WO2024001750A1 - 光电共封装cpo模块 - Google Patents

光电共封装cpo模块 Download PDF

Info

Publication number
WO2024001750A1
WO2024001750A1 PCT/CN2023/099734 CN2023099734W WO2024001750A1 WO 2024001750 A1 WO2024001750 A1 WO 2024001750A1 CN 2023099734 W CN2023099734 W CN 2023099734W WO 2024001750 A1 WO2024001750 A1 WO 2024001750A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
optical
light source
output
conversion unit
Prior art date
Application number
PCT/CN2023/099734
Other languages
English (en)
French (fr)
Inventor
黄智�
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024001750A1 publication Critical patent/WO2024001750A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • Embodiments of the present disclosure relate to the field of communications, specifically, to an optoelectronic co-packaged CPO module.
  • Embodiments of the present disclosure provide an optoelectronic co-packaged CPO module to at least solve the problems of low reliability and low configuration flexibility of optical signal transmission systems in related technologies.
  • an optoelectronic co-packaged CPO module including: an external light source configured to provide a laser signal outside the CPO module; an input conversion unit, the input of the input conversion unit The end is connected to the output end of the external light source and is configured to convert the light field size of the laser signal and perform optical power distribution; the built-in light source is configured to provide a laser light source inside the CPO module; the optical switch is The first port of the optical switch is connected to the built-in light source, the second port of the optical switch is connected to the output end of the input conversion unit, and is configured to realize switching selection between the external light source and the built-in light source; An output conversion unit is connected to the output port of the optical switch and is configured to modulate the optical signal inside the CPO module and output it.
  • FIG. 1 is a structural block diagram of a CPO module according to an embodiment of the present disclosure
  • Figure 2 is a structural block diagram of an input conversion unit according to an embodiment of the present disclosure
  • Figure 3 is a structural block diagram of an input conversion unit according to an embodiment of the present disclosure.
  • Figure 4 is a structural block diagram of a built-in light source according to an embodiment of the present disclosure
  • Figure 5 is a structural block diagram of an output conversion unit according to an embodiment of the present disclosure.
  • Figure 6 is a structural block diagram of an output conversion unit according to an embodiment of the present disclosure.
  • Figure 7 is a structural block diagram of an output conversion unit according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a CPO module according to an embodiment of the present disclosure.
  • Figure 9 is a structural block diagram of an external light source according to an embodiment of the present disclosure.
  • Figure 10 is a structural block diagram of a CPO module according to an embodiment of the disclosed scenario.
  • Figure 11 is a structural block diagram of a CPO module according to an embodiment of the disclosed scenario.
  • Figure 12 is a schematic structural diagram of an optical switch according to a scene embodiment of the present disclosure.
  • Figure 13 is a structural block diagram of a CPO module according to a scenario embodiment of the present disclosure.
  • FIG. 1 is a structural block diagram of a CPO module according to an embodiment of the present disclosure.
  • the CPO module 10 includes: an external light source 110, which is configured to The CPO module 10 provides a laser signal from the outside; an input conversion unit 120, the input end of the input conversion unit 120 is connected to the output end of the external light source 110, and is set to convert the light field size of the laser signal and perform optical power distribution; the built-in light source 130 , is configured to provide a laser light source inside the CPO module 10; the optical switch 140, the first port of the optical switch 140 is connected to the built-in light source 130, the second port of the optical switch 140 is connected to the output end of the input conversion unit 120, is configured to achieve Switching selection between the external light source 110 and the built-in light source 130; the output conversion unit 150 is connected to the output port of the optical switch 140 and is configured to modulate the optical signal inside the CPO module 10 and output it.
  • the external light source 110 and the built-in light source 130 are set on the CPO module.
  • the external light source 110 is set to provide a laser signal outside the CPO module
  • the built-in light source 130 is set to provide a laser light source inside the CPO module.
  • the optical switch 140 to realize the switching selection between the external light source 110 and the built-in light source 130.
  • the input conversion unit 120 is also configured to convert the optical field size of the laser signal and perform optical power distribution
  • the output conversion unit 150 is configured to modulate the optical signal inside the CPO module and output it. It solves the problem that only external light sources easily cause optical signal insertion loss and low system reliability during the replacement process. It also solves the problem that only built-in light sources have poor configuration flexibility, thereby improving the reliability and configuration flexibility of the optical signal transmission system. Effect.
  • the optical switch implements switching selection between an external light source and a built-in light source through level control.
  • FIG. 2 is a structural block diagram of an input conversion unit according to an embodiment of the present disclosure.
  • the input conversion unit 120 includes: an input side mode spot conversion unit 210 , which is disposed inside the CPO module 10 ;
  • the second optical power distribution unit 220, one end of the second optical power distribution unit 220 is connected to the output end of the input side mode spot conversion unit 210, and the other end of the second optical power distribution unit 220 is connected to the second port of the optical switch 140 .
  • FIG. 3 is a structural block diagram of an input conversion unit according to an embodiment of the present disclosure.
  • the input conversion unit 120 includes, in addition to various components in FIG. 2 , a polarization-maintaining optical fiber.
  • Array 310 one end of the polarization-maintaining optical fiber array 310 is connected to the external light source 110;
  • input-side pigtail assembly unit 320 the input end of the input-side pigtail assembly unit 320 is connected to the other end of the polarization-maintaining optical fiber array 310, and the input-side pigtail
  • the output end of the component unit 320 is connected to the input end of the input side mode spot conversion unit 210 .
  • FIG. 4 is a structural block diagram of a built-in light source according to an embodiment of the present disclosure.
  • the built-in light source 130 includes: a built-in laser 410 and a first optical power distribution unit 420, where the first One end of the optical power distribution unit 420 is connected to the built-in laser 410 , and the other end of the first optical power distribution unit 420 is connected to the first port of the optical switch 140 .
  • FIG. 5 is a structural block diagram of an output conversion unit according to an embodiment of the present disclosure.
  • the output conversion unit 150 includes: an internal modulator 510 configured to modulate an electrical signal into an optical signal.
  • the mode spot conversion unit 520 is configured to convert the modulated optical signal from the silicon waveguide light field size to the optical fiber light field size.
  • FIG. 6 is a structural block diagram of an output conversion unit according to an embodiment of the present disclosure.
  • the output conversion unit 150 in addition to each component in FIG. 5 , the output conversion unit 150 also includes: an electrical signal amplifier. 610, configured to provide an electrical signal to the internal modulator 510
  • FIG. 7 is a structural block diagram of an output conversion unit according to an embodiment of the present disclosure.
  • the output conversion unit 150 also includes: an output side tail One end of the output-side pigtail assembly unit 710 is connected to the output-side mode spot conversion unit 520, and the other end of the output-side pigtail assembly unit 710 may be connected to a single-mode optical fiber.
  • Figure 8 is a structural block diagram of a CPO module according to an embodiment of the present disclosure.
  • the CPO module 80 also includes: monitoring photoelectric
  • the diode MPD 810 is configured to detect the optical power output by the optical switch 140, and provide a feedback signal to the optical switch 140 to achieve precise control of the voltage of the optical switch 140.
  • Figure 9 is a structural block diagram of an external light source according to an embodiment of the present disclosure.
  • the external light source 110 further includes: an optical connector 910, an electrical connector 920 and a laser 930, Among them, the laser 930 outputs a continuous laser signal to the optical connector 910.
  • the CPO module provided by the above embodiments of the present disclosure can be applied to any communication system.
  • One system can include multiple CPO modules, and the multiple CPO modules can be connected through optical fibers to complete the transmission of optical signals. They can also be connected through optical fibers.
  • the internal waveguide is used for connection. Among them, when the system uses the CPO module to interconnect signals within the system, the system space is limited and requires direct interconnection between chips.
  • the light source is preferably a built-in laser light source. In this case, the chip is the CPO. Modules can be directly optically interconnected through internal waveguides.
  • the CPO module according to the above embodiments can be implemented in a general manner with the help of a hardware platform and necessary software. Of course, it can also be implemented through software, but in many cases The former is a better implementation.
  • module can be a combination of software and/or hardware that implements predetermined functions.
  • apparatus described is preferably implemented in hardware, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
  • each of the above modules can be implemented through hardware. Specifically, it can be implemented in the following ways, but is not limited to this: the above modules are all located in the same processor; or the above modules can be implemented in any combination. Located in different processors.
  • FIG 10 is a structural block diagram of a CPO module according to an embodiment of the present disclosure.
  • the CPO module includes: a pluggable light source 101, a pigtail assembly unit 102, an input side mode spot conversion unit 103, 1:N Optical power distribution unit 104, optical switch 107, wherein the first input port 105 and the second input port 106 of the optical switch 107, the optical power detection unit 108, the optical modulator 109, the output side mode spot conversion unit 110, and the electrical signal driver 111.
  • Optical power distribution unit 112 polarization-maintaining fiber array 201 including m polarization-maintaining fibers, fiber array 301, and built-in III-V compound laser 401.
  • the number m of polarization-maintaining fibers in the polarization-maintaining fiber array 201 is a positive integer, and the specific value of m is related to the signal integration degree output by the modulator, etc., and needs to be combined with the specific application. environment and applications Need determined.
  • the pluggable light source 101 is arranged on the panel side of the CPO module, outputs a CW laser signal and transmits the CW laser signal to the pigtail assembly unit 102 through the polarization-maintaining fiber array 201.
  • the pigtail assembly unit 102 is one or more sets of optical fiber array connectors, configured to connect the CPO module to external optical fibers. And the CW laser signal of the polarization-maintaining fiber array 201 is converted from the light field in the polarization-maintaining fiber array 201 into the silicon waveguide light field in the CPO module through the input side mode spot conversion unit 103. As shown in Figure 10, pigtail assembly units 102 are located on both sides of the CPO module, and there are pigtail assembly units 102 on both the input side and the output side.
  • the input side mode spot conversion unit 103 converts the light field size in the optical fiber into the waveguide light field size in the CPO module, thereby improving the coupling efficiency of the optical signal.
  • the 1:N optical power distribution unit 104 realizes optical power distribution of the CW laser signal in a specific ratio of 1:N.
  • the optical switch 107 realizes the selection of a built-in laser or an external laser light source through special level control.
  • the first input port 105 of the optical switch 107 is connected to the built-in III-V compound laser 401. Among them, those of ordinary skill in the art should know that the specific type of the built-in laser can be adjusted according to actual needs, and is not limited here.
  • the second input port 106 of the optical switch 107 is connected to the output port of the 1:N optical power distribution unit 104.
  • the optical power detection unit MPD 108 is configured to monitor the optical power of the CW laser signal output by the optical switch 107.
  • the optical modulator 109 modulates the electrical signal onto the laser signal.
  • the output side mode spot converter 110 realizes efficient coupling between the optical chip waveguide and the optical fiber.
  • the electrical signal driver 111 amplifies the high-speed serial bus power-on signal. To meet the requirements of the optical modulator 109 on the electrical signal amplitude.
  • the optical power distribution unit 112 is connected to the built-in III-V compound laser unit 401.
  • This disclosure proposes a CPO module that can flexibly choose between built-in light sources and external light sources, and cleverly solves the problem of light source reliability and improves system design flexibility.
  • the main principle of this disclosure the pluggable light source 101 is installed on the panel side of the device, and the output CW laser signal is transmitted to the polarization-maintaining fiber array 201 through the connector.
  • the polarization-maintaining fiber array 201 converts the CW laser signal through the input side mode spot conversion unit 103 Coupled into the silicon waveguide inside the optical chip, the 1:N optical power distribution unit 104 evenly distributes the power of the optical signal to different channels.
  • the optical switch 107 realizes the switching of the laser light source from the built-in III-V laser to the external through special voltage control. Choose one of two laser light sources.
  • the output port of the optical switch 107 is connected to the external laser light source input.
  • control the control level voltage value (low level) on the optical switch 107 controls the control level voltage value (low level) on the optical switch 107, and the output port of the optical switch 107 is connected to the built-in laser light source. In this way, after the light source is switched, the service interruption time can be reduced when the pluggable light source 101 is replaced.
  • the light source is preferably a built-in laser light source.
  • the chips are directly optically interconnected through internal waveguides.
  • FIG 11 is a structural block diagram of a CPO module according to an embodiment of the present disclosure.
  • the CPO module includes: a pluggable light source 101, a pigtail assembly unit 102, an input side mode spot conversion unit 103, 1:N Optical power distribution unit 104, optical switch 107, wherein the first input port 105 and the second input port 106 of the optical switch 107, the optical power detection unit 108, the optical modulator 109, the output side mode spot conversion unit 110, and the electrical signal driver 111.
  • Optical power distribution unit 112 polarization-maintaining fiber array 201 including m polarization-maintaining fibers, fiber array 301, and built-in III-V compound laser 401.
  • the plug-in light source 101 adopts the structure of a plug-in optical module with the optical connector and the electrical connector on the same side. There are 8 independent lasers in the plug-in light source 101. These 8 lasers output continuous laser (CW laser) to the optical on the connector, through the connector Connected to the polarization-maintaining optical fiber array 201. Among them, those of ordinary skill in the art should know that the specific implementation form of the connector can be adjusted according to actual needs, and there are no specific restrictions here.
  • the other end of the polarization-maintaining fiber array 201 is connected to the pigtail assembly unit 102 of the CPO module through a connector, and the input side mode spot conversion unit 103 inside the CPO module converts the optical fiber spot with a larger light field into a silicon fiber spot with a smaller light field.
  • the 1:4 optical power splitter 104 splits the optical power on the silicon waveguide output by the input side mode spot conversion unit 103 in an equal ratio of 1:4.
  • the optical power is distributed into each independent channel and connected 106 to an input end of the optical switch 107 of each independent channel.
  • the built-in light source 401 of the CPO module adopts a heterogeneous integration method to bond the III-V compound material to the silicon substrate to form a laser light source.
  • the built-in light source 401 is connected to the optical power distribution unit 112 through the CPO internal silicon waveguide.
  • the optical power distribution unit 112 distributes the optical power of the output optical power of the built-in light source 401 in a ratio of 1:4.
  • the first link between the optical power distribution unit 112 and the optical switch 107 Input port 105 connection.
  • Figure 12 is a schematic structural diagram of an optical switch according to a scenario embodiment of the present disclosure.
  • the MZI type 2X2 optical switch 107 controls the voltage on the two MZI arms by controlling the voltage of the control level on the optical switch 107. phase difference, thereby flexibly controlling the optical signal at the output end of the optical switch 107 to come from the first input port 105 or the second input port 106.
  • the control voltage of the optical switch 107 is accurately controlled by reading the signal collected by the monitoring photodiode MPD 108 as a feedback signal.
  • the optical modulator 109 of the CPO module part uses a silicon-based Mach-Zehnder modulator.
  • the optical modulator 109 modulates the electrical signal transmitted from the electrical signal driver 111 onto an optical signal.
  • the optical signal modulated by the optical modulator 109 is output to the output side mode spot conversion unit 110.
  • the output side mode spot conversion unit 110 converts the light spot of the silicon waveguide with a small light field into a fiber light spot with a large light field.
  • the electrical signal driver 111 amplifies the level amplitude of the differential electrical signal on the high-speed serial bus to meet the requirements of the optical modulator 109 Mach-Zehnder optical modulator.
  • the pigtail assembly unit 102 on the output side of the output-side mode spot conversion unit 110 is connected. As shown in Figure 12, the pigtail assembly unit 102 on the output side is also connected to a single-mode optical fiber.
  • the single-mode optical fiber is connected to the pigtail assembly unit 102 on the output side through an optical fiber adapter, so that the optical signal in the CPO module can be Output to other modules or systems.
  • FIG 13 is a structural block diagram of a CPO module according to a scenario embodiment of the present disclosure.
  • the system's usage conditions for the CPO module are that the system space is limited when signals within the system are interconnected. Direct interconnection between chips is required, and the light source is preferably a built-in laser light source.
  • the chips, that is, CPO modules can be directly optically interconnected through internal waveguides.
  • the CPO module includes: an optical switch 107, wherein the first input port 105 and the second input port 106 of the optical switch 107, the optical power detection unit 108, the optical modulator 109, and the output side mode spot conversion unit 110. Electrical signal driver 111, optical power distribution unit 112, built-in III-V compound laser 401.
  • the laser used in the built-in light source 401 of the CPO module uses a heterogeneous integration method to bond the III-V compound material to the silicon substrate to form a laser light source.
  • the built-in light source 401 is connected to the optical power distribution unit 112 through the CPO internal silicon waveguide.
  • the optical power distribution unit 112 distributes the optical power of the output optical power of the built-in light source 401 in a 1:2 ratio.
  • the first connection between the optical power distribution unit 112 and the optical switch 107 Input port 105 connection.
  • the optical switch 107 is an MZI type 2X2 optical switch. By controlling the voltage of the control level on 107, the phase difference on the two MZI arms is controlled, and the output optical signal of the control 107 comes from 105.
  • the photodiode MPD 108 is monitored and the optical power output by the optical switch 107 is detected. Monitoring photodiodes by reading MPD The signal collected by 108 is used as a feedback signal to accurately control the control voltage of the optical switch 107.
  • the optical modulator 109 inside the CPO module adopts a silicon-based micro-ring modulator.
  • the optical modulator 109 modulates the electrical signal transmitted from the electrical signal driver 111 to an optical signal.
  • the optical signal modulated by step 109 is output to the output side mode spot conversion unit 110.
  • the output side mode spot conversion unit 110 converts the light spot of the silicon waveguide with a small light field into an external optical waveguide light spot with a large light field.
  • the electrical signal driver 111 amplifies the level amplitude of the differential electrical signal on the high-speed serial bus to meet the requirements of the optical modulator 109 .
  • the output of the output side mode spot conversion unit 110 is connected to an external waveguide device. Optical interconnection between chips is achieved.
  • the present disclosure provides a CPO module that integrates III-V materials internally, is set as an internal laser light source, and integrates optical switching devices, multi-mode interferometers and flexible waveguide designs to realize that the CPO module can be configured according to specific equipment configurations and Energy consumption depends on choosing different types of light sources, and 1:1 protection of built-in light sources and external light sources is also achieved. It avoids the problem of system business interruption caused by the failure of a certain light source in the CPO module.
  • the CPO module can be used very flexibly in various system configuration scenarios, providing system designers with great flexibility. It also solves the various problems of the CPO module being configured with only a built-in light source or only an external light source, improving the system reliability of the entire machine and reducing system power consumption.
  • the CPO module realizes that either the built-in light source or the external light source can be used according to the system design, which increases the flexibility of the system design, reduces the power consumption of the whole machine, and can also improve the reliability of the whole machine. .
  • modules of the present disclosure can be implemented with general-purpose computing devices, they can be concentrated on a single computing device, or distributed on a network composed of multiple computing devices. Some of the functions or modules in can be implemented with program codes executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, they can be made into individual integrated circuits. modules, or by making multiple of them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

一种光电共封装CPO模块(10),将外置光源(110)和内置光源(130)设置于CPO模块(10)上,其中,外置光源(110)设置为在CPO模块(10)的外部提供激光信号,内置光源(130)设置为在CPO模块(10)的内部提供激光光源,CPO模块(10)还包括光开关(140),设置为实现外置光源(110)和内置光源(130)的切换选择。CPO模块(10)还包括输入转换单元(120)和输出转换单元(150),其中,输入转换单元(120)设置为转换激光信号的光场尺寸,并进行光功率分配;输出转换单元(150)设置为调制CPO模块(10)内部的光信号并输出。

Description

光电共封装CPO模块 技术领域
本公开实施例涉及通信领域,具体而言,涉及一种光电共封装CPO模块。
背景技术
网络的发展,急需解决大容量,多通道,低时延,低功耗的的高速数据传输问题。随着芯片间通信速率的不断提高,引发电信号的信号完整性和功耗之间的问题,对于拥有大量高速接口的DC交换机芯片和路由器芯片,数据中心超级计算机内部计算单元间通信,表现尤其突出。基于这样的情况,业界提出了使用光电共封装(Co-Packaged Optics,CPO)来解决这个问题。CPO中有个关键的核心器件,光调制芯片需要与外部连续波(Continuous-Wave,CW)激光器提供光源,但是CW激光器需要考虑可靠性、能耗等问题。
目前业内主要的解决方案:1、使用面板侧使用可插拔光模块的封装形式来提供CPO模块内调制器所需要的CW激光光源。这种方式方便更换易于维护,但是一旦外置光源出现问题,需要插拔替换,这段时间就会出现业务的中断或者流量丢包问题,并且需要增加一段保偏光纤,这样就增加了光信号的插损。2、使用异质集成的方式,在CPO模块内硅衬底上集成III-V族化合物来做内置CW激光光源。这种方式提升了CPO模块的集成度,减少整机盘纤的难度,但是内置光源的可维护性较差,配置的灵活度也不好。
发明内容
本公开实施例提供了一种光电共封装CPO模块,以至少解决相关技术中光信号传输系统可靠性低、配置灵活度低的问题。
根据本公开的一个实施例,提供了一种光电共封装CPO模块,包括:包括:外置光源,设置为在所述CPO模块的外部提供激光信号;输入转换单元,所述输入转换单元的输入端与所述外置光源的输出端连接,设置为转换所述激光信号的光场尺寸,并进行光功率分配;内置光源,设置为在所述CPO模块的内部提供激光光源;光开关,所述光开关的第一端口与所述内置光源连接,所述光开关的第二端口与所述输入转换单元的输出端连接,设置为实现所述外置光源和所述内置光源的切换选择;输出转换单元,与所述光开关的输出端口连接,设置为调制所述CPO模块内部的光信号并输出。
附图说明
图1是根据本公开实施例的CPO模块的结构框图;
图2是根据本公开实施例的输入转换单元的结构框图;
图3是根据本公开实施例的输入转换单元的结构框图;
图4是根据本公开实施例的内置光源的结构框图;
图5是根据本公开实施例的输出转换单元的结构框图;
图6是根据本公开实施例的输出转换单元的结构框图;
图7是根据本公开实施例的输出转换单元的结构框图;
图8是根据本公开实施例的CPO模块的结构框图;
图9是根据本公开实施例的外置光源的结构框图;
图10是根据本公开场景实施例的CPO模块的结构框图;
图11是根据本公开场景实施例的CPO模块的结构框图;
图12是根据本公开的场景实施例的光开关的结构形式示意图;
图13是根据本公开的场景实施例的CPO模块的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种光电共封装CPO模块,图1是根据本公开实施例的CPO模块的结构框图,如图1所示,该CPO模块10包括:外置光源110,设置为在CPO模块10的外部提供激光信号;输入转换单元120,输入转换单元120的输入端与外置光源110的输出端连接,设置为转换激光信号的光场尺寸,并进行光功率分配;内置光源130,设置为在CPO模块10的内部提供激光光源;光开关140,光开关140的第一端口与内置光源130连接,光开关140的第二端口与输入转换单元120的输出端连接,设置为实现外置光源110和内置光源130的切换选择;输出转换单元150,与光开关140的输出端口连接,设置为调制CPO模块10内部的光信号并输出。
通过上述CPO模块,将外置光源110和内置光源130设置于CPO模块上,其中,外置光源110设置为在CPO模块的外部提供激光信号,内置光源130设置为在CPO模块的内部提供激光光源,并设置光开关140实现外置光源110和内置光源130的切换选择。还设置了输入转换单元120设置为转换激光信号的光场尺寸,并进行光功率分配;输出转换单元150设置为调制CPO模块内部的光信号并输出。解决了只有外置光源在更换过程中容易造成光信号插损,系统可靠性低的问题,还解决了只有内置光源配置灵活度差的问题,达到了提高光信号传输系统可靠性和配置灵活度的效果。
在一个示例性实施例中,光开关通过电平控制实现外置光源和内置光源的切换选择。
在一个示例性实施例中,图2是根据本公开实施例的输入转换单元的结构框图,如图2所示,输入转换单元120包括:输入侧模斑转换单元210,设置于CPO模块10内部;第二光功率分配单元220,第二光功率分配单元220的一端与输入侧模斑转换单元210的输出端连接,第二光功率分配单元220的另一端与光开关140的第二端口连接。
在一个示例性实施例中,图3是根据本公开实施例的输入转换单元的结构框图,如图3所示,输入转换单元120除了包括图2中的各个部件外,还包括:保偏光纤阵列310,保偏光纤阵列310的一端与外置光源110连接;输入侧尾纤组件单元320,输入侧尾纤组件单元320的输入端与保偏光纤阵列310的另一端连接,输入侧尾纤组件单元320的输出端与输入侧模斑转换单元210的输入端连接。
在一个示例性实施例中,图4是根据本公开实施例的内置光源的结构框图,如图4所示,内置光源130包括:内置激光器410和第一光功率分配单元420,其中,第一光功率分配单元420的一端与内置激光器410连接,第一光功率分配单元420的另一端与光开关140的第一端口连接。
在一个示例性实施例中,图5是根据本公开实施例的输出转换单元的结构框图,如图5所示,输出转换单元150包括:内部调制器510,设置为将电信号调制到光信号上;输出侧 模斑转换单元520,设置为将调制后的光信号由硅波导光场尺寸转换成光纤光场尺寸。
在一个示例性实施例中,图6是根据本公开实施例的输出转换单元的结构框图,如图6所示,输出转换单元150除了包括图5中的各个部件外,还包括:电信号放大器610,设置为为内部调制器510提供电信号
在一个示例性实施例中,图7是根据本公开实施例的输出转换单元的结构框图,如图7所示,输出转换单元150除了包括图6中的各个部件外,还包括:输出侧尾纤组件单元710,输出侧尾纤组件单元710的一端与输出侧模斑转换单元520连接,输出侧尾纤组件单元710的另一端可以连接有单模光纤。
在一个示例性实施例中,图8是根据本公开实施例的CPO模块的结构框图,如图8所示,该CPO模块80除了包括图1中的各个部件组成外,模块还包括:监控光电二级管MPD 810,设置为检测光开关140输出的光功率,并为光开关140提供反馈信号实现对光开关140的电压的精确控制。
在一个示例性实施例中,图9是根据本公开实施例的外置光源的结构框图,如图9所示,外置光源110进一步包括:光连接器910、电连接器920和激光器930,其中,激光器930输出连续激光信号至光连接器910上。
本公开上述实施例提供的CPO模块可以应用于任意的通信系统中,其中,一个系统中可以包括多个CPO模块,多个CPO模块之间可以通过光纤连接,完成光信号的传输,也可以通过内部波导进行连接,其中,在系统对CPO模块的使用条件是系统内信号互联情况下,系统空间受限,需要芯片与芯片间直接互联,光源优先选择内置激光器光源,这种情况下芯片即CPO模块之可以间通过内部波导直接光互联。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的CPO模块可借助硬件平台加必需的软件以通用的方式来实现,当然也可以通过软件,但很多情况下前者是更佳的实施方式。
上述实施例所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以所描述的装置较佳地以硬件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
需要说明的是,上述各个模块是可以通过硬件来实现的,具体地,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
为了使得本领域的技术人员能够更好地理解本公开的技术方案,下面结合具体的场景实施例对本公开的技术方案进行阐述。
场景实施例一
图10是根据本公开场景实施例的CPO模块的结构框图,如图10所示,该CPO模块包括:可插拔光源101、尾纤组件单元102、输入侧模斑转换单元103、1∶N光功率分配单元104、光开关107,其中,光开关107的第一输入端口105和第二输入端口106、光功率检测单元108、光调制器109、输出侧模斑转换单元110、电信号驱动器111、光功率分配单元112、包含m根保偏光纤的保偏光纤阵列201、光纤阵列301、内置III-V族化合物激光器401。
其中,本领域的普通技术人员应该知道,保偏光纤阵列201中的保偏光纤的数量m为正整数,且m的具体取值与调制器输出的信号集成度等有关,需要结合具体的应用环境和应用 需求确定。
其中,可插拔光源101,设置在CPO模块的面板侧,输出CW激光信号并通过保偏光纤阵列201将CW激光信号传递到尾纤组件单元102。
尾纤组件单元102是一组或多组光纤整列连接器,设置为CPO模块连接外部光纤。并且将保偏光纤阵201的CW激光信号通过输入侧模斑转换单元103由保偏光纤阵201内的光场转换成CPO模块内硅波导光场。如图10所示,尾纤组件单元102位于CPO模块的两侧,输入侧和输出侧都有尾纤组件单元102。
输入侧模斑转换单元103将光纤内的光场尺寸转换成CPO模块内波导光场尺寸,从而提高了光信号的耦合效率。
1∶N光功率分配单元104,实现了将CW激光信号按特定比例1∶N进行光功率分配。
光开关107,通过特殊的电平控制,实现内置激光器或者外置激光光源的二选一。光开关107的第一输入端口105,连接内置III-V族化合物激光器401。其中,本领域的普通技术人员应该知道,内置激光器的具体类型可以根据实际需求进行调整,这里不做限制。光开关107的第二输入端口106,连接1∶N光功率分配单元104的输出端口。光功率检测单元MPD 108,设置为监测光开关107输出的CW激光信号的光功率。
光调制器109,实现将电信号调制到激光信号上。输出侧模斑转换器110,实现光芯片波导与光纤的高效耦合。电信号驱动器111,实现将高速串行总线上电信号进行放大。以满足光调制器109对电信号幅度的要求。光功率分配单元112连接内置III-V族化合物激光器单元401。
本公开提出了一种CPO模块,可以灵活的选择内置光源及外置光源的方案,并且巧妙的解决了光源可靠性的问题,提升了系统设计灵活度。本公开主要的原理:可插拔光源101安装在设备的面板侧,输出CW激光信号通过连接器传输到了保偏光纤阵列201,保偏光纤阵列201通过输入侧模斑转换单元103将CW激光信号耦合进光芯片内部硅波导,1∶N光功率分配单元104将光信号的功率平均分配到不同的通道上,光开关107通过特殊的电压控制来实现激光光源从内置III-V族激光器和外置激光器光源中二选一。
当系统正常工作情况下,通过控制光开关107上的控制电平电压值(高电平),光开关107的输出端口连接到外置激光器光源输入,当系统需要更换可插拔光源101的时候,控制光开关107上控制电平电压值(低电平),光开关107的输出端口连接到内置激光器光源。这样光源切换后,更换可插拔光源101时,可以减少业务中断时间。
另外在系统对CPO的使用条件是系统内信号互联情况下,系统空间受限,需要芯片与芯片间直接互联,光源优先选择内置激光器光源,这种情况下芯片间通过内部波导直接光互联。
场景实施例二
图11是根据本公开场景实施例的CPO模块的结构框图,如图11所示,该CPO模块包括:可插拔光源101、尾纤组件单元102、输入侧模斑转换单元103、1∶N光功率分配单元104、光开关107,其中,光开关107的第一输入端口105和第二输入端口106、光功率检测单元108、光调制器109、输出侧模斑转换单元110、电信号驱动器111、光功率分配单元112、包含m根保偏光纤的保偏光纤阵列201、光纤阵列301、内置III-V族化合物激光器401。
插拔光源101,采用光连接器和电连接器在同侧的插拔光模块的结构形式,插拔光源101内有8个独立的激光器,这8个激光器输出连续激光(CW激光)到光连接器上,通过连接器 与保偏光纤阵列201连接。其中,本领域的普通技术人员应该知道,连接器的具体实现形式可以根据实际需求做出调整,这里来了不作具体限制。
保偏光纤阵列201的另外一端与CPO模块的尾纤组件单元102通过连接器连接,通过CPO模块内部的输入侧模斑转换单元103将光场较大的光纤光斑转换成光场较小的硅波导的光斑。1∶4的光功率分配器104将输入侧模斑转换单元103输出的硅波导上的光功率按照1分4的等比例分光。将光功率分配到每个独立的通道的内,并且与每个独立通道的光开关107的一个输入端连接106。
CPO模块的内置光源401,采用异质集成的方式将III-V族化合物的材料键合到硅基板上,形成激光光源。内置光源401通过CPO内部硅波导与光功率分配单元112连接,光功率分配单元112将内置光源401的输出光功率进行1∶4比例分配光功率,光功率分配单元112与光开关107的第一输入端口105连接。
图12是根据本公开的场景实施例的光开关的结构形式示意图,如图12所示,MZI型2X2光开关107,通过控制光开关107上控制电平的电压,来控制两个MZI臂上的相位差,从而灵活控制光开关107的输出端光信号来自第一输入端口105或者第二输入端口106。
监控光电二级管MPD108,检测光开关107输出的光功率。通过读取监控光电二级管MPD 108采集的信号作为反馈信号来精确控制光开关107的控制电压。
CPO模块部的光调制器109,在本场景实施例中光调制器109采用硅基马赫曾德调制器,光调制器109将电信号驱动器111传输过来的电信号调制到光信号上。经过光调制器109调制后的光信号输出到输出侧模斑转换单元110,输出侧模斑转换单元110将光场较小的硅波导的光斑转换成光场较大的光纤光斑。电信号驱动器111,将高速串行总线上的差分电信号的电平幅度放大,以满足光调制器109马赫曾德光调制器的要求。输出侧模斑转换单元110的输出侧的尾纤组件单元102连接。如图12所示,输出侧的尾纤组件单元102还连接有单模光纤,其中,单模光纤是通过光纤适配器与输出侧的尾纤组件单元102连接,从而可以将CPO模块内的光信号输出至其他的模块或者系统。
场景实施例三
图13是根据本公开的场景实施例的CPO模块的结构框图,如图13所示,在本场景实施例中,系统对CPO模块的使用条件是系统内信号互联情况下,系统空间受限,需要芯片与芯片间直接互联,光源优先选择内置激光器光源,这种情况下芯片即CPO模块之间可以通过内部波导直接光互联。
如图13所示,该CPO模块包括:光开关107,其中,光开关107的第一输入端口105和第二输入端口106、光功率检测单元108、光调制器109、输出侧模斑转换单元110、电信号驱动器111、光功率分配单元112、内置III-V族化合物激光器401。
CPO模块的内置光源401采用的激光器是通过异质集成的方式将III-V族化合物的材料键合到硅基板上,形成激光光源。内置光源401通过CPO内部硅波导与光功率分配单元112连接,光功率分配单元112将内置光源401的输出光功率进行1∶2比例分配光功率,光功率分配单元112与光开关107的第一输入端口105连接。
在本场景实施例中,光开关107是MZI型2X2光开关,通过控制107上控制电平的电压,来控制两个MZI臂上的相位差,控制107的输出端光信号来自105。
监控光电二级管MPD 108,检测光开关107输出的光功率。通过读取监控光电二级管MPD  108采集的信号作为反馈信号来精确控制光开关107的控制电压。
CPO模块内部的光调制器109,光调制器109采用硅基微环调制器,通过光调制器109将电信号驱动器111传输过来的电信号调制到光信号上。经过109调制后的光信号输出到输出侧模斑转换单元110,输出侧模斑转换单元110将光场较小的硅波导的光斑转换成光场较大的外部光波导光斑。电信号驱动器111,将高速串行总线上的差分电信号的电平幅度放大,以满足光调制器109的要求。输出侧模斑转换单元110的输出与外部波导器件连接。实现了芯片间的光互联。
本公开提供的一种CPO模块,内部集成III-V族材料,设置为内部激光光源,并且集成光开关器件和多模干涉仪及灵活的波导设计,来实现CPO模块可根据具体的设备配置和能耗要来选择不同类型的光源,并且还实现了内置光源与外置光源的1∶1保护。避免了CPO模块里某一个光源失效从而造成系统业务中断的问题。能够非常灵活的使用CPO模块应用于各种系统配置场景,给系统设计者提供了非常大的灵活度。并且解决CPO模块单一只配置内置光源或者只配置外置光源的各种的问题,提升了整机的系统可靠性,并且降低了系统功耗。在CPO系统方案中具有很大的竞争力,尤其适合国内CPO产业链并不成熟的情况。该CPO模块通过特殊设计实现了内置光源和外置光源可以根据系统设计来任选其一使用,增加了系统设计的灵活性,降低了整机的功耗,并且还可以提升整机的可靠性。
显然,本领域的技术人员应该明白,上述的本公开的各模块可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们中的部分功能或者模块可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以将它们分别制作成各个集成电路模块,或者将它们中的多个模块制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种光电共封装CPO模块,包括:
    外置光源,设置为在所述CPO模块的外部提供激光信号;
    输入转换单元,所述输入转换单元的输入端与所述外置光源的输出端连接,设置为转换所述激光信号的光场尺寸,并进行光功率分配;
    内置光源,设置为在所述CPO模块的内部提供激光光源;
    光开关,所述光开关的第一端口与所述内置光源连接,所述光开关的第二端口与所述输入转换单元的输出端连接,设置为实现所述外置光源和所述内置光源的切换选择;
    输出转换单元,与所述光开关的输出端口连接,设置为调制所述CPO模块内部的光信号并输出。
  2. 根据权利要求1所述的模块,其中,所述光开关通过电平控制实现所述外置光源和所述内置光源的切换选择。
  3. 根据权利要求1所述的模块,其中,所述输入转换单元包括:
    输入侧模斑转换单元,设置于所述CPO模块内部;
    第二光功率分配单元,所述第二光功率分配单元的一端与所述输入侧模斑转换单元的输出端连接,所述第二光功率分配单元的另一端与所述光开关的所述第二端口连接。
  4. 根据权利要求3所述的模块,其中,所述输入转换单元还包括:
    保偏光纤阵列,所述保偏光纤阵列的一端与所述外置光源连接;
    输入侧尾纤组件单元,所述输入侧尾纤组件单元的输入端与所述保偏光纤阵列的另一端连接,所述输入侧尾纤组件单元的输出端与所述输入侧模斑转换单元的输入端连接。
  5. 根据权利要求1所述的模块,其中,所述内置光源进一步包括:内置激光器和第一光功率分配单元,其中,所述第一光功率分配单元的一端与所述内置激光器连接,所述第一光功率分配单元的另一端与所述光开关的第一端口连接。
  6. 根据权利要求1所述的模块,其中,所述输出转换单元包括:
    内部调制器,设置为将电信号调制到光信号上;
    输出侧模斑转换单元,设置为将调制后的所述光信号由硅波导光场尺寸转换成光纤光场尺寸。
  7. 根据权利要求6所述的模块,其中,所述输出转换单元还包括:
    电信号放大器,设置为为所述内部调制器提供电信号。
  8. 根据权利要求6所述的模块,其中,所述输出转换单元还包括:
    输出侧尾纤组件单元,所述输出侧尾纤组件单元的一端与所述输出侧模斑转换单元连接, 所述输出侧尾纤组件单元的另一端连接有单模光纤。
  9. 根据权利要求2所述的模块,其中,所述模块还包括:
    监控光电二级管MPD,设置为检测所述光开关输出的光功率,并为所述光开关提供反馈信号实现对所述光开关的电压的精确控制。
  10. 根据权利要求1所述的模块,其中,所述外置光源进一步包括:光连接器、电连接器和激光器,其中,所述激光器输出所述激光信号至所述光连接器上。
PCT/CN2023/099734 2022-06-28 2023-06-12 光电共封装cpo模块 WO2024001750A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210745191.9A CN117348175A (zh) 2022-06-28 2022-06-28 光电共封装cpo模块
CN202210745191.9 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024001750A1 true WO2024001750A1 (zh) 2024-01-04

Family

ID=89363683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099734 WO2024001750A1 (zh) 2022-06-28 2023-06-12 光电共封装cpo模块

Country Status (2)

Country Link
CN (1) CN117348175A (zh)
WO (1) WO2024001750A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142196A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 可插拔光源模块
US20200192035A1 (en) * 2018-12-16 2020-06-18 Hewlett Packard Enterprise Development Lp High-density fabric systems interconnected with multi-port aggregated cables
CN113227864A (zh) * 2019-08-08 2021-08-06 洛克利光子有限公司 面板式可插拔远程激光源和包含所述激光源的系统
CN113759477A (zh) * 2020-06-05 2021-12-07 颖飞公司 多信道光引擎的封装型小芯片及共同封装型光电模块
CN113917631A (zh) * 2021-10-20 2022-01-11 东莞立讯技术有限公司 共封装集成光电模块及共封装光电交换芯片结构
CN114079510A (zh) * 2020-08-11 2022-02-22 瞻博网络公司 外部激光器使能的共同封装光学架构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142196A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 可插拔光源模块
US20200192035A1 (en) * 2018-12-16 2020-06-18 Hewlett Packard Enterprise Development Lp High-density fabric systems interconnected with multi-port aggregated cables
CN113227864A (zh) * 2019-08-08 2021-08-06 洛克利光子有限公司 面板式可插拔远程激光源和包含所述激光源的系统
CN113759477A (zh) * 2020-06-05 2021-12-07 颖飞公司 多信道光引擎的封装型小芯片及共同封装型光电模块
CN114079510A (zh) * 2020-08-11 2022-02-22 瞻博网络公司 外部激光器使能的共同封装光学架构
CN113917631A (zh) * 2021-10-20 2022-01-11 东莞立讯技术有限公司 共封装集成光电模块及共封装光电交换芯片结构

Also Published As

Publication number Publication date
CN117348175A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US11121776B2 (en) Faceplate pluggable remote laser source and system incorporating same
US20220019038A1 (en) Optical interconnect for switch applications
US9823495B2 (en) Method and system for integrated power combiners
US11899256B2 (en) Pluggable optical module and optical communication system
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
US11451301B2 (en) Light source backup method, apparatus, and system
CN110989099B (zh) 一种光模块
WO2022110965A1 (zh) 一种光模块
CN109073828B (zh) 具有集成在同一芯片上的光学分离器及调制器的光学互连件
GB2530814A (en) Optical bridge
CN112782812B (zh) 一种光模块
WO2024060818A1 (zh) 多通道有源光缆光子集成芯片及有源光缆
CN114079509B (zh) 光源模块和光通信设备
CN112817098A (zh) 一种光模块
CN117148518A (zh) 一种光模块
CN115208471A (zh) 用于时间相位编码的量子密钥分发光芯片及不等臂干涉仪光芯片
CN210775929U (zh) 一种光模块
US20230239982A1 (en) Optical source switching method and apparatus
CN112782813B (zh) 一种光模块
WO2024001750A1 (zh) 光电共封装cpo模块
EP4106229A1 (en) Optical module, data center system, and data transmission method
CN115308834A (zh) 集成光收发芯片、光电子器件和光收发系统
CN110266491B (zh) 量子密钥分配接收端芯片和设备
WO2023030463A1 (zh) 光模块及光处理方法
WO2023184919A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829933

Country of ref document: EP

Kind code of ref document: A1