WO1996030709A1 - Procede et dispositif de prechauffage et de fusion de ferraille - Google Patents

Procede et dispositif de prechauffage et de fusion de ferraille Download PDF

Info

Publication number
WO1996030709A1
WO1996030709A1 PCT/JP1996/000804 JP9600804W WO9630709A1 WO 1996030709 A1 WO1996030709 A1 WO 1996030709A1 JP 9600804 W JP9600804 W JP 9600804W WO 9630709 A1 WO9630709 A1 WO 9630709A1
Authority
WO
WIPO (PCT)
Prior art keywords
scrap
furnace
preheating
melting
exhaust gas
Prior art date
Application number
PCT/JP1996/000804
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Katayama
Kenro Sato
Akio Kasama
Yasushi Okumura
Yoji Demoto
Shinya Kitamura
Toshiya Harada
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7683695A external-priority patent/JPH08269526A/ja
Priority claimed from JP7682095A external-priority patent/JP3143771B2/ja
Priority claimed from JP7683795A external-priority patent/JPH08269524A/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP96907672A priority Critical patent/EP0772015B1/en
Priority to DE1996613316 priority patent/DE69613316T2/de
Priority to KR1019960706773A priority patent/KR100223515B1/ko
Priority to US08/750,448 priority patent/US5889810A/en
Publication of WO1996030709A1 publication Critical patent/WO1996030709A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • F27D13/002Preheating scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5252Manufacture of steel in electric furnaces in an electrically heated multi-chamber furnace, a combination of electric furnaces or an electric furnace arranged for associated working with a non electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • C21C5/565Preheating of scrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/003Extraction of waste gases, collection of fumes and hoods used therefor of waste gases emanating from an electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/466Charging device for converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an apparatus and a method for preheating and melting a scrap, and more particularly, to preheating the scrap by a shaft furnace and a rotary furnace connected to the melting furnace, and then supplying the scrap to an arc heating or melting furnace.
  • the present invention relates to an apparatus and a method for preheating and melting a scrub which is melted by oxygen blown upward. Background art
  • 4,852,858 discloses a method in which a raw material storage container in the form of a shaft is provided above a metallurgical refining furnace, and the raw material is preheated by exhaust gas from the refining furnace.
  • a raw material storage container in the form of a shaft is provided above a metallurgical refining furnace, and the raw material is preheated by exhaust gas from the refining furnace.
  • As another shaft-type preheating furnace high heat efficiency is obtained in Japanese Patent Publication No. 6-46145, but the scrubbing is tightly attached to the lower part of the furnace because it is exposed to high-temperature gas. Then, the scraped scraps need to be cut with oxygen. Further, it is disclosed that when a water-cooled grate is provided, the filling rate is reduced and the thermal efficiency is reduced in order to secure a
  • Japanese Patent Laid-Open Publication No. Hei 6-228662 discloses that a scrap kiln for preheating a scrap is difficult to fuse because the scrap is constantly rotated to move the scrap, but the scrap filling rate is low. It is disclosed that thermal efficiency is reduced due to the low temperature. On the other hand, scraps that do not contain organic matter are usually heated, but pre-treatment (sorting) is required for this, and the cost is high. In the future, an important issue in scrap preheating is to treat dioxin generated during preheating of scrap containing organic substances such as vinyl chloride at the time of discharge. Achieving this would be very advantageous for scrap utilization. Therefore, development of an apparatus and method for treating exhaust gas during preheating is desired.
  • the conventional problem of scrap preheating is that in a melting furnace equipped with a shaft-type scrap preheating device, fusion occurs in the scrap preheating device. This means that the scrap is not smoothly put into the melting furnace, and that the thermal efficiency is low in the rotary kiln because the filling rate is low.
  • Another problem with conventional melting furnaces is that the electric furnace has a low thermal efficiency after burn-through, the converter type requires a large amount of exhaust gas treatment, and the production of hot metal requires decarburization in the next process. A furnace is required.
  • the present invention has been made in view of the above circumstances and provides an efficient method for preheating and dissolving a scrap capable of melting and decarburizing a scrap capable of producing molten steel at low cost.
  • An object of the present invention is to provide an apparatus and a method for preheating and dissolving a scrap containing organic matter, which achieves an exhaust gas treatment technology capable of sufficiently treating dioxin discharged during heating.
  • the gist of the present invention to achieve the above object is as follows.
  • a melting furnace that uses preheated scrap as a main raw material, a preheating device that introduces exhaust gas generated from the melting furnace to preheat scrap, and an exhaust gas treatment that processes exhaust gas after preheating Preheating of a scrap having a device •
  • the preheating device is a shaft furnace, and a rotary furnace is independently connected to the furnace bottom side of the shaft furnace.
  • a scrap preheating / melting apparatus characterized in that a scrap discharged from a shaft furnace is transferred at a constant speed in the rotary furnace and then charged into the scrap melting furnace. .
  • a grate is provided on the furnace bottom side of the shaft furnace to supply a scrap discharged from the shaft furnace to the rotary furnace. Scrap preheating and melting equipment as described.
  • the exhaust gas treatment device is characterized in that the preheating device has an exhaust gas path directly connected to a dust collector via a cooling tower in order to directly treat the exhaust gas of the preheating device.
  • the scrap preheating and melting device described in (1) is characterized in that the preheating device has an exhaust gas path directly connected to a dust collector via a cooling tower in order to directly treat the exhaust gas of the preheating device.
  • the melting furnace in order to directly treat the exhaust gas of the melting furnace, the melting furnace has an exhaust gas path directly communicating with an exhaust gas treatment device, and the scrap is preheated. ⁇ Melting equipment.
  • a scrubber that uses the exhaust gas generated when melting the scrap preheated in the melting furnace as the main raw material to obtain molten iron as the preheating gas, and treats the exhaust gas after preheating.
  • a scrap is charged from the upper side into the rotary furnace and the shaft furnace connected to the rotary furnace, and the exhaust gas is supplied from the lower side, and the lower outlet temperature of the shaft furnace is welded to the surface of the scrub.
  • Preheating while maintaining the temperature in a temperature range lower than the temperature at which scraping occurs, and then, while transporting to the rotary furnace at a constant speed, maintaining the temperature at the outlet of the rotary furnace at a temperature higher than the temperature at which welding of the scrap surface occurs.
  • a method of preheating and melting a scrap characterized in that the scrap is preheated sequentially and supplied to the melting furnace.
  • the exhaust gas is burned and heated so that the temperature in the combustion tower is 800 ° C or more and the CO gas concentration is 500 ppm or less.
  • the temperature of the exhaust gas after cooling should be in the range of 150 to 200 ° C with no dew condensation, and the cooling rate should be 800 ° CZ seconds or more. Preheating and melting method.
  • the treatment of the exhaust gas after preheating is characterized in that the exhaust gas discharged from the preheating furnace is cooled to 100 ° C or lower in a cooling tower and then introduced into a dust collector. How to preheat and melt the scrap.
  • FIG. 1 is a front view showing the entire scrap preheating / melting apparatus of the present invention.
  • FIG. 2 is a schematic diagram showing preheating and concealment of the present invention.
  • FIG. 3 is an explanatory view showing an exhaust gas circulation system of the apparatus of the present invention.
  • FIG. 4 is an explanatory view showing another exhaust gas circulation system of the device of the present invention.
  • FIG. 5 is an explanatory diagram showing an exhaust gas treatment path in a preheating / melting apparatus in an embodiment of the apparatus of the present invention.
  • Fig. 1 shows an example of a scrap preheating and melting apparatus for carrying out the present invention.
  • the melting furnace body 1 is lined with a refractory 2 and provided with an electrode 4 or an oxygen-containing gas upper blowing lance 3 inserted from the upper part of the furnace.
  • the bottom tuyere 5 and the bottom electrode 6 are installed.
  • a rotary furnace 7 and a shaft furnace 8 are arranged in series as a preheating device for introducing exhaust gas generated from the melting furnace to preheat the scrap.
  • the scrap is preheated in the furnace 8 through the scrap inlet 9 and then fed into the melting furnace 1 through the rotary furnace 7, and into the rotary furnace 7 through the scrap inlet 10 And into the melting furnace 1.
  • the CO in the exhaust gas can be taken in at the rotary furnace entrance A and the shaft furnace entrance B for combustion.
  • the flue gas that passed through the preheater was taken in the combustion tower 12 in the route 16 system, taken in the air in the combustion tower 12 and burned, and then cooled in the cooling tower 13 or, in the route 17 system, the combustion tower 12 and the cooling tower 13 After being collected by the dry dust collector 14 without passing through, it is released to the atmosphere from the chimney 15.
  • dioxin can be completely burned and decomposed by burning and heating the exhaust gas so that the temperature is 800 or more and CO is 1% or less. If it is lower than 800, the reaction rate is slow and decomposition does not proceed sufficiently. If CO is higher than 1%, decomposition does not proceed sufficiently due to insufficient combustion.
  • the operation was carried out in a pre-charging operation with a scrap equivalent to 30 to 70% of the total scrap in the shaft furnace 8, and preheating was performed. After stacking in the melting furnace 1 via 7, insert the electrode 4 and start melting. After that, the scrap to be used for the next charge is charged and preheated into the scrap furnace 8 from the scrap inlet 9, and the scrap inlet 10 of the rotary furnace 7 or the melting furnace is charged. The remaining scrap is continuously charged into the melting furnace through the scrap inlet hole 1 in 1.o
  • FIG. 2 shows an example of an embodiment of the apparatus of the present invention.
  • Symbol 8 in the figure I is a furnace for scrap preheating
  • reference numeral 1 is a scrap melting furnace with an upper lance that blows oxygen-containing gas upward
  • reference numeral 7 is between the shaft furnace 8 and the scrap melting furnace 1.
  • a rotary kiln for example, a rotary kiln.
  • FIG. 3 is a diagram showing an example of an embodiment of an exhaust gas circulation system of the device of the present invention.
  • the exhaust gas path 23 facing the scrap path 22 is supplied with combustion air from the reference numeral 27 in the shaft furnace 8 and from 24 to 26 in the rotary kiln 7 to complete combustion. Is done.
  • FIG. 4 is a diagram showing an example of another embodiment of the exhaust gas circulation system of the present invention. In this circulation system, the exhaust gas 23 is directly supplied to the dust collector via the gas cooler without passing through the rotary kiln 7 and the shaft furnace 8 to the scrap path 22.
  • FIG. 5 is an explanatory diagram showing an exhaust gas treatment path for directly treating exhaust gas after preheating and exhaust gas from a melting furnace in a preheating / melting apparatus for carrying out the present invention.
  • gate valves 36, 38, 39, and 41 are opened and gate valves 37, 40, and 42 are closed for combustion and cooling as exhaust gas treatment paths.
  • the scrap is supplied from both the scrap hoppers 28 and 29, or the scrap is supplied only from the scrap hopper 29 with the shutter 31 closed. May be.
  • the hopper is supplied only from the scrap hopper 29 with the shutter 31 closed. Alternatively, it is fed directly from the scrap hopper 30 to the melting furnace.
  • the dust concentration in the exhaust gas can be increased by injecting pulverized coal, lime or the like in the dry secondary dust collector 44.
  • the dust concentration is the total concentration of dust and blown powder generated from the melting furnace and the preheating furnace.
  • gate valves 36, 38, 40 and 40 are used as exhaust gas treatment paths.
  • the scrap is a scrap hopper.
  • the feeder is supplied from both 28 and 29, and in other cases, the shutter 31 is closed and supplied only from the scrap hopper 29.
  • the exhaust gas temperature before the gate valve 36 needs to be 500 ° C. or more.
  • the dry secondary dust collector 44 can inject dust coal, powdered lime and the like to increase the dust concentration in the exhaust gas.
  • the dust concentration in this case is the total concentration of the dust generated from the melting furnace and the preheating furnace and the injected powder.
  • reference numerals 32 and 33 denote shutters
  • reference numerals 34 and 35 denote hoods and melting furnaces
  • reference numeral 43 denotes a dry primary dust collector
  • reference numeral 45 denotes an exhaust gas cooling tower
  • reference numeral 46 denotes I. . DF (suction blower) is shown.
  • the shaft type furnace is used as the preheating device.
  • the preheating efficiency is the highest among the existing preheating furnaces.
  • the reason for installing a rotary furnace between the shaft furnace and the melting furnace is that the temperature at the bottom of the furnace is kept low by securing the combustion space for the gas generated from the furnace. This is to ensure that the maximum preheating temperature can be set to 800 ° C or more where fusion occurs.
  • either a converter or an electric furnace can be used as the scrap melting furnace.
  • a converter a large amount of exhaust gas is generated, so that sufficient preheating can be performed with gas sensible heat, so that CO can be recovered while leaving CO in the gas.
  • an electric furnace but will be substantially completely burned to C 0 2 in the preheating step because the amount of exhaust gas is small, there is a benefit for bets that are less capital-throw ⁇ for exhaust equipment is small.
  • the size of the scrap charged into the scrap preheating furnace shall be 1/3 or less of the inner diameter of the shaft furnace or rotary furnace.
  • the lower limit is to ensure the air permeability of the shaft furnace, and the particle size is about 30 ⁇ .
  • the refining furnace used in the present invention is preferably a dual-purpose refining furnace for an electric furnace and a converter, and the scrap can be melted by arc heating using an electrode, and the scrap is melted by arc heating.
  • the process of producing molten steel by decarburizing the obtained molten iron by oxygen blowing can be performed.
  • the power efficiency is 95% or higher when the pile scrap is melted by the electrode, but the melting proceeds and the lower end of the electrode comes into contact with the liquid, and the undissolved scrap moves from the upper surface of the liquid (molten steel). It was confirmed that the power efficiency would be less than 45% if it was only below the bottom, so that power was supplied while the solid scrap and the electrode were in direct contact, and acid was removed when the contact was stopped.
  • the use of elemental and fossil fuels will improve overall energy efficiency.
  • the reason why the temperature of the scrap melting furnace is maintained at 1300 or more is that the boiling point of dioxin is 1300. Because it is lower than C, if it is heated to this temperature instantaneously, it will be thermally decomposed, so it is specified as 1300 or more.
  • the reason that the dust concentration before the dust collector is set to 40 to 400 g / Nm 3 is that if the dust concentration is less than 40 g / Nm 3 , it is insufficient to completely adsorb dioxin generated by thermal decomposition. the concentration, whereas the dust concentration is too high too, along with the load of the dust collection system Naru large active melter, since there is also the problem of environmental pollution, since the concentration of about 400 g Z Nm 3 is limited , defining the upper limit of the concentration of 400 g _ Nm 3.
  • the temperature of the exhaust gas from the melting furnace is 1300 to 2500 ° C, but the temperature on the high temperature side is the same as o
  • the mechanism by which dust in exhaust gas adsorbs dioxin is naturally volatile organic matter, and this is adsorbed on hot dust iron powder. Some of the organic substances may dissolve or react with the components in the dust, and chlorine is combined with H to form HC1.
  • the exhaust gas containing dioxin also contains organic gases originating from vinyl chloride and the like.
  • organic substances include benzene, toluene, xylene, styrene, naphthalene, and phosgene. It is a combination of two or more. Since these substances have a boiling point close to that of dioxin, they can be simultaneously removed in the process of removing dioxin according to the present invention.
  • a cylindrical rotary furnace (rotary kiln) with an inner diameter of 1.5 m, a length of 8 m, and a tilt angle of 6.5 degrees was installed.
  • a shaft furnace with an inner diameter of 1.5 m and a filling height of 3.5 m was connected to the upper part of the rotary furnace.
  • Oxygen is blown into the hot metal at a rate of about 1500 Nm 3 / Hr from the top blowing lance while the bottom blown gas is stirred in the converter, and coke is added continuously, and the coke combustion heat is used to scrape.
  • Flue gas containing the generated CO 5 0 to 6 0% is guided to rotate through furnace upper water-cooled hood, part of CO gas is burned with air in a rotary furnace inlet to C 0 2 The scrap was overheated.
  • the rotation speed of the rotary furnace was about 2.5 rpm, and the casting speed of the scrap into the converter was about 20 ton / Hr.
  • a grate for cutting out a certain amount of preheating scrap and a pusher for sending it to the rotary furnace were installed.
  • the average temperature of the scrap immediately before introduction into the converter was 700 to 100 ° C, and the average temperature of the scrap on the exit side of the shaft furnace was 300 to 60 ° C.
  • the carbon unit consumption of the converter was approximately 17.5 kg / t without preheating, but it was approximately 120 kg8.
  • a cylindrical rotary furnace (rotary kiln) with an inner diameter of 1.5 m, a length of 8 m, and a tilt angle of 6.5 degrees was installed by connecting to a 20-ton electric furnace. With an inner diameter of 1.5 m and a packed bed height of 3.5 m A shaft furnace was installed. In the electric furnace, while heating electrically, oxygen is sprayed onto the hot metal from the tuyere and a lance inserted from the outside at a rate of about 500 Nm 3 / Hr, and about 70 kg of pulverized coal is continuously added. The scrub was melted by electric heating and the heat of combustion of the carbonaceous material.
  • Exhaust gas containing the generated CO 5 0 ⁇ 6 0% is guided to the rotary furnace through the upper water-cooled hood, a part of the C 0 gas is combusted with air in a rotary furnace inlet to C 0 2 scrubber Preheated.
  • the rotation speed of the rotary furnace was about 2.5 rpm, and the injection speed of the scrap into the electric furnace was about 20 ton / Hr.
  • a grate for cutting out a certain amount of preheating scrap and a bushing for sending it to the rotary furnace were installed.
  • the average temperature of the scrub immediately before charging into the electric furnace was 500 to 800, and the average temperature of the scrap on the exit side of the shaft furnace was 200 to 400 ° C.
  • the electric power consumption of the electric furnace was approximately 390 kWH / t without preheating, but was approximately 200 kWH / t.
  • Example 2 In the same manner as in Example 2, a cylindrical rotary furnace (a tally kiln) was installed by connecting to a 20-ton electric furnace, and a shaft furnace was installed by connecting to the upper part of the rotary furnace. In the electric furnace, while heating electrically, oxygen is blown to the hot metal at a rate of about 500 Nm 3 / Hr from a tuyere and a lance inserted from the outside, and about 70 kg / t of pulverized coal is continuously supplied. The scrap was dissolved by electric heating and the heat of combustion of the carbonaceous material.
  • the dissolution rate of the scrap was about 20 ton / Hr, but the power consumption was about 390 kWH / t without preheating, whereas it was about 200 kWH / t. kWH / t.
  • a cylindrical rotary furnace was installed by connecting to the upper water-cooled hood of the 20-ton electric furnace, and a shaft furnace was installed by connecting to the upper part of the rotary furnace.
  • electric heating is performed, oxygen is sprayed onto the hot metal at a rate of about 500 Nm 3 / Hr from a tuyere and a lance inserted from the outside, and pulverized coal is continuously added to the electric furnace.
  • the scrap was melted by the heat of combustion of the charcoal.
  • the scrap was supplied to a shaft furnace or a rotary furnace, and was continuously supplied to the electric furnace from a water-cooled hood.
  • the generated exhaust gas was sucked through the exhaust gas suction hole provided on the side of the upper water-cooled hood, and was led to the dust collector via the gas cooler.
  • the molten metal was heated by the combustion of the oxygen and the carbon material, and the solid scrap remaining at the bottom of the molten metal was completely dissolved. After that, the supply of carbon material was stopped and the acid supply was continued. As a result, molten steel with a carbon concentration of 0.03% was produced.
  • Example 5 In the method described in Example 5, the center of the bottom of the 100-ton electric furnace is deepened, and a relatively small-sized preheated scrub 50 tons is provided at the deepened bottom, and a large-sized scrap is provided around the bottom. A similar operation was carried out after stacking 50 tons in flat mountains.
  • the electrode When about 55% of the solid scrap has become molten, the electrode is pulled out of the furnace and upwards, and instead acidified at 2500 NBJ 3 Zh from the bottom and side blowing tuyeres to remove pulverized coal. 40 kg was added from the side-blow tuyere. The molten metal was heated by the combustion of oxygen and carbon material, and the solid scrap remaining at the bottom of the molten metal was completely dissolved. After that, the supply of carbon material was stopped and the acid supply was continued. As a result, molten steel with a carbon concentration of 0.03% was produced in 30 minutes.
  • the electrodes When about 40% of the solid scrap becomes molten, the electrodes are pulled out of the furnace and upwards, and instead, a blowing acid lance is inserted into the melting furnace from above and blown to the surface of the molten metal to produce FeO. Was generated and the temperature was raised, and a total of 100 kg of pulverized coal was added from the bottom-blowed tuyere and the side-blown tuyere. The remaining scrap was completely melted, and a molten steel with a carbon concentration of 0.03% was produced in 30 minutes.
  • the electrode is inserted into the refining furnace A for scrap melting, and in the refining furnace B, the molten iron is melted and acidified using a lance to decarbonize the carbon concentration from 3.5% to 0.1%. Dephosphorization (0. 05X ⁇ 0.011 3 ⁇ 4 P).
  • the electrodes were moved to the furnace B, and the lance of the furnace B was moved to the furnace A. This operation was alternately repeated with taps for 20 minutes, and as a result, a molten steel production rate of 450 tons / H was obtained.
  • the scrap was preheated in the preheating furnace by introducing high-temperature exhaust gas generated in the melting furnace into the preheating furnace, and igniting and burning (secondary combustion) the C0 gas component.
  • the exhaust gas discharged from the preheating furnace is introduced into the combustion tower, the exhaust gas is ignited at the inlet, heated to 800 ° C, and the dioxin component in the exhaust gas is thermally decomposed into dust. It was made to be adsorbed. Thereafter, the exhaust gas was rapidly cooled to a temperature in the range of 150 to 200 ° C by a water spray cooling tower to prevent recrystallization of the dioxin component. Exhaust gas was passed through a dry dust collector at that temperature to collect dust that adsorbed dioxin components decomposed by the bag filter.
  • the exhaust gas with a secondary combustion rate of 60% was burned by an ignition burner installed at the exhaust gas inlet (located at the bottom of the combustion tower), and the CO% in the exhaust gas was reduced to 5 ppm.
  • the exhaust gas was heated to 800 by the combustion heat at this time.
  • the combustion tower may be equipped with a heat recovery facility that recovers the heat of the exhaust gas between the water cooling tower and the water cooling tower to improve the energy efficiency of the entire process, but through this heat recovery process, the combustion tower If the overall cooling rate from the side to the outlet of the water cooling tower via the heat recovery equipment does not fall within the range of 800 to 100 s, the dioxin concentration reduction efficiency will deteriorate. (Regeneration increases) ⁇ Not preferred.
  • the concentration of dioxin in the exhaust gas generated in the preheating furnace was reduced to 50 to 20%.
  • push from Retsugu chips and 2 0-6 0% mixed-rate of weight debris, and 0-6 0% line experiments varied between I got it.
  • Exhaust gas is emitted from the preheating furnace at 500 to 600 ° C, and it is better to lower the temperature at 100 ° C or lower in the cooling tower, but preferably at 80 ° C, more preferably at 50 ° C Quenched.
  • the cooling method is indirect cooling, such as using a thin tube (10 mm or less) that circulates water in the exhaust gas passage, or using a steel exhaust gas passage and applying water to the outside.
  • the advantage of indirect cooling is that the process of removing dioxin components dissolved in the cooling water required for direct cooling can be omitted.
  • the furnace temperature was set to 1300. While feeding the scrap directly into the melting furnace kept at C, oxygen was blown up to 15,000 Nm 3 by a top blowing lance, and coal was thrown at 130 kgZT—metal and the scrap was thrown at 100 TZH. While melting, the exhaust gas was collected by a dry dust collector. The Dust concentration before the dust collector was 40 g / Nm 3.
  • Example 12 Using a melting furnace without a preheating process, while feeding scrap directly into the melting furnace with the furnace temperature kept at 1500 ° C, blowing oxygen lOOOONm 3 with a top blowing lance to produce 120 kg of coal —The scrap was melted at 100 T / H using metal injection, and the exhaust gas was collected by a dry dust collector. The dust concentration before the dust collector was set at 200 g / Nm 3 .
  • dioxin can be adsorbed on the dust before passing through the dust collector, and the dust is collected by the dust collector.
  • the pyrolyzed dioxin component could be adsorbed to the dust in the exhaust gas even if the combustion tower was omitted (not installed). Therefore, the exhaust gas was directly introduced from the preheating furnace into the cooling tower. In the cooling tower, indirect cooling was performed at a cooling rate of 900 ° CZ seconds, and the temperature of the exhaust gas was rapidly cooled from 500 ° C to 50 ° C in 0.5 seconds. This enabled the pyrolyzed dioxin component to be adsorbed to the dust in the exhaust gas.
  • dioxin components are generated and detected in the preheating furnace, but in special cases, even if the dioxin components are already present in the exhaust gas even in the melting furnace (above 1300 ° C). was there.
  • the exhaust gas treatment equipment and the melting furnace are directly connected.
  • the melting furnace and the exhaust gas treatment equipment were directly connected, and the high-temperature exhaust gas containing a high dioxin component was quenched in a cooling tower, and adsorbed to the dust while preventing regeneration, thereby preventing excessive dust collection. did.
  • Indirect cooling was performed at a cooling rate of ° C Z seconds, and the exhaust gas temperature was rapidly cooled from 500 ° C to 50 ° C in 0.5 seconds.
  • the pyrolyzed dioxin component could be adsorbed to the dust in the exhaust gas.

Description

明 細 書 スクラ ップの予熱 · 溶解装置およびその方法 技 ίτ分 ¾h
本発明は、 スクラ ップの予熱 · 溶解装置およびその方法に関する ものであり、 特に溶解炉に連設したシャフ ト炉および回転炉により スクラ ップを予熱した後、 溶解炉へ供給しアーク加熱または上吹き 酸素によつて溶解するスクラッブの予熱 ·溶解装置およびその方法 に関するものである。 背景技術
鑲の電気炉精鍊または転炉精練においては、 鉄源と してのスクラ ップを事前に予熱または何らかの事前加熱をするためには多大の熱 エネルギーを要する。 このため、 加熱を実施すると しても操業コス ト的にはメ リ ッ トが小さ く、 かつそのための加熱装置を設けるにも 多大の設備費用が必要となる。 最近では、 資源のリサイ クルの観点 から、 スクラ ップの鉄源と しての位置付けがこれまで以上に重要性 を增してきた。 スクラ ップのリサイクルを効率よく行うために、 そ の鉄源と して有効に活用でき、 かつ省エネルギー化の観点からも有 利とするために、 溶解精鍊に要する トータルの熱エネルギーをでき るだけ低減し、 かつコス ト的にも有利な予熱 · 溶解技術の開発が望 まれている。
この分野の公知技術では、 スクラ ップ溶解の公知文献と して、 " 電気炉" (日本鉄鋼協会発行、 第 27, 28回白石記念講座 「普通鋼電 気炉のス トラテジィ 一」 、 平成 6年 1 1月) に、 スクラ ップ溶解は高 い消費電力を要し操業コス トがアップする。 これはフラ ッ トバス化 ( 溶け落ち時) 以降の熱効率の低下によるとの記載がある。 また、 転炉型スクラ ップ溶解方法と しては、 " 鉄と鋼" vo l . 78 ( 1992 ) , P. 520 (日本鉄鋼協会発行) に、 多量の排ガスを処理するためには 建設コス トが増大し、 かつ精鍊後は溶銑であるため、 後工程に転炉 が必要との報告がある。 米国特許 Να 4852858 には、 シ ャ フ ト状の原 料収納容器を金厲精鍊炉の上部に設け、 精鍊炉の排ガスによつて原 料を予熱する方法が開示されている。 しかし、 この技術では予熱条 件を一定に制御することは難しく精鍊条件のバラツキが大き く なり 易い。 その結果と して製品品質の安定化は充分に得られ難い。 また 、 別のシ ャ フ ト型予熱炉と して、 特公平 6 - 46145 号公報に、 高い 熱効率が得られるが、 炉下部では高温ガスにさ らされるためスクラ ッブ同士が緻着を起こ し、 この触着したスクラ ップを酸素切断する 必要が生ずる。 さ らに、 水冷火格子を設けた場合には、 火格子の稼 動空間を確保するため充塡率が低下し熱効率が低下することが開示 されている。
スクラ ップ予熱用の口一夕 リーキルンについては、 特開平 6 - 22 8662号公報に、 常に回転することによりスクラ ップを移動させるた め融着しにく いが、 スクラ ップ充填率が低いため熱効率が低下する ことが開示されている。 他方、 通常では有機物を含まないスクラ ッ プを加熱しているが、 このための事前処理 (選別) が必要となり コ ス トが高く なつている。 今後、 スクラ ップ予熱における重要な問題 は塩化ビニール等の有機物を含むスクラ ップの予熱時に発生するダ ィォキシ ンを排出時に処理することである。 これを達成すればスク ラ ップの活用において非常に有利となる。 このための予熱時の排ガ ス処理装置および方法の開発が望まれている。 発明の開示 上記のように従来の、 スクラ ップの予熱における問題点は、 シ ャ フ ト型のスクラ ップ予熱装置を備えた溶解炉では、 スクラ ップの予 熱装置内での融着が生じ、 溶解炉内へのスク ラ ッ プの投入が円滑に 行われないことであり、 また、 ロータ リーキルンにおいては充填率 が低いため熱効率が低いことである。 また、 従来の溶解炉における 問題点は、 電気炉では溶け落ち以降の熱効率が低いことで、 転炉型 では多量の排ガス処理が必要となることと、 溶銑が製造されるため 次工程で脱炭炉が必要となることである。
本発明は、 かかる現状に鑑みて、 安価に溶鋼を製造することがで きる効率的なスクラ ッブの溶解脱炭できるスクラップの予熱 ' 溶解 装匱および方法を提供することにある。
また、 スクラ ップの溶解に際しては、 スクラ ップ中に混入した塩 化ビニール等に起因するダイォキシンが排出されるおそれがあり、 環境汚染の問題が生じるおそれがあるが、 このスク ラ ッ プの加熱時 に排出されるダイォキシ ンを充分に処理可能とする排ガス処理技術 を達成する有機物を含むスクラ ップの予熱 · 溶解装置および方法を 提供することである。
上記の目的を達成する本発明の要旨は以下のとおりである。
( 1 ) 予熱したスクラ ップを主原料とする溶解炉と、 前記溶解炉か ら発生する排ガスを導入してスク ラ ッ プを予熱する予熱装置と、 予 熱後の排ガスを処理する排ガス処理装置を有するスクラ ップの予熱 • 溶解装置において、 前記予熱装置がシ ャ フ ト炉であって、 かつ前 記シ ャ フ ト炉の炉底側に回転炉を独立に連設して、 前記シ ャ フ ト炉 から払い出されるスク ラ ッ プを一定速度で該回転炉内を移送させた 後、 前記スク ラ ッ プ溶解炉に投入することを特徴とするスク ラ ッ プ の予熱 · 溶解装置。
( 2 ) 前記シ ャ フ ト炉の炉底側に、 前記シ ャ フ ト炉から払い出され PC / 9 るスクラ ップを前記回転炉に押し込むプッ シヤーを設けたことを特 徴とする ( 1 ) に記載のスクラ ップの予熱, 溶解装置。
( 3 ) 前記シ ャ フ ト炉の炉底側に、 前記シ ャ フ ト炉から払い出され るスクラ ップを前記回転炉に供給する火格子を設けたことを特徴と する ( 1 ) に記載のスクラ ップの予熱 · 溶解装置。
( 4 ) 前記溶解炉に、 酸素導入手段と してランスまたは羽口を有す ることを特徴とする ( 1 ) に記載のスクラ ップの予熱 · 溶解装置。
( 5 ) 前記溶解炉が、 電気炉であることを特徴とする ( 1 ) に記載 のスクラ ップの予熱 · 溶解装置。
( 6 ) 前記溶解炉が、 酸素上吹き転炉であることを特徴とする ( 1 ) に記載のスクラ ップの予熱 ·溶解装置。
( 7 ) 前記排ガス処理装置が、 排ガス中のダイォキシ ンを分解させ る燃焼塔、 燃焼排ガスを冷却するための冷却塔、 および集塵機を有 することを特徽とする ( 1 ) に記載のスクラ ップの予熟 · 溶解装置
( 8 ) 前記集塵機が、 乾式集塵機であることを特徴とする ( 1 ) に 記載のスクラ ップの予熱 · 溶解装置。
( 9 ) 前記排ガス処理装置は、 さ らに前記予熱装置の排ガスを直接 処理するために、 前記予熱装置装置が冷却塔を介して集塵機に直接 連通する排ガス経路を有することを特徴とする ( 1 ) に記載のスク ラ ップの予熱 · 溶解装置。
(10) ( 1 ) において、 さ らに前記溶解炉の排ガスを直接処理する ために、 前記溶解炉が排ガス処理装置に直接連通する排ガス経路を 有することを特徴とするス ク ラ ッ プの予熱 · 溶解装置。
(11) 溶解炉で予熱したス ク ラ ッ プを主原料と して溶解し溶鉄を得 る際に発生する排ガスを予熱用ガスと して利用し、 かつ予熱後の排 ガスを処理するスクラ ップの予熱方法において、 溶解炉に連接した 回転炉と、 前記回転炉に連接したシャフ ト炉に上方側からスクラ ッ プを装入し、 下方側から排ガスを供耠し、 前記シャフ ト炉で下方側 出口温度がスクラ ッブ表面の溶着を生じる温度未満の温度域に保持 しながら予熱して、 その後回転炉に一定速度で搬送しながら、 前記 回転炉の出口の温度がスクラ ップ表面の溶着を生ずる温度以上の温 度域に保持しながら順次予熱して、 前記溶解炉に供給することを特 徽とするスクラ ップの予熱 · 溶解方法。
( 12) ( 1 1 )において、 予熱後の排ガスの処理と して、 燃焼塔におけ る温度が 800°C以上、 COガス濃度が 500ppm以下になるように排ガス を燃焼して加熱し、 さ らに冷却後の排ガス温度を結露のない 1 5 0 〜 2 0 0 °Cの範囲と し、 かつ冷却速度を 8 0 0 °C Z秒以上で水冷却 することを特徼とするスクラ ップの予熱 · 溶解方法。
( 13) ( 11 )において、 予熱後の排ガスの処理と して、 予熱炉から排 出される排ガスを冷却塔にて、 1 0 0 °C以下に冷却した後、 集塵機 に導入することを特徴とするスク ラ ップの予熱 · 溶解方法。
( 14) ( 1 1 )から(13)のいずれかにおいて、 全スクラ ップ量の 30〜70 %をシャフ ト炉で前チャージの排ガスによって予熱したものを使用 し、 これを溶解炉へ山積みした後、 電極を挿入して溶解を開始し、 その後残量のスクラ ップを回転炉から連続的に溶解炉へ装入するこ とを特徴とするスクラ ップの予熱 · 溶解方法。
( 15) ( 1 1 )から(14)のいずれかにおいて、 スクラ ップを山積み後、 電極で溶解を開始し、 フラ ッ トバス化する時点、 あるいはスクラ ッ プの山が見えなく なる 40 %溶解の時点で、 電極を炉外へ引出し、 そ の代わりにラ ンスまたは羽口から吹酸を開始し、 炭材を添加しなが ら残りの固体スクラ ップを溶解した後、 前記炭材の投入を止め、 継 続して酸素吹酸により脱炭して溶鋼を製造することを特徴とするス クラ ップの予熱 · 溶解方法。 ( 16) ( 1 1 )または(13)から(1 5)のいずれかにおいて、 ダイォキシン を含有する 100 て以下のスクラ ップを 1300°C以上に保たれたスクラ ップ溶解炉に投入し、 排ガスを未燃焼状態で回収することを特徴と するスク ラ ップの予熱 · 溶解方法。
( 17) ( 1 1 )から(16)のいずれかにおいて、 排ガス処理装置の集塵機 前のダス ト濃度を 40〜400 g / Nm 3 とすることを特徴とするスクラ ッブの予熱 · 溶解方法。 図面の簡単な説明
第 1 図は本発明のスクラ ップの予熱 · 溶解装置の全体を示すフ口 一図である。
第 2図は本発明の予熱装匿を示す概要図である。
第 3図は本発明の装置の排ガス循環系を示す説明図である。
第 4図は本発明の装置の他の排ガス循環系を示す説明図である。 第 5図は本発明の装置の実施例における予熱 ·溶解装置における 排ガス処理経路を示す説明図である。 発明を実施するための最良の形態
第 1 図に本発明を実施するためのスクラ ップ予熱 , 溶解装置の一 例を示す。 溶解炉炉体 1 は耐火物 2で内張りされ、 炉の上部から揷 入される電極 4、 も しく は酸素含有ガス上吹きラ ンス 3が設けられ ている。 炉底には底吹き羽口 5 と炉底電極 6が設置される。 炉上部 には、 溶解炉から発生する排ガスを導入してスクラ ップを予熱する 予熱装置と して回転炉 7 とシ ャ フ ト炉 8が直列に配置されている。 スクラ ップはスクラ ップ投入孔 9 より、 シャフ ト炉 8で予熱後、 回 転炉 7 を経由して溶解炉 1 へ投入されるものと、 スクラ ップ投入孔 10より、 回転炉 7 に装入され溶解炉 1 へ投入されるものとに分割す ることができる。 また、 スクラ ップ投入孔 1 1より予熱炉を経ずに溶 解炉へ投入することもできる。 排ガス中 COは、 回転炉入り口 A、 シ ャフ ト炉入り口 Bで空気を取り込み燃焼させることができる。 予熱 装置を経た排ガスは、 経路 1 6系統では、 燃焼塔 12で空気を取り込 み燃焼させた後冷却塔 13で冷却され、 もしく は経路 1 7系統では、 燃焼塔 12および冷却塔 1 3を通らずに乾式集塵機 1 4で集塵された後、 煙突 15より大気放散される。
燃焼塔においては、 温度が 800 以上、 COが 1 %以下になるよう に排ガスを燃焼加熱することでダイォキシンを完全燃焼分解させる ことができる。 800てより も低い場合には反応速度が遅く分解が充 分に進まず、 COが 1 %より高い場合には燃焼が不十分のため分解が 充分に進まない。
操業は、 全スクラ ップ量の 30〜 70 %に相当するスクラ ップをシャ フ ト炉 8 に装人した状態で前チャージの操業を行い予熱し、 前チヤ 一ジ出鋼後、 回転炉 7を経由し溶解炉 1へ山積みした後、 電極 4を 挿入して溶解を開始する。 その後、 シャフ ト炉 8 にはスクラ ップ投 入孔 9 より次チャージで用いるスクラ ップを装入し予熱するととも に、 回転炉 7のスクラ ップ投入孔 1 0、 もしく は、 溶解炉 1 のスクラ ップ投入孔 1 1より、 残量のスクラ ップを連続的に溶解炉へ装入する o
また、 スクラ ップを山積み後、 電極 4で溶解を開始し、 フラ ッ ト バス化するか、 あるいはスクラ ップの山が溶湯により見えなく なつ て電極周囲が固体スクラ ップで覆われなく なった後、 電極 4を炉外 に引出し、 代わりに上吹きラ ンス 3を挿入し吹酸を開始し、 炭材を 添加しながら残りの固体スクラ ップを溶解した後、 炭材の投入をや め、 さ らに酸素吹酸により脱炭して溶鋼を製造する。
第 2図は本発明装置の実施態様の一例を示す。 図において符号 8 はスクラ ップ予熱用シャフ ト炉、 符号 1 は酸素含有ガスを上吹きす る上部ラ ンスを備えたスクラ ップ溶解炉、 符号 7 はシャフ ト炉 8 と スクラ ップ溶解炉 1 との間に設けられた回転炉、 例えばロータ リー キルンである。
シャフ ト炉 8内に充填されたスクラ ップは、 スクラ ップ溶解炉 1 から発生したガスをロータ リーキルンを経て、 あるいは経ることな く同シャフ ト炉内に導入することによって予熱される。 第 3図は本 発明装置の排ガス循環系の実施態様の一例を示す図である。 スクラ ップの経路 2 2 に対向する排ガスの経路 2 3 は、 シャフ ト炉 8 にお いては符号 2 7から、 ロータ リーキルン 7 においては符号 2 4〜 2 6から燃焼用空気が供給され完全燃焼される。 また、 第 4図は本発 明装置の排ガス循環系の他の実施態様の一例を示す図である。 この 循環系では、 スクラ ップの経路 2 2 に対して排ガス 2 3 は、 ロータ リーキルン 7やシャフ ト炉 8を経由せずに、 直接、 ガスクーラーを 経て集塵機に供給されるものである。 すなわち、 溶解炉 1 からの発 生ガスは第 3図に示す如く ロータ リ一キルン 7 を通って完全燃焼後 にシャフ ト炉 8内に導入されるか、 あるいは第 4図に示すように、 スクラ ップ溶解炉 1 から直接に、 ガスクーラーを経て集塵機に導入 される。 第 5図は本発明を実施するための予熱 · 溶解装置における 予熱後の排ガスおよび溶解炉の排ガスを直接処理するための排ガス 処理経路を示す説明図である。
この図で排ガス処理経路と して、 仕切り弁 3 6、 3 8、 3 9およ び 4 1 を開と し、 仕切り弁 3 7 、 4 0および 4 2を閉と して、 燃焼 、 冷却することでダイォキシンを分解する経路と した場合には、 ス クラ ップはスクラ ップホッパー 2 8 と 2 9 との両方から供給する場 合と、 シャ ッター 3 1 を閉じてスクラ ップホッパー 2 9のみから供 給する場合がある。 また、 排ガス処理経路と して、 仕切り弁 3 7 、 3 8、 4 0および 4 2を開と し、 仕切り弁 3 6、 3 9および 4 1 を 閉と して、 冷却後ダイォキシ ンを吸着したダス トを集塵する経路と した場合には、 スクラ ップはシャ ッター 3 1 を閉じてスクラ ップホ ッパー 2 9のみから供給する。 あるいは、 スクラ ップホッパー 3 0 から直接溶解炉へ供給する。
さ らに、 ダス ト濃度が低い場合には、 乾式 2次集塵機 4 4におい て、 粉石炭、 粉石灰等を吹き込み排ガス中ダス ト濃度を高めること もできる。 ここで、 ダス ト濃度とは、 溶解炉、 予熱炉から発生する ダス トと吹き込まれた粉体との合計の濃度である。
次に、 排ガス処理経路と して、 仕切り弁 3 6、 3 8、 4 0および
4 2を開と し、 仕切り弁 3 7、 3 9および 4 1 を閉と して、 冷却後 ダイォキシ ンを吸着したダス トを集塵する経路と した場合には、 ス クラ ップはスクラ ップホッパー 2 8 と 2 9 との両方から供給する場 合と、 シャ ッター 3 1 を閉じてスクラ ップホッパー 2 9のみから供 耠する場合がある。 この場合の仕切り弁 3 6の前の排ガス温度は 5 0 0 °C以上である必要がある。 この場合も、 ダス ト濃度が低い場合 には、 乾式 2次集塵機 4 4 において、 粉石炭、 粉石灰等を吹き込み 排ガス中ダス ト濃度を高めることもできる。 この場合のダス ト濃度 は、 前述の溶解炉、 予熱炉から発生するダス トと吹き込まれた粉体 との合計の濃度である。
なお、 第 5図では、 符号 32、 33はシ ャ ッ ターを、 符号 34、 35はフ ー ドと溶解炉を、 符号 43は乾式 1 次集塵機、 符号 45は排ガス冷却塔 、 符号 46は I . D. F. ( 吸出し送風機) をそれぞれ示す。
また、 必要に応じて、 シ ャ フ ト炉の下側の符号 20にはプッ シヤー または火格子を設けるのが好ま しい。 このプッ シ ャ一または火格子 はシ ャ フ ト炉から回転炉へス ク ラ ッ プを順次かつ円滑に払い出すた め、 回転炉内でのスクラ ップの停滞を防止するために用いられる。 本発明において、 予熱装置にシ ャ フ ト型の炉を用いる理由は、 予 熱効率が既存の予熱炉の中で最も高いからである。 また、 シ ャ フ ト 炉と溶解炉の間に回転炉を設ける理由は、 スクラ ップ溶解炉からの 発生ガスの燃焼空間の確保により シ ャ フ ト炉下部温度を低く抑えた 上で、 スクラ ップ予熱最高温度を融着の生じる 800 °C以上にできる ようにするためである。
スクラ ップ溶解炉と しては、 転炉、 電気炉のいずれをも用いるこ とができる。 転炉の場合には、 多量の排ガスが発生するためにガス 顕熱で充分な予熱が可能なため、 ガス中に C Oを残したまま回収す ることができる。 また、 電気炉の場合には、 排ガス量が少ないため 予熱工程でほぼ完全に C 0 2 まで燃焼させることになるが、 排ガス 設備が小さいため設備投资額が少ないというメ リ ッ トがある。
スクラップ予熱炉に装入されるスクラ ップの大きさはシ ャ フ ト炉 または回転炉の内径の 1 / 3以下とする。 下限はシ ャ フ ト炉の通気 性確保が制約条件であり、 粒径約 30ππηとする。
本発明において用いる精鍊炉は、 好ま しく は電気炉と転炉との兼 用型の精鍊炉であって、 スクラ ップを電極によるアーク加熱で溶解 でき、 アーク加熱でスクラ ップを溶解して得られた溶鉄を、 酸素吹 鍊により脱炭して溶鋼を製造する工程を実施できるものである。
電極で山積スクラ ップを溶解している時の電力効率は 95 %以上で あるが、 溶解が進んで電極下端が液体に接触し、 未溶解ス ク ラ ッ プ が該液体 (溶鋼) 上面より下にしか存在しなく なると、 電力効率は 45 %以下になってしま う ことが確かめられたので、 固体スクラ ップ と電極が直接接触している間は電力を、 直接接触しなく なったら酸 素と化石燃料を使う という ことで、 トータルのエネルギー効率の改 善を図るものである。
さ らに、 これを改良して、 予めスクラ ップを平坦に山積みにした 状態で電力で溶解すると、 初め電極に接触していた部分が溶解し、 山積みスクラ ップの真中だけ孔を掘るように溶かされてボーリ ング 状態になり、 この状態で少なく ともスクラ ップの 40 %が溶解するよ うに電力で溶解する。 かく してスクラ ップの 40 %以上が溶解して得 られた溶湯が融点以上の温度の顕熱を有すれば、 酸素と化石燃料に よる溶解に移行しても、 特に本出願人が提案した多量スラグ溶解法
(特開平 2 — 14 151 1号公報) により短時間で溶解できる。 ちなみに 、 この溶解法のエネルギー効率を従来法と比較してみると、 約 20 % 改善されることが確かめられた。
本発明において、 スクラ ップ溶触炉の温度を 1300 以上に保つ理 由は、 ダイォキシ ンの沸点が 1300。Cより低いためであり、 瞬時にこ の温度に加熱すれば熱分解されるため、 1300 以上と規定した。
また、 本発明において、 集塵機前のダス ト濃度を 40〜400 g / Nm 3 と した理由は、 40 g / Nm 3 未満では熱分解により生成したダイォ キシ ンを完全に吸着するには不十分な濃度であり、 一方ダス ト濃度 が余り高過ぎると、 溶融装置の集塵系の負荷が大き く なるとともに 、 環境汚染の問題もあることから、 400 g Z Nm 3 程度の濃度が限界 であるから、 濃度の上限を 400 g _ Nm 3 と規定した。
溶解炉からの排ガスの温度は 1300〜2500°Cであるが、 高温側はも つと い場合ちめる o
排ガス中のダス トがダイォキシ ンを吸着するメ カニズムは、 もと もと揮発分有機物であるから、 これが高温のダス ト鉄粉末に吸着す る。 なお、 有機物の一部は溶解したり、 ダス ト中の成分と結合反応 するものもあると考えられ、 塩素は Hと結合して H C 1となる。
ダイォキシ ンを含む排ガス中には、 塩化ビニール等に起因する有 機物ガスが同時に含まれる。 有機物の種類と しては、 例えば、 ベン ゼン、 トルエン、 キシ レ ン、 スチ レ ン、 ナフ タ リ ン、 ホスゲン等が 複数結合したものである。 これらは、 ダイォキシンと沸点が近いた めに、 本発明によりダイォキシ ンを除去する過程で同時に除去する ことができる。 実施例
実施例 1
2 0 ト ン上吹き転炉の上部水冷フー ドに連結して、 内直径 1 . 5 m、 長さ 8 m、 傾斜角度 6. 5度の円筒型回転炉 (ロータ リーキル ン) を設置し、 さ らに、 回転炉上部に連結して、 内直径 1 . 5 m、 充填雇高さ 3. 5 mのシ ャ フ ト炉を設置した。 転炉で底吹きガス援 拌しつつ上吹きランスより約 1 5 0 0 Nm3/Hrの速度で酸素を溶銑に 吹き付けるとともに、 コークスを連続的に添加し、 コーク スの燃焼 熱でスクラ ップを溶解した。 発生した C Oを 5 0〜 6 0 %含む排ガ スは、 上部水冷フー ドを経由して回転炉へと導かれ、 C Oガスの一 部は回転炉入口で空気により C 02 まで燃焼されてスクラ ップを余 熱した。
回転炉の回転数は約 2. 5 r p mで、 ス ク ラ ッ プの転炉への投人 速度は約 2 0 ton/Hrと した。 シ ャ フ ト炉下部には一定量の予熱スク ラ ップを切り出すための火格子と、 それを回転炉へ送り出すプッ シ ヤーとを設置した。 転炉投入直前のスクラ ップ平均温度は 7 0 0〜 1 0 0 0 °C、 シ ャ フ ト炉出側のスクラ ップ平均温度は 3 0 0〜 6 0 o °cであった。 この結果、 転炉の炭材原単位は、 予熱を実施しない 場合に約 1 7 5 kg/tであつたのに対して、 約 1 2 0 kg八となつた。 実施例 2
2 0 ト ン電気炉に連結して、 内直径 1 . 5 m、 長さ 8 m、 傾斜角 度 6. 5度の円筒型回転炉 (ロータ リーキルン) を設置し、 さ らに 、 回転炉上部に連結して、 内直径 1 . 5 m、 充填層高さ 3. 5 mの シャフ ト炉を設置した。 電気炉では、 電気加熱するとともに、 羽口 および外部から挿入したラ ンスより約 5 0 0 Nm3/Hrの速度で酸素を 溶銑に吹き付けるとともに、 微粉炭約 7 0 kg八を連続的に添加し、 電氮加熱と炭材の燃焼熱でスクラッブを溶解した。 発生した C Oを 5 0〜 6 0 %含む排ガスは、 上部水冷フー ドを経由して回転炉へと 導かれ、 C 0ガスの一部は回転炉入口で空気により C 02 まで燃焼 されてスクラ ップを予熱した。
回転炉の回転数は約 2. 5 r p mで、 スクラ ップの電気炉への投 入速度は約 2 0 ton/Hrとした。 シャフ ト炉下部には一定量の予熱ス クラップを切り出すための火格子と、 それを回転炉へ送り出すブッ シヤーとを設置した。 電気炉投入直前のスクラ ッブ平均温度は 5 0 0〜 8 0 0で、 シャフ ト炉出側のスクラップ平均温度は 2 0 0〜 4 0 0 °Cであった。 この結果、 電気炉の電力原単位は、 予熱を実施し ない場合に約 3 9 0 kWH/t であったのに対して、 約 2 0 0 kWH/t と なった。
実施例 3
実施例 2 と同様に 2 0 ト ン電気炉に連結して円筒型回転炉 (口一 タ リーキルン) を設置し、 さ らに、 回転炉上部に連結してシャフ ト 炉を設置した。 電気炉では、 電気加熱するとともに、 羽口および外 部から挿入したラ ンスより約 5 0 0 Nm3/Hrの速度で酸素を溶銑に吹 き付けるとともに、 微粉炭約 7 0 kg/tを連続的に添加し、 電気加熱 と炭材の燃焼熱でスクラ ップを溶解した。 発生した C Oを 5 0 〜 6 0 %含む排ガスは、 上部水冷フー ドを経由して回転炉へと導かれ、 C Oガスの一部は回転炉入口で空気により C 02 まで燃焼されてス クラ ップを余熱し、 さ らに、 シャフ ト炉へと導かれた。
シャフ ト炉入口で空気により C Oの一部は C 02 まで燃焼されて スク ラ ップを予熱した。 スクラ ップの内、 約半量は直接、 回転炉へ 投入され 4 0 0〜 6 0 0 に予熱されつつ、 連続的に溶解炉へと供 給された。 残量はシャ フ ト炉へ装入され、 電気炉操業中、 常に、 回 転炉を経由して供給される排ガスにより 4 0 0〜 6 0 0 °Cに予熱さ れた後、 次チャー ジの操業開始直前に回転炉を経由して電気炉へ装 入された。
スクラ ップの溶解速度は約 2 0 t on/H rであつたが、 電力原単位は 、 予熱を実施しない場合に約 3 9 0 kWH/ t であったのに対して、 約 2 0 0 kWH/ t となった。
実施例 4
2 0 ト ン電気炉の上部水冷フー ドに連結して円筒型回転炉を設置 し、 さ らに、 回転炉上部に連結してシャ フ ト炉を設置した。 電気炉 では、 電気加熱するとともに、 羽口および外部から挿入したラ ンス より約 5 0 0 Nm 3 /H rの速度で酸素を溶銑に吹き付けるとともに、 微 粉炭を連続的に添加し、 電気加熱と炭材の燃焼熱でス ク ラ ッ プを溶 解した。 スクラ ップはシ ャ フ ト炉、 または回転炉へ供給されて連続 的に水冷フー ドより電気炉へと供給された。 発生した排ガスは、 上 部水冷フ ー ドの側面に設けられた排ガス吸引孔より吸引されガスク 一ラーを経由して集塵機へと導かれた。
実施例 5
1 00 ト ン電気炉において、 予熱したスクラ ップを 100 ト ン山積み 後、 直流電極を上から挿入し、 造滓後、 固体ス ク ラ ッ プの溶解を開 始した。 固体スクラ ップの山の頂上部位が溶解 · 滴下して電気炉内 底部に溶湯が溜まった。 固体のスクラ ップの溶解量の増大につれて スクラ ップの山の高さが減少し、 それに合わせて電極を降下してい つた。 固体スクラ ップのうち 60 %程度が溶湯になり、 溶湯表面が次 第に上昇して固体ス ク ラ ッ プの山が溶湯表面下になつた時点で、 電 極を炉外上方に抜き出し、 代わりに上方から送酸ラ ンスを挿入して lOOOONm3 Zhで送酸し、 炭材を炉肩部から 40kg添加した。 この酸 素と炭材の燃焼により溶湯は加熱され、 溶湯中底部に溶け残ってい た固体スクラ ップは完全に溶解した。 その後、 炭材の投入を止め、 送酸を継続した桔果、 炭素濃度 0.03%の溶鋼が製造できた。
実施例 6
前記実施例 5記載の方法において、 100ト ン電気炉の底部の中心 を深く して、 深く なつた底部に比較的小サイズの予熱したスクラ ッ ブ 50ト ン、 周囲に大サイズのスクラ ップ 50ト ンを平たい山状に積ん だ後、 同様な操業を行った。
固体スクラ ップの内 55%程度が溶湯になつた時点で、 電極を炉外 上方に抜き出し、 代わりに底吹き羽口および横吹き羽口から合計で 2500NBJ3 Zhで送酸し、 微粉炭を横吹き羽口から 40kg添加した。 酸 素と炭材の燃焼により溶湯は加熱され、 溶湯中底部に溶け残ってい た固体スクラ ップは完全に溶解した。 その後、 炭材の投入を止め、 送酸を継続した結果、 炭素濃度 0.03%の溶鋼が 30分で製造できた。 実施例 7
150 ト ン電気炉の底部の中心を深く し、 深く なつた底部に比較的 小サイズの予熱したスクラ ップ 100ト ン、 周囲に大サイズのスクラ ッブ 50ト ンを平たく積んだ後、 造滓して溶解操業を行った。
固体スク ラ ップの内 40%程度が溶湯になった時点で、 電極を炉外 上方に抜き出し、 代わりに吹酸ラ ンスを上方から溶解炉内に挿入し て溶湯表面に吹酸して FeOを生成させると同時に昇温し、 底吹き羽 口および横吹き羽口から合計で 100kgの微粉炭を添加した。 溶け残 つていた固体スクラ ップは完全に溶解した結果、 炭素濃度 0.03%の 溶鋼が 30分で製造できた。
実施例 8
同形状で炉底に 280mm 0 x 2 ビレ ッ トの炉底電極を有する 150 卜 ン精鍊炉を 2つと、 それらで共有する 1 つの トランス容量 100MVAの 電源および 3Omin 0の電極 1 本と、 送酸量 25000 Nm VH の能力の上吹 き酸素ラ ンス 1本を用いてスクラ ップ溶解 · 脱炭を行った。
精鍊炉 Aに電極を挿入してスクラ ップ溶解を行い、 精鍊炉 Bでは 先に溶解した溶銑にラ ンスを用いて送酸して炭素濃度 3. 5 %から 0. 1 %まで、 脱炭、 脱りん (0. 05X →0. 01 ¾ P ) した。 精鍊炉 Aの溶 解が完了した時点で、 電極を精鍊炉 Bに移し、 精鍊炉 Bのラ ンスを 精鍊炉 Aに移した。 これを 20分タップで交互に繰り返し操業した結 果、 450 ト ン/ Hの溶鋼生産速度が得られた。
実施例 9
鉄系スクラ ップを予熱炉において溶着しない温度範囲の 8 0 0 X に連統的に予熱しながら、 炉内温度を 1 3 0 0 °Cに保った溶解炉内 に投入し、 上吹きランスにより酸素を 1 5 0 0 0 Nm VH 吹いて、 石 炭を 1 3 0 k g Z t —メ タルで投入してスクラ ップを 1 0 0 t / H で溶解する実験を行って、 ダイォキシ ン成分を意図的に生成させ、 本実験の効果を確認した。
予熱炉におけるス ク ラ ッ プの予熱は、 溶解炉で発生する高温排ガ スを予熱炉に導入して、 さらに C 0ガス成分を着火燃焼 (二次燃焼 ) させて行った。
予熱炉から排出される排ガスを、 燃焼塔に導入して、 導入口で排 ガスを着火させて 8 0 0 °Cに加熱して、 排ガス中のダイォキシ ン成 分を熱分解し、 ダス トに吸着されるようにした。 その後、 水噴霧冷 却塔により排ガスを 1 5 0 〜 2 0 0 °Cの範囲に急冷してダイォキシ ン成分の再晶出しないようにした。 その温度のまま排ガスを乾式集 塵機に通して、 バグフ ィ ルタ一により分解したダイォキシ ン成分を 吸着したダス トを捕集した。
溶解時の炉内二次燃焼率をエネルギー効率から 6 0 %に保って溶 解操業を行った。 燃焼塔においては二次燃焼率 6 0 %の排ガスを排 ガス導入口 (燃焼塔の底部に配した) に設置した着火バーナーによ り燃焼させて排ガス中の C O %を 5 O p p mにした。 この時の燃焼 熱により排ガスを 8 0 0てにまで加熱した。
その後、 燃焼塔に隣接、 連結した水噴霧冷却塔において、 水を排 ガスに噴霧し、 排ガスを 1 5 0て Z秒の冷却速度で冷却すると共に 、 集塵機での結露を防止するため冷却後の排ガス温度を 1 5 0 に 維持した。 1 5 0 に維持しながら排ガスを乾式濂過式集塵機に導 入してダス ト集塵した。 燃焼塔は水冷却塔との間に、 排ガスの熱を 回収する熱回収設備を設置して、 全体プロセスのエネルギー効率を 改善してもよいが、 この熱回収プロセスを介することにより、 燃焼 塔出側から熱回収設備を介して水冷却塔出側にいたる範囲の総合的 な冷却速度が 8 0 0 〜 1 0 0 0 0 秒の範囲に入らない場合には 、 ダイォキシ ン濃度の削減効率が劣化 (再生成が増大) · するので好 ま しく ない。
溶解炉内に投入するスクラ ップの全体量に対する塩化ビニール量 (ダイォキシ ン成分の発生源) 含有率を変化させることにより、 予 熱炉内で発生する排ガス中のダイォキシン濃度を 5 0〜 2 0 0 ng-T EQ/Nm3の間で変化させるために、 シ ュ レツグー屑および重量屑の混 合率を 2 0〜 6 0 %、 および 0 〜 6 0 %の間で変化させて実験を行 つた。
この結果、 本発明の燃焼塔および水冷却塔を使用しない場合には 、 乾式集塵機前の排ガス中のダイォキシン濃度が 1 0 0 ng- TEQ/Nm3 のとき、 乾式集塵機通過後の排ガス中のダイォキシ ン濃度は 5 ng-T EQ/Nm3と 2 0分の 1 にとどまった。
これに対して、 本発明の燃焼塔および水冷却塔を使用した場合に は、 燃焼塔の排ガス導入口における排ガス中のダイォキシ ン濃度が シュ レッダー屑配合率 2 0 %かつ重量屑配合率 6 0 %の時に 5 0 ng -TEQ/Nm3の時、 乾式集塵機通過後の排ガス中のダイォキシン濃度は 0 . 1 ng- TEQ/Nm3と 5 0 0分の 1 にまで削減できた。
さらに、 燃焼塔の燃焼温度を 1 0 0 0 °Cに上げ、 かつ冷却速度を 2 0 0 0 °Cノ秒にまで向上させた結果、 燃焼塔の排ガス導入口にお ける排ガス中のダイォキシン濃度がシュ レッダー屑配合率 6 0 %の 時に 2 0 0 ng- TEQ/Nm3の時、 乾式集塵機通過後の排ガス中のダイォ キシン濃度は 0 . 1 ng-TEQ/Nm3と 2 0 0 0分の 1 にまで削減できた o
実施例 10
予熱炉から 5 0 0 〜 6 0 0 °Cで排ガスを出し、 冷却塔では 1 0 0 て以下で低い方がよいが、 好ま しく は 8 0 °C、 さ らに好ま しく は 5 0 °Cにまで急冷した。
冷却方法は、 間接冷却と し、 排ガスの通路に水を循環する細管 ( 1 0 mm以下) を張り巡らすか、 排ガス通路を鉄鋼製にして外側に 水をかけるなどの手段で行う。 間接冷却のメ リ ッ トは、 直接冷却の 場合に必要となる冷却水の中に溶解したダイォキシ ン成分の除去処 理を省略できることである。
実施例 11
予熱プロセスを持たない溶解炉を用いて、 炉内温度を 1300。Cに保 つた溶解炉内にスクラ ップを直接投入しながら、 上吹きラ ンスによ り酸素を 15000Nm3 吹いて、 石炭を 130kgZ T— メ タルで投人 してスク ラ ッ プを 100TZHで溶解すると共に、 排ガスを乾式集塵 機により捕集した。 集塵機前のダス ト濃度を 40 g /Nm3 と した。
この結果、 集塵機通過前にダイォキシ ンをダス トに吸着させるこ とが可能となり、 集塵機により該ダス トを集塵濾過した。
実施例 12 予熱プロセスを持たない溶解炉を用いて、 炉内温度を 1500°Cに保 つた溶解炉内にスクラップを直接投入しながら、 上吹きラ ンスによ り酸素を lOOOONm3 吹いて、 石炭を 120kgZ T—メ タルで投入 してスクラ ップを 100T/Hで溶解すると共に、 排ガスを乾式集塵 機により捕集した。 また、 集塵機前のダス ト濃度を 200 g /Nm3 と した。
この結果、 集塵機通過前にダイォキシ ンをダス 卜に吸着させるこ とが可能となり、 集塵機により該ダス トを集塵濂過した。
比較例
スクラ ップを事前に 800で以上に予熱するプロセスを有する溶解 炉内で、 上吹きラ ンスにより酸素を lOOONm3 ZH吹いて、 石炭を 2 0kg /Tーメ タルで投入するとともに、 電極からアーク加熱するこ とで、 スクラップを 100TZHで溶解すると共に、 排出ガスを乾式 集塵機により捕集した。 ダス トの発生量は集塵機前の排ガス中の濃 度で 15g ZNm3 であつた。
この結果、 集塵機通過前にダイォキシ ンをダス 卜に十分に吸着さ せることができなかったため、 さ らに、 燃焼塔で完全燃焼させ、 冷 却塔で急冷させる処理を実施した。
実施例 13
予熱炉から出た排ガスの温度が 5 0 0 °C以上であったので、 燃焼 塔を省略 (設置しないで) しても、 熱分解したダイォキシ ン成分を 排ガス中のダス トに吸着できた。 そこで予熱炉から排ガスを直接冷 却塔に導入した。 冷却塔では、 9 0 0 °CZ秒の冷却速度で間接冷却 を行い、 排ガス温度を 5 0 0 °Cから 5 0 °Cにまで 0 . 5秒で急冷し た。 これにより、 熱分解したダイォキシ ン成分を排ガス中のダス ト に吸着させることができた。
これらのダス トを、 乾式濾過式集塵機のバグフィルターで濾過し 実施例 14
通常では、 予熱炉でダイォキシ ン成分は生成 · 検出されるが、 特 殊な場合には溶解炉 ( 1 3 0 0 °C以上) においても排ガス中に、 す でにダイォキシ ン成分が存在する場合があった。 本実施例では、 こ れを防止するために排ガス処理設備と溶解炉を直接連結と したもの である。 本実施例では、 溶解炉と排ガス処理設備とを直接連結して 、 高いダイォキシ ン成分を含有した高温排ガスを冷却塔で急冷し、 再生成を防止しながらダス トに吸着させて濂過集塵した。
溶解炉から排ガスを直接冷却塔に導入した。 冷却塔では、 9 0 0
°C Z秒の冷却速度で間接冷却を行い、 排ガス温度を 5 0 0 °Cから 5 0 °Cにまで 0 . 5秒で急冷した。 これにより、 熱分解したダイォキ シン成分を排ガス中のダス 卜に吸着させることができた。
一方、 予熱炉では、 外側から壁を通して間接予熱する方式でス ク ラ ップを予熱した。 産業上の利用可能性
以上の実施例の説明からも明らかなように、 本発明によれば省ェ ネルギー、 省資源化を達成し、 高効率でス ク ラ ッ プ予熱 · 溶解 · 脱 炭を実施することができるので、 産業上に及ぼす効果はきわめて大 きい。

Claims

請 求 の 範 囲
1 . 予熱したスクラ ップを主原料とする溶解炉と、 該溶解炉から 発生する排ガスを導入してスクラッブを予熱する予熱装置と、 予熟 後の排ガスを処理する排ガス処理装匱を有するスクラ ップの予熱 · 溶解装置において、 該予熱装置がシャフ ト炉であって、 かつ該シャ フ ト炉の炉底側に回転炉を独立に連設して、 該シャフ ト炉から払い 出されるスクラ ップを一定速度で該回転炉内を移送させた後、 該ス クラ ップ溶解炉に投入することを特徴とするスクラ ップの予熱 · 溶 解装置。
2 . 前記シャフ ト炉の炉底側に、 該シャフ ト炉から払い出される スクラ ッブを前記回転炉に押し込むブッシヤーを設けたことを特徴 とする請求の範囲 1 に記載のスクラ ップの予熱 · 溶解装置。
3 . 前記シャフ ト炉の炉底側に、 該シャフ ト炉から払い出される スクラ ップを前記回転炉に供給する火格子を設けたことを特徵とす る請求の範囲 1 に記載のスクラ ップの予熱 · 溶解装置。
4 . 前記溶解炉に、 酸素導入手段としてランスまたは羽口を有す ることを特徴とする請求の範囲 1 に記載のスクラ ップの予熱 ' 溶解 装置。
5 . 前記溶解炉が、 電気炉であることを特徴とする請求の範囲 1 に記載のスクラ ップの予熱 · 溶解装置。
6 . 前記溶解炉が、 酸素上吹き転炉であることを特徴とする請求 の範囲 1 に記載のスクラ ップの予熱 · 溶解装置。
7 . 前記排ガス処理装置が、 排ガス中のダイォキシンを分解させ る燃焼塔、 燃焼排ガスを冷却するための冷却塔、 および集塵機を有 することを特徴とする請求の範囲 1 に記載のスクラ ップの予熱 · 溶 解装置。
8 . 前記集塵機が、 乾式集塵機であることを特徴とする請求の範 囲 1 に記載のスクラップの予熱 ·溶解装置。
9 . 前記排ガス処理装置は、 さ らに前記予熱装置の排ガスを直接 処理するために、 前記予熱装置が冷却塔を介して集塵機に直接連通 する排ガス経路を有することを特徴とする請求の範囲 1 に記載のス クラ ップの予熱 · 溶解装匱。
10. 請求の範囲 1 において、 さ らに前記溶解炉の排ガスを直接処 理するために、 前記溶解炉が排ガス処理装置に直接連通する排ガス 経路を有することを特徴とするスク ラ ッ プの予熱 · 溶解装置。
1 1. 溶解炉で予熱したスクラ ップを主原料と して溶解し溶鉄を得 る際に発生する排ガスを予熱用ガスとして利用し、 かつ予熱後の排 ガスを処理するスクラップの予熱方法において、 溶解炉に連接した 回転炉と、 該回転炉に連接したシ ャ フ ト炉に上方側からスクラ ップ を装入し、 下方側から排ガスを供給し、 該シ ャ フ ト炉で下方側出口 温度がスクラ ップ表面の溶着を生じる温度未満の温度域に保持しな がら予熱して、 その後回転炉に一定速度で搬送しながら、 該回転炉 の出口の温度がスクラ ップ表面の溶着を生ずる温度以上の温度域に 保持しながら順次予熱して、 該溶解炉に供給することを特徴とする スクラ ップの予熱 · 溶解方法。
12. 請求の範囲 1 1において、 予熱後の排ガスの処理と して、 燃焼 塔における温度が 800 °C以上、 COガス濃度が 500 p pm以下になるよう に排ガスを燃焼して加熱し、 さらに冷却後の排ガス温度を結露のな い 1 5 0〜 2 0 0 °Cの範囲と し、 かつ冷却速度を 8 0 0 °C /秒以上 で水冷却することを特徴とするスクラ ップの予熱 · 溶解方法。
1 3. 請求の範囲 1 1において、 予熱後の排ガスの処理と して、 予熱 炉から排出される排ガスを冷却塔にて、 1 0 0 °C以下に冷却した後 、 集塵機に導入することを特徴とするスクラ ップの予熱 · 溶解方法
14. 請求の範囲 1 1から 13のいずれかにおいて、 全スクラ ップ量の 30〜70 %をシ ャ フ ト炉で前チャ一ジの排ガスによつて予熱したもの を使用し、 これを溶解炉へ山積みした後、 電極を挿入して溶解を開 始し、 その後残量のスクラ ップを回転炉から連続的に溶解炉へ装入 することを特徴とするスク ラ ッ プの予熱 · 溶解方法。
15. 請求の範囲 1 1から 14のいずれかにおいて、 スクラップを山積 み後、 電極で溶解を開始し、 フラ ッ トバス化する時点、 あるいはス クラ ップの山が見えなくなる 40 %溶解の時点で、 電極を炉外へ引出 し、 その代わりにラ ンスまたは羽口から吹酸を開始し、 炭材を添加 しながら残りの固体スクラ ップを溶解した後、 該炭材の投入を止め 、 継続して酸素吹酸により脱炭して溶網を製造することを特徴とす るスクラ ップの予熱 ·溶解方法。
16. 請求の範囲 1 1または 13から 15のいずれかにおいて、 ダイォキ シ ンを含有する 100 °C以下のスクラ ップを 1300°C以上に保たれたス クラ ップ溶解炉に投入し、 排ガスを未燃焼状態で回収することを特 徴とするス ク ラ ッ プの予熱 · 溶解方法。
17. 請求の範囲 1 1から 16のいずれかにおいて、 排ガス処理装置の 集塵機前のダス ト濃度を 40〜400 g / Nm 3 とすることを特徴とする スクラ ップの予熱 · 溶解方法。
PCT/JP1996/000804 1995-03-31 1996-03-27 Procede et dispositif de prechauffage et de fusion de ferraille WO1996030709A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96907672A EP0772015B1 (en) 1995-03-31 1996-03-27 Method and apparatus for preheating and melting scrap
DE1996613316 DE69613316T2 (de) 1995-03-31 1996-03-27 Verfahren und vorrichtung zum vorheizen und schmelzen von schrott
KR1019960706773A KR100223515B1 (ko) 1995-03-31 1996-03-27 스크랩의 예열 및 용융 장치와 그의 방법
US08/750,448 US5889810A (en) 1995-03-31 1996-03-27 Apparatus for preheating and melting of scrap and process for the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP7683695A JPH08269526A (ja) 1995-03-31 1995-03-31 スクラップ溶解時の排出ガスの処理方法
JP7682095A JP3143771B2 (ja) 1995-03-31 1995-03-31 スクラップの予熱・溶解装置および方法
JP7683795A JPH08269524A (ja) 1995-03-31 1995-03-31 スクラップの効率的溶解脱炭方法
JP7/76837 1995-03-31
JP7/76836 1995-03-31
JP7/76820 1995-03-31

Publications (1)

Publication Number Publication Date
WO1996030709A1 true WO1996030709A1 (fr) 1996-10-03

Family

ID=27302262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000804 WO1996030709A1 (fr) 1995-03-31 1996-03-27 Procede et dispositif de prechauffage et de fusion de ferraille

Country Status (6)

Country Link
US (1) US5889810A (ja)
EP (1) EP0772015B1 (ja)
KR (1) KR100223515B1 (ja)
DE (1) DE69613316T2 (ja)
WO (1) WO1996030709A1 (ja)
ZA (1) ZA962533B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890809A1 (en) * 1996-02-13 1999-01-13 Nippon Steel Corporation Iron-base scrap preheating apparatus and method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529678A1 (de) * 1995-08-11 1997-02-13 Selas Kirchner Gmbh Röhrenofen
AT405188B (de) * 1997-06-16 1999-06-25 Voest Alpine Ind Anlagen Verfahren zum einbringen eines wertstoffs in ein schmelzbad und metallurgisches gefäss zur aufnahme eines schmelzbads
US6478841B1 (en) * 2001-09-12 2002-11-12 Techint Technologies Inc. Integrated mini-mill for iron and steel making
JP2004105671A (ja) * 2002-09-16 2004-04-08 Genki Kk 空間位置共有システム、データ共有システム、ネットワークゲームシステム及びネットワークゲーム用クライアント
DE102008060774B4 (de) * 2008-12-05 2013-03-28 Wiktor Raile Schrottvorwärmungsprozess und Vorrichtungen in Stahlerzeugungsanlagen
WO2011141036A1 (de) * 2010-05-10 2011-11-17 Progenf Ug (Haftungsbeschränkt) Chemische vorbehandlung und vorwärmung von stahlschrott
KR101406503B1 (ko) 2012-12-21 2014-06-13 주식회사 포스코 고정형 전기로 및 용강 제조 방법
KR101437813B1 (ko) * 2014-03-12 2014-09-16 순천대학교 산학협력단 스크랩 예열 장치
US10101090B2 (en) * 2016-07-18 2018-10-16 Owens-Brockway Glass Container Inc. Duct cleaning and valve device for furnace system
CN107460274B (zh) * 2017-09-22 2023-09-12 中冶赛迪工程技术股份有限公司 一种水平连续加料预热装置及其强化预热方法
DE102017124108A1 (de) * 2017-10-17 2019-04-18 Inteco Melting And Casting Technologies Gmbh Schrottvorwärmeinrichtung für einen Schmelzofen und Verfahren zur Schrottvorwärmung
CN109880959B (zh) * 2019-04-04 2020-06-30 石家庄巨力科技股份有限公司 一种提高转炉废钢添加比例的方法
CN110514325B (zh) * 2019-09-09 2021-05-18 中国空气动力研究与发展中心超高速空气动力研究所 一种基于激光吸收的电弧加热设备流场焓值监测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250110A (ja) * 1986-04-21 1987-10-31 Kobe Steel Ltd スクラツプ溶解方法および装置
JPH07332874A (ja) * 1994-06-03 1995-12-22 Nkk Corp 原材料予熱装置を備えた溶解炉

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1034747A (en) * 1909-10-23 1912-08-06 Charles A Weeks Electric furnace.
US1421185A (en) * 1919-12-05 1922-06-27 Roy A Driscoll Electric furnace
US1819239A (en) * 1925-06-01 1931-08-18 Albert E Greene Electric smelting apparatus and process
US3171878A (en) * 1960-07-22 1965-03-02 Independence Foundation Metallurgical apparatus
US3441651A (en) * 1966-02-23 1969-04-29 Canadian Patents Dev Method and apparatus for heat recovery in electric arc furnaces
IT949145B (it) * 1972-02-18 1973-06-11 Ceretti Ind Spa Forno elettrico per il riscalda mento e la fusione di rotttami di ferro e di acciaio
SE396616B (sv) * 1973-05-17 1977-09-26 Rolf Kristian Londer Sett och anordning for framstellning av en metallsmelta genom reduktion och smeltning
US3900696A (en) * 1974-03-13 1975-08-19 Us Interior Charging an electric furnace
FR2328046A1 (fr) * 1975-10-14 1977-05-13 Siderurgie Fse Inst Rech Procede et dispositif d'elaboration d'acier a partir de produits solides riches en fer
US4280836A (en) * 1980-06-02 1981-07-28 Kyoei Steel Ltd. Method of preheating iron scraps in steel-making by the electric arc furnace
DE3267305D1 (en) * 1981-08-31 1985-12-12 Kawasaki Heavy Ind Ltd Scrap preheating system for electric furnace
US4611339A (en) * 1983-11-14 1986-09-09 Pennsylvania Engineering Corporation Method and apparatus for removal of impure gases at time of scrap preheating
FR2562222B1 (fr) * 1984-03-28 1986-08-01 Litchinko Catherine Installation et procede pour charger en continu un reacteur, en matiere solide et rechauffer cette derniere avec les gaz emis par le reacteur
DE3713369A1 (de) * 1987-04-21 1988-11-10 Kortec Ag Chargiergutvorwaermer zum vorwaermen von chargiergut eines metallurgischen schmelzaggregates
JPH0646145A (ja) * 1992-07-24 1994-02-18 Nippon Telegr & Teleph Corp <Ntt> 発信者情報通知サービス方法
JP3288130B2 (ja) * 1992-11-04 2002-06-04 トピー工業株式会社 電気炉集煙ダクトのダスト堆積防止装置
JPH06228662A (ja) * 1993-02-03 1994-08-16 Daido Steel Co Ltd 鉄系スクラップの予熱方法
JPH06300449A (ja) * 1993-04-15 1994-10-28 Ishikawajima Harima Heavy Ind Co Ltd 直流アーク炉
JPH07190629A (ja) * 1993-04-15 1995-07-28 Ishikawajima Harima Heavy Ind Co Ltd スクラップ原料予熱装入装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250110A (ja) * 1986-04-21 1987-10-31 Kobe Steel Ltd スクラツプ溶解方法および装置
JPH07332874A (ja) * 1994-06-03 1995-12-22 Nkk Corp 原材料予熱装置を備えた溶解炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0772015A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890809A1 (en) * 1996-02-13 1999-01-13 Nippon Steel Corporation Iron-base scrap preheating apparatus and method
EP0890809A4 (ja) * 1996-02-13 1999-02-17
US6126716A (en) * 1996-02-13 2000-10-03 Nippon Steel Corporation Iron-base scrap preheating apparatus and method

Also Published As

Publication number Publication date
EP0772015A1 (en) 1997-05-07
ZA962533B (en) 1996-07-03
KR100223515B1 (ko) 1999-10-15
EP0772015B1 (en) 2001-06-13
US5889810A (en) 1999-03-30
EP0772015A4 (en) 1998-01-28
DE69613316T2 (de) 2002-02-28
DE69613316D1 (de) 2001-07-19

Similar Documents

Publication Publication Date Title
US8764875B2 (en) Method and apparatus for coproduction of pig iron and high quality syngas
RU2086869C1 (ru) Способ непрерывного предварительного нагрева шихтовых материалов для сталеплавильной печи и установка для его осуществления
US4605437A (en) Reactor iron making
AU2007309609B2 (en) Microwave heating method and apparatus for iron oxide reduction
US8540794B2 (en) Method for reducing iron oxide and producing syngas
US20070062330A1 (en) Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
WO1999016913A1 (fr) Four a sole mobile pour la reduction d&#39;oxydes, et son procede de fonctionnement
WO1996030709A1 (fr) Procede et dispositif de prechauffage et de fusion de ferraille
US5605104A (en) Method and device for melting down solid combustion residues
AU747819B2 (en) Method for heat-treating recyclings containing oil and iron oxide
US5685244A (en) Gas-fired smelting apparatus and process
US7220293B2 (en) Thermal synthesis production of steel
WO2000044943A1 (en) Method for direct steelmaking
CA2205812C (en) Scrap melting process
JP3329248B2 (ja) 冷鉄源の溶解方法および溶解設備
US7435281B2 (en) Pyrometallurgic process for the treatment of steelwork residues
JP3451901B2 (ja) 移動型炉床炉の操業方法
JP2002285225A (ja) 使用済み自動車又は使用済み家電機器のリサイクル処理方法
JP2002162170A (ja) 処理設備および処理方法
JP2003253323A (ja) 冷鉄源の溶解方法及び溶解設備
JP2002121612A (ja) 冷鉄源の溶解方法
JP2002022368A (ja) 排ガスの処理方法及び処理設備、それを利用した冷鉄源の溶解方法及び溶解設備
JPS5944363B2 (ja) リアクタ−製鉄方法および装置
JP2004059949A (ja) 鉄スクラップの溶解方法及び溶解設備
JPH06212288A (ja) 鉄スクラップの予熱方法及び予熱した鉄スクラップの精錬方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08750448

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996907672

Country of ref document: EP

Ref document number: 1019960706773

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996907672

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1996907672

Country of ref document: EP