receiving cavity 520 along the left and right length directions of the light-receiving cavity 520 .
  • the length of the light-receiving cavity 520 should further complete the first beam splitting of the signal light in a small length space of the light-receiving cavity 520.
  • the first lens 531 is mainly used to change the transmission direction of the signal light incident into the light-receiving cavity 520, and the signal light
  • the transmission direction of the light-receiving cavity 520 is converted from the length direction of the light-receiving cavity 520 to the width direction up and down of the light-receiving cavity 520;
  • the second lens 532 is used to transmit the signal light of the first band, the signal light of the second band and the reverse
  • the third lens 533 is used to reflect the signal light of the first wavelength band in the positive direction and the signal light of the second wavelength band to be transmitted in the positive direction;
  • the fourth lens 533 is used to reflect the signal light of the second wavelength band in the positive direction. Light.
  • the first lens assembly 530 provided by the embodiment of the present disclosure, combined with the first lens 531, the second lens 532, the third lens 533 and the fourth lens 534, realizes the first beam splitting according to the wavelength band of the signal light,
  • the split signal light is transmitted to the corresponding DeMUX along the length direction of the light receiving cavity 520 .
  • the included angle between the normal of the second surface of the first lens 531 and the transmission direction (the direction is denoted as r) incident to the light receiving cavity 520 is 45°, and the second surface of the first lens 531 is at an angle of 45°.
  • the angle between the normal of the second lens 532 and the normal of the first surface of the second lens 532 is 90°, that is, the angle between the normal of the first plane of the second lens 532 and r is 135°; the normal of the second surface of the first lens 531
  • the included angle with the normal of the first surface of the third lens 533 is 37°, that is, the angle between the normal of the first surface of the third lens 533 and r is 82°;
  • the angle between the normals of the first plane of the lens 534 is 180°, that is, the angle between the normals of the first surface of the fourth lens 534 is 45°.
  • the first lens group 530 may also be other lens combinations, such as including three lenses, such as the first lens 531 and the fourth lens 534 in FIG. 10 , wherein the first lens 531 and the fourth lens Between 534 and 534, a lens is set; the first surface of the lens reflects the signal light of the first wavelength band and transmits the signal light of the second wavelength band, and the second surface of the lens transmits the signal light of the second wavelength band; The combination of the first lens 531 , the lens reflector and the fourth lens 534 realizes beam splitting of the input signal light according to wavelength bands.
  • the second lens assembly 560 further includes four focusing lenses 562 , each focusing lens 562 is correspondingly disposed in the output optical path of the first DeMUX 540 , and is correspondingly used to convert the corresponding optical path into The signal light is focused to the first reflecting prism 561 .
  • the third lens assembly 570 further includes four focusing lenses 572 , each focusing lens 572 is correspondingly disposed in the output optical path of the second DeMUX 550 , and is correspondingly used to convert the corresponding The signal light in the optical path is focused to the second reflecting prism 571 .
  • the signal light of the first wavelength band transmitted to the first DeMUX 540 is transmitted to the corresponding focusing lens 562 after being split by wavelength by the first DeMUX 540, and then transmitted to the first reflecting prism after being focused by the focusing lens 562 561, when the split signal light is transmitted to the reflection surface of the first reflection prism 561, the reflection transmission direction of the reflection surface of the first reflection prism 561 is changed from being parallel to the length direction of the light receiving cavity to being perpendicular to the length direction of the light receiving cavity, Then, it is transmitted to the corresponding light-receiving chip on the first ceramic substrate 581 under the reflective surface of the first reflective prism 561 .
  • a plane light window 523 is disposed in the first through hole 522 , and the plane light window 523 is obliquely disposed in the first through hole 522 .
  • the signal light transmitted to the first through hole 522 through the second optical fiber adapter passes through the plane light window 523 and is transmitted to the second surface of the first lens 531 through the plane light window 523; Two surfaces, there may be part of the signal light transmitted through the second surface of the first lens 531, transmitted to the first surface of the first lens 531, and then the part of the signal light is reflected by the first surface of the first lens 531, and the first lens 531
  • the second surface refraction will be transmitted to the first through hole 522 again, and the inclined plane light window 523 effectively prevents the signal transmitted to the first through hole 522 from being transmitted to the first through hole 522 through the second optical fiber adapter.
  • the inclination angle of the plane light window 523 should not pass through.
  • the inclination angle of the plane light window 523 is 4-6°, that is, the included angle between the optical axis of the plane light window 523 and the central axis of the first through hole 522 is 4-6°;
  • the purpose of shielding the signal light transmitted to the first through hole 522 again can be achieved, and the signal light transmitted to the first through hole 522 by the second optical fiber adapter can be effectively prevented from being excessively shifted.
  • the plane light window 523 can also be used for sealing the first through hole 522 , which facilitates the sealing of the light receiving cavity 520 to a certain extent.
  • the optical receiving sub-module 500 is connected to the external optical fiber through the second optical fiber adapter 510, and the signal light transmitted in the external optical fiber of the optical module is transmitted to the optical receiving cavity 520 through the second optical fiber adapter 510, and the optical receiving The cavity 520 receives the signal light transmitted by the second optical fiber adapter 510 and sequentially performs the first beam splitting by wavelength band and the second beam splitting by wavelength through the first lens group 530 and the demultiplexing component group arranged therein.
  • the signal light is transmitted to the light receiving chip after being split twice, and converted into a current signal by the light receiving chip; furthermore, the optical module provided by the present disclosure can realize the reception of signal light of multiple wavelengths transmitted in an external optical fiber.
  • the optical module provided by the present disclosure facilitates the simultaneous transmission of signal light of multiple wavelengths in a single optical fiber, and promotes the development of the optical module and optical communication technology in an embodiment of the present disclosure.
  • the first optical fiber adapter 410 and the second optical fiber adapter 510 are located at the same height, and in the embodiment of the present disclosure, the optical transmitting sub-module 400 and the optical receiving sub-module 500 are stacked on top of each other, so that the second optical fiber Adjustment of the transmission height of the signal light transmitted by the adapter 510 or adjustment of the height of the signal light output by the light emitting sub-module 400 to the first optical fiber adapter 410 .
  • the light receiving sub-module 500 further includes a displacement component 524 , the displacement component 524 includes a displacement prism, and the displacement prism is used to adjust the optical path height of the signal light transmitted through the second optical fiber adapter 510 .
  • the optical path of the second optical fiber adapter 510 for transmitting the signal light is higher than the height of the preset optical path in the light receiving cavity 520, and the transmission optical path of the second optical fiber adapter 510 for transmitting the signal light is lowered by the displacement prism, so that the signal light can be transmitted from the opposite
  • the second optical fiber adapter 510 in the higher position transmits to the light receiving cavity 520 in the relatively lower position.
  • FIG. 13 is a partial exploded view of a light receiving sub-module according to an embodiment of the present disclosure.
  • the displacement assembly 524 includes a displacement prism 524a; the displacement prism 524a transfers the signal light transmitted at one height to another height through two or more reflections.
  • the displacement prism 524a adopts a displacement prism including two 45° reflective surfaces, and transfers the signal light transmitted at a relatively high height to a lower one through two reflections. high.
  • the displacement assembly 524 further includes a prism cavity 524b and a prism cover 524c.
  • the prism cavity 524b is used to facilitate the installation and fixation of the displacement prism 524a and to facilitate the connection of the second optical fiber adapter 510 and the light receiving cavity 520.
  • the prism The cover plate 524c covers the prism cavity 524d.
  • a prism accommodating cavity 524d is provided inside the prism cavity 524b, and the prism accommodating cavity 524d is connected to the second fiber adapter 510 and the first through hole 522; the displacement prism 524a is set in the prism accommodating cavity 524d, and the prism cover plate 524c covers Combined with the prism accommodating cavity 524d, the displacement prism 524a is limited and fixed in the prism accommodating cavity 524d, and the prism accommodating cavity 524d is convenient to improve the installation accuracy of the displacement prism 524a.
  • a support step is provided in the prism accommodating cavity 524d, and the displacement-limiting prism 524a can be supported by the support step; a cover plate groove is also set in the prism accommodating cavity 524d to facilitate the fixing of the prism cover plate 524c on prism cavity 524b.
  • the prism cover 524c can be fixedly connected to the prism cavity 524b by glue.
  • the light receiving cavity 520 is provided with a displacement assembly connecting piece 525, and the displacement assembly connecting piece 525 is engaged with the displacement assembly 524.
  • the displacement assembly connecting member 525 includes a first connecting plate 525a and a second connecting plate 525b, and the inner surface of the first connecting plate 525a and the inner surface of the second connecting plate 525b are respectively used for connecting the outer wall of the prism cavity 524b Then, the prism cavity 524b is clamped and fixed between the first connecting plate 525a and the second connecting plate 525b.
  • first connecting plate 525a and the second connecting plate 525b may be two ridge structures formed on the outer wall of the light-receiving cavity 520 , which are usually integrally formed with the light-receiving cavity 520 .
  • a supporting structure can be provided on the side of the first connecting plate 525a or the second connecting plate 525b, and the first connecting plate 525a can be correspondingly increased through the supporting structure. Or the supporting area between the second connecting plate 525b and the outer wall of the light receiving cavity 520 .
  • FIG. 14 is a cross-sectional view 1 of another light receiving sub-module at a light receiving cavity according to an embodiment of the present disclosure.
  • the end of the second optical fiber adapter 510 is provided with an adapter connecting portion 511
  • the prism cavity 524b is provided with an adapter connecting hole 524e
  • the adapter connecting hole 524e communicates with the prism accommodating cavity 524d
  • the adapter connecting portion 511 is embedded in the adapter connection hole 524e.
  • a lens 512 is further disposed at the output end of the second optical fiber adapter 510 , and the lens 512 is used for collimating the signal light output through the second optical fiber adapter 510 .
  • the displacement prism 524a is arranged in the prism accommodating cavity 524d, the prism cover plate 524c is covered and sealed on the upper part of the edge of the prism accommodating cavity 524d, and the lower part of the edge of the prism accommodating cavity 524d forms a second through hole 524f, The hole 524f communicates with the first through hole 522 .
  • the signal light transmitted from the outside of the optical module to the second optical fiber adapter 510 is horizontal light
  • the signal light whose optical axis is horizontal is transmitted along the central axis of the second optical fiber adapter 510, as shown in FIG. 14, which shows the transmission of the signal light path.
  • FIG. 14 shows the transmission of the signal light path.
  • the signal light whose optical axis is horizontal is transmitted to the lens 512 of the second optical fiber adapter 510, collimated by the lens 512 and transmitted to the first reflection surface of the displacement prism 524a;
  • the optical axis of the signal light is converted from horizontal to vertical; the signal light with the vertical optical axis is transmitted to the second reflection surface of the displacement prism 524a, and the second reflection occurs on the second reflection surface of the displacement prism 524a,
  • the optical axis of the signal light is converted from vertical to horizontal; the optical axis is again horizontal, and the signal light is transmitted to the first through hole 522 through the second through hole 524f, and the light-transmitting plane light window 523 is transmitted into the light receiving cavity 520.
  • the adjustment of the height of the optical axis of the signal light is achieved by the displacement prism 524a while ensuring the optical axis direction of the signal light, thereby facilitating the stacking structure of the light transmitting sub-module 400 and the light receiving sub-module 500 on top of each other. realization.
  • FIG. 15 is a second cross-sectional view of another light receiving sub-module at a light receiving cavity according to an embodiment of the present disclosure.
  • a support protrusion 524e-1 is provided in the adapter connection hole 524e, and the support protrusion 524e-1 is used to support the end face of the adapter connection part 511; the support protrusion 524e-1 is connected to the side wall of the adapter connection hole 524e A connection groove 524e-2 is formed.
  • the setting of the connecting groove 524e-2 is convenient for the processing and forming of the supporting protrusion 524e-1, such as facilitating the tool retraction when the supporting protrusion 524e-1 is turned; on the other hand, when the second optical fiber adapter 510 is glued and connected to the prism cavity When the body 524b is removed, the excess glue can flow into the connecting groove 524e-2, thereby avoiding the glue affecting the lens 512 and the like.
  • FIG. 16 is a schematic structural diagram 1 of a light receiving cavity according to an embodiment of the present disclosure.
  • a supporting structure 525c is provided on the side of the second connecting plate 525b.
  • the supporting structure 525c is used to increase the shear strength of the second connecting plate 525b and ensure the connection strength between the prism cavity 524b and the light receiving cavity 520.
  • a displacement component 524 is provided at the connection between the second optical fiber adapter 510 and the light receiving cavity 520, the signal light output by the second optical fiber adapter 510 is transmitted to the light receiving cavity 520 through the displacement component 524, and the displacement component 524 adjusts The second optical fiber adapter 510 outputs the optical path height of the signal light, so as to realize the adjustment of the optical path in the second optical fiber adapter 510 to the optical path in the light receiving cavity 520 .
  • the optical module provided by the embodiment of the present disclosure ensures that the first optical fiber adapter 410 and the second optical fiber adapter 510 are located at the same height by adjusting the height of the optical path from the second optical fiber adapter 510 to the optical path in the light receiving cavity 520, thereby facilitating the realization of
  • the light-emitting sub-module 400 and the light-receiving sub-module 500 are arranged on top of each other, so that the optical module provided by the embodiment of the present disclosure can meet the large volume requirements of the light-emitting sub-module 400 and the light-receiving sub-module 500 .
  • a displacement assembly may also be provided in the light emission sub-module 400, and the height adjustment from the optical path in the cavity of the optical emission sub-module 400 to the optical path of the first optical fiber adapter 410 may be adjusted by the displacement assembly.
  • the light-receiving cavity 520 includes a bottom plate and side walls surrounding the bottom plate, and the bottom plate and the side walls form a cavity structure for accommodating optical devices and electrical devices in the light-receiving sub-module 500 .
  • the top of the side wall of the light receiving cavity 520 is provided with a cover plate fixing glue groove 526a, and then the light receiving cover plate 520a can be fixedly connected to the light receiving cavity 520 by glue.
  • the cover plate fixing glue groove 526a forms a closed-loop structure at the top of the side wall of the light-receiving cavity 520, thereby increasing the adhesion of the light-receiving cover plate 520a on the top of the side wall of the light-receiving cavity 520
  • the glue area can fully ensure the packaging reliability on the top of the light-receiving cover plate 520 a and the side wall of the light-receiving cavity 520 .
  • the top of the side wall of the light receiving cavity 520 is further provided with a rework opening 526b, the rework opening 526b is provided on the top edge of the side wall of the light receiving cavity 520, and the rework opening 526b is connected to the cover plate fixing glue Slot 526a.
  • the light-receiving cover plate 520a and the light-receiving cavity 520 need to be reworked after the light-receiving cavity 520 is packaged, the light-receiving cover 520a can be detached from the light-receiving cavity 520 through the rework opening 526b, so as to achieve no
  • the light-receiving cover plate 520a is removed on the premise of destroying the light-receiving cover plate 520a or the light-receiving cavity 520, thereby reducing the difficulty and cost of repairing.
  • FIG. 16 a lens mounting post 527 is disposed on the bottom plate of the light receiving cavity 520 .
  • FIG. 17 is a second schematic structural diagram of a light receiving cavity according to an embodiment of the present disclosure. As shown in FIGS.
  • the lens mounting post 527 is a right prism structure, such as a triangular prism structure; the lens mounting post 527 includes a first lens support surface 527a and a second lens support surface 527b, the first lens support surface 527a and the second lens support surface 527a There is an included angle between the lens supporting surfaces 527b that satisfies the installation and setting of the first lens 531 and the second lens 532; the first lens supporting surface 527a is used for limiting and fixing the first lens 531, and the second lens supporting surface 527b is used for limiting and fixing The second lens 532 .
  • setting the lens mounting post 527 including the first lens support surface 527a and the second lens support surface 527b facilitates the passive coupling and installation of the first lens 531 and the second lens 532, and facilitates the improvement of the first lens 531 and the second lens 532.
  • the installation efficiency and installation accuracy of the second lens 532 facilitates the passive coupling and installation of the first lens 531 and the second lens 532, and facilitates the improvement of the first lens 531 and the second lens 532.
  • the bottom plate of the light receiving cavity 520 is further provided with a lens groove 527c, and the lens groove 527c is provided on the first lens support surface 527a and the second lens support of the lens mounting post 527 The sides of the surface 527b are in contact with the first lens supporting surface 527a and the second lens supporting surface 527b.
  • the lens groove 527c facilitates the processing and shaping of the first lens supporting surface 527a and the second lens supporting surface 527b on the lens mounting post 527, such as facilitating the tool retraction when turning the lens mounting post 527; 531 and the second lens 532 are in full contact with the first lens support surface 527a and the second lens support surface 527b respectively; on the other hand, when the first lens 531 and the second lens 532 are glued and connected to the bottom plate of the light receiving cavity 520 , the excess glue can flow into the lens groove 527c, so as to avoid the glue affecting the installation accuracy of the first lens 531 and the second lens 532.
  • a demultiplexing component (DeMUX) mounting post 502 is further provided on the bottom plate of the light receiving cavity 520 to be a right prism structure, such as a quadrangular prism structure; the DeMUX mounting post 502 It includes a first DeMUX mounting surface 502a and a second DeMUX mounting surface 502b.
  • the first DeMUX mounting surface 502a is used to limit and fixedly install the first DeMUX540
  • the second DeMUX mounting surface 502b is used to limit and fixedly install the second DeMUX550.
  • the first DeMUX mounting surface 502a is parallel to the first DeMUX mounting surface 502b.
  • setting the DeMUX mounting post 502 including the first DeMUX mounting surface 502a and the second DeMUX mounting surface 502b facilitates the passive coupling and mounting of the first DeMUX540 and the second DeMUX550, and facilitates the improvement of the first DeMUX540 and the second DeMUX550. Installation efficiency and installation accuracy.
  • the side of the first DeMUX mounting surface 502a is provided with a first DeMUX slot 502c, and the first DeMUX slot 502c is in contact with the first DeMUX mounting surface 502a; the second DeMUX mounting surface A second DeMUX slot 502d is disposed on the side of 502b, and the second DeMUX slot 502d is in contact with the second DeMUX mounting surface 502b.
  • the first DeMUX slot 502c and the second DeMUX slot 502d facilitate the machining and forming of the first DeMUX mounting surface 502a and the first DeMUX mounting surface 502b on the DeMUX mounting post 502, such as facilitating the turning of the first DeMUX mounting surface 502a and the first DeMUX mounting surface 502b.
  • a first DeMUX fixing glue groove 528 and a second DeMUX fixing glue groove 529 are further set on the bottom plate of the light receiving cavity 520 , and the first DeMUX fixing glue groove 528 and the second DeMUX fixing glue groove 528 are fixed
  • the glue tanks 529 are respectively used to hold dispensing glue.
  • the glue solidifies to complete the fixing of the first DeMUX540 and the second DeMUX550 on the base plate.
  • the first DeMUX fixed glue groove 528 includes a first glue dispensing groove 528a and a first glue overflow groove 528b, and a first glue dispensing groove 528a and a first glue overflow groove 528b Usually, it can be formed by sinking the top surface of the bottom plate of the light receiving cavity 520, and the first glue dispensing groove 528a and the first glue overflow groove 528b are separated by the side walls.
  • the first glue dispensing groove 528a is a circular structure
  • the first glue overflow groove 528b is a ring structure surrounding the side of the first glue dispensing groove 528a, but the present disclosure is not limited to this Secondary structure.
  • the glue is dispensed in the first glue tank 528a, and the glue must be sufficient, usually it will overflow the first glue tank 528a, and the first DeMUX 540 is placed over the first glue tank 528a.
  • the excess glue in the glue tank 528a will overflow to the first glue overflow tank 528b, which can effectively prevent the insufficient amount of glue from affecting the firmness of the first DeMUX540, and can prevent the glue from overflowing everywhere when the glue is excessive and cause the installation accuracy of the first DeMUX540 to be insufficient. .
  • the second DeMUX fixed glue groove 529 includes a second glue dispensing groove 529a and a third glue overflow groove 529b, and the second glue dispensing groove 529a and the second glue overflow groove 529b can usually pass through the light receiving cavity.
  • the top surface of the bottom plate of the body 520 is formed to sink, and the second glue dispensing groove 529a and the second glue overflow groove 529b are separated by the side walls.
  • the second glue dispensing groove 529a is a circular structure
  • the second glue overflow groove 529b is a ring structure surrounding the side of the second glue dispensing groove 529a, but the present disclosure is not limited to this Secondary structure.
  • the second DeMUX fixing glue groove 529 please refer to the first DeMUX fixing glue groove 528 .
  • a first prism mounting post 503a, a second prism mounting post 503b, and a third prism mounting post 503c are further provided on the bottom plate of the light receiving cavity 520.
  • the first prism mounting post 503a, the third prism mounting post 503a, the The second prism mounting post 503b and the third prism mounting post 503c are arranged at intervals.
  • the first prism mounting post 503a, the second prism mounting post 503b and the third prism mounting post 503c are used for the installation limit of the first reflecting prism 561 and the second reflecting prism 571; on the other hand, the first prism is installed
  • the post 503 a and the second prism mounting post 503 b cooperate to fix the side surface of the first reflecting prism 561
  • the second prism mounting post 503 b and the third prism mounting post 503 c cooperate to fix the side surface of the second reflecting prism 571 .
  • a first reflecting prism mounting surface 503d is disposed between the first prism mounting post 503a and the second prism mounting post 503b, and the first reflecting prism mounting surface 503d is used to support the bottom surface of the first reflecting prism 561
  • a second reflecting prism mounting surface 503e is set between the second prism mounting post 503b and the third prism mounting post 503c, and the second reflecting prism mounting surface 503e is used to support the bottom surface of the second reflecting prism 571.
  • the bottom plate of the light receiving cavity 520 includes a first bottom surface 501a and a second bottom surface 501b, and a stepped surface 501c is formed between the first bottom surface 501a and the second bottom surface 501b.
  • the first bottom surface 501 a is provided with a lens mounting post 527 , a DeMUX mounting post 502 , a first DeMUX fixing glue groove 528 and a second DeMUX fixing glue groove 529 , etc. circuit board 310 .
  • the stepped surface 501c realizes the division of the height of the bottom surface of the light receiving cavity 520; on the one hand, a stepped surface 501c is formed between the first bottom surface 501a and the second bottom surface 501b, and the first bottom surface 501a can relatively raise the first reflecting prism mounting surface 503d and the height of the second reflecting prism mounting surface 503e, thereby raising the height of the first reflecting prism 561 and the second reflecting prism 571, so as to facilitate the realization of the first reflecting prism 561 and the second reflecting prism 571 and the first light receiving assembly 580 and the second reflecting prism 571.
  • the light receiving assembly 590 is assembled; on the other hand, the stepped surface 501c can also be used for limiting the extension of the flexible circuit board 310 into the light receiving cavity 520 .
  • FIG. 18 is a diagram of an assembled and used state of a light receiving cavity provided by an embodiment of the present disclosure.
  • FIG. 18 shows a lens mounting post 527 , a DeMUX mounting post 502 , a first DeMUX fixing glue groove 528 and a second DeMUX fixing glue groove 529 etc. usage status. As shown in FIG.
  • the side surface of the first lens 531 is attached to the first lens supporting surface 527a of the lens mounting post 527, and the side surface of the second lens 532 is attached to the second lens supporting surface 527b of the lens mounting post 527;
  • the side of the DeMUX mounting post 502 is attached to the first DeMUX mounting surface 502a, and the first DeMUX 540 covers the first DeMUX fixing glue groove 528;
  • the side of the second DeMUX 550 is attached to the second DeMUX mounting surface 502b of the DeMUX mounting post 502, and the second The DeMUX 550 covers the second DeMUX fixing glue groove 529;
  • the first reflecting prism 561 is clamped between the first prism mounting post 503a and the second prism mounting post 503b, and the second reflecting prism 571 is clamped between the second prism mounting post 503b and the second prism mounting post 503b.
  • the triangular prism is installed between the pillars 503c.
  • FIG. 19 is a cross-sectional view of an assembled and used state of a light receiving cavity provided by an embodiment of the present disclosure.
  • the second lens 532 covers the lens groove 527c;
  • the first DeMUX540 covers the first dispensing groove 528a and the first overflow groove 528b of the first DeMUX fixing glue groove 528;
  • the first bottom surface 501a raises the first DeMUX540, so that the bottom of the first DeMUX540 and the second bottom surface There is a certain height difference between 501b, which is convenient for the installation of devices in the first light receiving assembly 580;
  • the flexible circuit board 310 extending into the light-receiving cavity 520 may be fixed on the second bottom surface 501b by thermally conductive adhesive or the like.
  • FIG. 20 is a cross-sectional view of a light receiving cavity provided by an embodiment of the present disclosure.
  • the top of the light-receiving cavity 520 is provided with a cover plate fixing glue groove 526a
  • the edge of the light-receiving cover plate 520a is provided with a cover plate protrusion 520b at the corresponding position of the cover plate fixing glue groove 526a, and the cover plate protrusion 520b It is fitted in the cover plate fixing glue groove 526a.
  • the cover plate fixing glue groove 526a and the cover plate protrusion 520b cooperate to increase the glue area, thereby enabling the light-receiving cover plate 520a to be connected to the light-receiving cavity.
  • Body 520 is sufficiently sealed.
  • a third through hole 526c is further provided on the side wall of the light receiving cavity 520, and the third through hole 526c communicates with the inner cavity of the light receiving cavity 520;
  • a sealing plug 526d is disposed in the hole 526c, and the sealing plug 526d is used to seal the third through hole 526c.
  • the third through holes 526c are further arranged to facilitate air circulation in the light-receiving cavity 520. After the heating and baking is completed, the third through holes are sealed with sealing plugs 526d. 526c to prevent the air outside the light-receiving cavity 520 from entering the inner cavity of the light-receiving cavity 520 through the third through hole 526c.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括:电路板(300);光接收次模块(500),与电路板(300)电连接,用于将接收到的信号光转换为电流信号;光接收次模块(500)包括:光接收腔体(520),包括底板,用于承载设置器件;器件包括反射棱镜(561、571)和光接收组件(580、590),光接收组件(580、590)包括若干光接收芯片(583、593),反射棱镜(561、571)罩设在光接收组件(580、590)的光接收芯片(583、593)上,用于向光接收组件(580、590)的光接收芯片(583、593)反射信号光。光模块(200),通过反射棱镜(561、571)改变该信号光的传输方向,方便光接收芯片(583、593)接收信号光。

Description

一种光模块
本公开要求在2020年09月18日提交中国专利局、申请号为202010989984.6、发明名称为“一种光模块”、在2020年09月18日提交中国专利局、申请号为202010988117.0、发明名称为“一种光模块”、在2020年09月18日提交中国专利局、申请号为202010988113.2、发明名称为“一种光模块”、在2020年09月18日提交中国专利局、申请号为202010989983.1、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
通常为提高光模块传输速率,可采用增加光模块中的传输通道,如将传统包括一组光发射次模块(发射一种波长的光)和一组光接收次模块(接收一种波长的光)的光模块改进为包括两组光发射次模块(每一组发射一种波长的光)和两组光接收次模块(每一组接收一种波长的光)。如此,将使光模块中光发射次模块和光接收次模块在光模块中的占有体积不断增大,进而不利于光模块在本公开某一实施例中发展。
发明内容
第一方面,本公开提供的一种光模块,包括:电路板;光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;所述光接收次模块包括:光接收腔体,包括底板,用于承载设置器件;所述器件包括反射棱镜和光接收组件,所述光接收组件包括若干光接收芯片,所述反射棱镜罩设在所述光接收组件的光接收芯片上,用于向所述光接收组件的光接收芯片反射信号光。
第二方面,本公开提供的一种光模块,包括:光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;所述光接收次模块包括:光接收腔体,包括底板,用于承载设置器件;所述器件包括第一反射棱镜、第二反射棱镜、第一光接收组件和第二光接收组件;所述第一光接收组件包括若干光接收芯片,所述第二光接收组件包括若干光接收芯片;所述第一反射棱镜罩设在所述第一光接收组件的光接收芯片上,用于向所述第一光接收组件的光接收芯片反射信号光;所述第二反射棱镜罩设在所述第二光接收组件的光接收芯片上,向所述第二光接收组件的光接收芯片反射信号光。
第三方面,本公开提供的一种光模块,包括:电路板;光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;所述光接收次模块包括:光接收腔体,用于 承载设置器件;其中,所述光接收腔体包括底板和围绕所述底板的侧壁,所述底板和所述围绕所述底板的侧壁形成腔体结构;所述底板上设置透镜安装柱和解波分复用组件安装柱,所述透镜安装柱用于设置第一透镜和第二透镜,所述解波分复用组件安装柱用于设置第一DeMUX和第二DeMUX。
第四方面,本公开提供的一种光模块,包括:电路板;光发射次模块,与电路板电连接,用于产生信号光;光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号,所述光发射次模块和所述光接收次模块上下叠放设置;所述光接收次模块包括:第二光纤适配器,用于传输光模块外部光纤的信号光;位移组件,一端连接第二光纤适配器,用于传输调整通过所述第二光纤适配器输出信号光的光路高度;光接收腔体,连接所述位移组件的另一端,用于传输并接收光路高度调整后的信号光。
第五方面,本公开提供的一种光模块,包括:电路板;光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;所述光接收次模块包括:光接收腔体,用于承载设置器件;第二光纤适配器,连通所述光接收腔体,用于将光模块外部光纤的信号光传输至光接收腔体;所述器件包括第一透镜组、解波分复用组件组和光接收芯片;所述第一透镜组用于将通过所述第二光纤适配器传输至所述光接收腔体的信号光按照波段进行第一次分束,并将第一次分束后信号光对应传输至所述解波分复用组件组;所述解波分复用组件组对应的将第一次分束后的信号光按波长进行第二次分束;所述光接收芯片用于接收经所述解波分复用组件组第二次分束分束后的信号光并转换为电流信号。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例提供的一种光模块结构示意图;
图4为本公开实施例提供光模块分解结构示意图;
图5为本公开实施例提供的一种光模块结构剖面图;
图6为本公开实施例提供的一种光发射次模块和光接收次模块分离的结构示意图;
图7为本公开实施例提供的一种DeMUX工作原理图;
图8为本公开实施例提供的一种光接收次模块中隐去盖板的结构示意图;
图9为图8中A处的局部分解图;
图10为本公开实施例提供的一种光接收次模块中隐去盖板的俯视图;
图11为本公开实施例提供的一种第一透镜组件的传输光路传输图;
图12为本公开实施例提供一种光接收次模块在光接收腔体处的剖视图;
图13为本公开实施例提供一种光接收次模块的局部分解图;
图14为本公开实施例提供另一种光接收次模块在光接收腔体处的剖视图一;
图15为本公开实施例提供另一种光接收次模块在光接收腔体处的剖视图二;
图16为本公开实施例提供一种光接收腔体的结构示意图一;
图17为本公开实施例提供一种光接收腔体的结构示意图二;
图18为本公开实施例提供的一种光接收腔体的装配使用状态图;
图19为本公开实施例提供的一种光接收腔体的装配使用状态的剖视图;
图20为本公开实施例提供的一种光接收腔体的剖视图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;在本公开某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本公开某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、光发射次模块400和光接收次模块500。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本公开某一实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光收发器件400;电路板300、光收发器件400等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光收发器件400等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从 上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板300上的芯片可以是多功能合一芯片,比如将激光驱动芯片与MCU芯片融合为一个芯片,也可以将激光驱动芯片、限幅放大器芯片及MCU融合为一个芯片,芯片是电路的集成,但各个电路的功能并没有因为集合而消失,只是电路呈现形态发生改变,芯片中仍然具有该电路形态。所以,当电路板上设置有MCU、激光驱动芯片及限幅放大器芯片三个独立芯片,这与电路板300上设置一个三功能合一的单个芯片,方案是等同的。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
光发射次模块及光接收次模块可以统称为光学次模块。如图4所示,本公开实施例提供的光模块包括光发射次模块400及光接收次模块500,光发射次模块400及光接收次模块500位于电路板300的边缘,且光发射次模块400及光接收次模块500上下叠放设置。在本公开某一实施例中,光发射次模块400较光接收次模块500更靠近上壳体201,但不局限于此,还可以是光接收次模块500较光发射次模块400更靠近上壳体201。
在本公开某一实施例中,光发射次模块400及光接收次模块500分别与电路板300物理分离,分别通过柔性电路板或电连接器连接电路板300。
当光发射次模块400较光接收次模块500更靠近上壳体201时,光发射次模块400和光接收次模块500设置在上、下壳体形成包裹腔体中。下壳体202可支撑光接收次模块500;在本公开某一实施例中,下壳体202通过垫块支撑光接收次模块500,光接收次模块500支撑光发射次模块400。
图5为本公开实施例提供的一种光模块结构剖面图。如图5所示,本公开实施例提供的光模块包括下壳体202、电路板300、光发射次模块400和光接收次模块500。光发射次模块400的远离电路板300的端部设置第一光纤适配器410,第一光纤适配器410用于将光发射次模块400产生的信号光传输至光模块的外部;光接收次模块500远离电路板300的端部设置第二光纤适配器510,第二光纤适配器510用于将来自光模块外部的信号光传输至光接收次模块500的内部。电路板300通过相应的柔性电路板分别与光发射次模块400和光接收次模块500实现电连接。
由于光模块整体外形的尺寸要符合上位机的接口尺寸,受行业标准限制,而光发射次 模块400和光接收次模块500的体积较大,不能设置在电路板上,所以采用与电路板分离的方式设置,通过柔性电路板实现电连接中转。如图5所示,相较于下壳体202的底面,第一光纤适配器410和第二光纤适配器510位于同一高度。第一光纤适配器410与第二光纤适配器510分别用于与光模块外部的光纤连接器连接;而光模块外部的光纤连接器是行业通用的标准件,外部光纤连接器的形状、尺寸限制了光模块内部两个光纤适配器的位置,所以产品中将第一光纤适配器410和第二光纤适配器510设置在同一高度上。
图6为本公开实施例提供的一种光发射次模块和光接收次模块分离的结构示意图。如图6所示,本公开实施例中,光发射次模块400和光接收次模块500层叠设置;本公开实施例提供的光接收次模块500还包括光接收腔体520和光接收盖板520a,光接收盖板520a从上方盖合在光接收腔体520上。光接收腔体520内设置透镜、光接收芯片、跨阻放大器等与光接收相关的器件。光接收腔体520的一端连接第二光纤适配器510,通过第二光纤适配器510接收来自光模块外部的信号光,并将接收到的信号光经光接收腔体520内设置透镜等光学器件传输至光接收芯片;光接收腔体520的另一端的侧壁上设置开口521,用于柔性电路板310插入。柔性电路的一端插入并固定在光接收腔体520内且与光接收芯片、跨阻放大器等电学器件电连接,柔性电路的另一端用于与电路板300电连接。光接收腔体520和光接收盖板520a可采用金属材料结构件,如压铸、铣削加工的金属件。
光接收腔体520的另一端的侧壁上设置开口521,开口处还可以设置电连接器,如多层基板组成的金属化电路;柔性电路板与电连接器连接以实现电路板与光接收次模块500的电连接。
本公开实施例提供的光模块中,光接收次模块500用于接收多种不同波长的信号光,不同的波长的信号光通过第二光纤适配器510传输至光接收腔体520内,经光接收腔体520内不同透镜等光学器件的反射、折射实现按波长分束,按波长分束后的信号光最后传输至光接收芯片的光敏面,光接收芯片通过其光敏面接收信号光。通常一个光接收芯片用于接收一种波长的信号光,进而本公开实施例提供的光接收次模块500中包括多个光接收芯片。如,当光接收次模块500用于接收4种不同波长的信号光时,光接收次模块500包括4个光接收芯片用于对应接收该4种波长的信号光;当光接收次模块500用于接收8种不同波长的信号光时,光接收次模块500包括8个光接收芯片用于对应接收该8种波长的信号光。
在本公开实施例提供的光接收次模块中,光接收腔体520内包括第一透镜组、解波分复用组件(DeMUX)等光学器件;DeMUX的数量通常不唯一,进而采用解波分复用组件组,如解波分复用组件包括两个DeMUX。第一透镜组包括若干透镜,通过各透镜的相互配合将第二光纤适配器510传输至光接收腔体520内的信号光按照波段进行第一次分束,如按照波段分成两束。在本公开实施例中,波段通常包括多个波长;如光接收次模块500用于接收λ1、λ2、λ3、λ4、λ5、λ6、λ7以及λ8八种不同波长的信号光;其中,λ1、λ2、λ3和λ4的波长较相近,位于同一波段(记为第一波段),λ5、λ6、λ7和λ8的波长较相近,位于同一波段(记为第二波段);那么第一透镜组件中各透镜相互配合将信号光分为两束,即第一透镜组件530中各透镜相互配合将信号光中属于第一波段的 信号光分为第一束信号光、属于第二波段的信号光分为第二束信号光。当然本公开实施例中提供的第一透镜组件还可以按照波段将信号光分成三束等。经第一透镜组按照波段分束后的信号光对应传输至相应的DeMUX中,DeMUX将分束后的信号光按照波长进行第二次分束,最后按照波长分束的信号光传输至相应的光接收芯片。
图7为本公开实施例提供的一种用于包括4种波长(β1、β2、β3和β4)光束分束的DeMUX工作原理图;其中,DeMUX右侧包括一个用于入射多种波长信号光的入光口,左侧包括多个用于出射光的出光口,每一出光口用于出射一种波长的信号光。如图7所示,信号光通过DeMUX的入射光口进入DeMUX,β1信号光经过DeMUX的六个不同位置进行了六次不同的反射到达其出光口;β2信号光经过DeMUX的四个不同位置进行了四次不同的反射到达其出光口;β3信号光经过DeMUX的二个不同位置进行了二次不同的反射到达其出光口;β4信号光入射至DeMUX后直接传输到达至其出光口。如此,通过DeMUX实现不同波长的信号光经同一入光口进入DeMUX、经不同的出光口输出,进而实现不同波长信号光的分束。在本公开实施例中,DeMUX不限于用包括4种波长光束的分束,可根据实际需要选择。
下面结合一种具体实例对本公开实施例提供的光接收次模块进行详细描述,在本实施例中光接收次模块用于接收8种不同波长的信号光,波长包括λ1、λ2、λ3、λ4、λ5、λ6、λ7以及λ8。
图8为本公开实施例提供的一种光接收次模块中隐去盖板的结构示意图。如图8所示,光接收腔体520的一端还设置第一通孔522,第一通孔522用于连通第二光纤适配器510和光接收腔体520。如图8所示,光接收腔体520内设置第一透镜组件530、第一DeMUX540、第二DeMUX550、第一光接收组件580和第二光接收组件590。以接收光包括两个波段的8个波长光为例,单个波段包括4个波长光,其中:第一透镜组件530按照信号光的波段进行第一次分束,即按照信号光的波段分成两束(第一束信号光和第二束信号光);第一束信号光传输至第一DeMUX540,经第一DeMUX540将第一束信号光分为第一个四路信号光;第二束信号光传输至第二DeMUX550,经第一DeMUX540将第二束信号光分为第二个四路信号光;第一个四路信号光传输至第一光接收组件580,第二个四路信号光传输至第二光接收组件590。
在本公开实施例中,第一光接收组件580和第二光接收组件590分别若干光接收芯片,光接收芯片为PD(光电探测器),如APD(雪崩二极管)、PIN-PD(光电二极管)等,用于将接收到的信号光转换为光电流。在本公开某一实施例中,第一光接收组件580和第二光接收组件590中的光接收芯片分别设置在金属化陶瓷表面,金属化陶瓷表面形成电路图案,可以为光接收芯片供电,然后设置有光接收芯片的金属化陶瓷贴装在柔性电路板310上;或者,光接收芯片直接贴装在柔性电路板310上。在本公开某一实施例中,第一光接收组件580和第二光接收组件590还分别包括跨阻放大器,跨阻放大器贴装在柔性电路板310上,跨阻放大器连接相应的光接收芯片,接收光接收芯片产生的电流信号并将接收到的电流信号转换为电压信号。跨阻放大器还可以设置在电连接器上,位于光接收腔体520内。在本公开某一实施例中,跨阻放大器打线连接相应的光接收芯片,如通过半导体键合 金线(Gold Wire Bonding)连接。
图9为图8中A处的局部分解图。如图9所示,第一光接收组件580包括第一陶瓷基板581和第一跨阻放大器582,第一跨阻放大器582设置在第一陶瓷基板581的一侧;其中,第一陶瓷基板581上设置4颗光接收芯片583,第一陶瓷基板581方便光接收芯片583的设置安装。第一陶瓷基板581打线连接第一跨阻放大器582,以实现光接收芯片583与第一跨阻放大器582的连接。但当打线长度越大,打线产生的电感越大,信号不匹配性也将越大,而光接收芯片583输出的信号为小信号,进而将会造成信号质量下降。因此光接收芯片583与第一跨阻放大器582尽量靠近,减少打线长度,保证信号传输质量,进而第一跨阻放大器582设置在第一陶瓷基板581的一侧,尽可能的使第一陶瓷基板581与第一跨阻放大器582贴近。在本公开某一实施例中,第一陶瓷基板581还用于垫高光接收芯片583,使光接收芯片583的电极与第一跨阻放大器582上的管脚在同一平面上,保证光接收芯片583与第一跨阻放大器582之间的打线最短。
相应的,如图9所示,第二光接收组件590包括第二陶瓷基板591和第二跨阻放大器592,第二跨阻放大器592设置在第二陶瓷基板591的一侧;其中,第二陶瓷基板591上设置4颗光接收芯片593,第二陶瓷基板591方便光接收芯片593的设置安装。第二陶瓷基板591打线连接第二跨阻放大器592,以实现光接收芯片593与第二跨阻放大器592的连接。与第一陶瓷基板581相同的,第二陶瓷基板591尽可能与第二跨阻放大器592贴近,减少打线长度;同时第二陶瓷基板591还垫高光接收芯片593,使光接收芯片593的电极与第二跨阻放大器592上的管脚在同一平面上,保证光接收芯片593与第二跨阻放大器592之间的打线最短。
在本公开实施例中,若跨阻放大器的引脚足够,第一跨阻放大器582和第二跨阻放大器592可采用一个跨阻放大器芯片。进而,4颗光接收芯片583和4颗光接收芯片593可设置在一个陶瓷基板上。
在本公开实施例中,光接收腔体520内还设置第二透镜组件560和第三透镜组件570;其中,第二透镜组件560用于第一个四路信号光传输至第一光接收组件580过程中光路的调整,第三透镜组件570用于第二个四路信号光传输至第二光接收组件590过程中光路的调整。
通常第一个四路信号光和第二个四路信号光的光轴平行于光接收腔体520的底面,同时光接收芯片583和光接收芯片593的光敏面也平行于光接收腔体520的底面,因此为了保证光接收芯片583和光接收芯片593正常接收信号光,如图9所示,第二透镜组件560包括第一反射棱镜561,第三透镜组件570包括第二反射棱镜571。第一反射棱镜561设置在第一陶瓷基板581的上方,覆盖第一陶瓷基板581上设置4颗光接收芯片583,通过第一反射棱镜561的反射面改变第一个四路信号光的光轴方向,使第一个四路信号光的光轴由平行于光接收腔体520的底面转换为垂直至于光接收腔体520的底面,进而使第一个四路信号光垂直入射至对应光接收芯片583的光敏面上。相应的,第二反射棱镜571设置在第二陶瓷基板591的上方,覆盖第二陶瓷基板591上设置4颗光接收芯片593,通过第二反射棱镜571的反射面改变第二个四路信号光的光轴方向,使第二个四路信号光的光轴 由平行于光接收腔体520的底面转换为垂直至于光接收腔体520的底面,进而使第二个四路信号光垂直入射至对应光接收芯片593的光敏面上。
在本公开实施例中,第一反射棱镜561和第二反射棱镜571均为45°反射棱镜,即第一反射棱镜561和第二反射棱镜571分别包括一个45°反射面;第一反射棱镜561的45°反射面覆盖第一陶瓷基板581上设置4颗光接收芯片583,第二反射棱镜571的45°反射面覆盖第二陶瓷基板591上设置4颗光接收芯片593。
第一透镜组件530包括若干排列组合的透镜,通过各透镜的相互配合将信号光按照λ1、λ2、λ3和λ4分为第一束信号光、λ5、λ6、λ7和λ8分为第二束信号光。在本公开某一实施例中,第一透镜组件530包括依次排列的4个透镜,透镜的表面镀膜,用于实现对各波段信号光的反射或折射,进而达到按照波段进行信号光的分束。
图10为本公开实施例提供的一种光接收次模块中隐去盖板的俯视图。如图10所示,第一透镜组件530包括依次排列的第一透镜531、第二透镜532、第三透镜533和第四透镜534。图11为本公开实施例提供的一种第一透镜组件的传输光路传输图。结合图10和11,通过第二光纤适配器510传输至光接收腔体520内的信号光的波长包括λ1、λ2、λ3、λ4、λ5、λ6、λ7和λ8,结合图10和11,八个波长的信号光传输至第一透镜531的第二表面,信号光在第一透镜531的表面全部被反射,第一透镜531改变信号光的传输方向。
经第一透镜531改变方向的信号光传输至第二透镜532并入射至第二透镜532,在第二透镜532的第一表面和第二透镜532的第二表面依次对该入射至第二透镜532的信号光分别进行一次折射。
经第二透镜532折射后的光束传输至第三透镜533的第一表面,在信号光中第一波段的信号光第三透镜533的第一表面发生反射,分出第一束信号光;第二波段的信号光入射至第三透镜533并在第三透镜533的第一表面发生折射,分出第二束信号光。
经第三透镜533的第一表面反射的第一束信号光,重新传输至第二透镜532的第二表面,经第二透镜532的第二表面反射至第一DeMUX540的入光口。
经第三透镜533的第一表面折射的第二束信号光入射至第三透镜533内并透过第三透镜533在第三透镜533的第二表面折射出第三透镜533;折射出第三透镜533的第二束信号光传输至第四透镜534,然后经第四透镜534的第一表面反射至第二DeMUX550的入光口。
其中,透镜的第一表面和第二表面仅是为了区分透镜两侧主要工作面,在本公开实施例图10呈现的方位中,透镜中靠近/朝向下方的面为第一表面,与第一表面相对的靠近/朝向上方的为第二表面。
在本公开实施例中,在本公开实施例图10中呈现的方位中,信号光通常沿光接收腔体520的左右长度方向入射至光接收腔体520内,为了控制光接收腔体520的长度进而应在较少的光接收腔体520长度空间内完成信号光的第一次分束,第一透镜531主要用于改变入射至光接收腔体520内信号光的传输方向,将信号光的传输方向由沿光接收腔体520长度方向转换为沿光接收腔体520上下的宽度方向;第二透镜532用于正方向透过第一波 段的信号光、第二波段的信号光以及反方向反射第一波段的信号光;第三透镜533用于正方向反射第一波段的信号光以及正方向透过第二波段的信号光;第四透镜533用于正方向反射第二波段的信号光。如此本公开实施例提供的第一透镜组件530,结合第一透镜531、第二透镜532、第三透镜533和第四透镜534实现了按照信号光波长所述波段进行的第一次分束,并使分束后的信号光沿光接收腔体520长度方向传输至相应的DeMUX。
在本公开某一实施例中:第一透镜531第二表面的法线与入射至光接收腔体520的传输方向(方向记为r)的夹角为45°,第一透镜531第二表面的法线与第二透镜532第一表面的法线夹角为90°,即第二透镜532第一平面的法线与r的夹角为135°;第一透镜531第二表面的法线与第三透镜533第一表面的法线夹角为37°,即第三透镜533第一表面的法线与r的夹角为82°;第一透镜531第二表面的法线与第四透镜534第一平面的法线夹角为180°,即第四透镜534第一表面的法线夹角45°。同时,通过选择控制第二透镜532第二平面上的镀膜以及第三透镜533第一表面上的镀膜,实现信号中第一波段信号光和第二波段信号光的分束。
在本公开实施例中,第一透镜组530还可为其他透镜组合,如包括三个透镜,如图中10中的第一透镜531、第四透镜534,其中第一透镜531和第四透镜534之间设置透反镜;该透反镜的第一表面反射第一波段的信号光以及透射第二波段的信号光,且透反镜的第二表面透射第二波段的信号光;进而通过第一透镜531、透反镜和第四透镜534结合实现输入信号光按波段分束。
在本公开实施例中,如图10所示,第二透镜组件560还包括4个聚焦透镜562,每一个聚焦透镜562对应设置在第一DeMUX540的输出光路中,对应的用于将相应光路中的信号光聚焦至第一反射棱镜561。
在本公开某一实施例中,如图10所示,第三透镜组件570还包括4个聚焦透镜572,每一个聚焦透镜572对应设置在第二DeMUX550的输出光路中,对应的用于将相应光路中的信号光聚焦至第二反射棱镜571。
图12为本公开实施例提供一种光接收次模块在光接收腔体处的剖视图。如图12所示,传输至第一DeMUX540的第一波段的信号光经第一DeMUX540按波长分路后的信号光传输至相应的聚焦透镜562,经聚焦透镜562聚焦后传输至第一反射棱镜561,当分路后的信号光传输至第一反射棱镜561的反射面,经第一反射棱镜561的反射面反射传输方向由平行于光接收腔体长度方向改变为垂直光接收腔体长度方向,然后传输至位于第一反射棱镜561反射面下方第一陶瓷基板581上相应的光接收芯片上。
在本公开某一实施例中,如图12所示,第一通孔522内设置平面光窗523,平面光窗523倾斜设置在第一通孔522内。通过第二光纤适配器传输至第一通孔522的信号光透过平面光窗523,经平面光窗523传输至第一透镜531的第二表面;然而当信号光传输至第一透镜531的第二表面,可能存在部分信号光透射第一透镜531的第二表面、传输至第一透镜531的第一表面,然后该部分信号光经第一透镜531的第一表面反射、第一透镜531的第二表面折射将会再次传输至第一通孔522,倾斜设置的平面光窗523有效防止该再次传输至第一通孔522的信号传对经第二光纤适配器传输至第一通孔522的信号光造成 污染。为避免平面光窗523造成信号光位移量过大,平面光窗523的倾斜角不应过道。在本公开某一实施例中,平面光窗523的倾斜角为4-6°,即平面光窗523的光轴与第一通孔522的中轴的夹角为4-6°;如此既能达到屏蔽再次传输至第一通孔522信号光的目的,又能有效避免第二光纤适配器传输至第一通孔522的信号光过度偏移。同时,平面光窗523还可用于第一通孔522的密封,在一定程度便于实现光接收腔体520的密封。
本公开实施例提供的光模块中,光接收次模块500通过第二光纤适配器510连接外部光纤,光模块外部光纤中传输的信号光通过第二光纤适配器510传输至光接收腔体520,光接收腔体520接收第二光纤适配器510传输的信号光并通过其内设置的第一透镜组530和解波分复用组件组依次进行按波段的第一次分束和按波长的第二次分束,两次分束后信号光被传输至光接收芯片经光接收芯片,转换为电流信号;进而本公开提供的光模块,能够实现外部光纤中传输多个波长信号光的接收。如此本公开提供的光模块,便于实现单光纤中多个波长信号光的同时传输,促进光模块以及光通信技术的在本公开某一实施例中发展。
为了满足光模块规范要求,第一光纤适配器410和第二光纤适配器510位于同一高度,而在本公开实施例中光发射次模块400及光接收次模块500上下叠放,进而需要进行第二光纤适配器510传输的信号光传输高度的调整或光发射次模块400输出信号光到第一光纤适配器410高度的调整。在本公开某一实施例中,如图8所示,光接收次模块500还包括位移组件524,位移组件524包括位移棱镜,位移棱镜用于调整通过第二光纤适配器510传输信号光的光路高度。在图8中,第二光纤适配器510传输信号光的光路高于光接收腔体520中预设光路的高度,通过位移棱镜降低第二光纤适配器510传输信号光的传输光路,使信号光能够从处于相对位置较高的第二光纤适配器510中传输至相对位置偏低一些的光接收腔体520中。
图13为本公开实施例提供一种光接收次模块的局部分解图。在一些实施例中,如图13所示,位移组件524包括位移棱镜524a;位移棱镜524a通过两次或多次反射,将在一高度传输的信号光转移到另一高度。在本实施例中在本公开某一实施例中,位移棱镜524a采用包括两个45°反射面的位移棱镜,通过两次反射将在相对较高一高度传输的信号光转移到较低另一高度。
在本公开一些实施例中,位移组件524还包括棱镜腔体524b和棱镜盖板524c,棱镜腔体524b用于方便位移棱镜524a安装固定以及方便连接第二光纤适配器510和光接收腔体520,棱镜盖板524c盖合棱镜腔体524d。在本实施例中,棱镜腔体524b内部设置棱镜容纳腔524d,棱镜容纳腔524d连通第二光纤适配器510和第一通孔522;位移棱镜524a设置在棱镜容纳腔524d内,棱镜盖板524c盖合在棱镜容纳腔524d上,将位移棱镜524a限位固定在棱镜容纳腔524d内,棱镜容纳腔524d便于提高位移棱镜524a的安装精度。在本公开某一实施例中,棱镜容纳腔524d内设置支撑台阶,进而可通过支撑台阶支撑限位位移棱镜524a;棱镜容纳腔524d内还设置盖板槽,用于方便将棱镜盖板524c固定在棱镜腔体524b上。棱镜盖板524c可通过胶水固定连接棱镜腔体524b。
为便于位移组件524与光接收腔体520的连接,光接收腔体520上设置有位移组件连 接件525,位移组件连接件525卡合连接位移组件524。在一些实施例中,位移组件连接件525包括第一连接板525a和第二连接板525b,第一连接板525a的内侧面和第二连接板525b内侧面分别用于连接棱镜腔体524b的外壁,进而将棱镜腔体524b卡合固定的设置在第一连接板525a和第二连接板525b之间。其中,第一连接板525a和第二连接板525b可为光接收腔体520外壁上形成的两个凸脊结构,通常与光接收腔体520一体成型。为了保证第一连接板525a或第二连接板525b的剪切强度,第一连接板525a或第二连接板525b的侧边可相应的设置支撑结构,通过支撑结构相应的增加第一连接板525a或第二连接板525b与光接收腔体520外壁的支撑面积。
图14为本公开实施例提供另一种光接收次模块在光接收腔体处的剖视图一。在一些实施例中,如图14所示,第二光纤适配器510的端部设置适配器连接部511,棱镜腔体524b上设置适配器连接孔524e,适配器连接孔524e连通棱镜容纳腔524d;适配器连接部511镶嵌在适配器连接孔524e内。在本公开某一实施例中,第二光纤适配器510的输出端还设置透镜512,透镜512用于准直通过第二光纤适配器510输出的信号光。
如图14所示,位移棱镜524a设置在棱镜容纳腔524d内,棱镜盖板524c盖合密封在棱镜容纳腔524d边缘的上部,棱镜容纳腔524d边缘的下部形成第二通孔524f,第二通孔524f连通第一通孔522。假设光模块外部传输至第二光纤适配器510的信号光为水平光,光轴水平的信号光沿第二光纤适配器510的中轴传输,如图14所示,图中示出了信号光的传输路径。如图14所示,光轴水平的信号光传输至第二光纤适配器510的透镜512处、经透镜512准直传输至位移棱镜524a的第一反射面;在位移棱镜524a的第一反射面发生第一次反射,信号光的光轴由水平转换为竖直;光轴竖直的信号光传输至位移棱镜524a的第二反射面,在位移棱镜524a的第二反射面发生第二次反射,信号光的光轴由竖直转换为水平;光轴再次水平信号光通过第二通孔524f传输至第一通孔522,透光平面光窗523传输至光接收腔体520内。进而本公开实施例中,通过位移棱镜524a在保证信号光光轴方向的同时,实现了信号光的光轴所在高度的调整,进而便于光发射次模块400和光接收次模块500上下叠放结构形式的实现。
图15为本公开实施例提供另一种光接收次模块在光接收腔体处的剖视图二。如图15所示,适配器连接孔524e内设置支撑凸起524e-1,支撑凸起524e-1用于支撑接触适配器连接部511的端面;支撑凸起524e-1与适配器连接孔524e的侧壁形成连接槽524e-2。一方面,设置连接槽524e-2便于支撑凸起524e-1的加工成形,如方便车削加工支撑凸起524e-1时的退刀;另一方面,当第二光纤适配器510点胶连接棱镜腔体524b时,多余的胶水可流进连接槽524e-2内,从而避免的胶水影响到透镜512等。
图16为本公开实施例提供一种光接收腔体的结构示意图一。如图16所示,第二连接板525b侧边设置支撑结构525c,支撑结构525c用于增加第二连接板525b的剪切强度,保证棱镜腔体524b与光接收腔体520的连接强度。
在本公开实施例中,第二光纤适配器510和光接收腔体520的连接处设置位移组件524,第二光纤适配器510输出的信号光通过位移组件524传输至光接收腔体520,位移组件524调整第二光纤适配器510输出信号光的光路高度,进而实现第二光纤适配器510 中光路到光接收腔体520中光路的调整。如此,本公开实施例提供的光模块,通过第二光纤适配器510的光路到光接收腔体520中光路高度的调整,保证第一光纤适配器410与第二光纤适配器510位于同一高度,进而便于实现光发射次模块400和光接收次模块500上下叠放设置,使本公开实施例提供的光模块能够适应光发射次模块400和光接收次模块500的大体积需求。在本公开实施例中,还可以在光发射次模块400设置位移组件,通过该位移组件调整光发射次模块400腔体内光路到第一光纤适配器410光路的高度调整。
光接收腔体520包括底板和围绕底板的侧壁,底板和侧壁围绕形成腔体结构用于盛放容纳光接收次模块500中的光学器件和电学器件。如图16所示,光接收腔体520的侧壁顶部设置盖板固定胶槽526a,进而光接收盖板520a可通过胶水固定连接光接收腔体520。在本公开某一实施例中,盖板固定胶槽526a在光接收腔体520的侧壁顶部形成一个闭环结构,进而能够增加光接收盖板520a在光接收腔体520的侧壁顶部的粘胶面积,充分保证在光接收盖板520a和光接收腔体520侧壁顶部的封装可靠性。在本公开某一实施例中,光接收腔体520的侧壁顶部还设置有返修口526b,返修口526b设置在光接收腔体520的侧壁顶部边缘,且返修口526b连通盖板固定胶槽526a。当光接收盖板520a和光接收腔体520封装后需要进行光接收腔体520内部器件返修时,可通过返修口526b将光接收盖板520a从光接收腔体520上拆开,进而可实现不破坏光接收盖板520a或光接收腔体520的前提下拆除光接收盖板520a,减低返修难度和成本。
在一些实施例中,如图16所示,光接收腔体520的底板上设置透镜安装柱527。图17为本公开实施例提供一种光接收腔体的结构示意图二。如图16和17所示,透镜安装柱527为直棱柱结构,如三棱柱结构;透镜安装柱527包括第一透镜支撑面527a和第二透镜支撑面527b,第一透镜支撑面527a和第二透镜支撑面527b之间具有满足第一透镜531和第二透镜532安装设置的夹角;第一透镜支撑面527a用于限位固定第一透镜531,第二透镜支撑面527b用于限位固定第二透镜532。在本实施例中,设置包括第一透镜支撑面527a和第二透镜支撑面527b的透镜安装柱527便于实现第一透镜531和第二透镜532的无源耦合安装,便于提高第一透镜531和第二透镜532安装效率和安装精度。
在本公开某一实施例中,在申请实施例中,光接收腔体520的底板上还设置透镜槽527c,透镜槽527c设置在透镜安装柱527的第一透镜支撑面527a和第二透镜支撑面527b的侧边、与第一透镜支撑面527a和第二透镜支撑面527b接触。一方面,透镜槽527c方便透镜安装柱527上第一透镜支撑面527a和第二透镜支撑面527b的加工成形,如方便车削加工透镜安装柱527时的退刀;另一方面,保证第一透镜531和第二透镜532分别与第一透镜支撑面527a和第二透镜支撑面527b充分接触;再一方面,当第一透镜531和第二透镜532点胶连接光接收腔体520的底板上时,多余的胶水可流进透镜槽527c内,从而避免的胶水影响到第一透镜531和第二透镜532安装精度。
在一些实施例中,如图16和17所示,光接收腔体520的底板上还设置解波分复用组件(DeMUX)安装柱502为直棱柱结构,如四棱柱结构;DeMUX安装柱502包括第一DeMUX安装面502a和第二DeMUX安装面502b,第一DeMUX安装面502a用于限位、固定安装第一DeMUX540,第二DeMUX安装面502b用于限位、固定安装第二DeMUX550。 在本公开某一实施例中,第一DeMUX安装面502a与第一DeMUX安装面502b平行。在本实施例中,设置包括第一DeMUX安装面502a和第二DeMUX安装面502b的DeMUX安装柱502便于实现第一DeMUX540和第二DeMUX550的无源耦合安装,便于提高第一DeMUX540和第二DeMUX550安装效率和安装精度。
在本公开某一实施例中,在申请实施例中,第一DeMUX安装面502a的侧边设置第一DeMUX槽502c,第一DeMUX槽502c与第一DeMUX安装面502a接触;第二DeMUX安装面502b的侧边设置第二DeMUX槽502d,第二DeMUX槽502d与第二DeMUX安装面502b接触。一方面,第一DeMUX槽502c和第二DeMUX槽502d方便DeMUX安装柱502上第一DeMUX安装面502a与第一DeMUX安装面502b的加工成形,如方便车削加工第一DeMUX安装面502a与第一DeMUX安装面502b时的退刀;另一方面,避免在第一DeMUX安装面502a与第一DeMUX安装面502b在与光接收腔体520的底板接触处出现圆弧倒角,而造成第一DeMUX540和第二DeMUX550分别与第一DeMUX安装面502a与第一DeMUX安装面502b不能充分接触,而影响第一DeMUX540和第二DeMUX550的安装精度;再一方面,当第一DeMUX540和第二DeMUX550点胶连接光接收腔体520的底板DeMUX安装柱502上时,多余的胶水可流进第一DeMUX槽502c和第二DeMUX槽502d内,从而避免的胶水影响到第一DeMUX540和第二DeMUX550安装精度。
在一些实施例中,如图16所示,光接收腔体520的底板上还设置第一DeMUX固定胶槽528和第二DeMUX固定胶槽529,第一DeMUX固定胶槽528和第二DeMUX固定胶槽529分别用于盛放点胶。如,当需要固定第一DeMUX540和第二DeMUX550时,分别在第一DeMUX固定胶槽528和第二DeMUX固定胶槽529中点胶,然后将第一DeMUX540和第二DeMUX550分别安装放置在第一DeMUX固定胶槽528和第二DeMUX固定胶槽529上,胶水凝固完成第一DeMUX540和第二DeMUX550在底板上的固定。
在本公开某一实施例中,如图17所示,第一DeMUX固定胶槽528包括第一点胶槽528a和第一溢胶槽528b,第一点胶槽528a和第一溢胶槽528b通常可通过光接收腔体520底板的顶面下沉形成,第一点胶槽528a和第一溢胶槽528b被侧壁隔离开。在本公开某一实施例中,第一点胶槽528a为圆形结构,第一溢胶槽528b为围绕在第一点胶槽528a侧边的圆环结构,但本公开中不局限于此次种结构形式。在具体使用中,将胶水点在第一点胶槽528a中,点胶要充足,通常会溢满第一点胶槽528a,第一DeMUX540覆盖放置在第一点胶槽528a上方,第一点胶槽528a中多余的胶水将会溢流至第一溢胶槽528b,进而可有效防止胶水量不足影响第一DeMUX540牢固性,又能防止胶水过量时胶水随处溢以及造成第一DeMUX540安装精度不够。
相应的,如图17所示,第二DeMUX固定胶槽529包括第二点胶槽529a和第为溢胶槽529b,第二点胶槽529a和第二溢胶槽529b通常可通过光接收腔体520底板的顶面下沉形成,第二点胶槽529a和第二溢胶槽529b被侧壁隔离开。在本公开某一实施例中,第二点胶槽529a为圆形结构,第二溢胶槽529b为围绕在第二点胶槽529a侧边的圆环结构,但本公开中不局限于此次种结构形式。第二DeMUX固定胶槽529的具体使用可参见第一 DeMUX固定胶槽528。
在一些实施例中,如图16所示,光接收腔体520的底板上还设置第一棱镜安装柱503a、第二棱镜安装柱503b和第三棱镜安装柱503c,第一棱镜安装柱503a、第二棱镜安装柱503b和第三棱镜安装柱503c间隔设置。其中:一方面,第一棱镜安装柱503a、第二棱镜安装柱503b和第三棱镜安装柱503c用于第一反射棱镜561和第二反射棱镜571的安装限位;另一方面,第一棱镜安装柱503a和第二棱镜安装柱503b配合用于固定第一反射棱镜561的侧面,第二棱镜安装柱503b和第三棱镜安装柱503c配合用于固定第二反射棱镜571的侧面。在本公开某一实施例中,第一棱镜安装柱503a和第二棱镜安装柱503b之间设置第一反射棱镜安装面503d,第一反射棱镜安装面503d用于支撑第一反射棱镜561的底面;第二棱镜安装柱503b和第三棱镜安装柱503c之间设置第二反射棱镜安装面503e,第二反射棱镜安装面503e用于支撑第二反射棱镜571的底面。
在一些实施例中,如图16所示,光接收腔体520的底板上包括第一底面501a和第二底面501b,第一底面501a和第二底面501b之间形成台阶面501c。第一底面501a上设置透镜安装柱527、DeMUX安装柱502、第一DeMUX固定胶槽528和第二DeMUX固定胶槽529等,第二底面501b用于承载伸入至光接收腔体520的柔性电路板310。台阶面501c实现了将光接收腔体520底面高度的划分;一方面,第一底面501a和第二底面501b之间形成台阶面501c,第一底面501a可相对抬高第一反射棱镜安装面503d和第二反射棱镜安装面503e的高度,进而抬高第一反射棱镜561和第二反射棱镜571高度,便于实现第一反射棱镜561和第二反射棱镜571与第一光接收组件580和第二光接收组件590装配;另一方面,台阶面501c还可用于柔性电路板310伸入光接收腔体520的限位。
图18为本公开实施例提供的一种光接收腔体的装配使用状态图,图18示出了透镜安装柱527、DeMUX安装柱502、第一DeMUX固定胶槽528和第二DeMUX固定胶槽529等的使用状态。如图18所示,第一透镜531的侧面贴合透镜安装柱527的第一透镜支撑面527a,第二透镜532的侧面贴合透镜安装柱527的第二透镜支撑面527b;第一DeMUX540的侧面贴合DeMUX安装柱502的第一DeMUX安装面502a,且第一DeMUX540覆盖第一DeMUX固定胶槽528;第二DeMUX550的侧面贴合DeMUX安装柱502的第二DeMUX安装面502b,且第二DeMUX550覆盖第二DeMUX固定胶槽529;第一反射棱镜561卡设在第一棱镜安装柱503a和第二棱镜安装柱503b之间,第二反射棱镜571卡设在第二棱镜安装柱503b和第三棱镜安装柱503c之间。
图19为本公开实施例提供的一种光接收腔体的装配使用状态的剖视图。如图19所示,当第二透镜532的侧面贴合透镜安装柱527的第二透镜支撑面527b固定后,第二透镜532覆盖透镜槽527c;当第一DeMUX540装配至光接收腔体520的底板上,第一DeMUX540覆盖第一DeMUX固定胶槽528的第一点胶槽528a和第一溢胶槽528b;第一底面501a抬高了第一DeMUX540,使第一DeMUX540的底部与第二底面501b之间存在一定的高度差,便于第一光接收组件580中器件的安装设置;柔性电路板310的端面抵触台阶面501c,台阶面501c用于柔性电路板310的端面的限位。在本公开实施例中,伸入至光接收腔体520内的柔性电路板310可通过导热胶等固定在第二底面501b。
图20为本公开实施例提供的一种光接收腔体的剖视图。如图20所示,光接收腔体520的顶部设置盖板固定胶槽526a,光接收盖板520a的边缘与盖板固定胶槽526a相应位置处设置盖板凸起520b,盖板凸起520b配合设置在盖板固定胶槽526a内。如此,当使用胶水固定连接光接收腔体520和光接收盖板520a时,盖板固定胶槽526a与盖板凸起520b配合便于增加粘胶面积,进而能够使光接收盖板520a与光接收腔体520充分密封。
在本公开某一实施例中,如图20所示,光接收腔体520的侧壁上还设置第三通孔526c,第三通孔526c连通光接收腔体520的内腔;第三通孔526c内设置密封塞526d,密封塞526d用于密封第三通孔526c。在光接收次模块500生产过程中,通常需要加热烘烤,进而设置第三通孔526c便于光接收腔体520内空气流通,而当加热烘烤完成后,使用密封塞526d密封第三通孔526c,避免光接收腔体520外部空气通过第三通孔526c进入光接收腔体520的内腔。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (40)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;
    所述光接收次模块包括:
    光接收腔体,包括底板,用于承载设置器件;
    所述器件包括反射棱镜和光接收组件,所述光接收组件包括若干光接收芯片,所述反射棱镜罩设在所述光接收组件的光接收芯片上,用于向所述光接收组件的光接收芯片反射信号光。
  2. 根据权利要求1所述光模块,其特征在于,所述光接收组件还包括陶瓷基板和跨阻放大器,所述光接收芯片设置在所述陶瓷基板上,所述光接收芯片的电极与所述跨阻放大器的管脚在同一高度。
  3. 根据权利要求1所述光模块,其特征在于,所述反射棱镜包括45°反射面,所述45°反射面覆盖设置在所述光接收组件的光接收芯片上。
  4. 根据权利要求1所述光模块,其特征在于,所述反射棱镜包括第一反射棱镜和第二反射棱镜;所述底板上包括第一底面和第二底面,所述第一底面和所述第二底面之间形成台阶面;
    所述第一底面支撑连接所述第一反射棱镜和所述第二反射棱镜,所述第二底面支撑所述光接收组件。
  5. 根据权利要求4所述光模块,其特征在于,所述光接收腔体的侧壁上设置开口,所述开口处穿设柔性电路板,所述柔性电路板的一端抵触所述台阶面,所述柔性电路板的另一端连接所述电路板,所述光接收组件电连接所述柔性电路板。
  6. 根据权利要求4所述光模块,其特征在于,所述第一底面上设置有第一棱镜安装柱、第二棱镜安装柱和第三棱镜安装柱;
    所述第一反射棱镜的侧面配合连接所述第一棱镜安装柱和所述第二棱镜安装柱,所述第二反射棱镜的侧面配合连接所述第二棱镜安装柱和所述第三棱镜安装柱。
  7. 根据权利要求6所述光模块,其特征在于,所述第一棱镜安装柱和所述第二棱镜安装柱之间设置第一反射棱镜安装面,所述第一反射棱镜安装面支撑所述第一反射棱镜;
    所述第二棱镜安装柱和所述第三棱镜安装柱之间设置第二反射棱镜安装面,所述第二反射棱镜安装面支撑所述第二反射棱镜。
  8. 根据权利要求4所述光模块,其特征在于,所述光接收组件包括第一光接收组件和第二光接收组件;
    所述第一光接收组件包括第一陶瓷基板,所述第一陶瓷基板上设置若干光接收芯片;所述第二光接收组件包括第二陶瓷基板,所述第二陶瓷基板上设置若干光接收芯片;
    所述第一反射棱镜覆盖所述第一陶瓷基板和所述第二反射棱镜覆盖所述第二陶瓷基板。
  9. 一种光模块,其特征在于,电路板;
    光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;
    所述光接收次模块包括:
    光接收腔体,包括底板,用于承载设置器件;
    所述器件包括第一反射棱镜、第二反射棱镜、第一光接收组件和第二光接收组件;所述第一光接收组件包括若干光接收芯片,所述第二光接收组件包括若干光接收芯片;
    所述第一反射棱镜罩设在所述第一光接收组件的光接收芯片上,用于向所述第一光接收组件的光接收芯片反射信号光;
    所述第二反射棱镜罩设在所述第二光接收组件的光接收芯片上,向所述第二光接收组件的光接收芯片反射信号光。
  10. 根据权利要求9所述光模块,其特征在于,所述光接收腔体的侧壁上设置开口,所述开口处穿设电连接器,所述第一光接收组件和所述第二光接收组件设置在所述电连接器上,所述电连接器通过柔性电路板连接所述电路板。
  11. 一种光模块,其特征在于,包括:
    电路板;
    光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;
    所述光接收次模块包括:
    光接收腔体,用于承载设置器件;
    其中,所述光接收腔体包括底板和围绕所述底板的侧壁,所述底板和所述围绕所述底板的侧壁形成腔体结构;
    所述底板上设置透镜安装柱和解波分复用组件安装柱,所述透镜安装柱用于设置第一透镜和第二透镜,所述解波分复用组件安装柱用于设置第一DeMUX和第二DeMUX。
  12. 根据权利要求11所述光模块,其特征在于,所述透镜安装柱包括第一透镜支撑面和第二透镜支撑面,所述第一透镜支撑面支撑连接所述第一透镜,所述第二透镜支撑面支撑连接所述第二透镜。
  13. 根据权利要求12所述光模块,其特征在于,所述第一透镜支撑面和所述第二透镜支撑面的侧边设置透镜槽,所述透镜槽接触连接所述第一透镜支撑面和所述第二透镜支撑面。
  14. 根据权利要求11所述光模块,其特征在于,解波分复用组件安装柱包括第一DeMUX安装面和第二DeMUX安装面,所述第一DeMUX安装面支撑连接所述第一DeMUX,所述第二DeMUX安装面支撑连接所述第二DeMUX。
  15. 根据权利要求14所述光模块,其特征在于,所述第一DeMUX安装面的侧边设置第一DeMUX槽,第一DeMUX槽与第一DeMUX安装面接触;第二DeMUX安装面的侧边设置第二DeMUX槽502d,第二DeMUX槽与第二DeMUX安装面接触。
  16. 根据权利要求11所述光模块,其特征在于,所述底板上还设置第一DeMUX固定胶槽和第二DeMUX固定胶槽,所述第一DeMUX点胶连接所述第一DeMUX固定胶槽,所述第二DeMUX点胶连接所述第二DeMUX固定胶槽。
  17. 根据权利要求12所述光模块,其特征在于,所述第一DeMUX固定胶槽包括第一点胶槽和第一溢胶槽,所述第一点胶槽和所述第一溢胶槽被侧壁隔离开。
  18. 根据权利要求11所述光模块,其特征在于,所述光接收次模块还包括光接收盖板,所述侧壁的顶部设置盖板固定胶槽;
    所述光接收盖板上设置盖板凸起,所述光接收盖板通过所述盖板凸起点胶连接所述盖板固定胶槽。
  19. 根据权利要求18所述光模块,其特征在于,所述侧壁的顶部还设置返修口,所述返修口连通所述盖板固定胶槽。
  20. 根据权利要求11所述光模块,其特征在于,所述光接收腔体的侧壁上还设置第三通孔,所述第三通孔连通所述光接收腔体的内腔且所述第三通孔内设置密封塞。
  21. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,与电路板电连接,用于产生信号光,所述光发射次模块上设置第一光纤适配器;
    光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号,所述光发射次模块和所述光接收次模块上下叠放设置;
    所述光接收次模块包括:
    第二光纤适配器,用于传输光模块外部光纤的信号光;
    位移组件,一端连接第二光纤适配器,用于传输和调整通过所述第二光纤适配器输出信号光的光路高度;
    光接收腔体,连接所述位移组件的另一端,用于传输并接收光路高度调整后的信号光。
  22. 根据权利要求21所述光模块,其特征在于,所述位移组件包括位移棱镜和棱镜腔体,所述棱镜腔体的一端连接所述第二光纤适配器、另一端连接所述光接收腔体;
    所述棱镜腔体上设置棱镜容纳腔,所述位移棱镜设置在所述棱镜容纳腔内。
  23. 根据权利要求22所述光模块,其特征在于,所述位移组件还包括棱镜盖板,所述棱镜盖板盖合密封在所述棱镜容纳腔边缘的上部,所述棱镜容纳腔边缘与所述棱镜盖板的边缘形成第二通孔;
    所述光接收腔体的侧壁上设置第一通孔,所述第二通孔连通所述第一通孔。
  24. 根据权利要求22所述光模块,其特征在于,所述棱镜腔体上还设置适配器连接孔;
    所述第二光纤适配器的端部设置适配器连接部,所述适配器连接部配合连接所述适配器连接孔。
  25. 根据权利要求24所述光模块,其特征在于,所述第二光纤适配器的端部还设置透镜,透镜用于准直通过第二光纤适配器输出的信号光。
  26. 根据权利要求24所述光模块,其特征在于,所述适配器连接孔内设置支撑凸起,所述支撑凸起与所述适配器连接孔的侧壁形成连接槽,所述支撑凸起支撑所述第二光纤适配器的端部。
  27. 根据权利要求22所述光模块,其特征在于,所述光接收腔体上设置位移组件连接件,所述位移组件连接件固定连接所述棱镜腔体的侧壁。
  28. 根据权利要求27所述光模块,其特征在于,所述位移组件连接件包括第一连接板和第二连接板;所述棱镜腔体卡合设置在所述第一连接板和所述第二连接板之间,所述第一连接板的内侧面和第二连接板的内侧面分别连接所述棱镜腔体的侧壁。
  29. 根据权利要求28所述光模块,其特征在于,所述第一连接板远离所述第二连接板的一侧设置支撑结构,所述支撑结构支撑连接所述第一连接板和所述光接收腔体的侧壁,且所述支撑结构高度小于所述第一连接板的高度。
  30. 根据权利要求23所述光模块,其特征在于,所述位移棱镜包括第一反射面和第二反射面,所述第一反射面平行于所述第二反射面,所述第一反射面用于将所述第二光纤适配器输出的信号光传输至所述第二反射面,所述第二反射面用于将所述第一反射面的反射光反射传输至所述第二通孔。
  31. 一种光模块,其特征在于,包括:
    电路板;
    光接收次模块,与电路板电连接,用于将接收到的信号光转换为电流信号;
    所述光接收次模块包括:
    光接收腔体,用于承载设置器件;
    第二光纤适配器,连通所述光接收腔体,用于将光模块外部光纤的信号光传输至光接收腔体;
    所述器件包括第一透镜组、解波分复用组件组和光接收芯片;
    所述第一透镜组用于将通过所述第二光纤适配器传输至所述光接收腔体的信号光按照波段进行第一次分束,并将第一次分束后信号光对应传输至所述解波分复用组件组;所述解波分复用组件组对应的将第一次分束后的信号光按波长进行第二次分束;所述光接收芯片用于接收经所述解波分复用组件组第二次分束分束后的信号光并转换为电流信号。
  32. 根据权利要求31所述光模块,其特征在于,所述第一透镜组用于进行第一次分束将所述信号光按波段分为第一束信号光和第二束信号光;
    所述解波分复用组件组包括第一解波分复用组件和第二解波分复用组件,所述第一解波分复用组件的入光口用于接收第一束信号光,所述第二解波分复用组件的入光口用于接收第二束信号光。
  33. 根据权利要求32所述光模块,其特征在于,所述第一透镜组包括依次排列的第一透镜、第二透镜、第三透镜和第四透镜;
    所述第一透镜用于反射改变通过所述第二光纤适配器传输至所述光接收腔体内信号光的传播方向;
    所述第二透镜和所述第三透镜结合用于改变方向后信号光的第一次分束、将第一束信号光反射传输至所述第一解波分复用组件的入光口并将第二束信号光透射传输至所述第四透镜;所述第四透镜用于将第二束信号光反射传输至所述第二解波分复用组件的入光口。
  34. 根据权利要求31所述光模块,其特征在于,所述光接收次模块还包括位移棱镜, 所述位移棱镜设置在所述第二光纤适配器和所述光接收腔体之间,所述位移棱镜用于调整通过所述第二光纤适配器输出信号光的光路高度。
  35. 根据权利要求31所述光模块,其特征在于,所述第二光纤适配器的输出端设置透镜,透镜用于准直通过第二光纤适配器输出的信号光。
  36. 根据权利要求32所述光模块,其特征在于,所述器件还包括第二透镜组和第三透镜组、第一光接收组件和第二光接收组件,所述第一光接收组件和所述第二光接收组件分别包括若干光接收芯片;
    所述第二透镜组包括第一反射棱镜,所述第一反射棱镜罩设在所述第一光接收组件的光接收芯片上,用于将经所述第一解波分复用组件第二次分束后的信号光反射至所述光接收芯片;
    所述第三透镜组包括第二反射棱镜,所述第二反射棱镜罩设在所述第二光接收组件的光接收芯片上,用于将经所述第二解波分复用组件第二次分束后的信号光反射至所述光接收芯片。
  37. 根据权利要求36所述光模块,其特征在于,所述第二透镜组还包括聚焦透镜,所述第二透镜组中的聚焦透镜设置在第一解波分复用组件的出光口到所述第一反射棱镜的光路上;
    所述第三透镜组还包括聚焦透镜,所述第三透镜组中的聚焦透镜设置在第二解波分复用组件的出光口到所述第二反射棱镜的光路上。
  38. 根据权利要求31所述光模块,其特征在于,所述光接收腔体的侧壁上设置第一通孔,所述第一通孔连通所述第二光纤适配器,所述第一通孔内设置平面光窗,所述平面光窗倾斜设置在所述第一通孔内。
  39. 根据权利要求38所述光模块,其特征在于,所述平面光窗的光轴与所述第一通孔的中轴的夹角为4-6°。
  40. 根据权利要求36所述光模块,其特征在于,所述第一反射棱镜和所述第二反射棱镜上分别设置45°反射面;所述第一反射棱镜的45°反射面设置在所述第一光接收组件的光接收芯片的上方,所述第二反射棱镜的45°反射面设置在第二光接收组件的光接收芯片的上方。
PCT/CN2020/134054 2020-09-18 2020-12-04 一种光模块 WO2022057100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/122,534 US20230228955A1 (en) 2020-09-18 2023-03-16 Optical module

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010989984.6 2020-09-18
CN202010988113.2 2020-09-18
CN202010988117.0 2020-09-18
CN202010989983.1 2020-09-18
CN202010989983.1A CN114200601B (zh) 2020-09-18 2020-09-18 一种光模块
CN202010989984.6A CN114200602B (zh) 2020-09-18 2020-09-18 一种光模块
CN202010988113.2A CN114200594B (zh) 2020-09-18 2020-09-18 一种光模块
CN202010988117.0A CN114200595B (zh) 2020-09-18 2020-09-18 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/122,534 Continuation-In-Part US20230228955A1 (en) 2020-09-18 2023-03-16 Optical module

Publications (1)

Publication Number Publication Date
WO2022057100A1 true WO2022057100A1 (zh) 2022-03-24

Family

ID=80775727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134054 WO2022057100A1 (zh) 2020-09-18 2020-12-04 一种光模块

Country Status (2)

Country Link
US (1) US20230228955A1 (zh)
WO (1) WO2022057100A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127059A1 (zh) * 2020-12-14 2022-06-23 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342817A (zh) * 2017-08-28 2017-11-10 苏州海光芯创光电科技有限公司 一种高速多通道光模块设计方法及光模块
US20180003908A1 (en) * 2016-06-30 2018-01-04 OE Solutions Co., Ltd. Optical transmitter and optical module including the same
CN109814201A (zh) * 2019-03-14 2019-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110471148A (zh) * 2019-09-02 2019-11-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN110488433A (zh) * 2019-08-16 2019-11-22 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180003908A1 (en) * 2016-06-30 2018-01-04 OE Solutions Co., Ltd. Optical transmitter and optical module including the same
CN107342817A (zh) * 2017-08-28 2017-11-10 苏州海光芯创光电科技有限公司 一种高速多通道光模块设计方法及光模块
CN109814201A (zh) * 2019-03-14 2019-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN110488433A (zh) * 2019-08-16 2019-11-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110471148A (zh) * 2019-09-02 2019-11-19 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
US20230228955A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
CN214380910U (zh) 一种光模块
US11994726B2 (en) Optical module
CN114488438B (zh) 一种光模块
WO2022057113A1 (zh) 一种光模块
CN114624829B (zh) 一种光模块
CN214228255U (zh) 一种光模块
WO2022057100A1 (zh) 一种光模块
CN114200596B (zh) 一种光模块
CN112929092A (zh) 一种光模块
CN115016074B (zh) 一种光模块
CN215895032U (zh) 一种光模块
CN114200600A (zh) 一种光模块
CN114624828B (zh) 一种光模块
WO2022083040A1 (zh) 一种光模块
CN114200595B (zh) 一种光模块
CN214228256U (zh) 一种光模块
CN114200603B (zh) 一种光模块
WO2022083041A1 (zh) 一种光模块
CN114200602B (zh) 一种光模块
CN114200594B (zh) 一种光模块
CN114200601B (zh) 一种光模块
CN115016073B (zh) 一种光模块
CN115032749B (zh) 一种光模块
WO2022267829A1 (zh) 一种光模块
WO2022218041A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953956

Country of ref document: EP

Kind code of ref document: A1