WO2023226577A1 - 耦合光路结构和光模块 - Google Patents

耦合光路结构和光模块 Download PDF

Info

Publication number
WO2023226577A1
WO2023226577A1 PCT/CN2023/083949 CN2023083949W WO2023226577A1 WO 2023226577 A1 WO2023226577 A1 WO 2023226577A1 CN 2023083949 W CN2023083949 W CN 2023083949W WO 2023226577 A1 WO2023226577 A1 WO 2023226577A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
unit
optical
coupling
vertically polarized
Prior art date
Application number
PCT/CN2023/083949
Other languages
English (en)
French (fr)
Inventor
郭德汾
李显尧
Original Assignee
苏州湃矽科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州湃矽科技有限公司 filed Critical 苏州湃矽科技有限公司
Publication of WO2023226577A1 publication Critical patent/WO2023226577A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the present invention relates to the field of semiconductor integration technology, and in particular, to a coupling optical path structure and an optical module.
  • Silicon photonic chips can effectively reduce the cost and power consumption of modules in optical communications and are a key technology for realizing optical interconnections.
  • the size of a typical single-mode silicon waveguide is 350 nm ⁇ 155 nm, and the optical mode field diameter of the laser output is 2 ⁇ 4 ⁇ m.
  • the mode field does not match the two, and the direct coupling alignment tolerance is small and the loss is large. Therefore, in order to achieve large alignment tolerance and low loss coupling between the two, it is necessary to increase the optical field of the laser and the optical field at the coupling point between the silicon photonic chip and the laser at the same time, generally to about 9 ⁇ m.
  • Field expansion is generally achieved using lenses, and light field expansion at the silicon optical chip coupling is achieved by designing a mode converter.
  • the coupling optical path structure between the laser and the light-emitting chip is shown in Figure 1.
  • the horizontally polarized (TE) light output by the laser 1 passes through the lens 21, the isolator 22 and the wave plate 23.
  • the light field is amplified, and the polarization state remains is horizontal, and then coupled into the mode spot converter 31 of the light emitting chip, and then outputs horizontally polarized light through the silicon waveguide and integrated device.
  • the light-emitting chip needs to input a large optical power, and the mode spot converter of the silicon waveguide and the single-mode silicon waveguide will produce large optical power when transmitting horizontally polarized light.
  • Nonlinear loss the accumulation of heat caused by nonlinear loss may even cause the chip to burn out.
  • the object of the present invention is to provide a coupling optical path structure and an optical module to reduce nonlinear losses caused by optical transmission.
  • one embodiment of the present invention provides a coupling optical path structure, which includes a laser emitting unit, a spatial coupling unit and an optical chip;
  • the laser emitting unit is used to output first horizontally polarized light
  • the spatial coupling unit is disposed between the laser emitting unit and the optical chip, and is used to receive the first horizontally polarized light, change the polarization state of the first horizontally polarized light, and output vertically polarized light;
  • the optical chip includes in order along the optical signal propagation direction: a mode spot conversion unit, a polarization rotation unit and a light processing unit;
  • the mode spot conversion unit is used to receive vertically polarized light, perform mode spot conversion on the vertically polarized light, and output the converted vertically polarized light;
  • the polarization rotation unit is configured to receive the converted vertically polarized light, change the polarization state of the vertically polarized light, and output the second horizontally polarized light;
  • a light processing unit configured to receive second horizontally polarized light and process the second horizontally polarized light.
  • the optical processing unit includes an optical power monitoring unit and an optical modulator, and the input ends of the optical power monitoring unit and the optical modulator are both connected to the output end of the polarization rotation unit. .
  • the optical chip further includes a first beam splitting unit connected to the output end of the mode spot conversion unit for dividing the converted vertically polarized light into at least two paths. transmitted to the polarization rotation unit.
  • the first beam splitting unit is a 3dB coupler, which divides the converted vertically polarized light into two paths for transmission, and each path is connected to a polarization rotation unit and a light processing unit. unit.
  • the mode spot conversion unit is a double-tip mode spot converter, used to perform mode spot conversion on the vertically polarized light, and equally output the two converted vertical polarizations.
  • Light, each path is connected to a polarization rotation unit and a light processing unit.
  • the mode spot conversion unit has a reverse wedge-shaped structure.
  • the mode spot conversion unit has a sub-wavelength structure.
  • the light processing unit further includes a second beam splitting unit, the second beam splitting unit is a 3dB coupler, which divides the second horizontally polarized light into two paths for transmission, Each path is connected to an optical power monitoring unit and an optical modulator.
  • the second beam splitting unit is a 3dB coupler, which divides the second horizontally polarized light into two paths for transmission, Each path is connected to an optical power monitoring unit and an optical modulator.
  • the spatial coupling unit includes a lens, an isolator and a wave plate, the lens is arranged by the laser emitting unit, and the wave plate is arranged close to the optical chip for coupling the
  • the first horizontally polarized light is converted into vertically polarized light and output; the isolator is disposed between the lens and the wave plate.
  • the present invention also provides an optical module, which has a coupling optical path structure as described in any one of the above.
  • the beneficial effect of the present invention is that: in the coupling optical path structure, the optical chip receives vertically polarized light at one end that is optically coupled to the output light of the laser source, and a polarization rotation unit is provided in the optical chip to convert the received vertically polarized light into horizontal Polarized light output, compared with the common technical solution in which the optical chip receives and outputs horizontally polarized light, the mode spot conversion unit in the optical chip and the silicon waveguide that transmits the optical signal can achieve higher input light power when the optical chip has a larger input optical power.
  • the vertically polarized light transmission ratio can greatly reduce the nonlinear loss caused by light transmission in the optical chip by horizontally polarized light transmission, and prevent problems such as heat accumulation and burning of the optical chip caused by nonlinear loss.
  • Figure 1 is a schematic diagram of the coupling optical path structure in common technology.
  • Figure 2 is a schematic structural diagram of the coupling optical path in Embodiment 1 of the present invention.
  • Figure 3 is a schematic structural diagram of the coupling optical path in Embodiment 2 of the present invention.
  • Figure 4 is a schematic structural diagram of the coupling optical path in Embodiment 3 of the present invention.
  • Figure 5 is a schematic structural diagram of the coupling optical path in Embodiment 4 of the present invention.
  • Figure 6 is a schematic structural diagram of a coupling optical path in Embodiment 5 of the present invention.
  • the present invention provides the following five embodiments for detailed description.
  • the coupling optical path structure includes a laser emitting unit 1, a spatial coupling unit 2 and an optical chip 3.
  • the spatial coupling unit 2 is disposed on the laser between the emission unit 1 and the optical chip 3.
  • the laser emitting unit 1 outputs first horizontally polarized light with high power.
  • the laser emitting unit 1 uses a 1310 nm DFB laser.
  • the laser emitting unit 1 can also select other lasers capable of outputting polarized light with a high power level.
  • the spatial coupling unit 2 is used to receive the first horizontally polarized light output by the laser emitting unit 1 , expand the mode field diameter of the first horizontally polarized light output by the laser emitting unit 1 , and change the laser emitting unit 1
  • the polarization state of the output first horizontally polarized light is converted into vertically polarized light.
  • the spatial coupling unit 2 includes a lens 21 , an isolator 22 and a wave plate 23 .
  • the lens 21 is disposed close to the laser emitting unit 1 and is used to expand the mode field diameter of the first horizontally polarized light output by the laser emitting unit 1.
  • it is a spherical glass lens.
  • the wave plate 23 is arranged close to the optical chip 3, and relevant parameters can be set through the wave plate 23 to convert the first horizontal polarized light output by the laser emitting unit 1 into vertical polarized light output.
  • the isolator 22 is disposed between the lens 21 and the wave plate 23 .
  • the optical chip 3 is optically coupled to the spatial coupling unit 2 and receives the vertically polarized light output by the spatial coupling unit 2.
  • the optical chip 3 includes: a mode spot conversion unit in sequence along the optical signal propagation direction. 31. Polarization rotation unit 32 and light processing unit 33.
  • the mode spot conversion unit 31 is configured to receive the vertical polarized light output by the spatial coupling unit 2, perform mode spot conversion on the vertical polarized light, and output the converted vertical polarized light. Since the optical chip 3 is coupled into a high-power beam, the high-power beam is vertically polarized light. Compared with horizontally polarized light, under the same optical power, the energy density of vertically polarized light is smaller, especially in silicon When the waveguide height is low, for example, less than 200 nm, the nonlinear loss caused by light transmission on the mode spot conversion unit 31 and the silicon waveguide can be greatly reduced.
  • the mode spot conversion unit 31 is a mode spot converter with an inverse wedge-shaped structure.
  • the width of the waveguide at one end that couples the optical waveguide with the input light gradually decreases, so that the waveguide that is originally limited to The mode field in the waveguide leaks into the cladding to expand the mode field, achieve matching with the mode field of the light output from the spatial coupling unit 2, and reduce the coupling loss.
  • the mode spot conversion unit 31 is a mode spot converter with a sub-wavelength grating structure.
  • this structure is used to expand the mode field diameter of the end that is optically coupled to the external output light of the chip. , to achieve matching with the mode field of the light output from the spatial coupling unit 2, and reduce the coupling loss.
  • the mode spot converter with the subwavelength grating structure can expand the mode field larger, but at the same time, its process requirements are high and the preparation is difficult.
  • the polarization rotation unit 32 is configured to receive the converted vertically polarized light, change the polarization state of the vertically polarized light, and output the second horizontally polarized light.
  • the light processing unit 33 is configured to receive second horizontally polarized light, process and output the second horizontally polarized light.
  • the optical processing unit 33 includes an optical power monitoring unit 331 and an optical modulator 332.
  • the input ends of the optical power monitoring unit 331 and the optical modulator 332 are both connected to the polarization rotation unit. Unit 32.
  • the optical power monitoring unit 331 is used to monitor the optical power on the optical transmission path.
  • the optical modulator 332 receives the second horizontally polarized light and modulates and outputs the second horizontally polarized light.
  • the optical chip 3 further includes a first beam splitting unit 34 .
  • the input end of the first beam splitting unit 34 is connected to the output end of the mode spot conversion unit 31 for dividing the vertically polarized light converted by the mode spot conversion unit 31 into at least two paths to the polarization rotation unit 32 .
  • the first beam splitting unit 34 is a 3dB coupler, which divides the converted vertically polarized light into two transmission paths, and each transmission path is connected to a polarization rotation unit 32 and a light processing unit 33.
  • the polarization rotation unit 32 receives the vertically polarized light with 50% optical power split by the 3 dB coupler, is used to change the polarization state of the vertically polarized light with 50% optical power, and outputs the horizontally polarized light with 50% optical power.
  • Light The optical processing unit 33 is connected to the output end of the polarization rotation unit 32, and specifically includes an optical power monitoring unit 331 and an optical modulator 332.
  • the input ends of the optical power monitoring unit 331 and the optical modulator 332 are both connected to The polarization rotation unit 32 and the optical modulator 332 receive the horizontally polarized light with 50% optical power, and perform optical signal modulation and output on the horizontally polarized light with 50% optical power.
  • the first beam splitting unit 34 can also be designed as a multi-channel beam splitter structure, and it only needs to ensure that the optical power transmitted by each channel meets the transmission requirements of subsequent silicon-based optical devices.
  • the input end of the optical power monitoring unit 331 may also be connected to an output end of the first beam splitting unit 34, and the output end of the optical power monitoring unit 331 may be connected to the input end of the polarization rotation unit 32.
  • the input end of the optical modulator 332 is connected to the output end of the polarization rotation unit 32.
  • the optical power on the optical transmission path is first monitored, and then the polarization state of the light is output.
  • the polarization rotation unit 32 changes the polarization state of 50% of the vertically polarized light split by the first beam splitting unit 34 and outputs 50% of the horizontally polarized light, and the light modulator 332 receives the 50% horizontally polarized light, The output is modulated for the 50% horizontally polarized light.
  • a combiner can be designed after the output end of the optical modulator 332 in this embodiment to combine the two optical transmission paths into one output, which can be specifically designed according to actual needs.
  • the light processing unit 33 also includes a second beam splitting unit 333.
  • the second beam splitting unit 333 Connected to the output end of the polarization rotation unit 32, it receives the horizontally polarized light with 50% optical power output by the polarization rotation unit 32, and is used to divide the horizontally polarized light with 50% optical power into at least two channels for transmission, further reducing the The optical power on an optical transmission path.
  • the second beam splitting unit 333 is a 3 dB coupler, which divides the horizontally polarized light of 50% of the received optical power into two paths for transmission. Similarly, each optical transmission path is connected to an optical power Monitoring unit 331 and optical modulator 332.
  • the optical modulator 332 receives the horizontally polarized light with 25% optical power split by the second beam splitting unit 333, and performs optical signal modulation and output on the horizontally polarized light with 25% optical power.
  • the second beam splitting unit 333 can also be designed as a multi-channel beam splitter structure, and it only needs to ensure that the optical power transmitted by each channel meets the transmission requirements of subsequent silicon-based optical devices.
  • a combiner can also be designed to combine the two optical transmission paths into one output.
  • the specific design can be based on actual needs.
  • the mode spot conversion unit 31 is a double-tip mode spot converter structure, which receives the output of the spatial coupling structure 2.
  • mode spot conversion of the vertically polarized light can greatly reduce the nonlinear loss caused by the light passing through the mode spot conversion unit 31.
  • the dual-tip mode spot converter can equally output the two-way conversion.
  • the vertically polarized light further reduces the nonlinear loss caused by light transmission on the silicon waveguide.
  • each optical transmission path is connected to a polarization rotation unit 32 and a light processing unit 33.
  • the polarization rotation unit 32 receives the vertically polarized light of 50% of the optical power split by the dual-tip mode spot converter for changing The polarization state of the vertically polarized light of 50% of the optical power is output as the horizontally polarized light of the 50% of the optical power.
  • the optical processing unit 33 is connected to the output end of the polarization rotation unit 32, and specifically includes an optical power monitoring unit 331 and an optical modulator 332.
  • the optical power monitoring unit 331 is connected to the input end of the optical modulator 332. Both are connected to the polarization rotation unit 32.
  • the optical power monitoring unit 331 is used to monitor the optical power on the optical transmission path.
  • the optical modulator 332 receives the horizontal polarized light and performs optical signal processing on the horizontal polarized light. Modulation output.
  • the input end of the optical power monitoring unit 331 can also be connected to an output end of the mode spot conversion unit 31, and the output end of the optical power monitoring unit 331 is connected to the input end of the polarization rotation unit 32.
  • the input end of the optical modulator 332 is connected to the output end of the polarization rotation unit 32.
  • the optical power on the optical transmission path is first monitored, and then the polarization state of the light is output.
  • the optical power monitoring unit 331 receives the vertically polarized light split by the mode spot conversion unit 31, and the polarization rotation unit 32 changes the polarization state of the vertically polarized light split by the mode spot conversion unit 31 and outputs horizontally polarized light, so
  • the light modulator 332 receives the horizontally polarized light, modulates and outputs the horizontally polarized light.
  • a combiner can be designed after the output end of the optical modulator 332 in this embodiment to combine the two optical transmission paths into one output, which can be specifically designed according to actual needs.
  • Embodiment 4 can reduce the number of integrated devices on the optical chip and simplify the optical transmission path, and can further reduce the transmission loss of optical power and the nonlinear loss caused by optical transmission.
  • the light processing unit 33 also includes a second beam splitting unit 333.
  • the second beam splitting unit 333 Connected to the output end of the polarization rotation unit 32, it receives the horizontally polarized light with 50% optical power output by the polarization rotation unit 32, and is used to divide the horizontally polarized light with 50% optical power into at least two channels for transmission, further reducing the The optical power along the optical transmission path reduces the nonlinear loss caused by light transmission on the silicon waveguide.
  • the second beam splitting unit 333 is a 3 dB coupler, which divides the received horizontally polarized light with 50% optical power into two paths for transmission.
  • the second beam splitting unit 333 can also be designed as a multi-channel beam splitter structure, and it only needs to ensure that the optical power transmitted by each channel meets the transmission requirements of subsequent silicon-based optical devices.
  • a combiner can also be designed to combine the two optical transmission paths into one output.
  • the specific design can be based on actual needs.
  • the present invention also provides an optical module, which has the coupling optical path structure described in any of the above embodiments.
  • the optical chip in the coupling optical path proposed by the present invention receives vertically polarized light at one end that is optically coupled to the output light of the laser source.
  • a polarization rotation unit is provided in the optical chip to convert the received vertically polarized light into Horizontally polarized light output, compared with the common technical solution in which the optical chip receives and outputs horizontally polarized light, the mode spot conversion unit in the optical chip and the silicon waveguide that transmits the optical signal have a larger input optical power.
  • Transmitting horizontally polarized light with a vertically polarized light transmission ratio can greatly reduce the nonlinear loss caused by light transmission in the optical chip; at the same time, by setting the first beam splitting unit and the second beam splitting unit, the input light is equally divided into at least two channels for transmission , reduce the optical power on each optical transmission path to further reduce the nonlinear loss caused by light transmission on the silicon waveguide, and prevent problems such as heat accumulation and burning of optical chips caused by nonlinear loss.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种耦合光路结构和光模块。耦合光路结构包括激光发射单元(1),用于输出第一水平偏振光;空间耦合单元(2),设置于激光发射单元(1)和光芯片(3)之间,用于改变第一水平偏振光的偏振态,输出竖直偏振光;光芯片(3),沿光信号传播方向依次包括:模斑转换单元(31),用于对所述竖直偏振光进行模斑转换,并输出转换后的竖直偏振光;偏振旋转单元(32),用于改变竖直偏振光的偏振态,并输出第二水平偏振光;光处理单元(33),用于接收第二水平偏振光,并对第二水平偏振光进行处理。以竖直偏振光传输比以水平偏振光传输能大大降低光芯片内因光传输引起的非线性损耗,防止由于非线性损耗引起热的积累、烧坏光芯片等问题。

Description

耦合光路结构和光模块
申请要求于2022年5月23日提交中国专利局、申请号为202210563827.8、发明名称为“耦合光路结构和光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体集成技术领域,尤其涉及一种耦合光路结构和光模块。
背景技术
硅光芯片能够有效降低光通信中模块的成本和功耗,是实现光互连的关键技术。典型单模硅波导的尺寸为350 nm×155 nm,激光器输出的光模场直径在2~4 μm,两者之间模场不匹配,直接耦合对准容差较小,损耗较大。所以,为实现两者之间的大对准容差低损耗耦合,需要同时把激光器的光场和硅光芯片与激光器耦合处的光场增大,一般增大到9 μm左右,激光器的光场扩大一般利用透镜来实现,硅光芯片耦合处光场扩大通过设计模斑转换器来实现。
常用技术中,激光器与光发射芯片之间的耦合光路结构如图1所示,激光器1输出水平偏振(TE)的光经过透镜21、隔离器22和波片23,光场放大,偏振态仍然为水平,然后耦合进光发射芯片的模斑转换器31,再经硅波导和集成器件输出水平偏振的光。但是由于在实际的应用中,光发射芯片需要输入较大的光功率,而硅波导的模斑转换器和单模硅波导在较大光功率的情况下,传输水平偏振光会产生较大的非线性损耗,非线性损耗引起的热的积累甚至可能会存在烧坏芯片的问题。
技术问题
本发明的目的在于提供一种耦合光路结构和光模块,以降低光传输引起的非线性损耗。
技术解决方案
为实现上述发明目的之一,本发明一实施方式提供一种耦合光路结构,所述耦合光路结构包括激光发射单元、空间耦合单元和光芯片;
所述激光发射单元用于输出第一水平偏振光;
所述空间耦合单元设置于所述激光发射单元和光芯片之间,用于接收所述第一水平偏振光,并改变所述第一水平偏振光的偏振态,输出竖直偏振光;
所述光芯片沿光信号传播方向依次包括:模斑转换单元、偏振旋转单元和光处理单元;
所述模斑转换单元用于接收竖直偏振光,对所述竖直偏振光进行模斑转换,并输出转换后的竖直偏振光;
所述偏振旋转单元用于接收所述转换后的竖直偏振光,改变所述竖直偏振光的偏振态,并输出第二水平偏振光;
光处理单元,用于接收第二水平偏振光,并对所述第二水平偏振光进行处理。
作为本发明一实施方式的进一步改进,所述光处理单元包括光功率监测单元和光调制器,所述光功率监测单元与所述光调制器的输入端均与所述偏振旋转单元的输出端相连。
作为本发明一实施方式的进一步改进,所述光芯片还包括第一分束单元,与所述模斑转换单元输出端相连,用于将所述转换后的竖直偏振光分为至少两路传输至所述偏振旋转单元。
作为本发明一实施方式的进一步改进,所述第一分束单元为3dB耦合器,将所述转换后的竖直偏振光均分为两路传输,每一路上均连接有偏振旋转单元和光处理单元。
作为本发明一实施方式的进一步改进,所述模斑转换单元为双尖端模斑转换器,用于对所述竖直偏振光进行模斑转换,并均分输出两路转换后的竖直偏振光,每一路上均连接有偏振旋转单元和光处理单元。
作为本发明一实施方式的进一步改进,所述模斑转换单元为反向楔形结构。
作为本发明一实施方式的进一步改进,所述模斑转换单元为亚波长结构。
作为本发明一实施方式的进一步改进,所述光处理单元还包括第二分束单元,所述第二分束单元为3dB耦合器,将所述第二水平偏振光均分为两路传输,每一路上均连接有光功率监测单元和光调制器。
作为本发明一实施方式的进一步改进,所述空间耦合单元包括透镜、隔离器以及波片,所述透镜靠所述激光发射单元设置,所述波片靠近所述光芯片设置,用于将所述第一水平偏振光转换为竖直偏振光输出;所述隔离器设置于所述透镜与所述波片之间。
本发明还提供一种光模块,所述光模块具有如上任意一项所述的耦合光路结构。
有益效果
本发明的有益效果在于:耦合光路结构中光芯片在与激光源输出光作光耦合的一端接收竖直偏振光,在光芯片内设置有偏振旋转单元,将接收的竖直偏振光转换为水平偏振光输出,相比常用技术中光芯片从接收到输出都是水平偏振光的技术方案,光芯片内模斑转换单元和传输光信号的硅波导在具有较大输入光功率的情况下,以竖直偏振光传输比以水平偏振光传输能大大降低光芯片内因光传输引起的非线性损耗,防止由于非线性损耗引起热的积累、烧坏光芯片等问题。
附图说明
图1为常用技术中耦合光路结构示意图。
图2是本发明实施例1中的耦合光路结构示意图。
图3是本发明实施例2中的耦合光路结构示意图。
图4是本发明实施例3中的耦合光路结构示意图。
图5是本发明实施例4中的耦合光路结构示意图。
图6是本发明实施例5中的耦合光路结构示意图。
本发明的实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施方式及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
为降低耦合光路中由光传输引起的非线性损耗,本发明提供以下五种实施例进行具体说明。
实施例
如图2所示,为本发明实施例1中的耦合光路结构示意图,所述耦合光路结构包括激光发射单元1、空间耦合单元2以及光芯片3,所述空间耦合单元2设置于所述激光发射单元1和光芯片3之间。
所述激光发射单元1输出具有高功率的第一水平偏振光。在本实施例中,所述激光发射单元1选用1310 nm DFB激光器。当然,在本发明其他实施方式中,所述激光发射单元1还可选用其他能够输出具有高功率水平偏振光的激光器。
所述空间耦合单元2用于接收所述激光发射单元1输出的第一水平偏振光,扩大所述激光发射单元1输出的第一水平偏振光的模场直径,并且改变所述激光发射单元1输出的第一水平偏振光的偏振态,使其转变为竖直偏振光。
具体的,所述空间耦合单元2包括透镜21、隔离器22以及波片23。所述透镜21靠近所述激光发射单元1设置,用于扩大所述激光发射单元1输出的第一水平偏振光的模场直径,此处为球型玻璃透镜。所述波片23靠近所述光芯片3设置,可通过波片23设置相关参数,将所述激光发射单元1输出的第一水平偏振光转换为竖直偏振光输出。所述隔离器22设置于所述透镜21与所述波片23之间。
所述光芯片3与所述空间耦合单元2作光耦合,接收所述空间耦合单元2输出的竖直偏振光,具体的,所述光芯片3沿光信号传播方向依次包括:模斑转换单元31、偏振旋转单元32和光处理单元33。
所述模斑转换单元31用于接收所述空间耦合单元2输出的竖直偏振光,对所述竖直偏振光进行模斑转换,并输出转换后的竖直偏振光。由于光芯片3在耦合进高功率光束的情况下,该高功率光束为竖直偏振光,相比水平偏振光,同样光功率情况下,竖直偏振光的能量密度较小,特别是在硅波导高度较低时,例如小于200 nm时,从而能够大大降低光在模斑转换单元31和硅波导上传输引起的非线性损耗。
在本发明一实施方式中,所述模斑转换单元31为反向楔形结构的模斑转换器,该结构为将光波导与输入光作耦合的一端波导宽度逐渐减小,使原本被限制在波导中的模场泄露到包层中从而扩大模场,实现与空间耦合单元2输出光的模场之间的匹配,减小耦合损耗。
在本发明的另一实施方式中,所述模斑转换单元31为亚波长光栅型结构的模斑转换器,同样的,该结构用于扩大与芯片外部输出光作光耦合一端的模场直径,实现与空间耦合单元2输出光的模场之间的匹配,减小耦合损耗。与反向楔形结构的模斑转换器相比,亚波长光栅型结构的模斑转换器可以使模场扩得更大,同时其工艺要求高、制备难度大。
所述偏振旋转单元32用于接收所述转换后的竖直偏振光,改变所述竖直偏振光的偏振态,并输出第二水平偏振光。
所述光处理单元33用于接收第二水平偏振光,并对所述第二水平偏振光进行处理输出。具体的,在本实施例中,所述光处理单元33包括光功率监测单元331和光调制器332,所述光功率监测单元331与所述光调制器332的输入端均连接至所述偏振旋转单元32,所述光功率监测单元331用于监测光传输路径上的光功率大小,所述光调制器332接收所述第二水平偏振光,并对所述第二水平偏振光进行调制输出。
实施例
如图3所示,为本发明实施例2中的耦合光路结构示意图。与实施例1不同的是,本实施方式中,光芯片3还包括第一分束单元34。所述第一分束单元34的输入端与模斑转换单元31输出端相连,用于将所述模斑转换单元31转换后的竖直偏振光分为至少两路至所述偏振旋转单元32。
具体的,所述第一分束单元34为3dB耦合器,将所述转换后的竖直偏振光均分为两路传输,每一传输路径上均连接有偏振旋转单元32和光处理单元33,所述偏振旋转单元32接收3 dB耦合器分束的50%光功率的竖直偏振光,用于改变该50%光功率的竖直偏振光的偏振态,输出该50%光功率的水平偏振光。所述光处理单元33与所述偏振旋转单元32的输出端相连,具体包括光功率监测单元331和光调制器332,所述光功率监测单元331与所述光调制器332的输入端均连接至所述偏振旋转单元32,所述光调制器332接收该50%光功率的水平偏振光,并对所述50%光功率的水平偏振光进行光信号调制输出。
当然,所述第一分束单元34也可以设计为多路分束器结构,只需保证每一路传输的光功率满足后续硅基光器件的传输需求即可。
进一步的,在此实施方式中,也可以将光功率监测单元331的输入端与第一分束单元34的一个输出端相连,光功率监测单元331的输出端与偏振旋转单元32的输入端相连,光调制器332的输入端与偏振旋转单元32的输出端相连,在此实施方式中先监测光传输路上的光功率大小,再改变光的偏振态输出。所述偏振旋转单元32改变所述第一分束单元34分束的50%竖直偏振光的偏振态,输出50%水平偏振光,所述光调制器332接收所述50%水平偏振光,对所述50%水平偏振光调制输出。
更进一步的,在本实施例中的光调制器332输出端之后也可以再设计合波器将两路光传输路径合为一路输出,具体可根据实际需求设计。
实施例
如图4所示,为本发明实施例3中的耦合光路结构示意图,与实施例2不同的是,所述光处理单元33还包括第二分束单元333,所述第二分束单元333与所述偏振旋转单元32输出端连接,接收所述偏振旋转单元32输出的50%光功率的水平偏振光,用于将50%光功率的水平偏振光分为至少两路传输,进一步降低每一路光传输路径上的光功率。
具体的,所述第二分束单元333为3 dB耦合器,将接收到的50%光功率的水平偏振光均分为两路传输,同样的,每一条光传输路径上均连接有光功率监测单元331和光调制器332,所述光调制器332接收第二分束单元333分束的25%光功率的水平偏振光,并对该25%光功率的水平偏振光进行光信号调制输出。
当然,所述第二分束单元333也可以设计为多路分束器结构,只需保证每一路传输的光功率满足后续硅基光器件的传输需求即可。
进一步的,在本实施例中的光调制器332输出端之后也可以再设计合波器将两路光传输路径合为一路输出,具体可根据实际需求设计。
实施例
如图5所示,为本发明实施例4中的耦合光路结构示意图,与实施例1不同的是,所述模斑转换单元31为双尖端模斑转换器结构,接收空间耦合结构2输出的竖直偏振光,对所述竖直偏振光进行模斑转换,可大大减少光经过模斑转换单元31引起的非线性损耗,同时所述双尖端模斑转换器可均分输出两路转换后的竖直偏振光,更进一步降低光在硅波导上传输引起的非线性损耗。
具体的,每一条光传输路径上均连接有偏振旋转单元32和光处理单元33,所述偏振旋转单元32接收双尖端模斑转换器分束的50%光功率的竖直偏振光,用于改变该50%光功率的竖直偏振光的偏振态,输出该50%光功率的水平偏振光。所述光处理单元33与所述偏振旋转单元32的输出端相连,具体包括光功率监测单元331和光调制器332,同样的,所述光功率监测单元331与所述光调制器332的输入端均连接至所述偏振旋转单元32,所述光功率监测单元331用于监测光传输路径上的光功率大小,所述光调制器332接收该水平偏振光,并对该水平偏振光进行光信号调制输出。
进一步的,在此实施方式中,也可以将光功率监测单元331的输入端与模斑转换单元31的一个输出端相连,光功率监测单元331的输出端与偏振旋转单元32的输入端相连,光调制器332的输入端与偏振旋转单元32的输出端相连,在此实施方式中先监测光传输路上的光功率大小,再改变光的偏振态输出。光功率监测单元331接收模斑转换单元31分束的竖直偏振光,所述偏振旋转单元32改变所述模斑转换单元31分束的竖直偏振光的偏振态,输出水平偏振光,所述光调制器332接收所述水平偏振光,对所述水平偏振光调制输出。
更进一步的,在本实施例中的光调制器332输出端之后也可以再设计合波器将两路光传输路径合为一路输出,具体可根据实际需求设计。
实施例4与实施例2相比,可减少光芯片上集成器件的数量以及简化光传输路径,能够更进一步减少光功率的传输损耗和光传输引起的非线性损耗。
实施例
如图6所示,为本发明实施例5中的耦合光路结构示意图,与实施例4不同的是,所述光处理单元33还包括第二分束单元333,所述第二分束单元333与所述偏振旋转单元32输出端连接,接收所述偏振旋转单元32输出的50%光功率的水平偏振光,用于将50%光功率的水平偏振光分为至少两路传输,进一步降低每一路光传输路径上的光功率,减小光在硅波导上传输所引起的非线性损耗。具体的,所述第二分束单元333为3 dB耦合器,将接收到的50%光功率的水平偏振光均分为两路传输。
当然,所述第二分束单元333也可以设计为多路分束器结构,只需保证每一路传输的光功率满足后续硅基光器件的传输需求即可。
进一步的,在本实施例中的光调制器332输出端之后也可以再设计合波器将两路光传输路径合为一路输出,具体可根据实际需求设计。
本发明还提供一种光模块,所述光模块具有如上任意一种实施方式中所述的耦合光路结构。
综上所述,本发明提出的耦合光路中光芯片在与激光源输出光作光耦合的一端接收竖直偏振光,在光芯片内设置有偏振旋转单元,将接收的竖直偏振光转换为水平偏振光输出,相比常用技术中光芯片从接收到输出都是水平偏振光的技术方案,光芯片内模斑转换单元和传输光信号的硅波导在具有较大的输入光功率情况下,以竖直偏振光传输比以水平偏振光传输能大大降低光芯片内因光传输引起的非线性损耗;同时通过设置第一分束单元和第二分束单元将输入光均分为至少两路传输,降低每一条光传输路径上的光功率,以进一步减小光在硅波导上传输引起的非线性损耗,防止由于非线性损耗引起热的积累、烧坏光芯片等问题。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种耦合光路结构,其特征在于,所述耦合光路结构包括激光发射单元、空间耦合单元和光芯片;
    所述激光发射单元用于输出第一水平偏振光;
    所述空间耦合单元设置于所述激光发射单元和光芯片之间,用于接收所述第一水平偏振光,并改变所述第一水平偏振光的偏振态,输出竖直偏振光;
    所述光芯片沿光信号传播方向依次包括:模斑转换单元、偏振旋转单元和光处理单元;
    所述模斑转换单元用于接收竖直偏振光,对所述竖直偏振光进行模斑转换,并输出转换后的竖直偏振光;
    所述偏振旋转单元用于接收所述转换后的竖直偏振光,改变所述竖直偏振光的偏振态,输出第二水平偏振光;
    光处理单元,用于接收第二水平偏振光,并对所述第二水平偏振光进行处理。
  2. 根据权利要求1所述的耦合光路结构,其特征在于,所述光处理单元包括光功率监测单元和光调制器,所述光功率监测单元与所述光调制器的输入端均与所述偏振旋转单元的输出端相连。
  3. 根据权利要求2所述的耦合光路结构,其特征在于,所述光芯片还包括第一分束单元,与所述模斑转换单元输出端相连,用于将所述转换后的竖直偏振光分为至少两路传输至所述偏振旋转单元。
  4. 根据权利要求3所述的耦合光路结构,其特征在于,所述第一分束单元为3dB耦合器,将所述转换后的竖直偏振光均分为两路传输,每一路上均连接有偏振旋转单元和光处理单元。
  5. 根据权利要求2所述的耦合光路结构,其特征在于,所述模斑转换单元为双尖端模斑转换器,用于对所述竖直偏振光进行模斑转换,并均分输出两路转换后的竖直偏振光,每一路上均连接有偏振旋转单元和光处理单元。
  6. 根据权利要求5所述的耦合光路结构,其特征在于,所述模斑转换单元为反向楔形结构。
  7. 根据权利要求5所述的耦合光路结构,其特征在于,所述模斑转换单元为亚波长结构。
  8. 根据权利要求4所述的耦合光路结构,其特征在于,所述光处理单元还包括第二分束单元,所述第二分束单元为3dB耦合器,将所述第二水平偏振光均分为两路传输,每一路上均连接有光功率监测单元和光调制器。
  9. 根据权利要求1所述的耦合光路结构,其特征在于,所述空间耦合单元包括透镜、隔离器以及波片,所述透镜靠所述激光发射单元设置,所述波片靠近所述光芯片设置,用于将所述第一水平偏振光转换为竖直偏振光输出;所述隔离器设置于所述透镜与所述波片之间。
  10. 一种光模块,其特征在于,所述光模块具有如权利要求1所述的耦合光路结构。
PCT/CN2023/083949 2022-05-23 2023-03-27 耦合光路结构和光模块 WO2023226577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210563827.8 2022-05-23
CN202210563827.8A CN117148515A (zh) 2022-05-23 2022-05-23 耦合光路结构和光模块

Publications (1)

Publication Number Publication Date
WO2023226577A1 true WO2023226577A1 (zh) 2023-11-30

Family

ID=88901329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083949 WO2023226577A1 (zh) 2022-05-23 2023-03-27 耦合光路结构和光模块

Country Status (3)

Country Link
CN (1) CN117148515A (zh)
TW (1) TW202346935A (zh)
WO (1) WO2023226577A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995569A (zh) * 2010-09-28 2011-03-30 中国科学院上海光学精密机械研究所 消光比自补偿电光调制光脉冲装置
CN105051582A (zh) * 2013-03-14 2015-11-11 思科技术公司 光波导中的模态旋转
CN107005021A (zh) * 2015-05-05 2017-08-01 昂纳信息技术(深圳)有限公司 透镜隔离器阵列、阵列激光器封装结构及其制作方法
US9759862B1 (en) * 2016-10-10 2017-09-12 National Technology & Engineering Solutions Of Sandia, Llc Adiabatic/diabatic polarization beam splitter
CN107820575A (zh) * 2015-04-01 2018-03-20 甲骨文国际公司 具有背向反射隔离器的集成激光器
US20180120504A1 (en) * 2016-11-01 2018-05-03 Minghao Qi Optical coupler having subwavelength grating
JP2019101258A (ja) * 2017-12-04 2019-06-24 株式会社フジクラ 光モジュール及び入力方法
US20190324203A1 (en) * 2018-04-24 2019-10-24 Apple Inc. Photonic integrated circuit with laser and isolator
CN111371499A (zh) * 2018-12-26 2020-07-03 中兴光电子技术有限公司 一种调制装置和光发射机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995569A (zh) * 2010-09-28 2011-03-30 中国科学院上海光学精密机械研究所 消光比自补偿电光调制光脉冲装置
CN105051582A (zh) * 2013-03-14 2015-11-11 思科技术公司 光波导中的模态旋转
CN107820575A (zh) * 2015-04-01 2018-03-20 甲骨文国际公司 具有背向反射隔离器的集成激光器
CN107005021A (zh) * 2015-05-05 2017-08-01 昂纳信息技术(深圳)有限公司 透镜隔离器阵列、阵列激光器封装结构及其制作方法
US9759862B1 (en) * 2016-10-10 2017-09-12 National Technology & Engineering Solutions Of Sandia, Llc Adiabatic/diabatic polarization beam splitter
US20180120504A1 (en) * 2016-11-01 2018-05-03 Minghao Qi Optical coupler having subwavelength grating
JP2019101258A (ja) * 2017-12-04 2019-06-24 株式会社フジクラ 光モジュール及び入力方法
US20190324203A1 (en) * 2018-04-24 2019-10-24 Apple Inc. Photonic integrated circuit with laser and isolator
CN111371499A (zh) * 2018-12-26 2020-07-03 中兴光电子技术有限公司 一种调制装置和光发射机

Also Published As

Publication number Publication date
CN117148515A (zh) 2023-12-01
TW202346935A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
CN104303441B (zh) 光发送接收装置以及光输出值控制方法
US11740417B2 (en) Silicon photonics multi-channel parallel optical component and coupling method thereof
US8873898B2 (en) Polarization independent wavelength converter and polarization independent wavelength conversion method
CN108767636B (zh) 一种全光纤型弱耦合少模掺铒光纤放大器
WO2023169598A2 (zh) 一种基于片上模式转换的偏振控制器
CN110794529B (zh) 一种光组件及其系统
Schares et al. A gain-integrated silicon photonic carrier with SOA-array for scalable optical switch fabrics
TWM650960U (zh) 多通道主動式光纜光子積體晶片及主動式光纜
Ban et al. Highly optimized O-band Si ring modulators for low-power hybrid CMOS-SiPho transceivers
WO2023226577A1 (zh) 耦合光路结构和光模块
Xu et al. High power external pluggable laser bank with simultaneous single mode optical & electrical connection
CN104317000A (zh) 模块化可扩展的波长和空间全光路由器
CN115980926A (zh) 一种混合集成的多模波导耦合器
CN109962772B (zh) 基于耦合偏振分束器的硅基集成量子密钥分发芯片
CN115639646A (zh) 一种硅光芯片端面耦合器及其输出控制方法
CN105515665A (zh) 基于受激布里渊增益偏振特性的全光缓存器
WO2016041163A1 (zh) 一种光信号调制装置和系统
Nakagawa et al. Ultra-high extinction ratio and low cross talk characteristics of 4-array integrated SOA module with compact-packaging technologies
WO2023241235A1 (zh) 分光器件、光芯片以及光通信模块
CN113484950A (zh) 基于模斑变换与光栅耦合的混合封装装置
WO2023030463A1 (zh) 光模块及光处理方法
CN217485934U (zh) 一种半导体激光器
WO2024000612A1 (zh) 一种半导体激光器
WO2024078374A1 (zh) 一种tosa、光模块、光网络设备和光发射方法
US6317253B1 (en) 1.06 μm band optical amplifier apparatus utilizing induced emission in optical fiber by excited rare-earth element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810652

Country of ref document: EP

Kind code of ref document: A1