WO1997004236A1 - Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung - Google Patents

Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung Download PDF

Info

Publication number
WO1997004236A1
WO1997004236A1 PCT/EP1996/003078 EP9603078W WO9704236A1 WO 1997004236 A1 WO1997004236 A1 WO 1997004236A1 EP 9603078 W EP9603078 W EP 9603078W WO 9704236 A1 WO9704236 A1 WO 9704236A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotor
bearing
pump
gap
Prior art date
Application number
PCT/EP1996/003078
Other languages
English (en)
French (fr)
Inventor
Thomas Abelen
Peter Müller
Original Assignee
Leybold Vakuum Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum Gmbh filed Critical Leybold Vakuum Gmbh
Priority to US08/983,538 priority Critical patent/US6019585A/en
Priority to JP50626997A priority patent/JP3842292B2/ja
Priority to DE59602183T priority patent/DE59602183D1/de
Priority to EP96926341A priority patent/EP0839283B1/de
Priority to CA002227168A priority patent/CA2227168C/en
Publication of WO1997004236A1 publication Critical patent/WO1997004236A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0872Vane tracking; control therefor by fluid means the fluid being other than the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Definitions

  • the invention relates to an oil-sealed rotary vane vacuum pump with the features of the preamble of claim 1.
  • a vacuum pump with the features of the preamble of patent claim 1 is known from DD-A-256540.
  • This publication discloses a single-stage rotary vane vacuum pump, the rotor of which is mounted at both ends by means of a journal bearing.
  • the two bearing journals and their end shields are equipped with bores which are designed and arranged in such a way that they have the effect of taps which control the entry and exit of an excess oil flow which passes through the intermediate space between the slides.
  • the arrangement of the bores is selected so that the oil enters the space between the slides via the first bearing pin when it has its largest volume. In this and also in the subsequent phase, in which the volume of the interspace is reduced, the outlet in the direction of the oil sump is blocked. As a result, an increased oil pressure builds up in the gap between the valves, so that oil passes through the gaps between the valves and the
  • a disadvantage of the solution according to the prior art is that the oil supply to the scooping chamber is not defined, since it takes place via gaps, which have manufacturing tolerances and are subject to wear and tear. Furthermore, the previously known solution requires the existence of trunnions on both sides of the rotor. In the case of a rotor mounted on the fly, the solution according to the prior art cannot be implemented. Finally, high oil pressures repeatedly build up briefly in the intermediate space between the slides, which causes not inconsiderable noises (oil strikes).
  • the object of the present invention is to design a rotary vane vacuum pump of the type mentioned at the outset in such a way that oil noises are largely avoided.
  • a further reduction in operating noise can be achieved by supplying an oil-air mixture to the intermediate space between the slides. This mixture can be made before or in the oil pump.
  • the point in time at which oil is admitted into the slider intermediate space is expediently chosen so that it has its smallest volume at the moment of the oil inlet. The occurrence of oil strikes is thus avoided with certainty.
  • the oil is injected into the space between the slides with the aid of a nozzle. This ensures a reliable lubricating effect while at the same time keeping the amount of oil flowing around small.
  • FIGS. 1 to 2 Show it - Figure 1 is a longitudinal section through an exemplary embodiment for a two-stage rotary vane vacuum pump according to the invention and
  • FIG. 2 is a schematic section through a single-stage rotary vane vacuum pump according to the invention.
  • the pump 1 shown comprises the modules housing 2, rotor 3 and drive motor 4.
  • the housing 2 has essentially the shape of a pot with an outer wall 5, with the cover 6, with an inner part 7 with the scoops 8, 9 and the bearing bore 11, with the end plate 12 and the bearing piece 13, which the scoops Complete ends 8, 9.
  • the axis of the bearing bore 11 is designated 14.
  • two oil eyes 18, 19 are provided in the cover 6. Oil filler and oil drain ports are not shown.
  • the oil sump is designated with 20.
  • the rotor 3 is located within the inner part 7. It is formed in one piece and has two armature sections 21, 22 arranged on the end face and a bearing section 23 located between the armature sections 21, 22.
  • the anchor sections 21, 22 are equipped with slots 24, 25 for two sliders 26, 27.
  • the illustration according to FIG. 1 is chosen such that the respective slide interstices 28, 29 lie in the plane of the drawing.
  • the slide slots 25, 26 are each milled from the associated end face of the rotor, so that exact slot dimensions can be achieved in a simple manner.
  • the bearing section 23 lies between the Kerababismes 21, 22. Bearing section 23 and Lagerboh ⁇ tion 11 form the only bearing of the rotor.
  • the anchor section 22 and the associated scooping chamber 9 have a larger diameter than the anchor section 21 with the scooping chamber 8.
  • Anchor section 22 and scooping chamber 9 form the high vacuum stage.
  • the inlet of the high vacuum stage 9, 22 is connected to the intake manifold 30.
  • the outlet of the high vacuum stage 9, 22 and the inlet of the fore vacuum stage 8, 21 are connected via the housing bore 31, which extends parallel to the axes of the scoops 8, 9.
  • the outlet of the fore-vacuum stage 8, 21 opens into the oil chamber 17.
  • the housing 2 of the pump is expediently constructed from as few parts as possible. At least the wall sections 5, 7 comprising the two scooping spaces 8, 9 and the oil space 17 should be formed in one piece.
  • the bearing piece 13 is equipped with a bore 35 for a rotor drive. This can be the shaft 36 of the drive motor 4 directly.
  • a coupling piece 37 is provided between the free end face of the drive shaft 36 and the rotor 3. The manner in which the coupling piece 37 is coupled to the drive shaft 36 on the one hand and to the rotor on the other hand is not described in detail. It is explained in more detail in DE-A-43 25 285.
  • the pump shown is equipped with an integrated oil pump. This consists of the scooping space embedded in the bearing piece 13 from the motor side 45 with the oval eccentric 46 rotating therein. The eccentric is in contact with a locking slide 47 which is under the pressure of the spiral spring 48.
  • the eccentric 46 of the oil pump is part of the coupling piece 37. It is either fixed or positively connected - only with axial play - to the coupling piece 37.
  • the bearing piece 13 is equipped on its side facing the engine 4 with a circular recess 58 in which a disk 59 is located. This is held in its position by the housing 61 of the drive motor 4. It is equipped with a central bore 62 which is penetrated by the shaft 36 of the drive motor 4.
  • the disk 59 has the task of limiting the scooping space 45 of the oil pump 45, 46.
  • Air from the oil chamber 17 and oil from the oil sump 20 are supplied to the oil pump 45, 46 via a first channel 64.
  • the air-oil mixture leaving the oil pump enters channel 66, which opens into bearing bore 11 (mouth 67).
  • the bearing pin 23 is provided with a continuous radial bore 68, from which an axial bore 69 branches off with a nozzle 70 in the direction of the slide gap 28.
  • the position of the mouth 67 of the channel 66 on the one hand and the mouth of the radial bore 68 in the journal 23 on the other hand is chosen so that oil from the channel 66 can only briefly enter the bore 68 when the slide 26 assume its T position (cf. Figure 2).
  • the slide gap 28 has its smallest volume men.
  • the oil-air mixture which is briefly injected into the slide space 28 via the nozzle, flows through the slide space 28 and reaches the scoop space 8 without pressure.
  • the inside of the cover 12 is equipped with a groove 71, which extends from the slide space 28 extends into the scoop 8.
  • the free end face of the anchor section 21 is additionally equipped with a central recess 72.
  • the vacuum pump according to the invention is a single-stage pump, then the relevant portion of the oil-air mixture flows through the bores 66, 68, 69 and the slide gap 28 into the scooping chamber 8 and from there returns to the oil chamber 17. Only a very small part of the oil gets into the bearing gap between the bearing bore 11 and the journal 23 and supplies this bearing with lubricating oil. It flows through the bearing gap and then also arrives in the scoop chamber 8. If the vacuum pump - as shown in the exemplary embodiment according to FIG. 1 - has two stages, a third oil-air partial flow enters the bearing gap of the bearing 11, 23 in the direction of the high vacuum pump stage 9 , 22 a.
  • the bearing pin 23 is equipped with a circumferential groove 74, at the height of which a bore 75 opens, which is connected to the intermediate vacuum (bore 31).
  • the sectional view through a single-stage pump according to FIG. 2 shows further details. From the oil pump 45, 46 shown as a symbol, the oil-air mixture passes through the channel 66 to the mouth 67 in the bearing bore 11.
  • the rotor 3 is shown in a position in which the slides 26 assume their T position. In this position there is a connection of the channel 66 in the housing with the radial bore 68 in the bearing piece 23. A small, just sufficient amount of oil passes through the bores 68, 69 (with nozzle 70) into the slide gap 28 which is in the T - position has its smallest volume.
  • the groove 71 in the cover 12 opposite the bearing piece 23 is shown in dashed lines. It is arranged in the vicinity of the outlet 30, so that one of the slides 26 is always between the inlet 33 and the groove 71. Its inner end extends far into the area of the indentation 72 in the rotor 3, so that it is ensured that the oil can leave the slide space 28 without pressure build-up and can reach the scoop space 8 via the indentation 72 and the groove 71.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

Die Erfindung betrifft eine ölgedichtete Drehschiebervakuumpumpe mit einem Schöpfraum (8), mit einem im Schöpfraum drehbar angeordneten Rotor (3), der mit einem Ankerabschnitt (21) und einem Lagerabschnitt (23) ausgerüstet ist, mit einem im Ankerabschnitt vorgesehenen Schieberschlitz (24), mit zwei im Schieberschlitz angeordneten Schiebern (26), die zwischen sich einen Schieberzwischenraum (28) bilden, mit einer Lagerung für den Rotor (3), welche den Lagerabschnitt (23) und eine Lagerbohrung (11) umfaßt, mit einer Ölpumpe (45, 46) zur Erzeugung eines den Schieberzwischenraum (28) durchsetzenden Ölstromes und mit einer Steuerung für das den Schieberzwischenraum (28) durchsetzende Öl über einen in die Lagerbohrung (11) mündenden Ölkanal (66) und über Radial- und Axialbohrungen (68, 69) im Lagerabschnitt (23); um die Betriebsgeräusche der Vakuumpumpe zu reduzieren, wird vorgeschlagen, daß die Lage der Mündungen des in die Lagerbohrung (11) mündenden Ölkanals (66) einerseits und der Radialbohrung (68) im Lagerabschnitt (23) andererseits in bezug auf die Stellung der Schieber (26) bzw. Schieberschlitze (24) so gewählt ist, daß Öl nur dann in den Schieberzwischenraum (28) gelangt, wenn dieser sein Volumen vergrößert, und daß für das den Schieberzwischenraum (28) verlassende Öl eine ständig offene, zum Schöpfraum (8) führende Verbindung vorgesehen ist.

Description

Ölgedichtete Drehschiebervakuumpume mit einer Ölversor¬ gung
Die Erfindung bezieht sich auf eine ölgedichtete Dreh¬ schieberVakuumpumpe mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
Aus der DD-A-256540 ist eine Vakuumpumpe mit den Merkma¬ len des Oberbegriffs des Patentanspruchs 1 bekannt. Diese Druckschrift offenbart eine einstufige Drehschie¬ bervakuumpumpe, deren Rotor an seinen beiden Enden mit¬ tels einer Zapfenlagerung gelagert ist. Die beiden La¬ gerzapfen sowie deren Lagerschilde sind mit Bohrungen ausgerüstet, welche so ausgebildet und angeordnet sind, daß sie die Wirkung von Hähnen haben, welche den Ein¬ tritt und den Austritt eines den Schieberzwischenraum durchsetzenden Überschuß-Ölstromes steuern. Die An- bzw. Zuordnung der Bohrungen ist so gewählt, daß das Öl über den ersten Lagerzapfen in den Schieberzwischenraum ein¬ tritt, wenn dieser sein größtes Volumen hat. In dieser und auch in der sich anschließenden Phase, in der sich das Volumen des Zwischenraumes verkleinert, ist der Aus¬ tritt in Richtung Ölsumpf gesperrt. Dadurch baut sich im Schieberzwischenraum ein erhöhter Öldruck auf, so daß Öl durch die Spalte, welche zwischen den Schiebern und den
ORIGINAL UNTERLAGEN Schieberschlitzen und im Bereich der Rotorstirnseiten vorhanden sind, in den Schöpfraum gelangt und diesen mit dem notwendigen Dicht- und Schmier-Öl versorgt. Kurz vor dem Zeitpunkt, zu dem der Schieberzwischenraum sein kleinstes Volumen annimmt, wird der Ölaustritt über den zweiten Lagerzapfen geöffnet. Infolge der pumpenden Wir¬ kung des Schieberzwischenraumes tritt das überschüssige Öl aus und gelangt in den Ölsumpf zurück.
Nachteilig an der Lösung nach dem Stand der Technik ist, daß die Ölversorgung des Schöpfraumes nicht definiert ist, da sie über Spalte erfolgt, die Fertigungstoleran¬ zen aufweisen und Verschleißerscheinungen unterworfen sind. Weiterhin setzt die vorbekannte Lösung das Vorhan¬ densein von Lagerzapfen auf beiden Seiten des Rotors voraus. Bei einem fliegend gelagerten Rotor ist die Lö¬ sung nach dem Stand der Technik nicht realisierbar. Schließlich bauen sich im Schieberzwischenraum kurzzei¬ tig immer wieder hohe Öldrücke auf, was nicht unerhebli¬ che Geräusche (Ölschläge) verursacht.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine DrehschieberVakuumpumpe der eingangs erwähnten Art derart auszubilden, daß Ölgeräusche weitestgehend ver¬ mieden sind.
Erfindungsgemäß wird diese Aufgabe durch die kennzeich¬ nenden Merkmale des Patentanspruchs 1 gelöst. Bei einer Vakuumpumpe nach der Erfindung gelangt Öl nur in dem Mo¬ ment in den Schieberzwischenraum, wenn dieser sein Volu¬ men vergrößert. Außerdem ist die Verbindung des Schie¬ berzwischenraumes mit dem Schöpfräum ständig offen. Der Aufbau eines erhöhten Öldruckes kann nicht stattfinden. Während der Phase des sich verkleinernden Schieberzwi¬ schenraumes wird Öl nicht eingelassen, so daß die pum¬ pende Wirkung des Schieberzwischenraumes keinen Einfluß auf den Ölstrom nehmen kann. Ölschläge treten nicht auf. Die Menge des in den Schieberzwischenraum gelangenden Öl ist über die Größe der sich bei jeder Rotordrehung kurz¬ zeitig gegenüberstehenden Mündungen der Bohrungen im Ge¬ häuse und im Lagerabschnitt einstellbar. Sie kann in einfacher Weise so gewählt werden, daß exakt nur eine solche Olmenge in den Schieberzwischenraum und an¬ schließend- in den Schöpfräum gelangt, die den vakuum¬ technischen Bedingungen der Pumpe, z.B. auch unter Be¬ rücksichtigung der Applikation, genügen. Wesentlich ist, daß das Öl drucklos in den Schöpfräum eintritt. Von dort aus gelangt es über den Auslaß der Pumpe in den Pumpen¬ sumpf zurück. Schließlich reicht zur Steuerung des den Schieberzwischenraum durchsetzenden Öls nur ein Lager¬ zapfen aus, so daß die Erfinduung auch bei Vakuumpumpen mit fliegend gelagerten Rotor einsetzbar ist.
Eine weitere Reduzierung der Betriebsgeräusche kann da¬ durch erreicht werden, daß dem Schieberzwischenraum ein Öl-Luft-Gemisch zugeführt wird. Dieses Gemisch kann vor oder in der Ölpumpe hergestellt werden.
Zweckmäßig wird der Zeitpunkt des Einlasses von Öl in den Schieberzwischenraum so gewählt, daß dieser im Mo¬ ment des Öleinlasses sein kleinsten Volumen hat. Das Auftreten von Ölschlägen ist dadurch mit Sicherheit ver¬ mieden.
Vorteilhaft ist weiterhin, daß das Öl mit Hilfe einer Düse in den Schieberzwischenraum eingespritzt wird. Eine zuverlässige Schmierwirkung bei gleichzeitig klein ge¬ haltener Menge des umströmenden Öls ist dadurch sicher¬ gestellt.
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand der Figuren 1 bis 2 erläutert werden. Es zeigen - Figur 1 einen Längsschnitt durch ein Ausführungsbei¬ spiel für eine zweistufige Drehschiebervakuumpumpe nach der Erfindung und
- Figur 2 einen schematisierten Schnitt durch eine ein¬ stufige Drehschiebervakuumpumpe nach der Erfindung.
Die dargestellte Pumpe 1 umfaßt die Baugruppen Gehäuse 2, Rotor 3 und Antriebsmotor 4.
Das Gehäuse 2 hat im wesentlichen die Form eines Topfes mit einer äußeren Wandung 5, mit dem Deckel 6, mit einem Innenteil 7 mit den Schöpfräumen 8, 9 sowie der Lager¬ bohrung 11, mit der Endscheibe 12 und dem Lagerstück 13, welche die Schöpfräume 8, 9 stirnseitig abschließen. Die Achse der Lagerbohrung 11 ist mit 14 bezeichnet. Zwi¬ schen äußerer Wandung 5 und Innenteil 7 befindet sich der Ölraum 17, der während des Betriebs der Pumpe teil¬ weise mit Öl gefüllt ist. Zur Kontrolle des Ölstandes sind im Deckel 6 zwei Ölaugen 18, 19 (maximaler, minima¬ ler Ölstand) vorgesehen. Öleinfüll- und Ölablaßstutzen sind nicht dargestellt. Mit 20 ist der Ölsumpf bezeich¬ net.
Innerhalb des Innenteils 7 befindet sich der Rotor 3. Er ist einteilig ausgebildet und weist zwei stirnseitig an¬ geordnete Ankerabschnitte 21, 22 und einen zwischen den Ankerabschnitten 21, 22 befindlichen Lagerabschnitt 23 auf. Die Ankerrabschnitte 21, 22 sind mit Schlitzen 24, 25 für zwei Schieber 26, 27 ausgerüstet. Die Darstellung nach Figur 1 ist so gewählt, daß die jeweiligen Schie¬ berzwischenräume 28, 29 in der Zeichnungsebene liegen. Die Schieberschlitze 25, 26 sind jeweils von der zugehö¬ rigen Stirnseite des Rotors her eingefräst, so daß in einfacher Weise exakte Schlitzabmessungen erreicht wer¬ den können. Der Lagerabschnitt 23 liegt zwischen den An- kerabschnitten 21, 22. Lagerabschnitt 23 und Lagerboh¬ rung 11 bilden die einzige Lagerung des Rotors.
Der Ankerabschnitt 22 und der zugehörige Schöpfraum 9 haben einen größeren Durchmesser als der Ankerabschnitt 21 mit dem Schöpfraum 8. Ankerabschnitt 22 und Schöpf¬ raum 9 bilden die Hochvakuumstufe. Während des Betriebs steht der Einlaß der Hochvakuumstufe 9, 22 mit dem An¬ saugstutzen 30 in Verbindung. Der Auslaß der Hochvakuum¬ stufe 9, 22 und der Einlaß der Vorvakuumstufe 8, 21 ste¬ hen über die Gehäusebohrung 31 in Verbindung, die sich prallel zu den Achsen der Schöpfräume 8, 9 erstreckt. Der Auslaß der Vorvakuumstufe 8, 21 mündet in den Ölraum 17. Dort beruhigen sich die ölhaltigen Gase und verlas¬ sen die Pumpe 1 durch den Auslaßstutzen 33. Aus Gründen der Übersichtlichkeit sind die Einlaß- und Auslaßöffnun¬ gen der beiden Pumpenstufen in Fig. 1 nicht dargestellt. Das Gehäuse 2 der Pumpe ist zweckmäßig aus möglichst we¬ nigen Teilen aufgebaut. Zumindest die die beiden Schöpf¬ räume 8, 9 und den Ölraum 17 umfassenden Wandungsab¬ schnitte 5, 7 sollten einstückig ausgebildet sein.
Koaxial mit der Achse 14 der Lagerbohrung 11 ist das La¬ gerstück 13 mit einer Bohrung 35 für einen Rotorantrieb ausgerüstet. Dieses kann unmittelbar die Welle 36 des Antriebsmotors 4 sein. Bei dem in Figur 1 dargestellten Ausführungsbeispiel ist zwischen der freien Stirnseite der Antriebswelle 36 und dem Rotor 3 ein Kupplungsstück 37 vorgesehen. Die Art und Weise der Kopplung des Kupp¬ lungsstückes 37 mit der Antriebeswelle 36 einerseits und mit dem Rotor andererseits ist im einzelnen nicht be¬ schrieben. Sie ist in der DE-A-43 25 285 näher erläu¬ tert.
Die dargestellte Pumpe ist mit einer integrierten Öl- pumpe ausgerüstet. Diese besteht aus dem in das Lager¬ stück 13 von der Motorseite her eingelassenen Schöpfraum 45 mit dem darin rotierenden ovalen Exzenter 46. Dem Ex¬ zenter liegt ein Sperrschieber 47 an, der unter dem Druck der Spiralfeder 48 steht. Der Exzenter 46 der Öl- pumpe ist Bestandteil des Kupplungsstückes 37. Er ist entweder fest oder formschlüssig - nur mit axialem Spiel - mit dem Kupplungsstück 37 verbunden.
Beim dargestellten Ausführungsbeispiel mit der Ölpumpe 45, 46 ist das Lagerstück 13 auf seiner dem Motor 4 zu¬ gewandten Seite mit einer kreisförmigen Aussparung 58 ausgerüstet, in der sich eine Scheibe 59 befindet. Diese wird vom Gehäuse 61 des Antriebsmotors 4 in ihrer Posi¬ tion gehalten. Sie ist mit einer zentralen Bohrung 62 ausgerüstet, die von der Welle 36 des Antriebsmotors 4 durchsetzt ist. Außerdem hat die Scheibe 59 die Aufgabe,, den Schöpfräum 45 der Ölpumpe 45, 46 zu begrenzen.
Der Ölpumpe 45, 46 wird über einen ersten Kanal 64 Luft aus dem Ölraum 17 und einen zweiten Kanal 65 Öl aus dem Ölsumpf 20 zugeführt. Das die Ölpumpe verlassende Luft- Ölgemisch tritt in den Kanal 66 ein, der in die Lager¬ bohrung 11 (Mündung 67) mündet. In Höhe der Mündung 67 ist der Lagerzapfen 23 mit einer durchgehenden Radial- Bohrung 68 versehen, von dem eine Axial-Bohrung 69 mit einer Düse 70 in Richtung Schieberzwischenraum 28 ab¬ zweigt. Die Lage der Mündung 67 des Kanals 66 einerseits und der Mündung der Radialbohrung 68 im Lagerzapfen 23 andererseits ist so gewählt, daß Öl aus dem Kanal 66 nur dann kurzzeitig in die Bohrung 68 eintreten kann, wenn die Schieber 26 ihre T-Stellung einnehmen (vgl. Figur 2) . Durchsetzt die Radialbohrung 68 den Lagerzapfen 23 vollständig, sind zwei Mündungen vorhanden, so daß je¬ desmal, wenn die Schieber ihre T-Stellung einnehmen, ei¬ ne Verbindung zur Ölpumpe 45, 46 hergestellt wird. Bei jeder Umdrehung des Rotors 3 nehmen die Schieber 26 zweimal diese T-Stellung ein. In dieser Stellung hat der Schieberzwischenraum 28 hindurch sein kleinstes Volu- men. Das über die Düse jeweils kurzzeitig in den Schie¬ berzwischenraum 28 eingespritzte Öl-Luft-Gemisch strömt durch den Schieberzwischenraum 28 und gelangt drucklos in den Schöpfräum 8. Dazu ist die Innenseite des Deckels 12 mit einer Nut 71 ausgerüstet, welche sich vom Schie¬ berzwischenraum 28 bis in den Schöpfräum 8 erstreckt. Um sicherzustellen, daß der Schieberzwischenraum 28 ständig mit dem Schöpfräum 8 in Verbindung steht, ist die freie Stirnseite des Ankerabschnittes 21 zusätzlich mit einer zentralen Eindrehung 72 ausgerüstet.
Ist die erfindungsgemäße Vakuumpumpe eine einstufige Pumpe, dann strömt der maßgebliche Anteil des Öl-Luft- Gemisches über die Bohrungen 66, 68, 69 und den Schie¬ berzwischenraum 28 in den Schöpfräum 8 und gelangt von dort aus in den Ölraum 17 zurück. Nur ein sehr kleiner Teil des Öls gelangt in den Lagerspalt zwischen Lager¬ bohrung 11 sowie Lagerzapfen 23 und versorgt diese Lage¬ rung mit Schmieröl. Sie durchströmt den Lagerspalt und gelangt dann ebenfalls in den Schöpfräum 8. Ist die Va¬ kuumpumpe - wie beim Ausfuhrungsbeispiel nach Figur 1 dargestellt - zweistufig ausgebildet, tritt ein dritter Öl-Luft-Teilstrom in den Lagerspalt der Lagerung 11, 23 in Richtung Hochvakuumpumpenstufe 9, 22 ein. Würde das Öl-Luft-Gemisch in die Hochvakuumstufe gelangen, dann würde die im Öl enthaltene Luft das Enddruckverhalten der Vakuumpumpe beeinträchtigen. Auf dem Weg von der Mündung 67 des Kanals 66 bis zum Schöpfraum 9 der Hoch¬ vakuumstufe findet deshalb ein Entgasungsschritt statt. Dazu ist der Lagerzapfen 23 mit einer umlaufenden Nut 74 ausgerüstet, in deren Höhe eine Bohrung 75 mündet, die mit dem Zwischenvakuum (Bohrung 31) in Verbindung steht.
Das Schnittbild durch eine einstufige Pumpe nach Figur 2 zeigt weitere Details. Von der als Symbol dargestellten Ölpumpe 45, 46 gelangt das Öl-Luft-Gemisch durch den Ka¬ nal 66 zur Mündung 67 in der Lagerbohrung 11. Der Rotor 3 ist in einer Stellung dargestellt, in der die Schieber 26 ihre T-Stellung einnehmen. In dieser Stellung besteht eine Verbindung des Kanals 66 im Gehäuse mit der Radial¬ bohrung 68 im Lagerstück 23. Eine kleine, gerade ausrei¬ chende Olmenge gelangt über die Bohrungen 68, 69 (mit Düse 70) in den Schieberzwischenraum 28, der in der T- Stellung sein kleinstes Volumen hat.
Die Nut 71 in dem dem Lagerstück 23 gegenüberliegenden Deckel 12 ist gestrichelt dargestellt. Sie ist in der Nähe des Auslasses 30 angeordnet, so daß sich einer der Schieber 26 stets zwischen Einlaß 33 und Nut 71 befin¬ det. Ihr inneres Ende erstreckt sich weit bis in den Be¬ reich der Eindrehung 72 im Rotor 3, damit sichergestellt ist, daß das Öl den Schieberzwischenraum 28 ohne Druck¬ aufbau verlassen und über die Eindrehung 72 sowie die Nut 71 in den Schöpfräum 8 gelangen kann.

Claims

PATENTANSPRÜCHE
Ölgedichtete Drehschiebervakuumpumpe mit einem Schöpfräum (8) , mit einem im Schöpfräum drehbar an¬ geordneten Rotor (3), der mit einem Ankerabschnitt (21) und einem Lagerabschnitt (23) ausgerüstet ist, mit einem im Ankerabschnitt vorgesehenen Schieber¬ schlitz (24), mit zwei im Schieberschlitz angeord¬ neten Schiebern (26) , die zwischen sich einen Schieberzwischenraum (28) bilden, mit einer Lage¬ rung für den Rotor (3) , welche den Lagerabschnitt
(23) und eine Lagerbohrung (11) umfaßt, mit einer Ölpumpe (45, 46) zur Erzeugung eines den Schieber¬ zwischenraum (28) durchsetzenden Ölstromes und mit einer Steuerung für das den Schieberzwischenraum
(28) durchsetzende Öl über einen in die Lagerboh¬ rung (11) mündenden Ölkanal (66) und über Radial- und Axialbohrungen (68, 69) im Lagerabschnitt (23), dadurch gekennzeichnet, daß die Lage der Mündungen des in die Lagerbohrung (11) mündenden Ölkanals
(66) einerseits und der Radialbohrung (68) im Lagerab-schnitt (23) andererseits in Bezug auf die Stellung der Schieber (26) bzw. Schieberschlitze
(24) so gewählt ist, daß Öl nur dann in den Schieberzwi-schenraum (28) gelangt, wenn dieser sein Volumen vergrößert, und daß für das den Schie- berzwischenraum (28) verlassende Öl eine ständig offene, zum Schöpfräum (8) führende Verbindung vorgesehen ist.
2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Lage der Mündungen des Ölkanals (66) und der Radialbohrung (68) im Lagerabschnitt (23) so ge¬ wählt ist, daß Öl nur dann in den Zwischenraum ge¬ langt, wenn dieser sein kleinstes Volumen hat.
3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die Axialbohrung (69) mit einer Düse (70) ausgerüstet ist.
4. Pumpe nach Anspruch 1, 2 oder 3, dadurch gekenn¬ zeichnet, daß der dem Lagerabschnitt (23) gegen¬ überliegende Deckel (12) des Schöpfraumes (8) mit einer Nut (71) ausgerüstet ist, welche den Schie¬ berzwischenraum (28) mit dem Schöpfräum (8) verbin¬ det.
5. Pumpe nach Anspruch 4, dadurch gekennzeichnet, daß die dem Deckel zugewandte Stirnseite des Rotors (21) mit einer zentralen Eindrehung (72) versehen ist.
6. Pumpe nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß die Radialbohrung (68) den Lagerabschnitt1 (23) vollständig durchsetzt.
7. Pumpe nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß die Ölpumpe (45, 46) mit Zuführungen für Öl (65) und Gas (64) ausgerüstet ist.
8. Pumpe nach einem der vorhergehenden Ansprüche mit einem Rotor (3) , der zwei stirnseitig angeordnete Ankerabschnitte (21, 22) zur Bildung einer Vorvaku¬ umstufe (8, 21) und einer Hochvakuumstufe (9, 22) sowie mit einem zwischen den Ankerabschnitten (21, 22) befindlichen Lagerabschnitt (23) ausgerüstet ist, dadurch gekennzeichnet, daß für das von der Mündung (67) in Richtung Hochvakuumstufe (9, 22) strömende Öl Entgasungsmittel vorgesehen sind.
9. Pumpe nach Anspruch 8, dadurch gekennzeichnet, daß der Lagerabschnitt (23) zwischen der Radialbohrung (68) und dem Ankerabschnitt (22) mit einer umlau¬ fenden Nut (74) ausgerüstet ist, welche mit dem Zwischenvakuum (31) der Pumpe in Verbindung steht.
PCT/EP1996/003078 1995-07-19 1996-07-12 Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung WO1997004236A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/983,538 US6019585A (en) 1995-07-19 1996-07-12 Oil-sealed vane-type rotary vacuum pump with oil feed
JP50626997A JP3842292B2 (ja) 1995-07-19 1996-07-12 オイル供給手段を有するオイルシールされた回転ベーン真空ポンプ
DE59602183T DE59602183D1 (de) 1995-07-19 1996-07-12 Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung
EP96926341A EP0839283B1 (de) 1995-07-19 1996-07-12 Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung
CA002227168A CA2227168C (en) 1995-07-19 1996-07-12 Oil-sealed vane-type rotary vacuum pump with oil feed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19526303A DE19526303A1 (de) 1995-07-19 1995-07-19 Ölgedichtete Drehschiebervakuumpumpe mit einer Ölversorgung
DE19526303.0 1995-07-19

Publications (1)

Publication Number Publication Date
WO1997004236A1 true WO1997004236A1 (de) 1997-02-06

Family

ID=7767207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003078 WO1997004236A1 (de) 1995-07-19 1996-07-12 Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung

Country Status (10)

Country Link
US (1) US6019585A (de)
EP (1) EP0839283B1 (de)
JP (1) JP3842292B2 (de)
KR (1) KR100442467B1 (de)
CN (1) CN1079505C (de)
CA (1) CA2227168C (de)
DE (2) DE19526303A1 (de)
ES (1) ES2133980T3 (de)
TW (1) TW438940B (de)
WO (1) WO1997004236A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591663A1 (de) * 2004-04-30 2005-11-02 VARIAN S.p.A. Ölgedichtete Drehschieber-Vakuumpumpe und Verfahren zur Herstellung hiervon

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519567B1 (ko) * 2003-09-22 2005-10-11 김덕겸 로터리 베인형 진공펌프
CN100362240C (zh) * 2004-02-03 2008-01-16 孙洪乐 旋片式真空泵
DE102004024554B4 (de) * 2004-05-18 2018-01-25 Pfeiffer Vacuum Gmbh Ölgedichtete Drehschiebervakuumpumpe
GB0607198D0 (en) * 2006-04-10 2006-05-17 Wabco Automotive Uk Ltd Improved vacuum pump
EP2020508A1 (de) * 2007-07-30 2009-02-04 VARIAN S.p.A. Überdrucksicherung einer Vakuumpumpe
JP5364052B2 (ja) * 2010-07-22 2013-12-11 株式会社ヴァレオジャパン ベーン型圧縮機
KR101220371B1 (ko) * 2010-09-17 2013-01-09 현대자동차주식회사 베인펌프
US8267072B2 (en) * 2010-11-02 2012-09-18 Ford Global Technologies, Llc Efficient vacuum for a vehicle
US9103246B2 (en) 2010-11-02 2015-08-11 Ford Global Technologies, Llc System and method for reducing vacuum degradation in a vehicle
US8355859B2 (en) * 2010-11-02 2013-01-15 Ford Global Technologies, Llc Accessory drive for a stop/start vehicle
EP2559903A1 (de) 2011-08-17 2013-02-20 Wabco Automotive UK Limited Verbesserte Vakuumpumpe
US20140363319A1 (en) 2013-06-07 2014-12-11 Agilent Technologies, Inc Rotary vane vacuum pump
CN105626532B (zh) * 2014-10-30 2017-07-04 上海汽车集团股份有限公司 真空泵
EP3492698A1 (de) 2017-11-30 2019-06-05 Agilent Technologies, Inc. (A Delaware Corporation) Mit einer schallschutzanordnung ausgestattetes vakuumpumpsystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2155583A5 (de) * 1971-10-04 1973-05-18 Borg Warner
GB2158517A (en) * 1984-04-09 1985-11-13 Barmag Barmer Maschf Sliding vane pump
DD256540A1 (de) * 1986-12-30 1988-05-11 Medizin Labortechnik Veb K Druckoelschmierung fuer drehschieber-vakuumpumpen
EP0406873A2 (de) * 1989-07-07 1991-01-09 VACUUBRAND GmbH + Co. Vakuumpumpe mit Sicherung gegen Belüftung des Rezipienten bei Stillstand

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE256540C (de) *
DE1191070B (de) * 1955-08-15 1965-04-15 Edwards High Vacuum Ltd Zweistufige, oelabgedichtete Drehkolben-Vakuumpumpe
FR2120305A5 (de) * 1970-12-29 1972-08-18 Ducellier & Cie
US4276005A (en) * 1979-04-26 1981-06-30 Varian Associates, Inc. Oil flow metering structure for oil sealed mechanical vacuum vane pump
JPS56143390A (en) * 1980-04-08 1981-11-09 Hitachi Koki Co Ltd Oil supply device for oil-revolved vacuum pump
JPS5925098A (ja) * 1982-08-02 1984-02-08 Ulvac Corp 油回転真空ポンプの注油装置
DE8311647U1 (de) * 1983-04-20 1984-07-05 Westfalia Separator Ag, 4740 Oelde Vakuumpumpe fuer melkanlagen
JPH0776553B2 (ja) * 1986-02-14 1995-08-16 株式会社島津製作所 複連形油回転真空ポンプ
IT1207829B (it) * 1987-02-04 1989-06-01 Galileo Spa Off Perfezionamento nel circuito di lubrificazione delle pompe rotative per vuoto.
KR950007519B1 (ko) * 1992-09-09 1995-07-11 김영수 로터리 형식의 진공펌프장치
DE4325285A1 (de) * 1993-07-28 1995-02-02 Leybold Ag Ölgedichtete Vakuumpumpe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2155583A5 (de) * 1971-10-04 1973-05-18 Borg Warner
GB2158517A (en) * 1984-04-09 1985-11-13 Barmag Barmer Maschf Sliding vane pump
DD256540A1 (de) * 1986-12-30 1988-05-11 Medizin Labortechnik Veb K Druckoelschmierung fuer drehschieber-vakuumpumpen
EP0406873A2 (de) * 1989-07-07 1991-01-09 VACUUBRAND GmbH + Co. Vakuumpumpe mit Sicherung gegen Belüftung des Rezipienten bei Stillstand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591663A1 (de) * 2004-04-30 2005-11-02 VARIAN S.p.A. Ölgedichtete Drehschieber-Vakuumpumpe und Verfahren zur Herstellung hiervon
US7588426B2 (en) 2004-04-30 2009-09-15 Varian, S.P.A. Oil rotary vacuum pump and manufacturing method thereof

Also Published As

Publication number Publication date
US6019585A (en) 2000-02-01
KR19990028935A (ko) 1999-04-15
JPH11509596A (ja) 1999-08-24
CA2227168A1 (en) 1997-02-06
CA2227168C (en) 2007-09-11
CN1079505C (zh) 2002-02-20
JP3842292B2 (ja) 2006-11-08
EP0839283A1 (de) 1998-05-06
KR100442467B1 (ko) 2004-09-18
DE59602183D1 (de) 1999-07-15
ES2133980T3 (es) 1999-09-16
EP0839283B1 (de) 1999-06-09
CN1191592A (zh) 1998-08-26
TW438940B (en) 2001-06-07
DE19526303A1 (de) 1997-01-23

Similar Documents

Publication Publication Date Title
DE3438262C2 (de)
DE102011084811B3 (de) Gaseinlassventil für einen Kompressor, Kompressor mit einem derartigen Gaseinlassventil sowie Verfahren zum Betreiben eines Kompressors mit einem derartigen Gaseinlassventil
WO1997004236A1 (de) Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung
DE2938276A1 (de) Fluegelzellenverdichter
DE3642002C2 (de)
DE2308265A1 (de) Rotations- bzw. drehkolbenverdichter anlage mit oelkreislauf und ventilanordnungen
DE1503507C3 (de) Flügelzellenverdichter
DE3614819C2 (de)
EP0084085B1 (de) Vakuumpumpe mit einem Saugstutzen-Ventil und Betriebsverfahren dafür
WO2020120064A1 (de) Regelbare schraubenspindelpumpe
WO2004072444A1 (de) Pumpenkombination
DE19925773A1 (de) Abgasturbolader mit einem Notöltank
DE3005834C2 (de)
DE3826548C2 (de) Flügelzellenverdichter mit variabler Förderleistung
DE4325286A1 (de) Zweistufige Drehschiebervakuumpumpe
DE102019208680A1 (de) Verdrängermaschine nach dem Spiralprinzip, insbesondere Scrollverdichter für eine Fahrzeugklimaanlage
DE3725802A1 (de) Kraftstoffoerdereinrichtung
WO1992008051A1 (de) Kolbenpumpe, insbesondere radialkolbenpumpe
DE102004050415A1 (de) Gaskompressionseinrichtung, die einen Schmiermittelaustritt verhindern kann
EP0839282B1 (de) Ölgedichtete drehschiebervakuumpumpe mit ölpumpe
DE19710419C2 (de) Flügelzellenverdichter
DE102020111301A1 (de) Vakuumpumpe
DE4135221C2 (de) Flügelzellenpumpe
DE2846005A1 (de) Rotations- bzw. drehkolbenverdichteranlage mit oelkreislauf und absperrorganen
DE4438696A1 (de) Flügelzellenpumpe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195668.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996926341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980700237

Country of ref document: KR

Ref document number: PA/A/1998/000404

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 08983538

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2227168

Country of ref document: CA

Ref document number: 2227168

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1997 506269

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1996926341

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980700237

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996926341

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980700237

Country of ref document: KR