WO1996023968A1 - Brennstoffeinspritzventil für brennkraftmaschinen - Google Patents

Brennstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO1996023968A1
WO1996023968A1 PCT/DE1996/000053 DE9600053W WO9623968A1 WO 1996023968 A1 WO1996023968 A1 WO 1996023968A1 DE 9600053 W DE9600053 W DE 9600053W WO 9623968 A1 WO9623968 A1 WO 9623968A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve seat
seat body
fuel injection
shoulder
spray
Prior art date
Application number
PCT/DE1996/000053
Other languages
English (en)
French (fr)
Inventor
Clemens Willke
Klaus Franzke
Hartmut Albrodt
Norbert Belzner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to BR9605297A priority Critical patent/BR9605297A/pt
Priority to DE59607762T priority patent/DE59607762D1/de
Priority to US08/718,581 priority patent/US5862991A/en
Priority to EP96900279A priority patent/EP0774069B1/de
Priority to JP52315596A priority patent/JP3625838B2/ja
Publication of WO1996023968A1 publication Critical patent/WO1996023968A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/90Electromagnetically actuated fuel injector having ball and seat type valve

Definitions

  • the invention is based on a fuel injection valve according to the preamble of claim 1.
  • a fuel injection valve is already known (DE 42 21 185 AI), in which at very high engine and fuel temperatures
  • the fuel injector according to the invention with the characterizing features of claim 1 the advantage that the risk of a reduction (leaning) of the injected fuel quantity is reduced or avoided in a simple manner, especially at very high engine or fuel temperatures, so that the running behavior of the hot internal combustion engine is improved, especially when it is started hot or idling.
  • the at least one transition element between the valve seat body and the spray orifice plate reduces the heat transfer from the valve seat body to the spray orifice plate, and thus decouples them from one another, so that the heat of vaporization required to evaporate the fuel sprayed off at the spray orifice holes, which is withdrawn from the spray orifice plate, leads to cooling of the spray orifice plate , while a flow of heat from the valve seat body to the spray orifice plate is reduced or almost completely prevented by the transition element.
  • the at least one transition element is advantageous to design the at least one transition element as a raised body shoulder on the valve seat body, in order to reduce the contact area between the valve seat body and the spray orifice plate and thereby create a throttle point for the heat transfer. It is also advantageous to design the at least one transition element as a raised disk shoulder on the spray hole disk, which likewise reduces the contact area between the valve seat body and the spray hole disk and thus reduces the heat transfer. It is furthermore advantageous to form the disc shoulder by means of a recessed step or an arching in the spray-perforated disc. Another advantageous embodiment is such that at least one transition element as a raised body shoulder on the
  • Valve seat body and at least one transition element is designed as a raised disc shoulder on the spray orifice plate in order to throttle the heat transfer between the valve seat body and spray orifice plate. It is also advantageous to form the body shoulder or the disk shoulder in a circular shape.
  • Another advantageous embodiment is to design the at least one transition element as a separate, thermally insulating insulating body and between
  • valve seat body and spray hole plate Arrange valve seat body and spray hole plate to reduce the amount of heat transferred from the valve seat body to the spray hole plate. It is advantageous to design the insulating body from plastic, in particular as a plastic injection molded body.
  • FIG. 1 shows a first exemplary embodiment of the invention on the basis of a fuel injector shown schematically in partial representation
  • FIG. 2 to FIG. 8 shows a second to an eighth exemplary embodiment of the invention with a partial representation of a fuel injector.
  • FIG. 1 partially shows an example of an otherwise already known fuel injection valve for fuel injection systems of mixture-compressing spark-ignition internal combustion engines, which is designed as a first exemplary embodiment according to the invention.
  • the fuel injector has a tubular valve housing 1, in which a longitudinal opening 3 is formed concentrically with a valve longitudinal axis 2. In the longitudinal opening 3 is a z.
  • the fuel injector is actuated in a known manner, for example electromagnetically.
  • An indicated electromagnetic circuit with a magnet coil 10, an armature 11 and a core 12 is used for the axial movement of the valve needle 5 and thus for opening against the spring force of a return spring (not shown) or closing the fuel injector.
  • the armature 11 is facing away from the valve closing body 7 End of the valve needle 5 by z. B. a weld seam connected by a laser and aligned with the core 12.
  • a guide opening 15 of a valve seat body 16 serves to guide the valve closing body 7 during the axial movement Downstream end of the valve housing 1 facing away from the core 11, the cylindrical valve seat body 16 is inserted into the longitudinal opening 3 which is concentric with the longitudinal axis 2 of the valve.
  • the circumference of the valve seat body 16 has a slightly smaller diameter than the longitudinal opening 3 of the valve housing 1.
  • the valve seat body 16 On its one lower end face 17 facing away from the valve closing body 7, the valve seat body 16 is provided with a raised body shoulder 18 on which a bottom part 20 of a z.
  • B. pot-shaped spray plate 21 rests with its upper end face 19 and is concentrically and firmly connected to it.
  • Spray hole disk 21 has at least one, for example four, spray holes 25 formed by eroding or stamping.
  • valve seat part consisting of valve seat body 16 and cup-shaped spray orifice plate 21 into the longitudinal opening 3 determines the presetting of the stroke of the valve needle 5, since the one end position of the valve needle 5 when the solenoid 10 is not excited due to the contact of the
  • the holding edge 26 of the spray plate 21 is tightly and firmly connected to the wall of the longitudinal opening 3.
  • a circumferential weld seam 30 is provided between the end 27 of the holding edge 26 and the wall of the longitudinal opening 3. Outside the central area 24, the bottom part 20 is sealed with the body shoulder 18 on the end face 17 of the valve seat body with a further circumferential weld seam 31
  • valve seat body 16 A tight connection of the valve seat body 16 and the spray orifice plate 21 and of the spray orifice plate 21 and the valve housing 1 is required so that the fuel does not pass between the longitudinal opening 3 of the valve housing 1 and the circumference of the valve seat body 16 to the spraying holes 25 or between the longitudinal opening 3 of the valve seat carrier 1 and can flow directly through the holding edge 26 of the pot-shaped spray perforated disk 21 into an air intake line of the internal combustion engine.
  • the spherical valve closing body 7 interacts with the valve seat surface 29 of the valve seat body 16 tapering in the shape of a truncated cone, which in the axial direction between the guide opening 15 and an outflow opening 32 in the lower end face 17 of the
  • Valve seat body 16 is formed.
  • the valve seat body 16 has a valve seat body opening 34 facing the solenoid 10, which has a larger diameter than the diameter of the guide opening 15 of the valve seat body 16.
  • the diameter of the guide opening 15 is designed such that the spherical valve closing body 7 projects through the guide opening 15 outside of its flattened portions 8 with a small radial distance.
  • the central region 24 of the base part 20 of the spray perforated disk 21 is bent out of the plane of the base part 20, for example in the downstream direction, ie in the direction pointing away from the valve closing body 7, so that a bulge 36 results in the central region.
  • a collecting space 37 is formed, into which, when the valve closing body 7 is lifted from the valve seat surface 29, the fuel first reaches it before it passes through the Spray holes 25 are metered and sprayed into the air intake line of the internal combustion engine.
  • the at least one body shoulder 18 on the lower end face 17 of the valve seat body 16 forms a transition element from the valve seat body 16 to the spray hole disk 21 and throttles the heat transfer between the valve seat body and the spray hole disk.
  • the body shoulder 18 is preferably annular, in particular concentric to the longitudinal axis 2 of the valve, and reduces the contact area between the bottom part 20 of the spray hole disk 21 and the valve seat body 16.
  • the body shoulder 18 in Axial direction parallel to the longitudinal axis 2 of the valve has a height of a few hundredths of a millimeter, for example five hundredths of a millimeter.
  • the width of the body shoulder 18 in the radial direction, that is to say transversely to the valve longitudinal axis 2, is approximately one millimeter, for example 0.8 mm.
  • the position of the body shoulder 18 on the lower end face 17 of the valve seat body 16 can be selected in a suitable manner between a position in the vicinity of the outflow opening 32 and a position in the vicinity of the diameter of the valve seat body 16, that is to say in the vicinity of the longitudinal opening 3.
  • the transition element is designed as a raised disc shoulder 39, which projects beyond the upper end face 19 of the base part 20 in the direction of the valve seat body 16 and bears against the lower end face 17 and by means of the circumferential one Weld 31 is connected to this.
  • the at least one disc heel 39 on the z. B. 0.15 mm thick bottom portion 20 of the spray plate 21 is preferably annular and has about the same dimensions as the body heel 18 in the first embodiment.
  • a thermal decoupling is also used again by means of the disk shoulder 39 Valve seat body and spray orifice plate and thus throttling the heat transfer achieved.
  • the position of the disc shoulder 39 can be selected in a suitable manner between a position in the vicinity of the outflow opening 32 of the valve seat body 16 and a position in the vicinity of the diameter of the spray orifice plate.
  • Valve seat body 16 and also a disk shoulder 39 on the bottom part 20 of the spray hole disk 21 is used, the disk shoulder 39 abutting the body shoulder 18 and being tightly connected to it by means of the circumferential weld seam 31.
  • the lower end face 17 of the valve seat body 16 is of flat design, and no elevation is provided on the upper end face 19 of the spray orifice plate 21 either.
  • At least one transition element designed as a separate, thermally insulating insulating body 41 is arranged between the valve seat body 16 and the spray hole disk 21, which reduces the heat transfer between the valve seat body and the spray hole disk, as a result of which vapor bubbles form in the collecting space 37 or on the spray holes 25 is reduced or avoided entirely.
  • Valve seat body 16 can either be pressed into the longitudinal opening 3 of the valve housing 1 with a press fit, as shown in FIG. 5, or the valve seat body 16 is adjusted on the lower end face 17 by means of a weld 43 shown in FIGS. 4 and 6 fixed between valve seat body 16 and valve housing 1.
  • Plastic, rubber, glass, ceramic or another insulating material can serve as the material for the insulating body 41.
  • the insulating body 41 has a flat disk shape with a through hole 45 connecting the outflow opening 32 to the central region 24 of the base part 20.
  • a groove 47 is formed in the region of the lower end face 17 of the valve seat body 16 in the valve housing 1, which in this embodiment extends in the axial direction parallel to the valve longitudinal axis 2 only to the extent that it does not extend to the end 27 of the Retaining edge 26 of the spray perforated disk 21 is sufficient so that the end 27 abuts the wall of the longitudinal opening 3 and can be welded to it by means of the weld seam 30.
  • the pot-shaped insulating body 41 engages in the groove 47 with one
  • the insulating body 41 according to FIG. 5 can be made of plastic, for example, and can be produced by direct injection molding in the longitudinal opening 3. Subsequently, the spray orifice plate 21 is inserted into the longitudinal opening 3 and welded by means of the weld seam 30.
  • the insulating body 41 is also cup-shaped, and the groove 47 and the cylinder edge 49 extend from the valve seat body 16 in the axial direction over the end 27 of the spray plate 21 so that the
  • Splash plate 21 is completely surrounded by the insulating body 41, except in its central region 24 on its outer surface.
  • the end 27 of the spray plate 21st claws when inserting the spray perforated disk into the cylinder edge 49 of the insulating body 41.
  • the insulating body 41 according to the exemplary embodiment according to FIG. 6 can also be produced by plastic injection molding.
  • a recessed step 52 is worked into the upper end face 19 of the base part 20, for example embossed, which surrounds the central area 24 with the at least one spray hole 25 with a larger diameter, so that starting from step 52 to to the periphery of the bottom part 20 of the disc shoulder 39 is formed, which rests on the lower end face 17 of the valve seat body 16.
  • a deep indentation 53 is worked into the upper end face 19 of the base part 20, for example embossed, which surrounds the central region 24 with the at least one injection hole 25 with a larger diameter, so that the indentation 53 extends from to to the extent of
  • the heat flow to the central area 24 is reduced by the formation of the body portion 18 or the disk shoulder 39 and the cross section of the spray disk 21, for example, which is only 0.15 mm thick and thus the risk of vapor bubble formation is reduced.

Abstract

Bei bekannten Einspritzventilen erfolgt bei heißer Brennkraftmaschine, insbesondere bei einem Heißstart oder Heißleerlauf stromaufwärts der Spritzlochscheibe und an den Abspritzlöchern ein Ausdampfen von Brennstoff, wodurch infolge der zu geringen Brennstoffzufuhr das Laufverhalten in unerwünschter Weise beeinträchtigt wird. Das Laufverhalten der Brennkraftmaschine soll deshalb durch Vermeidung der Dampfblasenbildung verbessert werden. Durch das Vorsehen eines den Wärmeübergang zwischen dem Ventilsitzkörper (16) und der Spritzlochscheibe (21) verringernden Übergangselementes in Form eines am Ventilsitzkörper (16) ausgebildeten erhabenen Körperabsatzes (18) wird erreicht, daß sich die Spritzlochscheibe infolge der entzogenen Verdampfungswärme des abgespritzten Brennstoffes abkühlt, wodurch sich die Gefahr einer Dampfblasenbildung an den Abspritzlöchern (25) oder stromaufwärts verringert. Das Brennstoffeinspritzventil eignet sich besonders für Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen.

Description

Brennstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Anspruchs 1. Es ist schon ein Brennstoffeinspritzventil bekannt (DE 42 21 185 AI) , bei dem bei sehr hohen Motor- und Brennstofftemperaturen eine
Verringerung der eingespritzten Brennstoffmenge (Abmagerung) insbesondere beim Heißstart und im Heißleerlauf auftritt. Dies erfolgt dadurch, daß sich das Ventilgehäuse, der Ventilsitzkörper und die Spritzlochscheibe stark erwärmen, so daß es zwischen Ventilsitzkörper und Spritzlochscheibe bzw. an den Abspritzlöchem der Spritzlochscheibe zu einer Dampfblasenbildung kommt, die zu einer aus flüssigem Brennstoff und Dampfblasen gebildeten Zweiphasenströmung durch die Abspritzlδcher führt mit pro Zeiteinheit geringerer durchströmender Brennstoffmenge. Dadurch wird das Laufverhalten der Brennkraftmaschine in unerwünschter Weise derart beeinflußt, daß es zu einem unrunden Lauf der Brennkraftmaschine oder gar zu einem Stehenbleiben kommt.
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruches 1 hat demgegenüber den Vorteil, daß auf einfache Art und Weise insbesondere bei sehr hohen Motor- oder Brennstofftemperaturen die Gefahr einer Verringerung (Abmagerung) der eingespritzten Brennstoffmenge verkleinert oder ganz vermieden wird, so daß das Laufverhalten der heißen Brennkraftmaschine insbesondere auch beim Heißstart oder Heißleerlauf verbessert wird. Das wenigstens eine Übergangselement zwischen dem Ventilsitzkδrper und der Spritzlochscheibe verringert den Wärmeübergang von dem Ventilsitzkörper zur Spritzlochscheibe, entkoppelt diese also voneinander, so daß die erforderliche Verdampfungswärme zur Verdampfung des an den Abspritzlöchem abgespritzten Brennstoffes, die der Spritzlochscheibe entzogen wird, zu einer Abkühlung der Spritzlochscheibe führt, während ein Nachfließen von Wärme vom Ventilsitzkδrper zur Spritzlochscheibe hin durch das Übergangselement verringert oder nahezu ganz unterbunden wird. Infolge der gegenüber bekannten Brennstoffein- spritzventilen kühleren Spritzlochscheibe wird eine Dampfblasenbildung stromaufwärts der Spritzlochscheibe oder an den Abspritzlöchem stark verringert oder ganz vermieden, so daß über die Abspritzlöcher flüssiger Brennstoff strömt und damit die Brennkraftmaschine insbesondere beim Heißstart und Heißleerlauf ausreichend mit Brennstoff versorgt wird, um sicher zu starten und weiterzulaufen.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch l angegebenen Brennstoffeinspritzventiles möglich.
Vorteilhaft ist es, das wenigstens eine Übergangselement als erhabenen Körperabsatz an dem Ventilsitzkörper auszubilden, um somit die Berührungsfläche zwischen Ventilsitzkörper und Spritzlochscheibe zu verringern und dadurch eine Drosselstelle für den Wärmeübergang zu schaffen. Vorteilhaft ist es ebenfalls, das wenigstens eine Übergangselement als erhabenen Scheibenabsatz an der Spritzlochscheibe auszubilden, wodurch ebenfalls die Berührungsfläche zwischen dem Ventilsitzkörper und der Spritzlochscheibe verringert und damit der Wärmeübergang gedrosselt wird. Dabei ist es weiterhin vorteilhaft, den Scheibenabsatz durch eine vertiefte Stufe oder eine Einwölbung in der Spritzlochscheibe zu bilden. Eine weitere vorteilhafte Ausgestaltung ist derart, daß wenigstens ein Übergangselement als erhabener Körperabsatz an dem
Ventilsitzkörper und wenigstens ein Übergangselement als erhabener Scheibenabsatz an der Spritzlochscheibe ausgebildet ist, um den Wärmeübergang zwischen Ventilsitzkörper und Spritzlochscheibe zu drosseln. Zusätzlich vorteilhaft ist es, den Körperabsatz bzw. den Scheibenabsatz kreisringförmig auszubilden.
Vorteilhaft ist es ebenfalls, die Spritzlochscheibe an den Kδrperabsatz anzulegen und mit diesem zu verbinden bzw. die Spritzlochscheibe mit dem Scheibenabsatz an den
Ventilsitzkörper anzulegen und dort mit diesem zu verbinden.
Eine ebenfalls vorteilhafte Ausgestaltung besteht darin, das wenigstens eine Übergangselement als separater, thermisch isolierender Isolierkörper auszubilden und zwischen
Ventilsitzkörper und Spritzlochscheibe anzuordnen, um die von dem Ventilsitzkörper auf die Spritzlochscheibe übertretende Wärmemenge zu vermindern. Dabei ist es vorteilhaft, den Isolierkörper aus Kunststoff auszubilden, insbesondere als Kunststoffspritzgußkörper.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläuter . Es zeigen Figur l ein erstes Ausführungsbeispiel der Erfindung anhand eines schematisch in Teildarstellung gezeigten Brennstoffeinspritzventiles, Figur 2 bis Figur 8 ein zweites bis ein achtes Ausführungsbeispiel der Erfindung mit teilweiser Darstellung eines Brennstoffeinspritzventiles.
Beschreibung der Ausführungsbeispiele
In der Figur 1 ist ein Beispiel eines sonst bereits bekannten Brennstoffeinspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen teilweise dargestellt, das als erstes Ausführungsbeispiel erfindungsgemäß ausgebildet ist. Das Brennstoffeinspritzventil hat ein rohrförmiges Ventilgehäuse 1, in dem konzentrisch zu einer Ventillängsachse 2 eine Längsöffnung 3 ausgebildet ist. In der Längsöffnung 3 ist eine z. B. rohrförmige Ventilnadel 5 angeordnet, die an ihrem stromabwärtigen Ende 6 mit einem kugelförmigen Ventilschließkδrper 7, an dessen Umfang beispielsweise fünf kreisförmige Abflachungen 8 vorgesehen sind, verbunden ist.
Die Betätigung des Brennstoffeinspritzventils erfolgt in bekannter Weise beispielsweise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 5 und damit zum Öffnen entgegen der Federkraft einer nicht dargestellten Rückstellfeder bzw. Schließen des Brennstoffeinspritzventils dient ein angedeuteter elektromagnetischer Kreis mit einer Magnetspule 10, einem Anker 11 und einem Kern 12. Der Anker 11 ist mit dem dem Ventilschließkörper 7 abgewandten Ende der Ventilnadel 5 durch z. B. eine Schweißnaht mittels eines Lasers verbunden und auf den Kern 12 ausgerichtet.
Zur Führung des Ventilschließkörpers 7 während der Axialbewegung dient eine Führungsδffnung 15 eines Ventilsitzkörpers 16. In das stromabwärts liegende, dem Kern 11 abgewandte Ende des Ventilgehäuses 1 ist in der konzentrisch zur Ventillängsachse 2 verlaufenden Längsöffnung 3 der zylinderförmige Ventilsitzkörper 16 eingeschoben. Der Umfang des Ventilsitzkörpers 16 weist einen geringfügig kleineren Durchmesser auf als die Längsöffnung 3 des Ventilgehäuses 1. An seiner einen, dem Ventilschließkörper 7 abgewandten, unteren Stirnseite 17 ist der Ventilsitzkörper 16 mit einem erhabenen Kδrperabsatz 18 versehen, an dem ein Bodenteil 20 einer z. B. topffδrmig ausgebildeten Spritzlochscheibe 21 mit seiner oberen Stirnseite 19 anliegt und konzentrisch und fest mit diesem verbunden ist. In seinem zentralen Bereich 24 weist das Bodenteil 20 der
Spritzlochscheibe 21 wenigstens eine, beispielsweise vier durch Erodieren oder Stanzen ausgeformte Abspritzlöcher 25 auf.
An das Bodenteil 20 der topfförmigen Spritzlochscheibe 21 schließt sich ein umlaufender Halterand 26 an, der sich in axialer Richtung dem Ventilsitzkörper 16 abgewandt erstreckt und bis zu seinem Ende 27 hin konisch nach außen gebogen ist. Da der Umfangsdurchmesser des Ventilsitzkorpers 16 kleiner als der
Durchmesser der Längsδffnung 3 des Ventilgehäuses 1 ist, liegt nur zwischen der Längsδffnung 3 und dem leicht konisch nach außen gebogenen Halterand 26 der Spritzlochscheibe 21 eine radiale Pressung vor.
Die Einschubtiefe des aus Ventilsitzkörper 16 und topfförmiger Spritzlochscheibe 21 bestehenden Ventilsitzteils in die Längsöffnung 3 bestimmt die Voreinstellung des Hubs der Ventilnadel 5, da die eine Endstellung der Ventilnadel 5 bei nicht erregter Magnetspule 10 durch die Anlage des
Ventilschließkörpers 7 an einer Ventilsitzfläche 29 des Ventilsitzkorpers 16 festgelegt ist. Die andere Endstellung der Ventilnadel 5 wird bei erregter Magnetspule 10 beispielsweise durch die Anlage des Ankers 11 an dem Kern 12 festgelegt. Der Weg zwischen diesen beiden Endstellungen der Ventilnadel 5 stellt somit den Hub dar.
An seinem Ende 27 ist der Halterand 26 der Spritzlochscheibe 21 mit der Wandung der Längsöffnung 3 dicht und fest verbunden. Hierfür ist zwischen dem Ende 27 des Halterandes 26 und der Wandung der Längsδffnung 3 eine umlaufende Schweißnaht 30 vorgesehen. Außerhalb des zentralen Bereiches 24 ist mit einer weiteren umlaufenden Schweißnaht 31 das Bodenteil 20 dicht mit dem Körperabsatz 18 an der Stirnseite 17 des Ventilsitzkorpers
16 verbunden. Eine dichte Verbindung von Ventilsitzkörper 16 und Spritzlochscheibe 21 sowie von Spritzlochscheibe 21 und Ventilgehäuse 1 ist erforderlich, damit der Brennstoff nicht zwischen der Längsδffnung 3 des Ventilgehäuses 1 und dem Umfang des Ventilsitzkorpers 16 hindurch zu den Abspritzlöchem 25 oder zwischen der Längsδffnung 3 des Ventilsitzträgers 1 und dem Halterand 26 der topffδrmigen Spritzlochscheibe 21 hindurch unmittelbar in eine Luftansaugleitung der Brennkraftmaschine strömen kann.
Der kugelförmige Ventilschließkörper 7 wirkt mit der sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 29 des Ventilsitzkorpers 16 zusammen, die in axialer Richtung zwischen der Führungsδffnung 15 und einer Ausströmöffnung 32 in der unteren Stirnseite 17 des
Ventilsitzkorpers 16 ausgebildet ist. Der Ventilsitzkörper 16 weist der Magnetspule 10 zugewandt eine Ventilsitzkörperδffnung 34 auf, die einen größeren Durchmesser besitzt als den Durchmesser der Führungsδffnung 15 des Ventilsitzkorpers 16.
Zur exakten Führung des Ventilschließkörpers 7 und damit der Ventilnadel 5 während der Axialbewegung ist der Durchmesser der Führungsδffnung 15 so ausgebildet, daß der kugelförmige Ventilschließkörper 7 außerhalb seiner Abflachungen 8 die Führungsöffnung 15 mit geringem radialem Abstand durchragt. Der zentrale Bereich 24 des Bodenteils 20 der Spritzlochscheibe 21 ist beispielsweise in stromabwärtiger Richtung, also in von dem Ventilschließkδrper 7 wegweisender Richtung aus der Ebene des Bodenteils 20 herausgebogen, so daß sich eine Ausbuchtung 36 im zentralen Bereich ergibt. Zwischen der Stirnseite 17 des Ventilschließkörpers 7, der Ventilsitzfläche 29 und der Wandung der Ausbuchtung 36 bzw. oberen Stirnseite 19 der Spritzlochscheibe 21 wird ein Sammelraum 37 gebildet, in den bei von der Ventilsitzfläche 29 abgehobenem Ventilschließkörper 7 der Brennstoff zunächst gelangt, bevor er durch die Abspritzlöcher 25 zugemessen und in die Luftansaugleitung der Brennkraftmaschine abgespritzt wird.
Der wenigstens eine Kδrperabsatz 18 an der unteren Stirnseite 17 des Ventilsitzkorpers 16 bildet ein Übergangselement vom Ventilsitzkörper 16 zur Spritzlochscheibe 21 und drosselt den Wärmeübergang zwischen Ventilsitzkörper und Spritzlochscheibe. Vorzugsweise ist der Körperabsatz 18 kreisringförmig, insbesondere konzentrisch zur Ventillängsachse 2, ausgebildet und vermindert die Berührungsfläche zwischen dem Bodenteil 20 der Spritzlochscheibe 21 und dem Ventilsitzkörper 16. Für die thermische Abkopplung der Spritzlochscheibe 21 von dem Ventilsitzkörper 16 genügt es bereits, wenn der Körperabsatz 18 in axialer Richtung parallel zur Ventillängsachse 2 eine Höhe von wenigen hundertstel Millimeter hat, beispielsweise fünf hundertstel Millimeter. Die Breite des Kδrperabsatzes 18 in radialer Richtung, also quer zur Ventillängsachse 2 liegt etwa bei einem Millimeter, beispielsweise 0,8 mm. Die Lage des Körperabsatzes 18 an der unteren Stirnseite 17 des Ventilsitzkorpers 16 kann in geeigneter Weise gewählt werden zwischen einer Lage in der Nähe der Ausströmöffnung 32 und einer Lage in der Nähe des Durchmessers des Ventilsitzkorpers 16, also in der Nähe der Längsδffnung 3. Durch die im Verhältnis zur Fläche der unteren Stirnseite 17 geringere Querschnittsfläche des Kδrperabsatzes 18, der als Übergangselement zwischen dem Ventilsitzkδrper 16 und der Spritzlochscheibe 21 dient, wird eine thermische Abkopplung und damit eine Drosselung des Wärmeüberganges zwischen dem Ventilsitzkörper und der Spritzlochscheibe erreicht, so daß auch bei heißer Brennkraftmaschine während des Heißstartes und des Heißleerlaufes die Verdampfungswärme des über die Abspritzlδcher 25 abgespritzten Brennstoffes ausreicht, die Spritzlochscheibe 21 im Bereich des Sammelraums 37 derart abzukühlen, daß dort und an den Abspritzlöche 25 keine oder nahezu keine Dampfblasen entstehen, die zu einem unerwünschten Laufverhalten der Brennkraftmaschine führen.
Bei den folgenden Figuren sind die gegenüber den vorhergehenden Figuren gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet.
In der Figur 2 ist in teilweiser Darstellung ein Brennstoffeinspritzventil gezeigt, bei dem an der unteren
Stirnseite 17 des Ventilsitzkorpers 16 kein Übergangselement ausgebildet ist, also die untere Stirnseite 17 eben verläuft. Abweichend von dem Ausführungsbeispiel nach Figur 1 ist bei dem zweiten Ausführungsbeispiel nach Figur 2 das Übergangselement als erhabener Scheibenabsatz 39 ausgebildet, der über die obere Stirnseite 19 des Bodenteils 20 in Richtung zum Ventilsitzkörper 16 hin herausragt und an der unteren Stirnseite 17 anliegt und mittels der umlaufenden Schweißnaht 31 mit dieser verbunden ist. Der wenigstens eine Scheibenabsatz 39 am z. B. 0,15 mm dicken Bodenteil 20 der Spritzlochscheibe 21 ist vorzugsweise kreisringförmig ausgebildet und hat etwa die gleichen Abmessungen wie der Körperabsatz 18 beim ersten Ausführungsbeispiel. Mittels des Scheibenabsatzes 39 wird ebenfalls wieder eine thermische Entkopplung zwischen Ventilsitzkörper und Spritzlochscheibe und damit eine Drosselung des Wärmeüberganges erzielt. Die Lage des Scheibenabsatzes 39 kann in geeigneter Weise gewählt werden zwischen einer Lage in der Nähe der Ausströmöffnung 32 des Ventilsitzkorpers 16 und einer Lage in der Nähe des Durchmessers der Spritzlochscheibe.
Bei dem dritten Ausführungsbeispiel nach Figur 3 werden die Ausführungsbeispiele nach den Figuren 1 und 2 kombiniert, indem als Übergangselement ein Körperabsatz 18 am
Ventilsitzkörper 16 und weiterhin ein Scheibenabsatz 39 am Bodenteil 20 der Spritzlochscheibe 21 dient, wobei der Scheibenabsatz 39 an dem Körperabsatz 18 anliegt und mittels der umlaufenden Schweißnaht 31 mit diesem dicht verbunden ist.
Bei den Ausführungsbeispielen nach den Figuren 4 bis 6 ist die untere Stirnseite 17 des Ventilsitzkorpers 16 eben ausgeführt, und auch an der oberen Stirnseite 19 der Spritzlochscheibe 21 ist keine Erhebung vorgesehen.
Abweichend von den bisher beschriebenen
Ausführungsbeispielen ist bei den Ausführungsbeispielen nach den Figuren 4 bis 6 zwischen dem Ventilsitzkörper 16 und der Spritzlochscheibe 21 wenigstens ein als separater, thermisch isolierender Isolierkörper 41 ausgebildetes Übergangselement angeordnet, das den Wärmeübergang zwischen Ventilsitzkδrper und Spritzlochscheibe verringert, wodurch eine Dampfblasenbildung im Sammelraum 37 bzw. an den Abspritzlöchern 25 verringert oder ganz vermieden wird. Zur Hubeinstellung des Ventilschließkörpers 7 kann dabei der
Ventilsitzkörper 16 entweder mit einer Preßpassung in die Längsδffnung 3 des Ventilgehäuses 1 eingepreßt sein, wie in Figur 5 dargestellt ist, oder der Ventilsitzkδrper 16 wird nach der Einstellung mittels einer in den Figuren 4 und 6 dargestellten Schweißnaht 43 an der unteren Stirnseite 17 zwischen Ventilsitzkörper 16 und Ventilgehäuse 1 fixiert. Als Material für den Isolierkörper 41 kann Kunststoff, Gummi, Glas, Keramik oder ein anderer Isolierwerkstoff dienen.
Bei dem vierten Ausführungsbeispiel nach Figur 4 hat der Isolierkörper 41 eine ebene Scheibenform mit einem die Ausströmöffnung 32 mit dem zentralen Bereich 24 des Bodenteils 20 verbindenden Durchgangsloch 45.
Bei dem fünften Ausführungsbeispiel nach Figur 5 ist im Bereich der unteren Stirnseite 17 des Ventilsitzkorpers 16 im Ventilgehäuse 1 eine Nut 47 ausgebildet, die sich bei diesem Ausführungsbeispiel in axialer Richtung parallel zur Ventillängsachse 2 nur so weit erstreckt, daß sie nicht bis zum Ende 27 des Halterandes 26 der Spritzlochscheibe 21 reicht, so daß das Ende 27 an der Wandung der Längsöffnung 3 anliegen und mit dieser mittels der Schweißnaht 30 verschweißt sein kann. In die Nut 47 greift der hier topfförmig ausgebildete Isolierkörper 41 mit einem
Zylinderrand 49 ein. Der Isolierkörper 41 nach Figur 5 kann beispielsweise aus Kunststoff bestehen und durch direktes Spritzgießen in der Längsöffnung 3 hergestellt sein. Anschließend wird die Spritzlochscheibe 21 in die Längsδffnung 3 eingeschoben und mittels der Schweißnaht 30 verschweißt.
Bei dem sechsten Ausführungsbeispiel nach Figur 6 ist der Isolierkörper 41 ebenfalls topfförmig ausgebildet, und die Nut 47 sowie der Zylinderrand 49 erstrecken sich ausgehend vom Ventilsitzkδrper 16 in axialer Richtung über das Ende 27 der Spritzlochscheibe 21 hinaus, so daß die
Spritzlochscheibe 21 außer in ihrem zentralen Bereich 24 an ihrer äußeren Oberfläche vollständig von dem Isolierkörper 41 umschlossen wird. Das Ende 27 der Spritzlochscheibe 21 verkrallt sich beim Einschieben der Spritzlochscheibe in den Zylinderrand 49 des Isolierkörpers 41. Der Isolierkörper 41 gemäß dem Ausführungsbeispiel nach Figur 6 kann ebenfalls durch KunststoffSpritzgießen hergestellt sein.
Bei dem siebenten Ausführungsbeispiel nach Figur 7 ist in die obere Stirnseite 19 des Bodenteils 20 eine vertiefte Stufe 52 eingearbeitet, beispielsweise eingeprägt, die den zentralen Bereich 24 mit dem wenigstens einen Abspritzloch 25 mit einem größeren Durchmesser umgibt, so daß von der Stufe 52 ausgehend bis zum Umfang des Bodenteils 20 der Scheibenabsatz 39 gebildet wird, der an der unteren Stirnseite 17 des Ventilsitzkorpers 16 anliegt.
Bei dem achten Ausführungsbeispiel nach Figur 8 ist in die obere Stirnseite 19 des Bodenteils 20 eine vertiefte Einwölbung 53 eingearbeitet, beispielsweise eingeprägt, die den zentralen Bereich 24 mit dem wenigstens einen Abspritzloch 25 mit einem größeren Durchmesser umgibt, so daß von der Einwölbung 53 ausgehend bis zum Umfang des
Bodenteils 20 der Scheibenabsatz 39 gebildet wird, der an der unteren Stirnseite 17 des Ventilsitzkorpers 16 anliegt.
Für alle Ausführungsbeispiele nach den Figuren 1 bis 3 sowie 7 und 8 gilt, daß durch die Ausbildung des Körperabsa zes 18 bzw. des Scheibenabsatzes 39 und den beispielsweise nur um 0,15 mm dicken Querschnitt der Spritzlochscheibe 21 die Wärmeströmung zu dem zentralen Bereich 24 reduziert und damit die Gefahr einer Dampfblasenbildung verkleinert wird.
Es ist ebenfalls möglich, bei den Ausführungsbeispielen nach den Figuren 1 bis 3 sowie 7 und 8 im Bereich des Körperabsatzes 18 und/oder Scheibenabsatzes 39 einen geeigneten thermisch isolierenden Isolierkörper vorzusehen. Die anhand der Ausführungsbeispiele geschilderten Lösungen des Problems sind nicht nur für topfformige
Spritzlochscheiben geeignet, sondern sie gelten auch für nur ganz eben ausgebildete Spritzlochscheiben.

Claims

Patentansprüche
1. Brennstoffeinspritzventil für Brennkraftmaschinen, mit einem Ventilgehäuse, mit einem bewegbaren Ventilschließkörper, der mit einer Ventilsitzfläche zusammenwirkt, die in einem Ventilsitzkörper ausgebildet ist und mit einer stromabwärts des Ventilsitzkorpers angeordneten Spritzlochscheibe, in der wenigstens ein Abspritzloch vorgesehen ist, dadurch gekennzeichnet, daß durch wenigstens ein Übergangselement (18, 39, 41) der Wärmeübergang zwischen Ventilsitzkδrper (16) und Spritzlochscheibe (21) verringert ist.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß das wenigstens eine Übergangselement als erhabener Körperabsatz (18) an dem Ventilsitzkörper (16) ausgebildet ist.
3. Brennstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das wenigstens eine Übergangselement als erhabener Scheibenabsatz (39) an der Spritzlochscheibe (21) ausgebildet ist.
4. Brennstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß die Spritzlochscheibe (21) eine dem Ventilsitzkörper (16) zugewandte obere Stirnseite (19) mit einem das wenigstens eine Abspritzloch (25) aufweisenden zentralen Bereich (24) und zur Bildung des vom Umfang her ausgehenden Scheibenabsatzes (39) eine gegenüber der oberen Stirnseite (19) vertiefte und den zentralen Bereich (24) mit einem größeren Durchmesser umgebende Stufe (52) hat.
5. Brennstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß die Spritzlochscheibe (21) eine dem Ventilsitzkörper (16) zugewandte obere Stirnseite (19) mit einem das wenigstens eine Abspritzloch (25) aufweisenden zentralen Bereich (24) und zur Bildung des vom Umfang her ausgehenden Scheibenabsatzes (39) eine gegenüber der oberen Stirnseite (19) vertiefte und den zentralen Bereich (24) mit einem größeren Durchmesser umgebende Einwölbung (53) hat.
6. Brennstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß der Körperabsatz (18) kreisringförmig ausgebildet ist.
7. Brennstoffeinspritzventil nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der Scheibenabsatz (39) kreisringfδrmig ausgebildet ist.
8. Brennstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß die Spritzlochscheibe (21) an dem Körperabsatz (18) anliegt und mit diesem verbunden ist.
9. Brennstoffeinspritzventil nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Spritzlochscheibe (21) mit dem Scheibenabsatz (39) an dem Ventilsitzkörper (16) anliegt und dort mit diesem verbunden ist.
10. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß das wenigstens eine Übergangselement als separater, thermisch isolierender Isolierkörper (41) ausgebildet und zwischen Ventilsitzkörper (16) und Spritzlochscheibe (21) angeordnet ist.
11. Brennstoffeinspritzventil nach Anspruch 10, dadurch gekennzeichnet, daß der Isolierkörper (41) aus Kunststoff, Keramik oder Glas ausgebildet ist.
PCT/DE1996/000053 1995-02-02 1996-01-17 Brennstoffeinspritzventil für brennkraftmaschinen WO1996023968A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR9605297A BR9605297A (pt) 1995-02-02 1996-01-17 Valvula de injeção de combustível para motores de combustão interna
DE59607762T DE59607762D1 (de) 1995-02-02 1996-01-17 Brennstoffeinspritzventil für brennkraftmaschinen
US08/718,581 US5862991A (en) 1995-02-02 1996-01-17 Fuel injection valve for internal combustion engines
EP96900279A EP0774069B1 (de) 1995-02-02 1996-01-17 Brennstoffeinspritzventil für brennkraftmaschinen
JP52315596A JP3625838B2 (ja) 1995-02-02 1996-01-17 内燃機関に用いられる燃料噴射弁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19503269A DE19503269A1 (de) 1995-02-02 1995-02-02 Brennstoffeinspritzventil für Brennkraftmaschinen
DE19503269.1 1995-02-02

Publications (1)

Publication Number Publication Date
WO1996023968A1 true WO1996023968A1 (de) 1996-08-08

Family

ID=7752928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000053 WO1996023968A1 (de) 1995-02-02 1996-01-17 Brennstoffeinspritzventil für brennkraftmaschinen

Country Status (10)

Country Link
US (1) US5862991A (de)
EP (1) EP0774069B1 (de)
JP (1) JP3625838B2 (de)
KR (1) KR100441813B1 (de)
CN (1) CN1062335C (de)
BR (1) BR9605297A (de)
DE (2) DE19503269A1 (de)
ES (1) ES2164862T3 (de)
RU (1) RU2151905C1 (de)
WO (1) WO1996023968A1 (de)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724075A1 (de) * 1997-06-07 1998-12-10 Bosch Gmbh Robert Verfahren zur Herstellung einer Lochscheibe für ein Einspritzventil und Lochscheibe für ein Einspritzventil und Einspritzventil
US6330981B1 (en) * 1999-03-01 2001-12-18 Siemens Automotive Corporation Fuel injector with turbulence generator for fuel orifice
JP2001046919A (ja) * 1999-08-06 2001-02-20 Denso Corp 流体噴射ノズル
US6742727B1 (en) 2000-05-10 2004-06-01 Siemens Automotive Corporation Injection valve with single disc turbulence generation
JP2002039036A (ja) * 2000-07-24 2002-02-06 Mitsubishi Electric Corp 燃料噴射弁
DE10118163B4 (de) * 2001-04-11 2007-04-19 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10118164B4 (de) * 2001-04-11 2007-02-08 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10123860A1 (de) * 2001-05-16 2002-11-28 Bosch Gmbh Robert Brennstoffeinspritzventil
WO2002099271A1 (en) 2001-06-06 2002-12-12 Siemens Vdo Automotive Corporation Spray pattern control with non-angled orifices in fuel injection metering disc
JP3969247B2 (ja) * 2001-11-06 2007-09-05 株式会社デンソー 燃料噴射弁
US6817545B2 (en) * 2002-01-09 2004-11-16 Visteon Global Technologies, Inc. Fuel injector nozzle assembly
US6877678B2 (en) * 2002-02-14 2005-04-12 Delphi Technologies, Inc. Fuel injector flow director plate retainer
JP3751264B2 (ja) * 2002-06-19 2006-03-01 株式会社ケーヒン 燃料噴射弁
US6845930B2 (en) 2002-06-28 2005-01-25 Siemens Vdo Automotive Corp. Spray pattern and spray distribution control with non-angled orifices in fuel injection metering disc and methods
US6966505B2 (en) * 2002-06-28 2005-11-22 Siemens Vdo Automotive Corporation Spray control with non-angled orifices in fuel injection metering disc and methods
US6820826B2 (en) * 2002-09-25 2004-11-23 Siemens Vdo Automotive Corp. Spray targeting to an arcuate sector with non-angled orifices in fuel injection metering disc and method
US6789754B2 (en) 2002-09-25 2004-09-14 Siemens Vdo Automotive Corporation Spray pattern control with angular orientation in fuel injector and method
US6929197B2 (en) * 2002-09-25 2005-08-16 Siemens Vdo Automotive Corporation Generally circular spray pattern control with non-angled orifices in fuel injection metering disc and method
CN100422539C (zh) * 2002-10-31 2008-10-01 浙江飞亚电子有限公司 电控燃油喷射四冲程汽油发动机
US6921022B2 (en) * 2003-01-09 2005-07-26 Siemens Vdo Automotive Corporation Spray pattern control with non-angled orifices formed on dimpled fuel injection metering disc having a sac volume reducer
US20040188550A1 (en) * 2003-03-25 2004-09-30 Hitachi Unisia Automotive, Ltd. Fuel injection valve
US7163159B2 (en) * 2003-07-15 2007-01-16 Siemens Vdo Automotive Corporation Fuel injector including a compound angle orifice disc
US7201329B2 (en) * 2004-04-30 2007-04-10 Siemens Vdo Automotive Corporation Fuel injector including a compound angle orifice disc for adjusting spray targeting
US7086615B2 (en) 2004-05-19 2006-08-08 Siemens Vdo Automotive Corporation Fuel injector including an orifice disc and a method of forming an oblique spiral fuel flow
JP4025768B2 (ja) * 2004-09-27 2007-12-26 株式会社ケーヒン 燃料噴射弁
US20060157595A1 (en) * 2005-01-14 2006-07-20 Peterson William A Jr Fuel injector for high fuel flow rate applications
JP2006220029A (ja) * 2005-02-09 2006-08-24 Denso Corp 燃料噴射弁
US20060192036A1 (en) * 2005-02-25 2006-08-31 Joseph J M Fuel injector including a multifaceted dimple for an orifice disc with a reduced footprint of the multifaceted dimple
JP2006242046A (ja) * 2005-03-01 2006-09-14 Hitachi Ltd 燃料噴射弁
JP2007303638A (ja) * 2006-05-15 2007-11-22 Aisan Ind Co Ltd 流体用制御弁
US7866574B2 (en) * 2007-01-22 2011-01-11 Caterpillar Inc. Remanufactured fuel injector tip and fuel injector tip remanufacturing process
US9726131B2 (en) * 2007-01-29 2017-08-08 Mitsubishi Electric Corporation Fuel injection valve
CN101371033B (zh) * 2007-03-27 2010-10-27 三菱电机株式会社 燃料喷射阀
JP4416023B2 (ja) * 2007-09-10 2010-02-17 株式会社デンソー 燃料噴射弁
JP5161853B2 (ja) * 2009-09-29 2013-03-13 三菱電機株式会社 燃料噴射弁
DE102010029298A1 (de) * 2010-05-26 2011-12-01 Robert Bosch Gmbh Ventilanordnung zur Dosierung eines fluiden Mediums in einen Abgasstrang einer Brennkraftmaschine
KR101172167B1 (ko) 2010-07-19 2012-08-07 기아자동차주식회사 Lpi 차량의 인젝터
DE102012211665A1 (de) 2011-08-18 2013-02-21 Robert Bosch Gmbh Ventil für ein strömendes Fluid
CN103670853A (zh) * 2013-09-11 2014-03-26 浙江冯仕特电喷技术有限公司 一种电磁喷油器
JPWO2018003559A1 (ja) * 2016-07-01 2019-02-07 日立オートモティブシステムズ株式会社 燃料噴射弁
US10576480B2 (en) * 2017-03-23 2020-03-03 Vitesco Technologies USA, LLC Stacked spray disc assembly for a fluid injector, and methods for constructing and utilizing same
DE102017205665A1 (de) * 2017-04-04 2018-10-04 Robert Bosch Gmbh Injektor zum Einbringen eines Fluids mit verbesserter Strahlaufbereitung
CN106837639A (zh) * 2017-04-13 2017-06-13 沈阳航空航天大学 一种近距离碰撞式双燃料发动机喷嘴组件
CN107165755A (zh) * 2017-07-03 2017-09-15 浙江凯利智控科技有限公司 喷油器雾化特性可调节锥体结构
US11959446B2 (en) 2021-08-20 2024-04-16 Delphi Technologies Ip Limited Fluid injector having a director plate and a director plate retainer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080700A (en) * 1976-01-05 1978-03-28 Brunswick Corporation Method of atomizing a liquid, an atomizer tip for use in the method and method of manufacturing the tip
EP0151793A2 (de) * 1984-02-10 1985-08-21 Robert Bosch Gmbh Kraftstoffeinspritzdüse für Brennkraftmaschinen
WO1987005663A1 (en) * 1986-03-22 1987-09-24 Robert Bosch Gmbh System for injecting fuel into combustion chambers of an internal combustion engine
EP0357498A1 (de) * 1988-08-30 1990-03-07 Solex Kraftstoffeinspritzvorrichtung mit einer Belüftungskammer
DE4221185A1 (de) * 1992-06-27 1994-01-05 Bosch Gmbh Robert Spritzlochscheibe für ein Ventil und Verfahren zur Herstellung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB759524A (en) * 1952-12-30 1956-10-17 Emmerich Satzger An improved fuel injection nozzle for fuel injection internal combustion engines
DE3004033C2 (de) * 1980-02-05 1986-04-10 Klöckner-Humboldt-Deutz AG, 5000 Köln Wärmegeschützte Kraftstoffeinspritzdüse für Brennkraftmaschinen und Verfahren zur Herstellung einer solchen Einspritzdüse
CA2115819C (en) * 1993-02-17 2000-07-25 Yasuhide Tani Fluid injection nozzle
US5295627A (en) * 1993-08-19 1994-03-22 General Motors Corporation Fuel injector stroke calibration through dissolving shim

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080700A (en) * 1976-01-05 1978-03-28 Brunswick Corporation Method of atomizing a liquid, an atomizer tip for use in the method and method of manufacturing the tip
EP0151793A2 (de) * 1984-02-10 1985-08-21 Robert Bosch Gmbh Kraftstoffeinspritzdüse für Brennkraftmaschinen
WO1987005663A1 (en) * 1986-03-22 1987-09-24 Robert Bosch Gmbh System for injecting fuel into combustion chambers of an internal combustion engine
EP0357498A1 (de) * 1988-08-30 1990-03-07 Solex Kraftstoffeinspritzvorrichtung mit einer Belüftungskammer
DE4221185A1 (de) * 1992-06-27 1994-01-05 Bosch Gmbh Robert Spritzlochscheibe für ein Ventil und Verfahren zur Herstellung

Also Published As

Publication number Publication date
JPH09511308A (ja) 1997-11-11
EP0774069B1 (de) 2001-09-26
RU2151905C1 (ru) 2000-06-27
DE59607762D1 (de) 2001-10-31
DE19503269A1 (de) 1996-08-08
CN1062335C (zh) 2001-02-21
CN1145655A (zh) 1997-03-19
KR970702431A (ko) 1997-05-13
JP3625838B2 (ja) 2005-03-02
US5862991A (en) 1999-01-26
EP0774069A1 (de) 1997-05-21
BR9605297A (pt) 1997-09-16
KR100441813B1 (ko) 2004-11-08
ES2164862T3 (es) 2002-03-01

Similar Documents

Publication Publication Date Title
WO1996023968A1 (de) Brennstoffeinspritzventil für brennkraftmaschinen
DE19712589C1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstoffeinspritzventils
EP0718491B1 (de) Verfahren zur herstellung eines ventiles
EP0877860B1 (de) Brennstoffeinspritzventil
EP0538247B1 (de) Kraftstoffeinspritzventil
DE19522284B4 (de) Brennstoffeinspritzventil
DE2723280A1 (de) Brennstoffeinspritzventil
EP1062421B1 (de) Brennstoffeinspritzventil
WO1994000686A1 (de) Spritzlochscheibe fur ein ventil und verfahren zur herstellung
EP0717816B1 (de) Elektromagnetisch betätigbares ventil
EP0796393A1 (de) Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil
EP0460125B1 (de) Elektromagnetisch betätigbares ventil
EP1200728B1 (de) Brennstoffeinspritzventil
DE3207917C2 (de)
EP0659235B1 (de) Elektromagnetisch betätigbares brennstoffeinspritzventil
DE4411554A1 (de) Einspritzventil
WO1999066195A1 (de) Brennstoffeinspritzventil
EP1366283B1 (de) Brennstoffeinspritzventil mit einer einstellhülse
EP1753955B1 (de) Brennstoffeinspritzventil
EP1404967A1 (de) Brennstoffeinspritzventil
EP1327070B1 (de) Brennstoffeinspritzventil
EP1195516B1 (de) Brennstoffeinspritzventil
EP0853725A1 (de) Brennstoffeinspritzventil
WO1997008453A1 (de) Brennstoffeinspritzventil
WO2004101986A9 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190012.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1996900279

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019960705533

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08718581

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996900279

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996900279

Country of ref document: EP