WO2024060818A1 - 多通道有源光缆光子集成芯片及有源光缆 - Google Patents

多通道有源光缆光子集成芯片及有源光缆 Download PDF

Info

Publication number
WO2024060818A1
WO2024060818A1 PCT/CN2023/108908 CN2023108908W WO2024060818A1 WO 2024060818 A1 WO2024060818 A1 WO 2024060818A1 CN 2023108908 W CN2023108908 W CN 2023108908W WO 2024060818 A1 WO2024060818 A1 WO 2024060818A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
structures
optical signal
signals
optical fiber
Prior art date
Application number
PCT/CN2023/108908
Other languages
English (en)
French (fr)
Inventor
郭德汾
李显尧
孙雨舟
Original Assignee
苏州湃矽科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州湃矽科技有限公司 filed Critical 苏州湃矽科技有限公司
Publication of WO2024060818A1 publication Critical patent/WO2024060818A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the utility model relates to the field of optical communication technology, in particular to a multi-channel active optical cable photonic integrated chip and an active optical cable.
  • optical communication devices play a key role in the field of data communication.
  • the current field of data communication has increasingly higher requirements for information transmission rate.
  • optical modules are required for high-speed information transmission to continuously improve the integration level and miniaturization of packaging. Silicon photonic chips are used to replace the optical components in the original free space in the optical module, which effectively improves the integration and facilitates the miniaturization and packaging of the optical module.
  • Active optical cables include a transmission optical cable in the middle and optical modules at both ends.
  • the optical modules of current active optical cables generally use VCSEL laser chips and detector chips coupled with silicon optical chips.
  • VCSEL is a multi-mode laser chip.
  • the optical fiber of the active optical cable also uses multi-mode optical fiber.
  • a single optical fiber can only transmit one multi-mode optical signal. How many channels of optical signals require as many upload fibers and download fibers as possible.
  • silicon The same number of input ports and output ports needs to be designed on the optical chip.
  • the silicon photonic chip structure in the optical module requires a total of 18 fiber-PIC (fiber-Photonic Integrated Circuit) , fiber-photonic integrated chip) coupling port, of which 16 coupling ports are connected to corresponding multi-mode optical fibers, and 2 ports are coupled to two VCSEL lasers.
  • ports need to be spaced a certain distance apart to couple with optical fibers. Therefore, more ports will result in a larger area of the optical chip, and the manufacturing cost of each chip will be higher, which is not conducive to optical modules. of miniaturized packaging.
  • a multi-channel active optical cable photonic integrated chip including a substrate layer and a waveguide layer, and the waveguide layer is provided with a transmitting end device and a receiving end device,
  • the transmitter components include:
  • Two optical coupling structures are used to receive a first optical signal and a second optical signal respectively, wherein the first optical signal and the second optical signal are single-mode optical signals with different wavelengths;
  • Two light splitting structures are respectively connected to the two incoming light coupling structures.
  • Each of the light splitting structures is used to divide the first optical signal or the second optical signal received by the corresponding incoming light coupling structure into n sub-light signals, n is an integer greater than 1;
  • 2n modulators are respectively connected to the two light splitting structures, and the 2n modulators respectively receive the 2n sub-light signals output by the two light splitting structures, and the 2n sub-light signals correspond to the 2n modulators one by one, n is a positive integer;
  • each of the wavelength division multiplexers includes two input terminals and one output terminal, and the two input terminals are respectively connected to two of the modulators, The output ends are respectively connected to one of the first optical fiber coupling structures, and the two modulators connected to the same wavelength division multiplexer are respectively connected to different optical splitting structures;
  • n In a manner in which one modulated sub-optical signal of the first optical signal and one modulated sub-optical signal of the second optical signal are respectively transmitted to two input terminals of the same wavelength division multiplexer, n The sub-optical signals of the first optical signal and n sub-optical signals of the second optical signal are respectively connected to n wavelength division multiplexers, and each of the wavelength division multiplexers is used to convert the received The two sub-optical signals are combined into one composite optical signal, which is output to the first optical fiber coupling structure and output through the first optical fiber coupling structure;
  • the receiving end devices include:
  • each of the second optical fiber coupling structures is used to receive an externally input composite optical signal with two different wavelengths
  • each wave decomposition multiplexing structure There are n polarization-independent wave decomposition multiplexing structures and 2n photodetectors, and two ends of each wave decomposition multiplexing structure are respectively connected to one of the second optical fiber coupling structures and two of the photodetectors, for
  • the composite optical signal is demultiplexed into two optical signals of different wavelengths, and the two optical signals of different wavelengths are respectively transmitted to the two photodetectors.
  • the active optical cable photonic integrated chip further includes:
  • At least n first monitoring structures are provided at the input end of each of the light splitting structures or one of the output ends, for monitoring the optical signal input to the modulator;
  • the 2n second monitoring structures are respectively provided at the output ends of the 2n modulators, and are used to monitor the optical signals output after being modulated by the modulators.
  • each of the light splitting structures includes a first-stage beam splitter, which divides the first optical signal or the second optical signal input from the corresponding input light coupling structure into two sub-optical signals and then transmits them respectively. to two of the 2n modulators;
  • each of the light splitting structures includes a first-level beam splitter and two second-level beam splitters, and the first-level beam splitter will input from the corresponding input light coupling structure.
  • the first optical signal or the second optical signal is divided into two channels and input to two second-level beam splitters respectively.
  • the two second-level beam splitters divide the received optical signals into two sub-optical signals. , and respectively output to the corresponding 4 modulators among the 2n modulators.
  • the beam splitters in the light splitting structure are all 3dB beam splitters, connected to the input end of each 3dB beam splitter of the 2n modulators or one of its two output ends.
  • the first monitoring structure is provided to monitor the input optical power of the two modulators connected to the 3dB beam splitter.
  • the number of the first monitoring structures is 2n, which are respectively provided between each of the modulators and the light splitting structure.
  • the first monitoring structure and the second monitoring structure each include a small splitting ratio coupler and a monitoring detector.
  • the small splitting ratio coupler is used to split a small light beam from the optical path.
  • the power monitoring light is sent to the monitoring detector to monitor the power of the optical signal transmitted along the optical path.
  • each of the wave decomposition and multiplexing structures includes a polarization rotation separator and two wave decomposition multiplexers.
  • the polarization rotation separator converts the composite received by the corresponding second optical fiber coupling structure.
  • the optical signal is divided into two lines of polarized light and transmitted to the two wave decomposition multiplexers respectively; the two wave decomposition multiplexers respectively demultiplex the linearly polarized light received by each into two optical signals of different wavelengths. , and are respectively transmitted to the two photodetectors connected thereto, and the optical signals of the same wavelength output by the two wavelength demultiplexers are transmitted to the same photodetector.
  • the n first optical fiber coupling structures are arranged side by side as an output optical fiber array coupling structure, and the n second optical fiber coupling structures are arranged side by side as an input optical fiber array coupling structure;
  • the n first optical fiber coupling structures and the n second optical fiber coupling structures are arranged side by side to form an optical fiber array coupling structure.
  • the transmitting end device and the receiving end device are provided on the same photonic integrated chip, or the transmitting end device and the receiving end device are respectively provided on different photonic integrated chips.
  • the photonic integrated chip is a silicon-based photonic chip
  • the modulator is a Mach-Zehnder modulator
  • An active optical cable in one embodiment, comprises an optical fiber array and optical modules at both ends thereof, each of the optical modules comprising:
  • the second single-mode laser is used to generate a second optical signal and couple the second optical signal to another optical coupling structure of the active optical cable photonic integrated chip.
  • the first optical signal and the second optical signal are single-mode optical signals with different wavelengths.
  • the optical fiber array includes 2n optical fibers, wherein the n optical fibers are respectively connected to n first optical fiber coupling structures in the optical module at one end and n second optical fiber coupling structures in the optical module at the other end. ; In addition, n optical fibers are respectively connected to n second optical fiber coupling structures in the optical module at one end and n first optical fiber coupling structures in the optical module at the other end.
  • the optical fiber is a single-mode optical fiber, and both the first optical fiber coupling structure and the second optical fiber coupling structure are mode matched with the single-mode optical fiber.
  • the above-mentioned multi-channel active optical cable photonic integrated chip uses a light splitting structure at the transmitting end to divide single-mode optical signals of two different wavelengths into n channels, and then uses n wavelength division multiplexers to perform wavelength division on 2n sub-optical signals. Multiplexing synthesizes composite optical signals containing two different wavelengths and outputs them through n optical fiber coupling structures. That is, using n output ports, 2n optical signals can be transmitted, effectively reducing the number of output ports in the transmitter.
  • the receiving end uses n optical fiber coupling structures to receive n input composite optical signals, and uses n polarization-independent wave decomposition and multiplexing structures to decompose the n input composite optical signals into 2n optical signals, that is, using n input ports It can receive 2n optical signals, effectively reducing the number of input ports in the receiving end.
  • the multi-channel active optical cable chip structure provided by the present disclosure is based on the above-mentioned wavelength division multiplexing/wavelength decomposition multiplexing structure, which can effectively reduce the number of input and output ports, thereby reducing the area and cost of the optical chip. At the same time, it can reduce the number of optical fibers connected to it and save optical fiber costs.
  • Figure 1 is a schematic structural diagram of an 8-channel silicon light active optical cable optical chip that follows the current structural expansion
  • Figure 2 is a schematic diagram of the optical fiber connection between two modules of the active optical cable based on the optical chip structure of the 8-channel silicon optical active optical cable in Figure 1;
  • Figure 3 is a schematic connection diagram of a multi-channel active optical cable in one embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of an active optical cable photonic integrated chip in one embodiment of the present disclosure
  • Figure 5 is a schematic structural diagram of an 8-channel active optical cable photonic integrated chip in one embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of a 4-channel active optical cable photonic integrated chip in one embodiment of the present disclosure
  • Figure 7 is a schematic structural diagram of an active optical cable photonic integrated chip in another embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of the 8-channel silicon photonic active optical cable optical chip structure that currently follows the typical AOC structure based on silicon photonic chips.
  • the 8-channel silicon photonic active optical cable optical chip structure includes two parts: the transmitter and the receiver. .
  • the transmitter device includes two input light coupling structures (fiber-PIC coupling structures), 8 first fiber coupling structures (fiber-PIC coupling structures), 8-channel modulators, 6 beam splitters and waveguides connecting these structures.
  • the light source of traditional active optical cables is VCSEL multi-mode lasers.
  • the multi-mode optical signals emitted by two VCSEL multi-mode lasers can be received through two input optical coupling structures respectively.
  • the light emitted by each laser will be received by three
  • the cascaded beam splitter is divided into 4 parts, and then connected to 4 modulators respectively.
  • the 8 sub-optical signals separated from the 2 multi-mode optical signals are respectively modulated by the modulator and output by the 8 first optical fiber coupling structures.
  • the receiving end includes 8 second optical fiber coupling structures (fiber-PIC coupling structures), 8 detectors, and waveguides connecting the coupling structures and detectors.
  • the optical fiber connection method between active optical cable optical modules based on the above structure is shown in Figure 2.
  • the active optical cable optical module uses the 8-channel silicon active optical cable chip shown in Figure 1, the number of transmission optical fibers needs to be the same as the channel
  • the number of active optical cables is the same as the number of coupling ports, the cost of optical fibers is higher, and the coupling difficulty between optical fibers and chips is also increased, which affects production efficiency. Therefore, the production cost of active optical cables is also greater, and it is not conducive to the miniaturization and packaging of active optical cables.
  • the present disclosure provides an active optical cable, which changes the light source (VCSEL multi-mode laser) of the traditional AOC module into two single-mode lasers with different wavelengths, and cooperates with the integrated designed photonic chip to convert the channels with different wavelengths in the multi-channel Compounding two or two, thereby reducing the number of ports of the optical chip and the number of transmission fibers, increasing the transmission rate of a single optical fiber, reducing the area of the optical chip, reducing the production cost of the optical chip and the overall failure rate of the optical chip, and reducing the cost of the optical fiber. , thereby reducing the cost and failure rate of active optical cables, and facilitating the miniaturization and packaging of active optical cables.
  • Figure 3 is a schematic connection diagram of a multi-channel active optical cable in one embodiment of the present disclosure.
  • the active optical cable includes an optical fiber array and optical modules (AOC modules) at both ends.
  • Each optical module includes a multi-channel active optical cable photonic integrated chip 10, a first laser 20 and a second laser 30. Both the first laser and the second laser are single-mode lasers.
  • the first laser 20 is optically coupled and docked with the active optical cable photonic integrated chip 10 to generate a first optical signal and couple the first optical signal to an incoming optical coupling structure of the active optical cable photonic integrated chip.
  • the second laser 30 is optically coupled to the active optical cable photonic integrated chip 10 for generating a second optical signal and coupling the second optical signal to another incoming light coupling structure of the active optical cable photonic integrated chip.
  • the first optical signal and the second optical signal are single-mode optical signals with different wavelengths.
  • the active optical cable photonic integrated chip 10 can divide the received first optical signal into n channels and the received second optical signal into n channels, and divide the n channels of first optical signals and n channels of second optical signals respectively. Wavelength division multiplexing is performed to form n-channel output composite optical signals, and 2n-channel optical signals are transmitted through n output ports (first optical fiber coupling structure), effectively reducing the number of output ports in the transmitter.
  • the active optical cable photonic integrated chip 10 can also receive n input composite optical signals, and wave decompose and multiplex the n input composite optical signals into 2n optical signals, that is, using n input ports (second optical fiber coupling structure) It realizes the reception of 2n optical signals, effectively reducing the number of input ports in the receiving end.
  • the active optical cable photonic integrated chip 10 As shown in Figure 3, compared with the traditional optical chip structure, when receiving/transmitting optical signals with the same number of channels, the active optical cable photonic integrated chip 10 provided by the present disclosure has fewer ports, which can effectively reduce the number of photonic Integrated chip area, reducing costs. Therefore, the above-mentioned active optical cable can effectively reduce production costs and overall failure rate.
  • the optical fiber array 40 may include 2n optical fibers.
  • the n optical fibers among the 2n optical fibers are respectively connected to the n first optical fiber coupling structures in the optical module at one end of the optical fiber array 40 and the n second optical fiber coupling structures in the optical module at the other end of the optical fiber array 40.
  • the two ends of each of the n optical fibers are respectively connected to a first optical fiber coupling structure in the optical module at one end and a second optical fiber coupling structure in the optical module at the other end.
  • the other n optical fibers among the n optical fibers are respectively connected to the n second optical fiber coupling structures in the optical module at one end and the n first optical fiber coupling structures in the optical module at the other end.
  • two ends of each of the other n optical fibers are respectively connected to a second optical fiber coupling structure in the optical module at one end and a first optical fiber coupling structure in the optical module at the other end.
  • the optical fiber may be a single-mode optical fiber.
  • the first optical fiber coupling structure and the second optical fiber coupling structure of the active optical cable photonic integrated chip are both mode-matched with the single-mode optical fiber.
  • optical fiber arrays are usually used to achieve optical coupling with the port array in the optical chip.
  • the cost of the optical fibers in the production cost of the active optical cable also increases accordingly.
  • the active optical cable provided by the present disclosure can correspondingly reduce the number of optical fibers in the optical fiber array by reducing the number of ports of the active optical cable photonic integrated chip 10 . Therefore, when the optical fiber array is coupled to the port array of the active optical cable photonic integrated chip 10, the distance error accumulation between adjacent optical fibers in the optical fiber array is smaller than the error in the traditional structure, and the optical fiber array and port coupling accumulation The losses are also less. In addition, the number of optical fibers in the optical fiber array is reduced, and the material cost of the optical fiber in the production cost is also reduced accordingly, thereby effectively reducing the production cost of the active optical cable.
  • the present disclosure also provides an active optical cable photonic integrated chip.
  • the active optical cable photonic integrated chip in one or more embodiments provided by the embodiments of the present disclosure is as described in the following embodiments.
  • the term “unit” or “structure” may be a combination of hardware that implements a predetermined function.
  • the present disclosure proposes a multi-channel active optical cable photonic integrated chip based on an on-chip wavelength division multiplexing/wavelength decomposition multiplexing structure, which can effectively reduce the number of input and output ports (fiber coupling structures) of the integrated chip.
  • Figure 4 is a schematic structural diagram of a multi-channel active optical cable photonic integrated chip in one embodiment of the present disclosure.
  • the active optical cable photonic integrated chip includes a substrate layer and a waveguide layer, and the waveguide layer is provided with a transmitter device. and receiving end devices.
  • the transmitter device and the receiver device may be provided on the same photonic integrated chip. Alternatively, the transmitter device and the receiver device may be respectively provided on different photonic integrated chips.
  • the transmitting end device may include two light-input coupling structures 510, two light-splitting structures (the two light-splitting structures may be a first light-splitting structure 100 and a second light-splitting structure 200, respectively), 2n modulators 300, n wavelength division multiplexers 400 and n first optical fiber coupling structures 520, where n is a positive integer. In some embodiments of the present disclosure, the value of n may be a positive even number.
  • the two input light coupling structures 510 are respectively used to receive a first optical signal and a second optical signal.
  • the first optical signal and the second optical signal are single-mode optical signals with different wavelengths.
  • the first optical signal can be generated by a first laser, and one of the optical coupling structures 510 is connected to the optical coupling of the first laser, so the first optical signal emitted by the first laser can be connected to the active optical cable photon integrated chip 10 through the optical coupling structure 510.
  • the second optical signal can be generated by a second laser, and another optical coupling structure 500 is connected to the optical coupling of the second laser, so the second optical signal emitted by the second laser can also be connected to the active optical cable photon integrated chip 10 through the optical coupling structure 510.
  • the first light splitting structure 100 is connected to the incoming light coupling structure 510 for receiving the first optical signal.
  • the first light splitting structure 100 may be used to perform light splitting processing on the first optical signal.
  • the first optical signal emitted by the first laser is transmitted to the first light splitting structure 100 through the input light coupling structure 510, it can be divided into n channels of sub-optical signals.
  • the n modulators are respectively connected to the first light splitting structure and are used to receive n sub-light signals output by the first light splitting structure.
  • the n path sub-optical signals are respectively transmitted to the n modulators 300 for modulation.
  • the modulator 300 can load the high-speed electrical signal onto the first optical signal for transmission.
  • the second light splitting structure 200 is connected to the incoming light coupling structure 510 for receiving the second optical signal.
  • the second light splitting structure 200 can be used to perform light splitting processing on the second optical signal.
  • the second optical signal emitted by the second laser is transmitted to the second light splitting structure 200 through the input light coupling structure 510, it can also be divided into n-channel optical sub-signals.
  • n modulators are respectively connected to the second light splitting structure and used to receive n sub-light signals output by the second light splitting structure.
  • the n path sub-optical signals are respectively transmitted to another n modulators 300 for modulation.
  • the modulator 300 can load the high-speed electrical signal onto the second optical signal for transmission.
  • the photonic integrated chip can be a silicon-based photonic chip
  • the modulator 300 is a Mach-Zehnder modulator.
  • each wavelength division multiplexer includes two input terminals and one output terminal.
  • the two input terminals are respectively connected to two modulators 300, the output terminals are respectively connected to one of the first optical fiber coupling structures, and the two modulators connected to the same wavelength division multiplexer are respectively connected to each other.
  • Different light splitting structures that is, among the two modulators connected to the same wavelength division multiplexer, one modulator is connected to the first light splitting structure, and the other modulator is connected to the second light splitting structure.
  • the n first optical fiber coupling structures can be regarded as n output ports for outputting optical signals.
  • n in a manner in which a modulated sub-optical signal of the first optical signal and a modulated sub-optical signal of the second optical signal are transmitted to the same wavelength division multiplexer 400, n first The sub-optical signals of the optical signal and the sub-optical signals of n second optical signals are respectively connected to n wavelength division multiplexers 400.
  • the wavelength division multiplexer 400 is a device that can combine two or more optical carrier signals carrying information at different wavelengths together and couple them to the same optical waveguide of the optical line for transmission. Therefore, after the modulated sub-optical signals of the first optical signal and the sub-optical signals of the second optical signal are transmitted to the same wavelength division multiplexer 400, the wavelength division multiplexer 400 can convert the sub-optical signals of the first optical signal into The sub-optical signals of the second optical signal are merged together to form an output composite optical signal, and the merged first optical signal and the second optical signal are coupled to the same optical fiber through the first optical fiber coupling structure 520. Optical signals of different wavelengths can be transmitted through the same optical fiber waveguide.
  • the wavelength division multiplexer/demultiplexer combines/separates optical signals of two or more different wavelengths
  • the wavelengths of the first optical signal and the second optical signal are different
  • the wavelength division multiplexer can also receive the composite optical signal and combine the first optical signal and the composite optical signal.
  • the second optical signal is separated.
  • the sub-signals of the n-channel first optical signal and the sub-signals of the n-channel second optical signal are transmitted to the same wavelength division multiplexer 400.
  • Signals are alternately connected to n wavelength division multiplexers 400 in pairs.
  • wavelength division multiplexing technology can be used to multiplex the sub-signals of the first optical signal and the sub-signals of the second optical signal into one channel for output, that is, the two optical signals can share one output port. and optical fiber to realize data transmission.
  • the n output ports can be used to achieve signal output of 2n optical signals, effectively reducing the number of output ports.
  • the transmitter provided by the present disclosure has fewer output ports. Therefore, the chip port failure rate of the active optical cable photonic integrated chip provided by the present disclosure is lower than the chip failure rate of the traditional optical chip structure, so that the overall failure rate of the chip is also lower. In addition, there needs to be a certain distance between ports. When the number of output ports is reduced in the present disclosure, the area of the optical chip will be correspondingly reduced, thereby reducing the production cost of the chip, and it is conducive to the miniaturization of the active optical cable. packaging.
  • the receiving end device of the above-mentioned active optical cable photonic integrated chip may include n second optical fiber coupling structures 530 , n polarization-independent wavelength decomposition and multiplexing structures 600 and 2n detectors 630 .
  • n polarization-independent wavelength decomposition and multiplexing structures 600 are used to demultiplex n-channel composite optical signals into 2n-channel optical signals, and transmit them to 2n optical detectors 630 respectively.
  • the n second optical fiber coupling structures and the n first optical fiber coupling structures may be arranged side by side to form an optical fiber array coupling structure.
  • n first optical fiber coupling structures may be arranged side by side as an output optical fiber array coupling structure
  • the n second optical fiber coupling structures may be arranged side by side as an input optical fiber array coupling structure
  • each wavelength decomposition multiplexing structure 600 is connected to one of the second optical fiber coupling structures 530, and the other end is connected to two of the photodetectors 630.
  • a wavelength demultiplexing structure 600 may include one polarization rotation splitter 610 and two wavelength demultiplexers 620 .
  • the second optical fiber coupling structure 530 can be used as an input port of the receiving end to receive an optical signal input from an external device.
  • the received optical signal is an input composite optical signal composed of two optical signals of different wavelengths.
  • the second optical fiber coupling structure 530 is connected to the polarization rotation splitter 610.
  • the polarization rotation splitter 610 can divide the input composite optical signal received by the second optical fiber coupling structure 530 into two lines of polarized light.
  • the two lines of polarized light are respectively transmitted to the two wave decomposition multiplexers.
  • the two optical signals separated by the polarization rotation separator 610 are still composite optical signals.
  • the polarization rotation splitter 610 includes a first output end and a second output end.
  • the first output end is connected to one of the wavelength decomposition multiplexers 620
  • the second output end is connected to the other wavelength decomposition multiplexer 620 . .
  • the main function of the wavelength demultiplexer 620 is to separate multiple wavelength signals transmitted in an optical waveguide.
  • the wavelength demultiplexer 620 can separate the composite optical signal containing two different wavelengths from the linearly polarized light transmitted by the first output end or the second output end of the polarization rotation splitter 610 .
  • the two wavelength demultiplexers 620 respectively demultiplex the linearly polarized light received by each into two optical signals of different wavelengths, and respectively transmit them to the two photodetectors 630 connected thereto.
  • the optical signals of the same wavelength output by the two wavelength demultiplexers 620 are transmitted to the same photodetector 630 .
  • the first output end of the first wavelength demultiplexer 620 is connected to the first end of the first photodetector 630 , and the second end of the first wavelength demultiplexer 620 The output terminal is connected to the first terminal of the second photodetector 630.
  • the first output terminal of the second wavelength decomposition multiplexer 620 is connected to the second terminal of the first photodetector 630, and the second output terminal of the second wavelength decomposition multiplexer 620 is connected to the second The second end of the photodetector 630 is connected. That is, the two optical signals separated by a wavelength demultiplexer 620 are respectively transmitted to different optical detectors 630 for detection. Moreover, among the four optical signals separated by the two wavelength demultiplexers 620, two optical signals with the same wavelength are transmitted to the same optical detector 630 for detection.
  • light detector 630 may be a high speed detector.
  • the signal received by the input end of the optical chip is usually a high-frequency signal, so a high-speed detector is used to detect the high-frequency input optical signal.
  • the high-speed detector can also obtain the optical power of the optical signal.
  • the first optical detector 630 can detect the optical signal of the first wavelength separated by the two wavelength demultiplexers 620 . At the same time, the first photodetector 630 can also obtain the optical power of the first wavelength optical signal. Similarly, the second photodetector 630 can detect the optical signal of the second wavelength. At the same time, the second photodetector 630 can also obtain the optical power of the second wavelength optical signal.
  • the transmitting end device can use the first optical fiber coupling structure as an output port to realize connection with the external device, and the receiving end device can use the second optical fiber coupling structure as the input port to realize the connection with the external device.
  • the first optical fiber coupling structure and the second optical fiber coupling structure in the present disclosure may both be fiber-PIC coupling structures.
  • the above-mentioned active optical cable photonic integrated chip by setting the above-mentioned wave decomposition multiplexer 620, can use the wave decomposition multiplexing technology to decompose the two optical signals in the composite optical signal, that is, one input port can receive two input optical signals. , two optical signals can share an input port to achieve signal input.
  • the n input ports can receive 2n input optical signals, thereby effectively reducing the number of input ports at the receiving end. Number of.
  • the receiving end provided by the present disclosure can be provided with fewer input ports. Therefore, the chip port failure rate of the active optical cable photonic integrated chip provided by the present disclosure is lower than the chip failure rate of the traditional optical chip structure, and the overall chip failure rate is also lower. There needs to be a certain distance between ports. After the number of input ports is reduced in the present disclosure, the area of the optical chip is correspondingly reduced, the production cost of the chip is also reduced, and it is conducive to the miniaturization and packaging of active optical cables.
  • Figure 5 is a schematic structural diagram of an 8-channel active optical cable photonic integrated chip in one embodiment of the present disclosure.
  • the first light splitting structure 100 may include three beam splitters, and the three beam splitters are used to divide the first optical signal into four first optical signals.
  • the three beam splitters may include one first-stage beam splitter and two second-stage beam splitters.
  • the first-stage beam splitter of the first light splitting structure 100 may be the beam splitter 101 .
  • the two second-stage beam splitters of the first light splitting structure 100 may be the beam splitter 102 and the beam splitter 103 respectively.
  • a beam splitter is an optical device that can divide a beam of light into two or more beams of light according to a preset ratio. For example, a beam splitter can divide a beam of light into two beams of light equally, or it can divide it into two beams of light according to 2:8. The ratio is divided into two beams of light. In some embodiments of the present disclosure, the beam splitter selected is a beam splitter that equally divides one beam of light into two beams of light.
  • the beam splitter 101 is connected to the incoming light coupling structure 510 for receiving the first optical signal. After the first optical signal is transmitted to the beam splitter 101 through the incoming light coupling structure 510, the beam splitter 101 can transmit the first optical signal. Divided into two ways. The first output end of the beam splitter 101 is connected to the beam splitter 102, that is, one of the optical signals split out by the beam splitter 101 will be transmitted to the beam splitter 102 for splitting again. The beam splitter 102 can further divide one of the optical signals split by the beam splitter 101 into two sub-optical signals of the first optical signal.
  • the second output end of the beam splitter 101 is connected to the beam splitter 103, that is, the other optical signal split by the beam splitter 101 will be transmitted to the beam splitter 103 for splitting again.
  • the beam splitter 103 can further divide another optical signal splitted by the beam splitter 101 into two sub-optical signals of the first optical signal.
  • the optical path structure of the second optical splitting structure 200 is the same as the optical path structure of the first optical splitting structure 100.
  • the second optical splitting structure 200 may also include three beam splitters, and the three beam splitters are used to divide the second optical signal into four channels. light signal.
  • the three beam splitters may include one first-stage beam splitter and two second-stage beam splitters.
  • the first-stage beam splitter of the second light splitting structure 200 may be the beam splitter 104 .
  • the two second-level beam splitters of the second light splitting structure 200 may be the beam splitter 105 and the beam splitter 106 respectively.
  • the beam splitter 104 is connected to the incoming light coupling structure 510 for receiving the second optical signal. After the second optical signal is transmitted to the beam splitter 104 through the incoming light coupling structure 510, the beam splitter 104 converts the second light signal into the beam splitter 104. The signal is divided into two paths and transmitted to beam splitter 105 and beam splitter 106 respectively.
  • the beam splitter 105 can further divide one of the optical signals separated by the beam splitter 104 into two sub-signals of the second optical signal, and the beam splitter 106 can further divide the other optical signal separated by the beam splitter 104. are sub-signals of the two second optical signals.
  • the 8-channel active optical cable photonic integrated chip may also include three cross waveguides, and the three cross waveguides are the first cross waveguide 107, the second cross waveguide 108, and the third cross waveguide 109 respectively.
  • the optical signal separated from the first output end of the beam splitter 101 is directly transmitted to the beam splitter 102 for light splitting processing.
  • the second output end of the beam splitter 101 is connected to the first end of the first cross waveguide 107. terminals connected.
  • the optical signal separated from the first output end of the beam splitter 104 is directly transmitted to the beam splitter 105 for light splitting processing.
  • the second output end of the beam splitter 104 is connected to the second end of the first cross waveguide 107 . Therefore, the second optical signal branched out by the beam splitter 101 can be interleaved with the second optical signal optical path branched out by the beam splitter 104 .
  • the third end of the first cross waveguide 107 is connected to the beam splitter 102.
  • the optical signal separated from the second output end of the beam splitter 101 is transmitted to the beam splitter 103 through the first cross waveguide 107.
  • the beam splitter 102 can The optical signal split out from the first output end of the first-stage beam splitter 601 is further divided into two channels. At this point, the first optical signal is divided into four channels after being split by the three beam splitters: beam splitter 101, beam splitter 102 and beam splitter 103.
  • the fourth end of the first cross waveguide 107 is connected to the beam splitter 105, and the optical signal separated from the second output end of the beam splitter 104 is transmitted to the beam splitter 106 through the first cross waveguide 107.
  • the 106 can further divide the optical signal splitted from the second output end of the beam splitter 104 into two channels. At this point, the second optical signal is divided into four paths after being split by the three beam splitters: beam splitter 104, beam splitter 105 and beam splitter 106.
  • the eight modulators in the transmitter are respectively modulator 301, modulator 302, modulator 303, modulator 304, modulator 305, modulator 306, and modulator 308.
  • the four wavelength division multiplexers in the transmitter are respectively wavelength division multiplexer 401, wavelength division multiplexer 402, wavelength division multiplexer 403, and wavelength division multiplexer 404.
  • the sub-signal of the second optical signal separated from the first output end of the beam splitter 106 is transmitted to the modulator 302 through the second crossed waveguide 108, so that the modulator 302 is used to modify the sub-signal output from the first output end of the beam splitter 106.
  • the sub-signal of the second optical signal is adjusted.
  • the sub-signal of the other first optical signal separated from the second output end of the beam splitter 102 is transmitted to the modulator 303 through the second cross waveguide 108, so that the modulator 303 is used to output to the second output end of the beam splitter 102.
  • the sub-signals of the first optical signal are adjusted.
  • the sub-signal of the second optical signal output from the first output end of the beam splitter 105 is transmitted to the modulator 306 through the third crossed waveguide 109, so that the modulator 306 is used to adjust the sub-signal of the second optical signal.
  • the sub-signal of the other first optical signal separated from the second output end of the beam splitter 103 is transmitted to the modulator 307 through the third cross waveguide 109, so that the modulator 307 is used to output to the second output end of the beam splitter 103.
  • the sub-signals of the first optical signal are adjusted.
  • connection method of the second cross waveguide and the third cross waveguide please refer to the first cross waveguide.
  • the first light splitting structure 100 and the second light splitting structure 200 can be used to divide the first optical signal and the second optical signal of different wavelengths into 4 channels respectively, and connect them to 8 different channels of modulators respectively.
  • the sub-signals of one first optical signal and the sub-signals of the second optical signal are connected to the same wavelength division multiplexer 400, and the sub-signals of the four first optical signals and the four second optical signals are connected to the same wavelength division multiplexer 400.
  • the sub-signals are alternately connected to four wavelength division multiplexers 400 in pairs. Using four wavelength division multiplexers 400, eight optical signals can be multiplexed into four optical signals, thereby effectively reducing the number of output ports in the transmitter.
  • first light splitting structure 100 and the second light splitting structure 200 of other structures may be used to achieve the purpose of dividing the first optical signal into 4 paths and the second optical signal into 4 paths.
  • the first light splitting structure 100 and the second light splitting structure 200 may also be used to divide the first optical signal and the second optical signal into other numbers of optical signals according to actual application requirements.
  • Figure 6 is a schematic structural diagram of a 4-channel active optical cable photonic integrated chip in one embodiment of the present disclosure.
  • the above-mentioned active optical cable photonic integrated chip can realize 4-channel optical Signal input or output.
  • both the first light splitting structure 100 and the second light splitting structure 200 may include a first-stage beam splitter.
  • the first-stage beam splitter of the first light splitting structure 100 may be the beam splitter 110 .
  • the beam splitter 110 is connected to the incoming light coupling structure 510 for receiving the first optical signal. After the first optical signal is transmitted to the beam splitter 110 through the incoming light coupling structure 510, the beam splitter 110 can transmit the first optical signal. Divided into two ways.
  • the optical path structure of the second optical splitting structure 200 is the same as the optical path structure of the first optical splitting structure 100 .
  • the first-stage beam splitter of the second optical splitting structure 200 may be the beam splitter 111 .
  • the beam splitter 111 is connected to the incoming light coupling structure 510 for receiving the second optical signal. After the second optical signal is transmitted to the beam splitter 111 through the incoming light coupling structure 510, the beam splitter 111 can transmit the second optical signal. Divided into two ways.
  • a cross waveguide can also be used to better realize the arrangement of the optical path in the optical chip, simplifying the circuit design in the optical chip. Therefore, a cross waveguide 112 can also be included in the 4-channel active optical cable photonic integrated chip.
  • the four modulators in the transmitter device are modulator 309, modulator 310, modulator 311, and modulator 312.
  • the two wavelength division multiplexers in the transmitter device are wavelength division multiplexer 405 and wavelength division multiplexer 406.
  • the first output end of the beam splitter 110 is connected to the modulator 309 , so that the modulator 309 is used to adjust the sub-signal of the first optical signal output by the first output end of the beam splitter 110 .
  • the second output end of the beam splitter 110 is connected to the first end of the crossover waveguide 112 .
  • the first output end of the beam splitter 111 is connected to the second end of the cross waveguide 112 .
  • the crossing waveguide 112 can realize the intersection between the two optical paths, the second output end of the beam splitter 110 and the first output end of the beam splitter 111.
  • the fourth end of the cross waveguide 112 is connected to the modulator 310 , that is, the sub-signal of the second optical signal split from the first output end of the beam splitter 111 is transmitted to the modulator 310 through the cross waveguide 112 , so as to utilize the modulator 310
  • the sub-signals of the second optical signal output from the first output end of the beam splitter 111 are adjusted.
  • the output end of the modulator 309 and the output end of the modulator 310 are both connected to the input end of the wavelength division multiplexer 405. That is, the wavelength division multiplexer 405 can be used to split the first path of the beam splitter 110.
  • the sub-signals of the optical signal and the sub-signals of the first and second optical signals split out by the beam splitter 111 are modulated and multiplexed into one output composite optical signal.
  • the third end of the cross waveguide 112 is connected to the modulator 311, that is, the sub-signal of the other first optical signal split from the second output end of the beam splitter 110 is transmitted to the modulator 311 through the cross waveguide 112, so as to utilize modulation.
  • the detector 311 adjusts the sub-signals of the first optical signal output from the second output end of the beam splitter 110.
  • the second output end of the beam splitter 111 is connected to the modulator 312, so that the modulator 321 is used to adjust the sub-signal of the second optical signal output by the second output end of the beam splitter 111.
  • the output end of the modulator 311 and the output end of the modulator 312 are both connected to the input end of the wavelength division multiplexer 406.
  • the wavelength division multiplexer 406 can be used to split the second path of the first path splitted by the beam splitter 110.
  • the sub-signals of the optical signal and the sub-signals of the second second optical signal split out by the beam splitter 111 are modulated and multiplexed into one output composite optical signal.
  • the first light splitting structure 100 and the second light splitting structure 200 can be used to divide the sub-signals of the first optical signal and the sub-signals of the second optical signal with different wavelengths into two channels respectively, and connect them to four different modulators respectively.
  • a sub-signal of a first optical signal and a sub-signal of a second optical signal are connected to the same wavelength division multiplexer 400, and the sub-signals of the two first optical signals and the two second optical signals are connected to the same wavelength division multiplexer 400.
  • the sub-signals are alternately connected to the two wavelength division multiplexers 400 in pairs. Using two wavelength division multiplexers 400, sub-signals of four optical signals can be multiplexed into two optical signals, thereby effectively reducing the number of output ports in the transmitter.
  • first light splitting structure 100 and the second light splitting structure 200 of other structures may also be used to achieve the purpose of splitting the first optical signal into two paths and splitting the second optical signal into two paths.
  • Figure 7 is a schematic structural diagram of an active optical cable photonic integrated chip in another embodiment of the present disclosure.
  • the active optical cable photonic integrated chip may also include at least n first monitoring structures 700 and 2n second monitoring structures. Structure 800.
  • At least n first monitoring structures 700 are provided at the input end of each optical splitting structure or one of the output ends, for monitoring the optical signal input to the modulator.
  • the beam splitters in the light splitting structure are all 3dB beam splitters.
  • beam splitters 101, 102, 103, 104, 105, and 106 are all 3dB beam splitters.
  • beam splitters 110 and 111 are all 3dB beam splitters.
  • the 3dB beam splitter splits the light very accurately, and the optical power of the two branches is basically equal. Therefore, the 3dB beam splitter can be calculated by only monitoring the optical power of one of the branches or by monitoring the optical power before splitting at the input end of the 3dB beam splitter. Optical power of the two output branches.
  • the active optical cable photonic integrated chip may be provided and may also include n first monitoring structures 700 .
  • a first monitoring structure 700 is provided at the input end of each 3dB beam splitter connected to the 2n modulators. At this time, by monitoring the optical power before splitting at the input end of one of the 3dB beam splitters, the input optical power of the two modulators connected to the 3dB beam splitter can be effectively monitored.
  • the active optical cable photonic integrated chip may also include n first monitoring structures 700 .
  • one of the two output ends of each of the 3dB beam splitters connected to the 2n modulators is provided with the first monitoring structure 700 .
  • the input optical power of the two modulators connected to the 3dB beam splitter can be monitored.
  • first monitoring structure 700 at both output ends (corresponding to the input ends of each modulator) of each 3dB beam splitter connected to the 2n modulators.
  • the beam splitters in the light splitting structure are not limited to 3dB beam splitters, and the types of each beam splitter can be the same or different.
  • the beam splitter in the light splitting structure may also be a Y-shaped beam splitter or a multi-mode beam splitter (MMI).
  • MMI multi-mode beam splitter
  • the active optical cable photonic integrated chip may also include 2n first monitoring structures 700, and the 2n first monitoring structures 700 are respectively provided between each modulator and the light splitting structure. .
  • the two output ends of each beam splitter connected to the 2n modulators are provided with a first monitoring structure 700.
  • the input end of the first monitoring structure 700 is connected to an output end of the first light splitting structure 100 or the second light splitting structure 200, and the output end is connected to the input end of a modulator 300.
  • the sub-signals of the n first optical signals branched out by the first optical splitting structure 100 are respectively monitored by n first monitoring structures 700 to monitor the optical signals input to n of the modulators.
  • the sub-signals of the n second optical signals branched out by the second light splitting structure 200 are respectively monitored by another n first monitoring structures 700 to monitor the optical signals input to the other n modulators.
  • 2n second monitoring structures 800 are respectively arranged at the output ends of the 2n modulators, and are used to monitor the optical signals output after being modulated by the modulators.
  • the input end of a second monitoring structure 800 is connected to the output end of a modulator 300, and the modulated sub-signals of n first optical signals are respectively monitored through n second monitoring structures 800.
  • the modulated sub-signals of the n second optical signals are respectively monitored through another n second monitoring structures 800 .
  • the above-mentioned active optical cable photonic integrated chip can realize real-time monitoring of the sub-signals of the first optical signal and the sub-signals of the second optical signal before and after modulation by arranging at least n first monitoring structures 700 and 2n second monitoring structures 800.
  • the operating point and loss of the modulator can also be controlled based on the monitoring situation to determine whether the modulation result meets the expected effect, thereby preventing problems that may affect the normal operation of the transmitter due to abnormalities in the modulator.
  • a first monitoring structure 700 may include a small split ratio coupler 701 and a monitoring detector 702 .
  • the small splitting ratio coupler is used to split a small optical power monitoring light from the optical path to the monitoring detector, so as to monitor the power of the optical signal transmitted by the optical path.
  • a small splitting ratio coupler is a device that can split an input signal into two or more optical signals according to a preset ratio.
  • the input optical signal can be divided into two parts according to the ratio of 95:5 or 9:1 or 8:2.
  • the input end of a small splitting ratio coupler 701 is connected to an output end of the first splitting structure 100 or an output end of the second splitting structure 200 , and the smaller splitting output end of the small splitting ratio coupler 701 is connected to the monitoring detector 702 connected to the input terminal.
  • the small splitting ratio coupler 701 can divide the optical signal splitted by the beam splitter into two parts according to a preset ratio.
  • the 2n small splitting ratio couplers 701 in the 2n first monitoring structures are respectively connected to the n output terminals of the first splitting structure 100 and the n output terminals of the second splitting structure 200, and are used to respectively pair the n first splitting ratios.
  • the sub-signals of the optical signal and the sub-signals of the n second optical signals are monitored.
  • the separated light signal with a smaller proportion can be input into the monitoring detector 702, and the separated light signal with a larger proportion can be input into the modulator 300 for modulation.
  • the monitoring detector 702 may obtain the optical power of the sub-signal of the first optical signal or the sub-signal of the second optical signal before modulation. By inputting a smaller proportion of the optical signal into the monitoring detector 702 for detection, the loss of the sub-signal of the first optical signal or the second optical signal before modulation can be reduced.
  • the small splitting ratio coupler 701 can divide the first optical signal output from the first output end of the beam splitter 110 into two parts according to a ratio of 95:5.
  • a portion of the first optical signal with a proportion of 5% is input into the monitoring detector 702, and the monitoring detector 702 can determine the optical power value of the first optical signal according to the received first optical signal.
  • a part of the sub-signals of the first optical signal with a proportion of 95% is input into the modulator 309, then 95% of the sub-signals of the first optical signal split out from the first output end of the beam splitter 110 can be transmitted to subsequent devices.
  • the optical path structure of the second monitoring structure 800 may be the same as the optical path structure of the first monitoring structure 700, and also includes a small splitting ratio coupler and a monitoring detector.
  • a small splitting ratio coupler is used to divide the modulated sub-signal of the first optical signal or the sub-signal of the second optical signal into two parts.
  • the separated smaller proportion optical signal is input into the monitoring detector for monitoring, and the separated larger proportion optical signal is input into the wavelength division multiplexer 400 for transmission.
  • the monitoring detector can acquire the optical power of the modulated sub-signal of the first optical signal or the sub-signal of the second optical signal. By inputting a smaller proportion of the optical signal into the monitoring detector for detection, the loss of the modulated first optical signal or the second optical signal can be reduced.
  • the transmitting end part and the receiving end part of the active optical cable photonic integrated chip may be disposed on the same chip. In some other embodiments, the transmitting end part and the receiving end part of the active optical cable photonic integrated chip can also be provided on two different chips. The above-mentioned active optical cable photonic integrated chip can be provided on the silicon photonic chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种多通道有源光缆光子集成芯片及有源光缆。多通道有源光缆光子集成芯片包括发射端器件和接收端器件,发射端器件包括两个入光耦合结构(510)、两个分光结构(100,200)、2n个调制器(300)、n个波分复用器(400)和n个第一光纤耦合结构(520),n为正整数;接收端器件包括n个第二光纤耦合结构(530)、n个偏振无关的波分解复用结构(600)和2n个光探测器(630)。基于上述波分复用(400)/波分解复用结构(600),有源光缆光子集成芯片可以有效减少发射端和接收端的端口数目,从而减小光芯片的面积和成本。

Description

多通道有源光缆光子集成芯片及有源光缆
本申请要求于2022年9月23日提交中国专利局、申请号为202222526091.5、发明名称为“多通道有源光缆光子集成芯片及有源光缆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及光通信技术领域,特别是涉及一种多通道有源光缆光子集成芯片及有源光缆。
背景技术
目前全球光纤通讯行业正在向着高度集成化和低功耗的方向发展,光通讯器件作为光通讯行业的上游产品,在数据通讯领域起到关键作用。当前数据通讯领域对信息传输速率的要求越来越高,光模块作为光纤通信系统中的核心器件,高速信息传输要求光模块不断提高集成度,小型化封装。采用硅光芯片替代原先光模块内自由空间的光学元件,有效提高了集成度,利于光模块小型化封装。
有源光缆(Active Optical Cables,AOC)包括中间的传输光缆及其两端的光模块,目前的有源光缆的光模块一般采用VCSEL激光器芯片和探测器芯片与硅光芯片耦合。VCSEL为多模激光器芯片,相应地,有源光缆的光纤也采用多模光纤,单根光纤只能传输一路多模光信号,多少通道的光信号就需要多少根上传光纤和下载光纤,同时硅光芯片上需要设计同样数量的输入端口和输出端口。当有源光缆速率提升,通道扩展时,如8通道有源光缆,就需要16根多模光纤,而且,光模块内的硅光芯片结构共需设置18个fiber-PIC(fiber-Photonic Integrated Circuit,光纤-光子集成芯片)耦合端口,其中16个耦合端口分别对接相应的多模光纤,2个端口耦合两个VCSEL激光器。然而,端口与端口彼此之间需要间隔一定的距离以与光纤耦接,因此设置的端口越多将导致光芯片的面积较大,每个芯片的制作成本也将更高,而且不利于光模块的小型化封装。
实用新型内容
基于此,有必要针对的现有多通道有源光缆光芯片面积较大、制作成本高的问题,提供一种多通道有源光缆光子集成芯片及有源光缆。
一种多通道有源光缆光子集成芯片,包括衬底层和波导层,所述波导层设有发射端器件和接收端器件,
所述发射端器件包括:
两个入光耦合结构,分别用于接收第一光信号和第二光信号,所述第一光信号和所述第二光信号为不同波长的单模光信号;
两个分光结构,分别连接所述两个入光耦合结构,每一所述分光结构用于将对应的入光耦合结构接收的第一光信号或第二光信号分成n路子光信号,n为大于1的整数;
2n个调制器,分别连接所述两个分光结构,2n个调制器分别接收所述两个分光结构输出的所述2n路子光信号,2n路子光信号与所述2n个调制器一一对应,n为正整数;
n个波分复用器和n个第一光纤耦合结构,每一所述波分复用器包括两个输入端和一个输出端,所述两个输入端分别连接两个所述调制器,所述输出端分别连接一个所述第一光纤耦合结构,与同一所述波分复用器连接的两个所述调制器分别连接不同的分光结构;
按照一路经过调制的所述第一光信号的子光信号与一路经过调制的所述第二光信号的子光信号分别传输至同一个波分复用器的两个输入端的方式,将n路所述第一光信号的子光信号和n路所述第二光信号的子光信号分别接入n个所述波分复用器,每一所述波分复用器用于将接收到的两路所述子光信号合为一路复合光信号,而输出至所述第一光纤耦合结构,且经所述第一光纤耦合结构输出;
所述接收端器件包括:
n个第二光纤耦合结构,每一所述第二光纤耦合结构用于接收外部输入的一路具有两种不同波长的复合光信号;
n个偏振无关的波分解复用结构和2n个光探测器,每一所述波分解复用结构的两端分别连接一个所述第二光纤耦合结构和两个所述光探测器,用于将所述复合光信号解复用为两路不同波长的光信号,且将所述两路不同波长的光信号分别传输至两个所述光探测器。
在其中一个实施例中,所述有源光缆光子集成芯片还包括:
至少n个第一监测结构,所述至少n个第一监测结构设于每个所述分光结构的输入端或者其中一路输出端,用于监测输入所述调制器的光信号;
2n个第二监测结构,所述2n个第二监测结构分别设于所述2n个调制器的输出端中,用于监测经所述调制器调制后输出的光信号。
在其中一个实施例中,
所述n为2时,每一所述分光结构包括一个第一级分束器,将从对应的入光耦合结构输入的第一光信号或第二光信号分为两路子光信号后分别传输至所述2n个调制器中的两个调制器;
或者,所述n为4时,每一所述分光结构包括一个第一级分束器和两个第二级分束器,所述第一级分束器将从对应的入光耦合结构输入的第一光信号或第二光信号分为两路并分别输入至两个第二级分束器,两个第二级分束器将各自接收到的光信号再各分为2路子光信号,并分别输出至所述2n个调制器中与其对应的4个调制器。
在其中一个实施例中,所述分光结构中的分束器均为3dB分束器,连接所述2n个调制器的每一所述3dB分束器的输入端或其两个输出端的其中一个设有所述第一监测结构,以监测该3dB分束器连接的两个调制器的输入光功率。
在其中一个实施例中,所述第一监测结构的数量为2n个,分别设于每一所述调制器与所述分光结构之间。
在其中一个实施例中,所述第一监测结构和所述第二监测结构均包括小分光比耦合器和监测探测器,所述小分光比耦合器用于从所在光路中分出一较小光功率的监测光至所述监测探测器,以监测所在光路传输的光信号的功率。
在其中一个实施例中,每一所述波分解复用结构包括一偏振旋转分离器和两个波分解复用器,所述偏振旋转分离器将对应的所述第二光纤耦合结构接收的复合光信号分成两路线偏振光,并分别传输至两个所述波分解复用器;两个所述波分解复用器分别将各自接收的线偏振光解复用为两路不同波长的光信号,并分别传输至与其连接的两个所述光探测器,两个所述波分解复用器输出的相同波长的光信号传输至同一个所述光探测器。
在其中一个实施例中,所述n个第一光纤耦合结构并排设置为一输出光纤阵列耦合结构,所述n个第二光纤耦合结构并排设置为一输入光纤阵列耦合结构;
或者,所述n个第一光纤耦合结构与所述n个第二光纤耦合结构并排设置为一光纤阵列耦合结构。
在其中一个实施例中,所述发射端器件和所述接收端器件设置在同一个光子集成芯片上,或者,所述发射端器件和所述接收端器件分别设置在不同的光子集成芯片上。
在其中一个实施例中,所述光子集成芯片为硅基光子芯片,所述调制器为马赫-曾德尔调制器。
一种有源光缆,在其中一个实施例中,包括光纤阵列及其两端的光模块,每一所述光模块包括:
上述任意一项所述的多通道有源光缆光子集成芯片;
第一单模激光器,用于产生第一光信号,并将所述第一光信号耦合至所述有源光缆光子集成芯片的一入光耦合结构;
第二单模激光器,用于产生第二光信号,并将所述第二光信号耦合至所述有源光缆光子集成芯片的另一入光耦合结构,所述第一光信号和所述第二光信号为波长不同的单模光信号。
在其中一个实施例中,所述光纤阵列包括2n根光纤,其中n根光纤分别对接其一端的光模块中n个第一光纤耦合结构与另一端的光模块中的n个第二光纤耦合结构;另外n根光纤分别对接其一端的光模块中的n个第二光纤耦合结构与另一端的光模块中的n个第一光纤耦合结构。
在其中一个实施例中,所述光纤为单模光纤,所述第一光纤耦合结构和第二光纤耦合结构均与所述单模光纤模式匹配。
上述多通道有源光缆光子集成芯片,在发射端中利用分光结构将两种不同波长的单模光信号分别分为n路,再利用n个波分复用器对2n路子光信号进行波分复用合成包含两种不同波长的复合光信号,并通过n个光纤耦合结构输出,即利用n个输出端口可以实现对2n路光信号的发射,有效减少了发射端中输出端口的个数。同时,接收端利用n个光纤耦合结构接收n个输入复合光信号,利用n个偏振无关的波分解复用结构可以将n个输入复合光信号分解为2n路光信号,即利用n个输入端口可以实现对2n路光信号的接收,有效减少了接收端中输入端口的个数。本公开提供的多通道有源光缆芯片结构基于上述波分复用/波分解复用结构,可以有效地减小输入输出端口的数目,从而减小光芯片的面积、减小光芯片的成本,同时可减少与其对接的光纤数量,节约光纤成本。
附图说明
为了更清楚地说明本说明书实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为沿用目前结构扩展的8通道硅光有源光缆光芯片的结构示意图;
图2为基于图1的8通道硅光有源光缆光芯片结构的有源光缆两模块之间的光纤连接示意图;
图3为本公开其中一个实施例中的多通道有源光缆的连接示意图;
图4为本公开其中一个实施例中有源光缆光子集成芯片的结构示意图;
图5为本公开其中一个实施例中8通道有源光缆光子集成芯片的结构示意图;
图6为本公开其中一个实施例中4通道有源光缆光子集成芯片的结构示意图;
图7为本公开另一个实施例中有源光缆光子集成芯片的结构示意图。
具体实施方式
为了便于理解本实用新型,下面将参照相关附图对本实用新型进行更全面的描述。附图中给出了本实用新型的优选实施方式。但是,本实用新型可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本实用新型的公开内容理解得更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“前”、“后”、“周向”以及类似的表述是基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的个合。
有源光缆(Active Optical Cables,AOC)广泛应用于高性能计算机和数据中心中,通过电-光转换,利用光纤传输,可以实现数据的高速可靠传输,当有源光缆速率提升时,需要通过扩展更多通道实现更高速率的数据传输。如图1为目前沿用典型的基于硅光芯片的AOC结构扩展的8通道硅光有源光缆光芯片结构的结构示意图, 该8通道硅光有源光缆光芯片结构包括发射端和接收端两部分。发射端器件包括两个入光耦合结构(fiber-PIC耦合结构)、8个第一光纤耦合结构(fiber-PIC耦合结构)、8路调制器、6个分束器及连接这些结构的波导。传统的有源光缆的光源为VCSEL多模激光器,扩展后,2个VCSEL多模激光器发出的多模光信号,可以分别通过两个入光耦合结构接收,每个激光器发出的光将被三个级联的分束器分成4份,再分别连接到4个调制器中,2路多模光信号分出的8路子光信号分别经调制器调制后由8个第一光纤耦合结构输出。接收端则包括8个第二光纤耦合结构(fiber-PIC耦合结构)、8个探测器及连接耦合结构和探测器的波导。
可见,沿用典型结构扩展的8通道硅光芯片结构,共需设置18个fiber-PIC耦合结构。上述结构存在的主要问题有光芯片需要多路输入输出端口(fiber-PIC耦合结构)。然而,光芯片中每一个端口损坏时,该光芯片都不能正常工作,因此,光芯片中的端口越多,芯片整体的故障率就越高。而且光芯片的端口与端口之间需要间隔一定的距离以与光纤耦接,因此,光芯片的端口越多,芯片面积也就较大、芯片的成本越高。
基于上述结构的有源光缆光模块之间的光纤连接方法如图2所示,当有源光缆光模块使用图1所示的8通道硅有源光缆光芯片时,传输光纤的数量需要与通道数和耦合端口数量一致,光纤成本较高,而且光纤与芯片耦合难度也提高,影响生产效率,从而有源光缆的制作成本也更大,也不利于有源光缆的小型化封装。
本公开提供了一种有源光缆,将传统AOC模块的光源(VCSEL多模激光器)改为具有不同波长的两个单模激光器,配合集成设计的光子芯片,将多通道中具有不同波长的通道两两复合,从而减少光芯片的端口数量和传输光纤的数量,提升单根光纤的传输速率,以减小光芯片的面积、降低光芯片的生产成本和光芯片整体的故障率,以及降低光纤成本,进而降低有源光缆的成本以及故障率,且利于有源光缆的小型化封装。
图3为本公开其中一个实施例中多通道有源光缆的连接示意图,在其中一个实施例中,有源光缆包括光纤阵列及其两端的光模块(AOC模块)。
每一光模块包括多通道有源光缆光子集成芯片10、第一激光器20和第二激光器30,第一激光器和第二激光器均为单模激光器。
第一激光器20与有源光缆光子集成芯片10光耦合对接,用于产生第一光信号,并将所述第一光信号耦合至所述有源光缆光子集成芯片的一入光耦合结构。第二激光器30与有源光缆光子集成芯片10光耦合对接,用于产生第二光信号,并将所述第二光信号耦合至所述有源光缆光子集成芯片的另一入光耦合结构。且第一光信号和第二光信号为波长不同的单模光信号。
有源光缆光子集成芯片10可以将接收到的第一光信号分为n路、将接收到的第二光信号也分为n路,对n路第一光信号和n路第二光信号分别进行波分复用形成n路输出复合光信号,并通过n个输出端口(第一光纤耦合结构)实现对2n路光信号的发射,有效减少了发射端中输出端口的个数。同时,有源光缆光子集成芯片10还可以接收n个输入复合光信号,并将n个输入复合光信号波分解复用为2n路光信号,即利用n个输入端口(第二光纤耦合结构)实现了对2n路光信号的接收,有效减少了接收端中输入端口的个数。如图3所示,与传统的光芯片结构相比,在接收/发送同样通道数量的光信号时,本公开提供的有源光缆光子集成芯片10设置的端口数更少,可有效减小光子集成芯片的面积,降低成本。因此,上述有源光缆可以有效降低生产成本和整体的故障率。
在其中一个实施例中,如图3所示,光纤阵列40可以包括2n根光纤。
2n根光纤中的n根光纤分别对接光纤阵列40一端的光模块中n个第一光纤耦合结构与光纤阵列40另一端的光模块中的n个第二光纤耦合结构。其中,n根光纤中的每根光纤的两端分别对接其一端的光模块中的一个第一光纤耦合结构与另一端的光模块中的一个第二光纤耦合结构。
n根光纤中的另外n根光纤分别对接其一端的光模块中的n个第二光纤耦合结构与另一端的光模块中的n个第一光纤耦合结构。其中,另外n根光纤中的每根光纤的两端分别对接其一端的光模块中的一个第二光纤耦合结构与另一端的光模块中的一个第一光纤耦合结构。
作为示例,所述光纤可以为单模光纤。有源光缆光子集成芯片的第一光纤耦合结构和第二光纤耦合结构均与所述单模光纤模式匹配。
在实际应用中,通常使用光纤阵列实现与光芯片中端口阵列的光耦合。然而,光纤阵列中相邻光纤的间距可能存在误差,因此当光芯片中端口数量越多导致光纤的数量也越多,则光纤阵列中在间距上积累的误差也越大,进而光纤阵列与端口阵列的耦合损耗也越大。另外,当光纤阵列中光纤的数目较多时,有源光缆的生产成本中光纤成本也相应增大。
因此,本公开提供的有源光缆通过减少有源光缆光子集成芯片10的端口数量,可以对应地降低光纤阵列中光纤的数量。因此,在光纤阵列与有源光缆光子集成芯片10的端口阵列进行耦合时,光纤阵列中相邻光纤之间间隔的距离误差累积与传统结构中的误差相比更小,光纤阵列和端口耦合积累的损耗也更少。另外,光纤阵列中光纤的数目减少,生产成本中光纤的材料成本也相应减少了,从而有效降低了有源光缆的生产成本。
基于上述有源光缆实施例的描述,本公开还提供了一种有源光缆光子集成芯片。基于同一创新构思,本公开实施例提供的一个或多个实施例中的有源光缆光子集成芯片如下面的实施例所述。以下所使用的,术语“单元”或者“结构”可以实现预定功能的硬件的组合。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
本公开提出了一种基于片上波分复用/波分解复用结构的多通道有源光缆光子集成芯片,可以有效地减少集成芯片的输入输出端口(光纤耦合结构)的数量。图4为本公开其中一个实施例中多通道有源光缆光子集成芯片的结构示意图,在其中一个实施例中,该有源光缆光子集成芯片包括衬底层和波导层,波导层设有发射端器件和接收端器件。
发射端器件和所述接收端器件可以设置在同一个光子集成芯片上。或者,所述发射端器件和所述接收端器件也可以分别设置在不同的光子集成芯片上。
发射端器件可以包括两个入光耦合结构510、两个分光结构(两个分光结构可以分别为第一分光结构100、第二分光结构200)、2n个调制器300、n个波分复用器400和n个第一光纤耦合结构520,且n为正整数。在本公开的一些实施例中,n的取值可以为正偶数。
两个入光耦合结构510分别用于接收第一光信号和第二光信号,第一光信号和所述第二光信号为不同波长的单模光信号。
第一光信号可以由第一激光器产生,其中一个入光耦合结构510与第一激光器的光耦合对接,因此第一激光器发出的第一光信号可以通过该入光耦合结构510接入有源光缆光子集成芯片10中。同样地,第二光信号可以由第二激光器产生,另外一个光耦合结构500与第二激光器的光耦合对接,因此第二激光器发出的第二光信号也可以通过该入光耦合结构510接入有源光缆光子集成芯片10中。
第一分光结构100连接用于接收第一光信号的入光耦合结构510。第一分光结构100可以用于对第一光信号进行分光处理。第一激光器发出的第一光信号通过入光耦合结构510传输至第一分光结构100后,可以被分为n路子光信号。其中n个调制器分别连接第一分光结构,用于接收第一分光结构输出的n路子光信号。第一光信号经第一分光结构100分为n路后,n路子光信号分别传输至该n个调制器300中进行调制。调制器300可以使高速电信号加载到第一光信号上进行传输。
第二分光结构200连接用于接收第二光信号的入光耦合结构510。第二分光结构200可以用于对第二光信号进行分光处理。第二激光器发出的第二光信号通过入光耦合结构510传输至第二分光结构200后,也可以被分为n路子光信号。另外n个调制器分别连接第二分光结构,用于接收第二分光结构输出的n路子光信号。第二光信号经第二分光结构200分为n路后,n路子光信号分别传输至另外n个调制器300中进行调制。调制器300可以使高速电信号加载到第二光信号上进行传输。
作为示例,可设置光子集成芯片为硅基光子芯片,所述调制器300为马赫-曾德尔调制器。
n个波分复用器中,每一所述波分复用器包括两个输入端和一个输出端。所述两个输入端分别连接两个所述调制器300,所述输出端分别连接一个所述第一光纤耦合结构,与同一所述波分复用器连接的两个所述调制器分别连接不同的分光结构,即同一波分复用器连接的两个调制器中,一个调制器连接第一分光结构,另一个调制器连接第二分光结构。n个第一光纤耦合结构则可以视为n个输出端口,用于输出光信号。
如图4所示,按照一路经过调制的第一光信号的子光信号与一路经过调制的第二光信号的子光信号传输至同一个波分复用器400的方式,将n路第一光信号的子光信号和n路第二光信号的子光信号分别接入n个波分复用器400。
波分复用器400是一种可以将两种或多种不同波长携带有信息的光载波信号汇合在一起,并耦合到光线路的同一根光波导中进行传输的器件。因此,经过调制的第一光信号的子光信号和第二光信号的子光信号传输至同一个波分复用器400后,波分复用器400可以将第一光信号的子光信号和第二光信号的子光信号汇合在一起,形成输出复合光信号,并通过第一光纤耦合结构520将汇合在一起的第一光信号和第二光信号耦合到同一个光纤中,两路不同波长的光信号就可以通过同一根光纤波导进行传输。
由于波分复用/解复用器对两种或多种不同波长的光信号进行复合/分离,因此,在本公开的一些实施例中,第一光信号与第二光信号的波长不同,以保证波分复用器可以将不同波长的第一光信号和第二光信号复用到一路输出,且波分解复用器也可以接收复合光信号并将其中复合了的第一光信号和第二光信号分离出来。上述有源光缆光子集成芯片基于片上波分复用/波分解复用结构,可以实现对两种不同波长的光信号的复用/解复用,有效地减少了输入输出端口的数目。
以一路第一光信号的子信号和一路第二光信号的子信号传输至同一个波分复用器400的方式,将n路第一光信号的子信号和n路第二光信号的子信号两两交替接入n个波分复用器400中。通过设置上述波分复用器400,可以利用波分复用技术将第一光信号的子信号和第二光信号的子信号复用到一路进行输出,即两路光信号可以共用一个输出端口及光纤来实现数据传输。相应地,利用分别与n个波分复用器400相连接的n个第一光纤耦合结构520作为信号输出端口,利用n个输出端口就可以实现对2n路光信号的信号输出,有效地减少了输出端口的数目。
而传统AOC光模块的光芯片结构中,一路光信号需对应设置一个输出端口来实现信号输出,即2n路光信号需要设置2n个输出端口。可见,相比于现有结构,本公开提供的发射端的输出端口更少。因此,本公开提供的有源光缆光子集成芯片的芯片端口故障率比传统光芯片结构的芯片故障率低,使得芯片的整体故障率也更低。另外,端口与端口之间需要有一定的距离,在本公开中输出端口数量减少的情况下,光芯片的面积也将对应减小,从而芯片的生产成本也降低,而且利于有源光缆的小型化封装。
上述有源光缆光子集成芯片的接收端器件可以包括n个第二光纤耦合结构530、n个偏振无关的波分解复用结构600以及2n个探测器630。利用n个偏振无关的波分解复用结构600实现对n路复合光信号解复用为2n路光信号,并分别传输至2n个光探测器630。
所述n个第二光纤耦合结构与所述n个第一光纤耦合结构可以并排设置为一光纤阵列耦合结构。
或者,也可以设置n个第一光纤耦合结构并排设置为一输出光纤阵列耦合结构,且所述n个第二光纤耦合结构并排设置为一输入光纤阵列耦合结构。
每个波分解复用结构600的一端连接一个所述第二光纤耦合结构530,同时另一端连接两个所述光探测器630。
作为示例,一个波分解复用结构600可以包括一个偏振旋转分离器610、两个波分解复用器620。
第二光纤耦合结构530可以作为接收端的输入端口,接收外部设备输入的光信号,接收的光信号为由两种不同波长的光信号复合而成的输入复合光信号。第二光纤耦合结构530与偏振旋转分离器610相连接,偏振旋转分离器610可以将第二光纤耦合结构530接收到的输入复合光信号分为两路线偏振光。两路线偏振光分别传输至两个所述波分解复用器。偏振旋转分离器610分出的两路光信号也依然为复合光信号。
具体地,偏振旋转分离器610包括第一输出端与第二输出端,第一输出端与其中一个波分解复用器620相连接,第二输出端与另外一个波分解复用器620相连接。
波分解复用器620的主要作用是将一根光波导中传输的多个波长信号分离出来。波分解复用器620可以将偏振旋转分离器610的第一输出端或第二输出端传输的线偏振光中包含两个不同波长的复合光信号分离开来。
两个所述波分解复用器620分别将各自接收的线偏振光解复用为两路不同波长的光信号,并分别传输至与其连接的两个所述光探测器630。两个所述波分解复用器620输出的相同波长的光信号传输至同一个所述光探测器630。
具体地,如图4所示,第一个波分解复用器620的第一输出端与第一个光探测器630的第一端相连接,第一个波分解复用器620的第二输出端与第二个光探测器630的第一端相连接。同样地,第二个波分解复用器620的第一输出端与第一个光探测器630的第二端相连接,第二个波分解复用器620的第二输出端与第二个光探测器630的第二端相连接。即,一个波分解复用器620分离出来的两种光信号分别传输至不同的光探测器630中进行探测。而且两个波分解复用器620分离出来的四路光信号中,相同波长的两路光信号传输至同一个光探测器630中进行探测。
在本公开的一些实施例中,光探测器630可以为高速探测器。在实际应用中,光芯片的输入端接收到的信号通常为高频信号,因此利用高速探测器对高频的输入光信号进行检测。此外,高速探测器还可以获取光信号的光功率大小。
第一个光探测器630可以对两个波分解复用器620分离出来的第一种波长的光信号进行探测。同时,第一个光探测器630还可以获取第一种波长光信号的光功率大小。同样地,第二个光探测器630可以对第二种波长的光信号进行探测。同时,第二个光探测器630也可以获取第二种波长光信号的光功率大小。
在本公开的一些实施例中,发射端器件可以利用第一光纤耦合结构作为输出端口,实现与外部设备的连接,接收端器件可以利用第二光纤耦合结构作为输入端口,实现与外部设备的连接,且本公开中的第一光纤耦合结构以及第二光纤耦合结构可以均为fiber-PIC耦合结构。
上述有源光缆光子集成芯片,通过设置上述波分解复用器620,可以利用波分解复用技术将复合光信号中的两路光信号分解出来,即一个输入端口就可以接收两路输入光信号,两路光信号可以共用一个输入端口来实现信号输入。利用n个波分解复用结构600中的n个第二光纤耦合结构530作为接收端的信号输入端口,n个输入端口就可以实现接收2n路输入光信号,从而有效地减少了接收端中输入端口的数目。
而传统有源光缆的光芯片结构中,一路输入光信号就需对应设置一个输入端口以及一个传输光纤,即2n路输入光信号需要设置2n个输入端口。可见,相比于现有结构,本公开提供的接收端可以设置更少的输入端口。因此,本公开提供的有源光缆光子集成芯片的芯片端口故障率比传统光芯片结构的芯片故障率低,芯片的整体故障率也更低。端口与端口之间需要有一定的距离,本公开中输入端口数量减少后,光芯片的面积对应减小,芯片的生产成本也降低,而且利于有源光缆的小型化封装。
图5为本公开其中一个实施例中8通道有源光缆光子集成芯片的结构示意图,在其中一个实施例中,当n的取值为4时,上述有源光缆光子集成芯片可以实现8通道光信号的输入或输出。当n的取值为4时,第一分光结构100可以包括三个分束器,利用三个分束器将第一光信号分为4路第一光信号。三个分束器可以包括一个第一级分束器以及两个第二级分束器。第一分光结构100的第一级分束器可以为分束器101。第一分光结构100的两个第二级分束器可以分别为分束器102和分束器103。
分束器是一种可以按照预设比例将一束光分成两束光或多束光的光学装置,例如,分束器可以将一束光等分为两束光,也可以按照2:8的比例分为两束光。在本公开的一些实施例中,选用的分束器为将一束光等分为两束光的分束器。
分束器101与用于接收第一光信号的入光耦合结构510相连接,第一光信号通过入光耦合结构510传输至分束器101中后,分束器101可以将第一光信号分为两路。分束器101的第一输出端与分束器102相连接,即,分束器101分出的其中一路光信号将传输至分束器102中再次进行分束。分束器102可以将分束器101分出的其中一路光信号再分为两路第一光信号的子光信号。分束器101的第二输出端与分束器103相连接,即,分束器101分出的另外一路光信号将传输至分束器103中再次进行分束。分束器103可以将分束器101分出的另外一路光信号再分为两路第一光信号的子光信号。
第二分光结构200的光路结构与第一分光结构100的光路结构相同,第二分光结构200也可以包括三个分束器,利用三个分束器将第二光信号分为4路第二光信号。三个分束器可以包括一个第一级分束器以及两个第二级分束器。第二分光结构200的第一级分束器可以为分束器104。第二分光结构200的两个第二级分束器可以分别为分束器105和分束器106。
其中,分束器104与用于接收第二光信号的入光耦合结构510相连接,第二光信号通过入光耦合结构510传输至分束器104中后,分束器104将第二光信号分为两路并分别传输至分束器105和分束器106。分束器105可以将分束器104分出的其中一路光信号再分为两路第二光信号的子信号,分束器106则可以将分束器104分出的另外一路光信号再分为两路第二光信号的子信号。
在本公开的一些实施例中,考虑到利用波分复用器将两路光信号复用到一路时,输入的两路光信号的波长不同,光芯片结构中的多个光器件在排布设计时,不可避免地光路会出现交叉的情况。因此,利用交叉波导可以更好地实现光路在光芯片中的排布,简化光芯片中的电路设计。因此,在8通道有源光缆光子集成芯片中还可以包括三个交叉波导,三个交叉波导分别为第一交叉波导107、第二交叉波导108和第三交叉波导109。
如图5所示,分束器101的第一输出端分出的光信号直接传输至分束器102中进行分光处理,分束器101的第二输出端与第一交叉波导107的第一端相连接。分束器104的第一输出端分出的光信号直接传输至分束器105中进行分光处理,分束器104的第二输出端与第一交叉波导107的第二端相连接。从而,分束器101分出的第二路光信号可以实现与分束器104分出的第二路光信号光路之间的交错。
第一交叉波导107的第三端与分束器102相连接,分束器101的第二输出端分出的光信号通过第一交叉波导107传输至分束器103,分束器102可以将第一级分束器601的第一输出端分出的那一路光信号再分为两路。至此,第一光信号经过分束器101、分束器102和分束器103这三个分束器的分光后,被分为了4路。同样地,第一交叉波导107的第四端与分束器105相连接,分束器104的第二输出端分出的光信号通过第一交叉波导107传输至分束器106,分束器106可以将分束器104的第二输出端分出的那一路光信号再分为两路。至此,第二光信号经过分束器104、分束器105和分束器106这三个分束器的分光后,被分为了4路。
在图5中,记发射端中的8个调制器分别为调制器301、调制器302、调制器303、调制器304、调制器305、调制器306、调制器308。记发射端中的4个波分复用器分别为波分复用器401、波分复用器402、波分复用器403、波分复用器404。
分束器106的第一输出端分出的第二光信号的子信号通过第二交叉波导108传输至调制器302中,以利用调制器302对分束器106的第一输出端输出的该路第二光信号的子信号进行调整。分束器102的第二输出端分出的另一路第一光信号的子信号通过第二交叉波导108传输至调制器303中,以利用调制器303对分束器102的第二输出端输出的第一光信号的子信号进行调整。
分束器105的第一输出端输出的第二光信号的子信号通过第三交叉波导109传输至调制器306,以利用调制器306对第二光信号的子信号进行调整。分束器103的第二输出端分出的另一路第一光信号的子信号通过第三交叉波导109传输至调制器307中,以利用调制器307对分束器103的第二输出端输出的第一光信号的子信号进行调整。
第二交叉波导、第三交叉波导具体连接方式请参考第一交叉波导。
利用上述第一分光结构100和第二分光结构200可以将不同波长的第一光信号和第二光信号分别分成4路,并分别连接到8路不同的调制器中。以一路第一光信号的子信号和一路第二光信号的子信号接入同一个波分复用器400中的连接方式,将4路第一光信号的子信号和4路第二光信号的子信号两两交替接入4个波分复用器400中。利用4个波分复用器400,可以将8路光信号复用为4路光信号,从而有效减少了发射端中输出端口的数目。
在一些其他的实施例中,也可以采用其他结构的第一分光结构100和第二分光结构200来实现将第一光信号分为4路、将第二光信号分为4路的目的。也可以根据实际应用需求,利用第一分光结构100和第二分光结构200将第一光信号和第二光信号分为其他数量的光信号。
图6为本公开其中一个实施例中4通道有源光缆光子集成芯片的结构示意图,在其中一个实施例中,当n的取值为2时,上述有源光缆光子集成芯片可以实现4通道光信号的输入或输出。当n的取值为2时,第一分光结构100以及第二分光结构200均可以包括一个第一级分束器。
第一分光结构100的第一级分束器可以为分束器110。分束器110与用于接收第一光信号的入光耦合结构510相连接,第一光信号通过入光耦合结构510传输至分束器110中后,分束器110可以将第一光信号分为两路。
第二分光结构200的光路结构与第一分光结构100的光路结构相同,第二分光结构200的第一级分束器可以为分束器111。分束器111与用于接收第二光信号的入光耦合结构510相连接,第二光信号通过入光耦合结构510传输至分束器111中后,分束器111可以将第二光信号分为两路。
同样地,在4通道有源光缆光子集成芯片中也可以利用交叉波导来更好地实现光路在光芯片中的排布,简化光芯片中的电路设计。因此,在4通道有源光缆光子集成芯片中还可以包一个交叉波导112。在图6中,记发射端器件中的4个调制器分别为调制器309、调制器310、调制器311、调制器312。记发射端器件中的2个波分复用器分别为波分复用器405、波分复用器406。
如图6所示,分束器110的第一输出端与调制器309相连接,以利用调制器309对分束器110第一输出端输出的第一光信号的子信号进行调整。分束器110的第二输出端与交叉波导112的第一端相连接。分束器111的第一输出端与交叉波导112的第二端相连接。交叉波导112可以实现分束器110第二输出端和分束器111第一输出端这两条光路之间的交叉。
交叉波导112的第四端与调制器310相连接,即分束器111的第一输出端分出的第二光信号的子信号通过交叉波导112传输至调制器310中,以利用调制器310对分束器111的第一输出端输出的该路第二光信号的子信号进行调整。调制器309的输出端和调制器310的输出端均与波分复用器405的输入端相连接,即,利用波分复用器405可以对分束器110分出的第一路第一光信号的子信号和分束器111分出的第一路第二光信号的子信号进行调制并复用成一路输出复合光信号。
交叉波导112的第三端与调制器311相连接,即分束器110的第二输出端分出的另一路第一光信号的子信号通过交叉波导112传输至调制器311中,以利用调制器311对分束器110的第二输出端输出的该路第一光信号的子信号进行调整。分束器111的第二输出端与调制器312相连接,以利用调制器321对分束器111的第二输出端输出的该路第二光信号的子信号进行调整。调制器311的输出端和调制器312的输出端均与波分复用器406的输入端相连接,即,利用波分复用器406可以对分束器110分出的第二路第一光信号的子信号和分束器111分出的第二路第二光信号的子信号进行调制并复用成一路输出复合光信号。
利用上述第一分光结构100和第二分光结构200可以将不同波长的第一光信号的子信号和第二光信号的子信号分别分成2路,并分别连接到4路不同的调制器中。以一路第一光信号的子信号和一路第二光信号的子信号接入同一个波分复用器400中的连接方式,将2路第一光信号的子信号和2路第二光信号的子信号两两交替接入2个波分复用器400中。利用2个波分复用器400,可以将4路光信号的子信号复用为2路光信号,从而有效减少了发射端中输出端口的数目。
在一些其他的实施例中,也可以采用其他结构的第一分光结构100和第二分光结构200来实现将第一光信号分为2路、将第二光信号分为2路的目的。
图7为本公开另一个实施例中有源光缆光子集成芯片的结构示意图,在其中一个实施例中,有源光缆光子集成芯片还可以包括至少n个第一监测结构700和2n个第二监测结构800。
至少n个第一监测结构700设于所述每个分光结构的输入端或者其中一路输出端,用于监测输入所述调制器的光信号。
作为示例,分光结构中的分束器均为3dB分束器。例如请参阅图5,分束器101、分束器102、分束器103、分束器104、分束器105、分束器106均为3dB分束器。又如请参阅图6,分束器110、分束器111均为3dB分束器。
3dB分束器分光很准,分出的两路光功率基本相等,所以只监测分出的其中一路光功率或着监测3dB分束器输入端分光之前的光功率,都可以算出3dB分束器两个输出支路的光功率。
因此,可以设置有源光缆光子集成芯片还可以包括n个第一监测结构700。具体设置连接所述2n个调制器的每一所述3dB分束器的输入端均设有一个第一监测结构700。此时通过监测一个所述3dB分束器的输入端分光之前的光功率,可以有效实现对该3dB分束器连接的两个调制器的输入光功率的监测。
或者,也可以设置有源光缆光子集成芯片还可以包括n个第一监测结构700。具体设置连接所述2n个调制器的每一所述3dB分束器的两个输出端的其中一个设有所述第一监测结构700。此时,通过对3dB分束器分出的其中一路光信号的光功率的监测,以实现该3dB分束器连接的两个调制器的输入光功率的监测。
当然,也可以设置连接所述2n个调制器的每一所述3dB分束器的两个输出端(对应每一个调制器的输入端)均设有第一监测结构700。
分光结构(第一分光结构与第二分光结构)中的分束器也并不限于为3dB分束器,各分束器的类型可以相同,也可不同。
例如,分光结构(第一分光结构与第二分光结构)中的分束器也可以采用Y型分束器或多模分束器(MMI)等。此时,同一分光器分出的两路光信号的光功率可能不等。
因此,作为另一示例,还可以设置有源光缆光子集成芯片还可以包括2n个第一监测结构700,2n个第一监测结构700分别设于每一所述调制器与所述分光结构之间。
具体地,设置连接所述2n个调制器的每一所述分束器的两个输出端均设有第一监测结构700。此时,如图7所示,第一监测结构700的输入端与第一分光结构100或第二分光结构200的一个输出端相连接,输出端与一个调制器300的输入端相连接。
第一分光结构100分出的n路第一光信号的子信号分别通过n个第一监测结构700进行监测,以实现监测输入其中n个所述调制器的光信号。第二分光结构200分出的n路第二光信号的子信号分别通过另外n个第一监测结构700进行监测,以实现监测输入另外n个所述调制器的光信号。
同时,2n个第二监测结构800分别设于所述2n个调制器的输出端中,用于监测经所述调制器调制后输出的光信号。
一个第二监测结构800的输入端与一个调制器300的输出端相连接,经过调制后的n路第一光信号的子信号分别通过其中n个第二监测结构800进行监测。经过调制后的n路第二光信号的子信号分别通过另外n个第二监测结构800进行监测。
上述有源光缆光子集成芯片通过设置至少n个第一监测结构700和2n个第二监测结构800,可以实现对调制前后第一光信号的子信号和第二光信号的子信号的实时监测,还可以根据监测情况控制调制器的工作点及损耗,判断调制结果是否满足预期效果,从而防止因调制器出现异常而影响发射端正常工作的问题。
在其中一个实施例中,一个第一监测结构700可以包括一个小分光比耦合器701和一个监测探测器702。小分光比耦合器用于从所在光路中分出一较小光功率的监测光至所述监测探测器,以监测所在光路传输的光信号的功率。
小分光比耦合器是一种可以按照预设比例将输入信号分为两份或多份光信号的装置。例如,可以将输入光信号按照95:5或9:1或8:2的比例分为两份。
一个小分光比耦合器701的输入端与第一分光结构100的一个输出端或第二分光结构200的一个输出端相连接,小分光比耦合器701的较小分光输出端与监测探测器702的输入端相连接。小分光比耦合器701可以将分束器分出的光信号按照预设比例分为两份。2n个第一监测结构中的2n个小分光比耦合器701分别与第一分光结构100的n个输出端和第二分光结构200的n个输出端对应连接,用于分别对n路第一光信号的子信号和n路第二光信号的子信号进行监测。
可以将分出的较小比例光信号输入监测探测器702中,分出的较大比例光信号则输入调制器300中进行调制。监测探测器702可以获取调制前第一光信号的子信号或第二光信号的子信号的光功率。通过将较小比例光信号输入监测探测器702中进行检测,可以减少对调制前第一光信号的子信号或第二光信号的的子信号损耗。
以图7所示的4通道有源光缆光子集成芯片为例,小分光比耦合器701可以将分束器110第一输出端输出的第一光信号按照95:5的比例分为两份,将比例为5%的一部分第一光信号输入监测探测器702中,监测探测器702可以根据接收到的第一光信号来确定第一光信号的光功率值。将比例为95%的一部分第一光信号的子信号输入调制器309中,那么分束器110第一输出端分出的一路第一光信号的子信号中,95%的信号都能被传输至后级的器件中。
第二监测结构800的光路结构可以与第一监测结构700的光路结构相同,也包括一个小分光比耦合器和一个监测探测器。利用小分光比耦合器将调制后的第一光信号的子信号或第二光信号的子信号分为两部分。将分出的较小比例光信号输入监测探测器中进行监测,分出的较大比例光信号则输入波分复用器400中传输出去。监测探测器可以获取调制后第一光信号的子信号或第二光信号的子信号的光功率。通过将较小比例光信号输入监测探测器中进行检测,可以减少对调制后第一光信号或第二光信号的损耗。
在本公开的一些实施例中,有源光缆光子集成芯片中发射端部分与和接收端部分可以设置在同一个芯片上。在一些其他的实施例中,有源光缆光子集成芯片中发射端部分和接收端部分也可以设置在两个不同芯片上。上述有源光缆光子集成芯片可以设置在硅光芯片上。
可以理解的是,本说明书中上述系统、方法等的各个实施例均采用递进的方式描述,各个实施例之间相同/相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。相关之处参见其他方法实施例的描述说明即可。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的个合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的个合都进行描述,然而,只要这些技术特征的个合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以作出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种多通道有源光缆光子集成芯片,其特征在于,包括衬底层和波导层,所述波导层设有发射端器件和接收端器件,
    所述发射端器件包括:
    两个入光耦合结构,分别用于接收第一光信号和第二光信号,所述第一光信号和所述第二光信号为不同波长的单模光信号;
    两个分光结构,分别连接所述两个入光耦合结构,每一所述分光结构用于将对应的入光耦合结构接收的第一光信号或第二光信号分成n路子光信号,n为大于1的整数;
    2n个调制器,分别连接所述两个分光结构,2n个调制器分别接收所述两个分光结构输出的所述2n路子光信号,2n路子光信号与所述2n个调制器一一对应,n为正整数;
    n个波分复用器和n个第一光纤耦合结构,每一所述波分复用器包括两个输入端和一个输出端,所述两个输入端分别连接两个所述调制器,所述输出端分别连接一个所述第一光纤耦合结构,与同一所述波分复用器连接的两个所述调制器分别连接不同的分光结构;
    按照一路经过调制的所述第一光信号的子光信号与一路经过调制的所述第二光信号的子光信号分别传输至同一个波分复用器的两个输入端的方式,将n路所述第一光信号的子光信号和n路所述第二光信号的子光信号分别接入n个所述波分复用器,每一所述波分复用器用于将接收到的两路所述子光信号合为一路复合光信号,而输出至所述第一光纤耦合结构,且经所述第一光纤耦合结构输出;
    所述接收端器件包括:
    n个第二光纤耦合结构,每一所述第二光纤耦合结构用于接收外部输入的一路具有两种不同波长的复合光信号;
    n个偏振无关的波分解复用结构和2n个光探测器,每一所述波分解复用结构的两端分别连接一个所述第二光纤耦合结构和两个所述光探测器,用于将所述复合光信号解复用为两路不同波长的光信号,且将所述两路不同波长的光信号分别传输至两个所述光探测器。
  2. 根据权利要求1所述的有源光缆光子集成芯片,其特征在于,所述有源光缆光子集成芯片还包括:
    至少n个第一监测结构,所述至少n个第一监测结构设于每个所述分光结构的输入端或者其中一路输出端,用于监测输入所述调制器的光信号;
    2n个第二监测结构,所述2n个第二监测结构分别设于所述2n个调制器的输出端中,用于监测经所述调制器调制后输出的光信号。
  3. 根据权利要求2所述的有源光缆光子集成芯片,其特征在于,
    所述n为2时,每一所述分光结构包括一个第一级分束器,将从对应的入光耦合结构输入的第一光信号或第二光信号分为两路子光信号后分别传输至所述2n个调制器中的两个调制器;
    或者,所述n为4时,每一所述分光结构包括一个第一级分束器和两个第二级分束器,所述第一级分束器将从对应的入光耦合结构输入的第一光信号或第二光信号分为两路并分别输入至两个第二级分束器,两个第二级分束器将各自接收到的光信号再各分为2路子光信号,并分别输出至所述2n个调制器中与其对应的4个调制器。
  4. 根据权利要求3所述的有源光缆光子集成芯片,其特征在于,所述分光结构中的分束器均为3dB分束器,连接所述2n个调制器的每一所述3dB分束器的输入端或其两个输出端的其中一个设有所述第一监测结构,以监测该3dB分束器连接的两个调制器的输入光功率。
  5. 根据权利要求2所述的有源光缆光子集成芯片,其特征在于,所述第一监测结构的数量为2n个,分别设于每一所述调制器与所述分光结构之间。
  6. 根据权利要求2所述的有源光缆光子集成芯片,其特征在于,所述第一监测结构和所述第二监测结构均包括小分光比耦合器和监测探测器,所述小分光比耦合器用于从所在光路中分出一较小光功率的监测光至所述监测探测器,以监测所在光路传输的光信号的功率。
  7. 根据权利要求1所述的有源光缆光子集成芯片,其特征在于,每一所述波分解复用结构包括一偏振旋转分离器和两个波分解复用器,所述偏振旋转分离器将对应的所述第二光纤耦合结构接收的复合光信号分成两路线偏振光,并分别传输至两个所述波分解复用器;两个所述波分解复用器分别将各自接收的线偏振光解复用为两路不同波长的光信号,并分别传输至与其连接的两个所述光探测器,两个所述波分解复用器输出的相同波长的光信号传输至同一个所述光探测器。
  8. 根据权利要求1所述的有源光缆光子集成芯片,其特征在于,所述n个第一光纤耦合结构并排设置为一输出光纤阵列耦合结构,所述n个第二光纤耦合结构并排设置为一输入光纤阵列耦合结构;
    或者,所述n个第一光纤耦合结构与所述n个第二光纤耦合结构并排设置为一光纤阵列耦合结构。
  9. 根据权利要求1所述的有源光缆光子集成芯片,其特征在于,所述发射端器件和所述接收端器件设置在同一个光子集成芯片上,或者,所述发射端器件和所述接收端器件分别设置在不同的光子集成芯片上。
  10. 根据权利要求1所述的有源光缆光子集成芯片,其特征在于,所述光子集成芯片为硅基光子芯片,所述调制器为马赫-曾德尔调制器。
  11. 一种有源光缆,其特征在于,包括光纤阵列及其两端的光模块,每一所述光模块包括:
    权利要求1所述的多通道有源光缆光子集成芯片;
    第一单模激光器,用于产生第一光信号,并将所述第一光信号耦合至所述有源光缆光子集成芯片的一入光耦合结构;
    第二单模激光器,用于产生第二光信号,并将所述第二光信号耦合至所述有源光缆光子集成芯片的另一入光耦合结构,所述第一光信号和所述第二光信号为波长不同的单模光信号。
  12. 根据权利要求11所述的有源光缆,其特征在于,所述光纤阵列包括2n根光纤,其中n根光纤分别对接其一端的光模块中n个第一光纤耦合结构与另一端的光模块中的n个第二光纤耦合结构;另外n根光纤分别对接其一端的光模块中的n个第二光纤耦合结构与另一端的光模块中的n个第一光纤耦合结构。
  13. 根据权利要求12所述的有源光缆,其特征在于,所述光纤为单模光纤,所述第一光纤耦合结构和第二光纤耦合结构均与所述单模光纤模式匹配。
PCT/CN2023/108908 2022-09-23 2023-07-24 多通道有源光缆光子集成芯片及有源光缆 WO2024060818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222526091.5 2022-09-23
CN202222526091.5U CN219676335U (zh) 2022-09-23 2022-09-23 多通道有源光缆光子集成芯片及有源光缆

Publications (1)

Publication Number Publication Date
WO2024060818A1 true WO2024060818A1 (zh) 2024-03-28

Family

ID=87923567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108908 WO2024060818A1 (zh) 2022-09-23 2023-07-24 多通道有源光缆光子集成芯片及有源光缆

Country Status (3)

Country Link
CN (1) CN219676335U (zh)
TW (1) TWM650960U (zh)
WO (1) WO2024060818A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117170048B (zh) * 2023-11-02 2024-01-23 中国科学院半导体研究所 三维封装光电集成芯片结构及其制备方法
CN117908199A (zh) * 2024-01-17 2024-04-19 希烽光电科技(南京)有限公司 一种共享光源的有源光缆
CN118131416A (zh) * 2024-04-30 2024-06-04 赛丽科技(苏州)有限公司 一种光通信器件及光通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293275A1 (en) * 2010-05-28 2011-12-01 Evans Peter W Polarization Control in a Photonic Integrated Circuit
CN111308613A (zh) * 2019-02-21 2020-06-19 祥茂光电科技股份有限公司 输入及输出端口位在单侧的光学多任务器/解多任务器及实施其的光收发器
CN214756361U (zh) * 2021-02-10 2021-11-16 苏州旭创科技有限公司 光子集成芯片及光发射组件和光收发模块
CN114545564A (zh) * 2020-11-24 2022-05-27 青岛海信宽带多媒体技术有限公司 一种光模块
US20220286208A1 (en) * 2021-03-03 2022-09-08 Alpine Optoelectronics, Inc. Integrated multi-channel photonics transmitter chip having variable power dividers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293275A1 (en) * 2010-05-28 2011-12-01 Evans Peter W Polarization Control in a Photonic Integrated Circuit
CN111308613A (zh) * 2019-02-21 2020-06-19 祥茂光电科技股份有限公司 输入及输出端口位在单侧的光学多任务器/解多任务器及实施其的光收发器
CN114545564A (zh) * 2020-11-24 2022-05-27 青岛海信宽带多媒体技术有限公司 一种光模块
CN214756361U (zh) * 2021-02-10 2021-11-16 苏州旭创科技有限公司 光子集成芯片及光发射组件和光收发模块
US20220286208A1 (en) * 2021-03-03 2022-09-08 Alpine Optoelectronics, Inc. Integrated multi-channel photonics transmitter chip having variable power dividers

Also Published As

Publication number Publication date
TWM650960U (zh) 2024-02-01
CN219676335U (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2024060818A1 (zh) 多通道有源光缆光子集成芯片及有源光缆
US10935820B2 (en) Method and system for integrated power combiners
CN110012368B (zh) 一种兼容波分复用信号的硅基集成化片上多模光交换系统
US10338308B2 (en) Method and system for partial integration of wavelength division multiplexing and bi-directional solutions
CN107925484B (zh) 一种单片集成相干光接收器芯片
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
JP5884905B2 (ja) 光送受信装置および光出力値制御方法
US11899253B2 (en) Polarization splitter and rotator
CN113406747B (zh) 一种波分复用器和硅光集成芯片
US10230486B2 (en) Optical transceiver with common end module
CN113552668A (zh) 一种耐高输入光功率的硅光芯片端面耦合结构
CA2235050A1 (en) Wavelength dividing circuit with arrayed-waveguide grating monitor port
JP7156472B2 (ja) 光モニタ回路
CN113783653B (zh) 一种基于微环谐振器的波分复用光接收机系统
CN110266491B (zh) 量子密钥分配接收端芯片和设备
WO2020244302A1 (zh) 光源切换方法和装置
CN115236811A (zh) 双输出硅光芯片、光收发模块、分光线缆及分光方法
JP7239822B2 (ja) 偏波多重光送受信回路
CN104297853A (zh) 模块化的波长和空间全光路由器
CN117118519B (zh) 一种光学输入输出芯片及分布式计算系统
WO2024001750A1 (zh) 光电共封装cpo模块
CN204203499U (zh) 一种模块化的波长和空间全光路由器
Melati et al. Integrated all-optical MIMO demultiplexer for 8-channel MDM-WDM transmission
CN210380875U (zh) 量子密钥分配接收端芯片、封装结构和设备
WO2023184919A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867113

Country of ref document: EP

Kind code of ref document: A1