WO2023030463A1 - 光模块及光处理方法 - Google Patents

光模块及光处理方法 Download PDF

Info

Publication number
WO2023030463A1
WO2023030463A1 PCT/CN2022/116593 CN2022116593W WO2023030463A1 WO 2023030463 A1 WO2023030463 A1 WO 2023030463A1 CN 2022116593 W CN2022116593 W CN 2022116593W WO 2023030463 A1 WO2023030463 A1 WO 2023030463A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
optical
subunit
integrated chip
Prior art date
Application number
PCT/CN2022/116593
Other languages
English (en)
French (fr)
Inventor
段明慧
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023030463A1 publication Critical patent/WO2023030463A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the embodiments of the present application relate to the field of optical communications, and in particular, to an optical module and an optical processing method.
  • optical modules As the basis for building modern high-speed information networks, play a central role in the optical communication industry, and their development has received more and more attention.
  • the rate requirements of optical modules are getting higher and higher.
  • the number of optical channels is also increasing to ensure the transmission rate of optical modules. It is to send and receive each 8 channels to ensure the transmission rate.
  • the 800G optical module is formed by coupling multiple discrete components, which is large in size and low in reliability.
  • the main purpose of the embodiments of the present application is to provide an optical module and an optical processing method, which can reduce the volume of the 800G optical module and improve its reliability.
  • An embodiment of the present application provides an optical module, including an integrated chip, a light generation unit, an optical fiber connection unit, and a photoelectric processing unit, and the integrated chip is coupled to the light generation unit, the optical fiber connection unit, and the photoelectric processing unit , the integrated chip is integrated with a modulation unit and a light separation unit; the modulation unit is configured to modulate the light generated by the light generation unit and output it to the light separation unit; the light separation unit is configured to modulate the light generated by the light generation unit The light modulated by the unit is output to the optical fiber connection unit, and the light input from the optical fiber connection unit is output to the photoelectric processing unit.
  • the embodiment of the present application also provides a light processing method, which is applied to an integrated chip.
  • the integrated chip is integrated with a modulation unit and a light separation unit.
  • the light processing method includes: using the modulation unit to modulate the light generated by the light generation unit and outputting it to the light separation unit ; Output the modulated light to the optical fiber connection unit by using the optical separation unit, and output the light input from the optical fiber connection unit to the photoelectric processing unit by the optical separation unit.
  • FIG. 1 is a schematic structural diagram of an optical module provided by an embodiment of the present application.
  • Fig. 2 is another structural schematic diagram of the optical module provided by the embodiment of the present application.
  • Fig. 3 is another schematic structural diagram of the optical module provided by the embodiment of the present application.
  • Fig. 4 is another schematic structural diagram of the optical module provided by the embodiment of the present application.
  • Fig. 5 is another schematic structural diagram of the optical module provided by the embodiment of the present application.
  • FIG. 6 is a partial structural schematic diagram of an 800G optical module in the related art
  • FIG. 7 is a structural schematic diagram of another part of the 800G optical module in the related art.
  • Fig. 8 is a schematic structural diagram of the 800G optical module synthesized in Fig. 6 and Fig. 7;
  • FIG. 9 is a schematic structural diagram of an 800G optical module realized by the optical module solution provided in the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a light processing method provided by an embodiment of the present application.
  • an optical module 100 including an integrated chip 101, an optical generating unit 102, an optical fiber connection unit 103, and a photoelectric processing unit 104; the integrated chip 101 is connected to the optical generating unit 102 and an optical fiber
  • the unit 103 is coupled with the photoelectric processing unit 104, and the integrated chip 101 is integrated with a modulation unit 1011 and a light separation unit 1012, and the modulation unit 1011 is configured to modulate the light generated by the light generation unit 102 and output it to the light separation unit 1012; the light separation unit 1012 is set To output the light modulated by the modulation unit 1011 to the optical fiber connection unit 103 , and output the light input from the optical fiber connection unit 103 to the photoelectric processing unit 104 .
  • the optical fiber connection unit 102 can be a ferrule
  • the modulation unit 1011 can be a modulator chip
  • the optical separation unit 1012 can be a ring coupler, a microring resonator or a circulator, etc. This is the limit.
  • the optical splitting unit 1012 may also be in the form of an array, for example, an array of ring couplers.
  • the volume of the optical module 100 can be effectively reduced and the coupling between discrete components can be reduced; at the same time, the modulation unit 1011 and the optical separation unit 1012 are integrated on the integrated chip. 101 , the instability of the coupling between discrete components caused by factors such as high temperature can be avoided, thereby improving the reliability of the optical module 100 .
  • the integrated chip 101 is a silicon photonics integrated chip, that is, the integrated chip 101 is a chip implemented using silicon photonics technology.
  • the modulation unit 1011 and the optical separation unit 1012 can be integrated on the chip, and most of the optical paths of the optical module 100 can be realized on the chip, thereby improving the integration of the optical module 100 and the reliability of the optical module 100 products.
  • the light generating unit 102 includes a light source generating subunit 1021 and an optical branching subunit 1022, the optical branching subunit 1022 is coupled with the integrated chip 101, and the optical branching subunit 1022 is configured to generate the light source
  • the light generated by the sub-unit 1021 is split and output to the modulation unit 1011 .
  • the light generating unit 102 includes a light source generating subunit 1021 and an optical branching subunit 1022.
  • the optical branching subunit 1022 is integrated on the integrated chip 101. Coupling, the light branching subunit 1022 is configured to branch the light generated by the light source generation subunit 1021 and output it to the modulation unit 1011 .
  • the light source generating subunit 1021 can be a light source chip
  • the optical branching subunit 1022 can be an optical splitter.
  • the above is only an illustration of the two subunits, and is not limited thereto.
  • the coupling involved in the light generating unit 102 includes the coupling between the light source generating subunit 1021 and the optical branching subunit 1022 and the coupling between the optical branching subunit 1022 and the integrated chip 101;
  • FIG. 3 for the coupling of the light generating unit 102 , since the optical branching subunit 1022 is integrated on the integrated chip 101 , only the coupling between the light source generating subunit 1021 and the integrated chip 101 is required.
  • the coupling degree between discrete components in the optical module 100 can be further reduced, the volume of the optical module 100 can be reduced, and the reliability of the optical module 100 can be improved. sex.
  • the photoelectric processing unit 104 includes a photoelectric conversion subunit 1041 and a photocurrent processing subunit 1042.
  • the photoelectric conversion subunit 1041 is coupled with the integrated chip 101.
  • the photoelectric conversion subunit 1041 is configured to convert light The light input by the separation unit 1012 is converted into photocurrent and output to the photocurrent processing subunit 1042 .
  • the photoelectric processing unit 104 includes a photoelectric conversion subunit 1041 and a photocurrent processing subunit 1042.
  • the photoelectric conversion subunit 1041 is integrated on the integrated chip 101, and the photoelectric conversion subunit 1042 is integrated with the The chip 101 is coupled, and the photoelectric conversion subunit 1041 is configured to convert the light input by the light separation unit 1012 into photocurrent and output it to the photocurrent processing subunit 1042 .
  • the photoelectric conversion subunit 1041 can be a PD chip
  • the photocurrent processing subunit 1042 can be a transimpedance amplifier TIA (Trans-impedance amplifier), which is configured to process the photocurrent.
  • TIA Trans-impedance amplifier
  • the coupling involved in the photoelectric processing unit 104 includes the coupling between the photoelectric conversion subunit 1041 and the photocurrent processing subunit 1042 and the coupling between the photoelectric conversion subunit 1041 and the integrated chip 101. ; and in the example of FIG.
  • the coupling of the photoelectric processing unit 104 since the photoelectric conversion subunit 1041 is integrated on the integrated chip 101, only the coupling between the photoelectric current processing subunit 1042 and the integrated chip 101 is required. Can. It can be seen that by integrating the photoelectric conversion subunit 1041 on the integrated chip 101 in the example of FIG. 5 , the coupling degree between discrete components in the optical module 100 can be further reduced, the volume of the optical module 100 can be reduced, and the reliability of the optical module 100 can be improved. sex.
  • the example in FIG. 3 is the integration of the optical branching subunit 1022 on the integrated chip 101
  • the example in FIG. 5 is the integration of the photoelectric conversion subunit 1041 on the integrated chip 101.
  • the optical branching subunit 1022 can The photoelectric conversion subunit 1041 is integrated into the integrated chip 101 at the same time, thereby further reducing the coupling degree between discrete components in the optical module 100, reducing the volume of the optical module 100, and improving the reliability of the optical module 100 product.
  • the optical module 100 provided in the embodiment of the present application may be a multi-channel optical module such as a 400G optical module or an 800G optical module in a specific application.
  • the light source generating subunit 1021 includes a first light source chip and a second light source chip
  • the optical branching subunit 1022 includes a first optical splitter and a second optical splitter
  • the first optical splitter and the second optical splitter The second optical splitter is respectively configured to split the light generated by the first light source chip and the second light source chip into multiple paths and output them to the modulation unit 1011 .
  • the first optical splitter and the second optical splitter can be a 1:4 optical splitter, so that the light of the first optical splitter and the second optical splitter can be divided into 8 paths to realize 800G The optical transmission scheme of 8 channels for each optical module to send and receive.
  • the modulating unit 1011 is a modulator chip, and the modulator chip is configured to modulate the light output by the first optical splitter and the second optical splitter and output it to the optical splitting unit 1012 .
  • the light output by the first optical splitter and the second optical splitter can be modulated by the modulator chip, and service signals can be loaded into the light to realize corresponding service functions.
  • FIG. 6 is a part of the 800G optical module in the related art, including MT ferrule 1*12, 8-channel optical fiber BD (bidirectional), ring resonator array, 8-channel transmitting-end optical fiber BDTX and 8-channel receiving-end optical fiber BDRX ;8 receiving and 8 emitting lights are input and output through 8 channels of MT ferrule 1*12, each channel of 8 channels of MT ferrule 1*12 contains 1 input light and 1 output light, input light and output light
  • the wavelengths are 1270nm/1330nm or 1330nm/1270nm; the input light or output light is coupled with the ring resonator array through 8-way optical fiber BD, and the ring resonator array can realize the transmission of light with a wavelength of 1330nm and the optical resonance with a wavelength of 1270nm , or realize the transmission of light with a wavelength of 1270nm and the resonance of light with a wavelength of 1330nm, and the separated 8 channels of emitted
  • FIG. 7 is another part of the 800G optical module in the related art, including a light source chip 1, a light source chip 2, an optical splitter 1, an optical splitter 2, a modulator chip, a PD chip array, and a transimpedance amplifier.
  • Both optical splitter 1 and optical splitter 2 are optical splitters with a ratio of 1:4.
  • Light source chip 1 (laser1) and light source chip 2 (laser2) provide optical power of corresponding wavelengths.
  • the optical splitter 1 and the optical splitter 2 are coupled, and the optical splitter 1 and the optical splitter 2 divide the light of the light source chip 1 and the light source chip 2 into 4 paths (8 paths in total), and output to the 8-way modulator chip;
  • the PD chip array receives the light output by the ring resonator in Figure 6, converts the light into photocurrent and outputs it to the transimpedance amplifier TIA for photocurrent processing, and the complete optical module in Figure 8 can be obtained after coupling Figure 6 and Figure 7.
  • Figure 9 is a schematic structural diagram of an 800G optical module implemented by the optical module 100 solution provided by the embodiment of the present application, including MT ferrule 1*12, light source chip 1, light source chip 2, transimpedance amplifier TIA and integrated chip,
  • the integrated chip is integrated with optical splitter 1, optical splitter 2, modulator chip, ring coupler and PD chip array; optical splitter 1 and optical splitter 2 are 1:4 optical splitters, and the light source chip
  • the light from 1 and light source chip 2 is divided into 4 channels (total 8 channels) and output to the 8-channel modulator chip.
  • the 8-channel modulator chip modulates the 8-channel light and outputs it to the ferrule 1*12 through the ring coupler array; the ring The coupler outputs the light input from the ferrule to the PD chip array, and the on-chip PD chip array converts the light input by the ring coupler into photocurrent and outputs it to the transimpedance amplifier TIA for photocurrent processing.
  • the transimpedance amplifier TIA for photocurrent processing.
  • the 800G optical module of the related art shown in Figure 6- Figure 8 is composed of many discrete components coupled and requires precise alignment equipment during coupling, so the process threshold is high and the design is relatively complicated; moreover, due to During the coupling process, optical glue needs to be used for fixing, and the optical glue is prone to displacement under high temperature and other environments, so the performance of the 800G optical module is easily affected and the reliability is low.
  • the 800G optical module shown in Figure 9 since most of the optical paths are realized by integrated chips, the integration degree is high, and the volume of the optical module can be effectively reduced compared with discrete components; moreover, most of the optical paths are realized by integrated chips, which can The performance of the optical module is relatively stable under high temperature and other environments, thereby improving the reliability of the optical module.
  • it relates to a light processing method, which is applied to an integrated chip, modulates the light generated by the light generating unit when receiving the light generated by the light generating unit, and outputs the modulated light to the optical fiber connection unit ; When receiving the light input by the optical fiber connection unit, output the light input by the optical fiber connection unit to the photoelectric processing unit.
  • modulating the light generated by the light generating unit may include:
  • outputting the light input from the optical fiber connection unit to the photoelectric processing unit may include:
  • the light processing method provided in the embodiment of the present application processes light through an integrated chip, modulates the light generated by the light generating unit when receiving the light generated by the light generating unit, and outputs the modulated light to the optical fiber connection unit ; When receiving the light input by the optical fiber connection unit, output the light input by the optical fiber connection unit to the photoelectric processing unit.
  • the integrated chip can modulate the received light generated by the light generating unit and then output it to the optical fiber connection unit, the integrated chip can realize the modulation function of the optical module; because the integrated chip can output the modulated light to the optical fiber connection unit at the same time , output the light input by the optical fiber connection unit to the photoelectric processing unit, so the integrated chip can realize the optical separation function of the optical module; because the integrated chip integrates the modulation function and optical separation function of the optical module, it can replace the modulation function and the optical separation function in the traditional scheme.
  • the corresponding discrete components of the separation function can effectively reduce the size of the optical module and reduce the coupling between discrete components; at the same time, integrating the modulation function and optical separation function on the integrated chip can avoid coupling between discrete components due to high temperature and other factors The resulting instability improves the reliability of optical modules (including 800G optical modules).
  • this embodiment is a method embodiment corresponding to the foregoing device embodiments, and this embodiment can be implemented in cooperation with the foregoing device embodiments.
  • the relevant technical details mentioned in the foregoing device embodiments are still valid in this embodiment, and are not repeated here to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied to the foregoing device embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例涉及光通信技术领域,公开了一种光模块,包括集成芯片、光发生单元、光纤连接单元和光电处理单元,所述集成芯片与所述光发生单元、所述光纤连接单元和所述光电处理单元耦合,所述集成芯片上集成有调制单元和光分离单元;所述调制单元设置为将所述光发生单元产生的光调制后输出至所述光分离单元;所述光分离单元设置为将所述调制单元调制后的光输出至所述光纤连接单元,并将从所述光纤连接单元输入的光输出至所述光电处理单元。本申请实施例还公开了一种光处理方法。

Description

光模块及光处理方法 技术领域
本申请实施例涉及光通信领域,特别涉及一种光模块及光处理方法。
背景技术
随着光通信行业的高速发展和通信技术的更新与升级,光模块作为构建现代高速信息网络的基础,在光通信行业中起到中枢的作用,其发展越来越受到重视。
目前,光模块的速率要求越来越高,在光芯片速率提高的基础上,光通道的数量也在不断增加,以保证光模块的传输速率,如现在走在前端的800G光模块光路采用的是收发各8通道来保证传输速率。然而,在传统的光路设计方案中,800G光模块是经过多个分立元件的耦合而成,体积较大,可靠性较低。
发明内容
本申请实施例的主要目的在于提出一种光模块及光处理方法,可以缩小800G光模块的体积,提高其可靠性。
本申请实施例提供了一种光模块,包括集成芯片、光发生单元、光纤连接单元和光电处理单元,所述集成芯片与所述光发生单元、所述光纤连接单元和所述光电处理单元耦合,所述集成芯片上集成有调制单元和光分离单元;所述调制单元设置为将所述光发生单元产生的光调制后输出至所述光分离单元;所述光分离单元设置为将所述调制单元调制后的光输出至所述光纤连接单元,并将从所述光纤连接单元输入的光输出至所述光电处理单元。
本申请实施例还提供了一种光处理方法,应用于集成芯片,集成芯片集成有调制单元和光分离单元,光处理方法包括:利用调制单元将光发生单元产生的光调制后输出至光分离单元;利用光分离单元将调制后的光输出至光纤连接单元,并利用光分离单元将从光纤连接单元输入的光输出至光电处理单元。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是本申请实施例提供的光模块的一结构示意图;
图2是本申请实施例提供的光模块的另一结构示意图;
图3是本申请实施例提供的光模块的又一结构示意图;
图4是本申请实施例提供的光模块的又一结构示意图;
图5是本申请实施例提供的光模块的又一结构示意图;
图6是相关技术中800G光模块的部分结构示意图;
图7是相关技术中800G光模块的另一部分结构示意图;
图8是图6与图7合成的800G光模块的结构示意图;
图9是本申请实施例提供的光模块方案实现的800G光模块的结构示意图;
图10是本申请实施例提供的光处理方法的流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请实施例而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请实施例所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请实施例的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
在一个实施例中,涉及一种光模块100,如图1所示,包括集成芯片101、光发生单元102、光纤连接单元103和光电处理单元104;集成芯片101与光发生单元102、光纤连接单元103和光电处理单元104耦合,集成芯片101上集成有调制单元1011和光分离单元1012,调制单元1011设置为将光发生单元102产生的光调制后输出至光分离单元1012;光分离单元1012设置为将调制单元1011调制后的光输出至光纤连接单元103,并将从光纤连接单元103输入的光输出至光电处理单元104。
其中,光纤连接单元102可以为插芯,调制单元1011可以为调制器芯片,光分离单元1012可以为环形耦合器、微环谐振器或环形器等,以上仅为各单元的示例说明,并不以此为限。进一步地,当光模块的光路有多个通道时,光分离单元1012还可以为阵列形式,例如为环形耦合器阵列。
由于调制单元1011和光分离单元1012是集成在集成芯片上101的,因此可以有效地缩小光模块100的体积,减少分立元件之间的耦合;同时,将调制单元1011和光分离单元1012集成在集成芯片101上,可以避免分立元件之间耦合因高温等因素导致的不稳定,从而提高光模块100的可靠性。
在一个具体的例子中,集成芯片101为硅光集成芯片,即集成芯片101是采用硅光技术实现的芯片。通过采用硅光技术,可以将调制单元1011和光分离单元1012集成在芯片上的同时,将光模块100大部分的光路在芯片上实现,提高光模块100的集成度和光模块100产品的可靠性。
在一个具体的例子中,如图2所示,光发生单元102包括光源产生子单元1021和光分路子单元1022,光分路子单元1022与集成芯片101耦合,光分路子单元1022设置为将光源产生子单元1021产生的光分路后输出至调制单元1011。
在一个具体的例子中,如图3所示,光发生单元102包括光源产生子单元1021和光分路子单元1022,光分路子单元1022集成在集成芯片101上,光源产生子单元1021与集成芯片101耦合,光分路子单元1022设置为将光源产生子单元1021产生的光分路后输出至调制单元1011。
在以上两个具体的例子中,光源产生子单元1021可以为光源芯片,光分路子单元1022可以为光分路器,同样地,以上仅为两个子单元的示例说明,并不以此为限。在图2示例中,光发生单元102涉及的耦合,包括了光源产生子单元1021与光分路子单元1022之间的耦合和光分路子单元1022与集成芯片101之间的耦合两处耦合;而在图3示例中,光发生单元102的耦合,由于光分路子单元1022集成在集成芯片101上,因此只需要光源产生子单元1021 与集成芯片101之间的耦合这一处耦合即可。可以看出,图3示例通过将光分路子单元1022集成在集成芯片101上,可以进一步降低光模块100中分立元件之间的耦合度,缩小光模块100的体积,提高光模块100产品的可靠性。
在一个具体的例子中,如图4所示,光电处理单元104包括光电转换子单元1041和光电流处理子单元1042,光电转换子单元1041与集成芯片101耦合,光电转换子单元1041设置为将光分离单元1012输入的光转换为光电流输出至光电流处理子单元1042。
在一个具体的例子中,如图5所示,光电处理单元104包括光电转换子单元1041和光电流处理子单元1042,光电转换子单元1041集成在集成芯片101上,光电流处理子单元1042与集成芯片101耦合,光电转换子单元1041设置为将光分离单元1012输入的光转换为光电流输出至光电流处理子单元1042。
在以上两个具体的例子中,光电转换子单元1041可以为PD芯片,光电流处理子单元1042可以为跨阻放大器TIA(Trans-impedance amplifier),设置为对光电流进行处理,同样地,以上仅为两个子单元的示例说明,并不以此为限。在图4示例中,光电处理单元104涉及的耦合,包括了光电转换子单元1041与光电流处理子单元1042之间的耦合和光电转换子单元1041与集成芯片101之间的耦合这两处耦合;而在图5示例中,光电处理单元104的耦合,由于光电转换子单元1041集成在集成芯片101上,因此只需要光电流处理子单元1042与集成芯片101之间的耦合这一处耦合即可。可以看出,图5示例通过将光电转换子单元1041集成在集成芯片101上,可以进一步降低光模块100中分立元件之间的耦合度,缩小光模块100的体积,提高光模块100产品的可靠性。
应当说明的是,图3示例是将光分路子单元1022集成在集成芯片101上,图5示例是将光电转换子单元1041集成在集成芯片101上,实际应用中,可以将光分路子单元1022和光电转换子单元1041同时集成到集成芯片101上,从而进一步降低光模块100中分立元件之间的耦合度,缩小光模块100的体积,提高光模块100产品的可靠性。
本申请实施例提供的光模块100,在具体应用中,可以为400G光模块或800G光模块等具有多通道的光模块。在一个具体的例子中,光源产生子单元1021包括第一光源芯片和第二光源芯片,光分路子单元1022包括第一光分路器和第二光分路器,第一光分路器和第二光分路器分别设置为将第一光源芯片和第二光源芯片产生的光分为多路输出至调制单元1011。例如,第一光分路器和第二光分路器可以为1∶4的光分路器,从而将第一光分路器和第二光分路器的光分为8路,实现800G光模块收发各8通道的光路传输方案。
在一个具体的例子中,调制单元1011为调制器芯片,调制器芯片设置为将第一光分路器和第二光分路器输出的光调制后输出至光分离单元1012。通过调制器芯片对第一光分路器和第二光分路器输出的光进行调制,可以将业务信号加载至光中,实现相应的业务功能。
下面以800G光模块为例,进一步说明本申请实施例提供的光模块100。
请参考图6,其为相关技术中800G光模块的一部分,包括MT插芯1*12、8路光纤BD(双向)、环形谐振器阵列、8路发射端光纤BDTX和8路接收端光纤BDRX;8收8发的光通过MT插芯1*12的8个通道输入输出,MT插芯1*12的8个通道中的每个通道包含1输入光与1输出光,输入光与输出光的波长分别为1270nm/1330nm或1330nm/1270nm;输入光或输出光通过8路光纤BD与环形谐振器阵列耦合,环形谐振器阵列能实现对波长为1330nm的光的透射和波长为1270nm的光谐振,或者实现对波长为1270nm的光的透射和波长为 1330nm的光的谐振,分离出的8路发射光和8路入射光分别与8路发射端光纤BDTX和8路接收端光纤BDRX耦合。请参考图7,其为相关技术中800G光模块的另一部分,包括光源芯片1、光源芯片2、光分路器1、光分路器2、调制器芯片、PD芯片阵列和跨阻放大器,光分路器1和光分路器2均为1∶4的光分路器,光源芯片1(laser1)与光源芯片2(laser2)提供对应波长的光功率,光源芯片1与光源芯片2分别与光分路器1和光分路器2耦合,光分路器1和光分路器2将光源芯片1与光源芯片2的光各分成4路(共8路),输出给8路调制器芯片;PD芯片阵列接收图6中环形谐振器输出的光,将光转化成光电流输出给跨阻放大器TIA进行光电流处理,将图6与图7耦合完成后可以得到图8完整的光模块。
请参考图9,其为本申请实施例提供的光模块100方案实现的800G光模块的结构示意图,包括MT插芯1*12、光源芯片1、光源芯片2、跨阻放大器TIA和集成芯片,集成芯片集成有光分路器1、光分路器2、调制器芯片、环形耦合器和PD芯片阵列;光分路器1和光分路器2为1∶4光分路器,将光源芯片1和光源芯片2的光各分成4路(共8路),输出给8路调制器芯片,8路调制器芯片将8路光调制后通过环形耦合器阵列输出至插芯1*12;环形耦合器将从插芯输入的光输出至PD芯片阵列,片上PD芯片阵列将环形耦合器输入的光转换为光电流输出给跨阻放大器TIA进行光电流处理。在图9示例中,只需要将MT插芯1*12、光源芯片1、光源芯片2和跨阻放大器TIA与集成芯片耦合即可,可以实现一次耦合封装。
在图6-图8所示的相关技术的800G光模块,由于其是由众多分立元件耦合而成,在耦合时需要精确的对准设备,因此工艺门槛较高,设计比较复杂;而且,由于在耦合过程中需要使用光学胶进行固定,而光学胶在高温等环境下容易发生位移,因此容易导致800G光模块的性能受到影响,可靠性较低。在图9所示的800G光模块,由于大部分光路是通过集成芯片来实现的,集成度高,相比分立元件可以有效缩小光模块的体积;而且,大部分光路通过集成芯片来实现,可以使光模块在高温等环境下性能比较稳定,从而提高了光模块的可靠性。
在一个实施例中,涉及一种光处理方法,应用于集成芯片,在接收到光发生单元产生的光时,对光发生单元产生的光进行调制,并将调制后的光输出至光纤连接单元;在接收到光纤连接单元输入的光时,将光纤连接单元输入的光输出至光电处理单元。
本申请实施例提供的光处理方法的具体流程如图10所示,包括以下步骤:
S201:在接收到光发生单元产生的光时,对光发生单元产生的光进行调制,并将调制后的光输出至光纤连接单元。
S202:在接收到光纤连接单元输入的光时,将光纤连接单元输入的光输出至光电处理单元。
进一步地,在S201中,对光发生单元产生的光进行调制,可以包括:
将光发生单元产生的光进行分路;
将业务信号加载至分路后的光中。
进一步地,在S202中,将从光纤连接单元输入的光输出至光电处理单元,可以包括:
将从光纤连接单元输入的光转换为光电流;
将转换后的光电流输出至光电处理单元。
本申请实施例提供的光处理方法,通过集成芯片对光进行处理,在接收到光发生单元产 生的光时,对光发生单元产生的光进行调制,并将调制后的光输出至光纤连接单元;在接收到光纤连接单元输入的光时,将光纤连接单元输入的光输出至光电处理单元。由于集成芯片可以对接收到的光发生单元产生的光进行调制后输出至光纤连接单元,因此集成芯片可以实现光模块的调制功能;由于集成芯片可以在调制后的光输出至光纤连接单元的同时,将光纤连接单元输入的光输出至光电处理单元,因此集成芯片可以实现光模块的光分离功能;由于集成芯片集成了光模块的调制功能和光分离功能,可以替代传统方案中的与调制功能和光分离功能相应的分立元件,因此可以有效地缩小光模块的体积,减少分立元件之间的耦合;同时,将调制功能和光分离功能集成在集成芯片上,可以避免分立元件之间耦合因高温等因素导致的不稳定,从而提高光模块(包括800G光模块)的可靠性。
不难发现,本实施例为与前述设备的实施例相对应的方法实施例,本实施例可与前述设备的实施例互相配合实施。前述设备的实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在前述设备的实施例中。
此外,本领域技术人员可以理解,上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请实施例的精神和范围。

Claims (10)

  1. 一种光模块,包括集成芯片、光发生单元、光纤连接单元和光电处理单元,所述集成芯片与所述光发生单元、所述光纤连接单元和所述光电处理单元耦合,所述集成芯片上集成有调制单元和光分离单元;
    所述调制单元设置为将所述光发生单元产生的光调制后输出至所述光分离单元;
    所述光分离单元设置为将所述调制单元调制后的光输出至所述光纤连接单元,并将从所述光纤连接单元输入的光输出至所述光电处理单元。
  2. 根据权利要求1所述的光模块,其中,所述光发生单元包括光源产生子单元和光分路子单元,所述光分路子单元与所述集成芯片耦合,所述光分路子单元设置为将所述光源产生子单元产生的光分路后输出至所述调制单元。
  3. 根据权利要求1所述的光模块,其中,所述光发生单元包括光源产生子单元和光分路子单元,所述光分路子单元集成在所述集成芯片上,所述光源产生子单元与所述集成芯片耦合,所述光分路子单元设置为将所述光源产生子单元产生的光分路后输出至所述调制单元。
  4. 根据权利要求1所述的光模块,其中,所述光电处理单元包括光电转换子单元和光电流处理子单元,所述光电转换子单元与所述集成芯片耦合,所述光电转换子单元设置为将所述光分离单元输入的光转换为光电流输出至所述光电流处理子单元。
  5. 根据权利要求1所述的光模块,其中,所述光电处理单元包括光电转换子单元和光电流处理子单元,所述光电转换子单元集成在所述集成芯片上,所述光电流处理子单元与所述集成芯片耦合,所述光电转换子单元设置为将所述光分离单元输入的光转换为光电流输出至所述光电流处理子单元。
  6. 根据权利要求1-5任一项所述的光模块,其中,所述集成芯片为硅光集成芯片。
  7. 根据权利要求1-5任一项所述的光模块,其中,所述光分离单元为环形耦合器、微环谐振器或环形器。
  8. 一种光处理方法,应用于集成芯片,所述光处理方法包括:
    在接收到光发生单元产生的光时,对所述光发生单元产生的光进行调制,并将调制后的光输出至光纤连接单元;
    在接收到所述光纤连接单元输入的光时,将所述光纤连接单元输入的光输出至光电处理单元。
  9. 根据权利要求8所述的光处理方法,其中,所述对所述光发生单元产生的光进行调制,包括:
    将所述光发生单元产生的光进行分路;
    将业务信号加载至分路后的光中。
  10. 根据权利要求8或9所述的光处理方法,其中,所述将从所述光纤连接单元输入的光输出至光电处理单元,包括:
    将从所述光纤连接单元输入的光转换为光电流;
    将转换后的光电流输出至所述光电处理单元。
PCT/CN2022/116593 2021-09-01 2022-09-01 光模块及光处理方法 WO2023030463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111020953.0 2021-09-01
CN202111020953.0A CN115728881A (zh) 2021-09-01 2021-09-01 光模块及光处理方法

Publications (1)

Publication Number Publication Date
WO2023030463A1 true WO2023030463A1 (zh) 2023-03-09

Family

ID=85292070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116593 WO2023030463A1 (zh) 2021-09-01 2022-09-01 光模块及光处理方法

Country Status (2)

Country Link
CN (1) CN115728881A (zh)
WO (1) WO2023030463A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580751A (zh) * 2012-08-07 2014-02-12 卢克斯特拉有限公司 用于光通信系统的复合集成的方法和系统
CN103733448A (zh) * 2011-08-10 2014-04-16 富士通株式会社 半导体光元件
CN105515677A (zh) * 2015-12-03 2016-04-20 武汉邮电科学研究院 一种硅光子集成多波长光收发模块
US20190331866A1 (en) * 2008-07-09 2019-10-31 Luxtera, Inc. Method And System For Coupling A Light Source Assembly To An Optical Integrated Circuit
CN110785686A (zh) * 2017-08-10 2020-02-11 卢克斯特拉有限公司 用于与硅光子平台集成的自由空间cwdm mux/demux
CN112929091A (zh) * 2021-01-19 2021-06-08 华中科技大学 基于双偏振光iq调制器的多功能微波光子射频前端系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190331866A1 (en) * 2008-07-09 2019-10-31 Luxtera, Inc. Method And System For Coupling A Light Source Assembly To An Optical Integrated Circuit
CN103733448A (zh) * 2011-08-10 2014-04-16 富士通株式会社 半导体光元件
CN103580751A (zh) * 2012-08-07 2014-02-12 卢克斯特拉有限公司 用于光通信系统的复合集成的方法和系统
CN105515677A (zh) * 2015-12-03 2016-04-20 武汉邮电科学研究院 一种硅光子集成多波长光收发模块
CN110785686A (zh) * 2017-08-10 2020-02-11 卢克斯特拉有限公司 用于与硅光子平台集成的自由空间cwdm mux/demux
CN112929091A (zh) * 2021-01-19 2021-06-08 华中科技大学 基于双偏振光iq调制器的多功能微波光子射频前端系统

Also Published As

Publication number Publication date
CN115728881A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US11418160B2 (en) Method and system for a feedback transimpedance amplifier with sub-40khz low-frequency cutoff
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
US10848246B2 (en) Method and system for an optical connection service interface
WO2020042492A1 (zh) 基于pam4调制技术的双向光收发模块
CN104218998A (zh) 光源模块和光收发器
CN107294606B (zh) 一种单模光纤双向光收发器
US11606145B2 (en) Silicon photonics based single-wavelength 100 gbit/S PAM4 DWDM transceiver in pluggable form factor
CN106559139A (zh) 一种光模块
TWI493897B (zh) 光通訊裝置及光通訊方法
US10230486B2 (en) Optical transceiver with common end module
CN210775929U (zh) 一种光模块
WO2023030463A1 (zh) 光模块及光处理方法
US20230007370A1 (en) Optical module, data center system, and data transmission method
CN106464384B (zh) 一种光信号调制装置和系统
CN105577285A (zh) 光模块
US11057113B1 (en) High-speed silicon photonics optical transceivers
US20220082770A1 (en) Photonic integrated circuit chip
WO2023197164A1 (zh) 一种基带单元及接入网设备
CN115390200B (zh) 一种基于窄线宽激光器的高速pam4硅光调制模块
CN114665968B (zh) 片上光电收发引擎
WO2024001750A1 (zh) 光电共封装cpo模块
WO2023226577A1 (zh) 耦合光路结构和光模块
CN102868454B (zh) 光通信装置及光通信方法
TWM655862U (zh) 通信裝置
CN104202091A (zh) 一种光子集成光学模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE