EP1195516B1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
EP1195516B1
EP1195516B1 EP20010123836 EP01123836A EP1195516B1 EP 1195516 B1 EP1195516 B1 EP 1195516B1 EP 20010123836 EP20010123836 EP 20010123836 EP 01123836 A EP01123836 A EP 01123836A EP 1195516 B1 EP1195516 B1 EP 1195516B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel
fuel injection
injection valve
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010123836
Other languages
English (en)
French (fr)
Other versions
EP1195516A2 (de
EP1195516A3 (de
Inventor
Guenter Dantes
Detlef Nowak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1195516A2 publication Critical patent/EP1195516A2/de
Publication of EP1195516A3 publication Critical patent/EP1195516A3/de
Application granted granted Critical
Publication of EP1195516B1 publication Critical patent/EP1195516B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the invention relates to a fuel injection valve according to the preamble of the main claim.
  • a fuel injection valve which has a plurality of fuel channels in a flow path of the fuel from a fuel inlet to a spray orifice whose cross section determines the amount of fuel sprayed off per unit of time at a given fuel pressure.
  • a part of the fuel channels is aligned so that the fuel jets emerging from them are sprayed directly through the injection orifice.
  • a disadvantage of the fuel injection valve known from the above document is in particular that the fuel channels start in a plane perpendicular to the flow direction of the fuel, the openings are thus arranged on a circular line around a valve needle guide connected to the valve seat carrier. As a result, the quantity of fuel flowing through the fuel injection valve can not be metered precisely enough when the valve closing body is lifted off the sealing seat. In particular the ratio of maximum sprayed amount of fuel to minimally saucespritzter amount of fuel relatively small.
  • the number of wells is not sufficient to produce a sufficiently homogeneous fuel cloud that meets the stoichiometric requirements for complete combustion. This is additionally reinforced by the large diameter of the fuel channels.
  • US-A-5823161 discloses a fuel injector for an internal combustion engine which includes a high pressure fuel pump that pumps fuel from a low pressure chamber via a supply line to a high pressure plenum communicating via high pressure lines to the individual injectors incorporated into the high pressure fuel pump Protrude combustion chamber.
  • these injection valves are designed as injection valves with an outwardly opening valve element, via the controllable opening movement in the direction of the combustion chamber, a variable injection cross section can be set to the injection valve.
  • a valve needle guide two rows of injection openings are provided axially one above the other. The rows of injection openings are arranged such that the first lower row near the combustion chamber is opened first while the second upper row opens only after another valve needle lift.
  • EP-A-0789142 discloses a mechanism for a variable number of injection ports of a fuel injector having a plurality of injection ports whose diameter is smaller than that of the conventional injection ports in a cylindrical portion formed at a lower end part of the injection nozzle. On the other hand, these injection ports are again formed such that their total opening area becomes larger than that of the conventional injection ports. Since the injection openings are configured to be all closed on an outer circumferential surface of the needle valve when the valve needle is engaged with the seat, little or no dripping occurs.
  • the fuel injection valve according to the invention with the characterizing features of the main claim has the advantage that any characteristic can be generated by the arrangement of the fuel channels or their number, so that the Zumeß the fuel injection valve is improved in relation to the opening and closing times.
  • the hollow cylindrical shape of the valve needle guide is easy to prepare and can either be made in one piece with the valve seat carrier or attached thereto.
  • valve closing body in the valve needle guide has in addition to the improvement and control of Zumeßeigenschaften a stabilizing effect on the stroke of the valve needle, since lateral offsets are excluded.
  • the valve closing body can be placed very precisely on the sealing seat after the closing process.
  • the gaps in the rows of fuel channels provide for a freely selectable injection dynamics and a shapable jet pattern, which can be influenced by the targeted introduction of fuel channels at individual points of the valve needle guide.
  • the fuel By arranging the fuel channels with a tangential component relative to the center axis of the fuel injection valve, the fuel receives a twist, which ensures a good treatment of the mixture cloud.
  • the fuel injection valve 1 is embodied in the form of a fuel injection valve for fuel injection systems of mixture-compression spark-ignition internal combustion engines.
  • the fuel injection valve 1 is suitable in particular for the direct injection of fuel into a combustion chamber, not shown, of an internal combustion engine.
  • the fuel injection valve 1 consists of a nozzle body 2, in which a valve needle 3 is arranged.
  • the valve needle 3 is operatively connected to a valve closing body 4, which cooperates with a valve seat body 6 arranged on a valve seat body 5 to form a sealing seat.
  • the fuel injection valve 1 in the exemplary embodiment is an inwardly opening fuel injection valve 1 which has an injection opening 7.
  • the nozzle body 2 is sealed by a seal 8 against the outer pole 9 of a magnetic coil 10.
  • the magnetic coil 10 is encapsulated in a coil housing 11 and wound on a bobbin 12, which rests against an inner pole 13 of the magnetic coil 10.
  • the inner pole 13 and the outer pole 9 are through a gap 26th separated from each other and are based on a connecting member 29.
  • the magnetic coil 10 is energized via a line 19 from a via an electrical plug contact 17 can be supplied with electric current.
  • the plug contact 17 is surrounded by a plastic casing 18, which may be molded on the inner pole 13.
  • valve needle 3 is guided in a valve needle guide 14, which is designed disk-shaped.
  • armature 20 On the other side of the dial 15 is an armature 20. This is frictionally connected via a first flange 21 with the valve needle 3 in connection, which is connected by a weld 22 with the first flange 21.
  • a return spring 23 On the first flange 21, a return spring 23 is supported, which is brought in the present design of the fuel injection valve 1 by a sleeve 24 to bias.
  • the armature 20 and the valve seat body 5 are fuel passages 30a to 30c, which conduct the fuel, which is supplied via a central fuel supply 16 and filtered by a filter element 25, to the ejection opening 7.
  • the fuel injection valve 1 is sealed by a seal 28 against a fuel line, not shown.
  • the armature 20 In the idle state of the fuel injection valve 1, the armature 20 is acted upon by the return spring 23 counter to its stroke direction so that the valve closing body 4 is held on the valve seat 6 in sealing engagement. Upon excitation of the solenoid coil 10, this builds up a magnetic field, which moves the armature 20 against the spring force of the return spring 23 in the stroke direction, the stroke being predetermined by a working gap 27 located in the rest position between the inner pole 12 and the armature 20.
  • the armature 20 takes the flange 21, which is welded to the valve needle 3, also in the stroke direction with.
  • the valve closing body 4, which is in operative connection with the valve needle 3, lifts off from the valve seat surface 6 and the fuel guided via the fuel channels 30a to 30c to the injection opening 7 is hosed down.
  • the armature 20 drops after sufficient degradation of the magnetic field by the pressure of the return spring 23 from the inner pole 13, whereby the standing with the valve needle 3 in operative connection flange 21 moves against the stroke direction.
  • the valve needle 3 is thereby moved in the same direction, whereby the valve closing body 4 touches on the valve seat surface 6 and the fuel injection valve 1 is closed.
  • FIG. 2 shows an excerpted sectional view of the detail of the fuel injection valve 1, indicated by II in FIG. 1.
  • valve needle guide 31 which is formed on an inlet-side end face 32 of the valve seat body 5.
  • the valve needle guide 31 may be integrally formed with the valve seat body 5 or be connected to the valve seat body 5, for example, by welding, soldering or similar methods.
  • the valve needle guide 31 is formed as a hollow cylinder.
  • the valve needle 3 has a spherical valve closing body 4.
  • the valve closing body 4 forms with the formed on the valve seat body 5 valve seat surface 6 a Sealing seat.
  • the valve closing body 4 is guided by the valve needle guide 31, wherein the valve closing body 4 rests with a guide line 33 on an inner wall 38 of the valve needle guide 31.
  • a plurality of rows 34 of fuel channels 35 are arranged in the valve needle guide 31, which extend from a radially outer side 36 of the valve needle guide 31 to a radially inner side 39.
  • the fuel channels 35 may either be perpendicular to a central axis 37 of the fuel injection valve 1 or inclined at an angle ⁇ relative to the central axis 37 perpendicular orientation in the outflow direction. The latter is hydrodynamically cheaper.
  • FIG. 3 shows a schematic section along the line III - III in FIG. 2 through the valve needle guide 31 in the region of the fuel channels 35.
  • the fuel channels 35 of the adjacent rows 34 are arranged circumferentially staggered with respect to one another in order to produce the most homogeneous possible mixture cloud.
  • the fuel channels 35 may also be arranged without circumferential offset.
  • the fuel channels 35 should have a very small diameter, for example less than 100 ⁇ m, in particular less than or equal to 70 ⁇ m.
  • the production of such small-caliber holes can be done for example by means of laser processing.
  • the fuel channels 35 for generating a twist have a tangential component relative to the central axis 37 of the fuel injection valve 1, the cross section of the fuel channels 35 in Fig. 3 appears oval.
  • the orientation of the tangential components of the fuel channels 35 can be in the same direction relative to the remaining rows 34 in each row 34.
  • the present embodiment of a non-inventive fuel injection valve 1 thus combines the spin conditioning with a refinement of the metered amount of fuel.
  • FIGS. 5 to 7 show, in the same sectional plane as FIG. 3, exemplary embodiments of the fuel injection valve 1 according to the invention with different arrangements of the fuel channels 35 in each case in conjunction with the characteristic curve generated by the corresponding arrangement of fuel channels 35.
  • the characteristics represent the relationship between the dynamic flow rate through the fuel injector 1 during the opening operation in response to Ventilnadelhub.
  • the flow increases with the stroke of the valve needle 3 is relatively uniform, and then go into a constant saturation value, which represents the static flow through the fuel injection valve 1 in the open state.
  • the embodiment shown in Fig. 4A has a similar arrangement of the fuel channels 35 as that shown in Fig. 3, but the fuel channels 35 are not circumferentially offset from each other, but arranged in a grid-like structure directly below each other.
  • the characteristic curves of the exemplary embodiments illustrated in FIG. 3 and FIG. 4A correspond to the characteristic curve shown schematically in FIG. 4B.
  • the characteristic changes as shown in Fig. 5A
  • the characteristic is deformed in an S-shape as shown in Fig. 5B.
  • a smaller quantity of fuel initially flows through the fuel injection valve 1 until the valve closing body 4 also releases the complete rows 34 and, after a steeper increase than in FIG. 4B, the saturation value is reached.
  • Fig. 6A dispenses with further fuel channels 35, so that the gaps 40 are circumferentially longer, and also the number of rows 34 is reduced. Due to the now very isolated fuel channels 35 flows at the beginning of the opening process only a very small amount of fuel, which then increases when releasing the remaining rows 34 very quickly to the saturation value and almost reaches a stepped course, as shown in Fig. 6B.
  • FIG. 7A leads to a rapid increase in the fuel flow, since the closer to the sealing seat rows 34 of fuel channels 35 are still fully occupied, while the remaining rows 34 only isolated fuel channels 35 or 40 large gaps or have Fuel channels 35 are completely missing.
  • the associated characteristic curve is shown in FIG. 7B.
  • the characteristics shown in Figs. 6B and 7B have the advantage that the desired amount of fuel can be metered in a short period of time and the flow is rapidly saturated, whereby the opening and closing times of the fuel injection valve 1 can be favorably influenced.
  • the invention is not limited to the illustrated embodiment and z. B. also applicable to fuel injectors 1 with piezoelectric and magnetostrictive actuators or any arrangements of fuel channels 35.

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs.
  • Aus der DE 196 25 059 A1 ist ein Brennstoffeinspritzventil bekannt, welches in einem Strömungsweg des Brennstoffs von einem Brennstoffzulauf zu einer Abspritzöffnung mehrere Brennstoffkanäle aufweist, deren Querschnitt bei gegebenem Brennstoffdruck die jeweils pro Zeiteinheit abgespritzte Brennstoffmenge bestimmt. Um die Brennstoffverteilung in einer abgespritzten Brennstoffwolke zu beeinflussen, ist zumindest ein Teil der Brennstoffkanäle so ausgerichtet, daß die von ihnen austretenden Brennstoffstrahlen direkt durch die Abspritzöffnung gespritzt werden.
  • Nachteilig an dem aus der obengenannten Druckschrift bekannten Brennstoffeinspritzventil ist insbesondere, daß die Brennstoffkanäle in einer Ebene senkrecht zur Strömungsrichtung des Brennstoffs ansetzen, die Öffnungen also auf einer Kreislinie um eine mit dem Ventilsitzträger verbundene Ventilnadelführung angeordnet sind. Dadurch kann die das Brennstoffeinspritzventil durchfließende Brennstoffmenge bei Abheben des Ventilschließkörpers vom Dichtsitz nicht genau genug dosiert werden. Insbesondere ist das Verhältnis von maximal abgespritzter Brennstoffmenge zu minimal abgespritzter Brennstoffmenge relativ klein.
  • Ferner ist die Anzahl der Bohrungen nicht ausreichend, um eine hinreichend homogene Brennstoffwolke zu erzeugen, die den stöchiometrischen Anforderungen für eine vollständige Verbrennung genügt. Dies wird zusätzlich durch den großen Durchmesser der Brennstoffkanäle verstärkt.
  • In US-A-5823161 ist eine Brennstoffeinspritzvorrichtung für eine Brennkraftmaschine beschrieben, welche eine Hochdruck-Brennstoffpumpe aufweist, die Brennstoff von einer Niederdruck-Kammer über eine Zuführleitung in eine Hochdruck-Sammelkammer pumpt, die über Hochdruckleitungen mit den einzelnen Einspritzventilen kommuniziert, die in die Verbrennungskammer hineinragen. Um für dieses System variable Einspritzquerschnitte an den Einspritzventilen zu ermöglichen, sind diese Einspritzventile als Einspritzventile mit einem sich nach außen öffnenden Ventilelement ausgeführt, über dessen steuerbare Öffnungsbewegung in Richtung der Verbrennungskammer ein variabler Einspritzquerschnitt an dem Einspritzventil eingestellt werden kann. In einer Ventilnadelführung sind zwei Reihen von Einspritzöffnungen axial übereinander vorgesehen. Die Reihen von Einspritzöffnungen sind derartig angeordnet, dass die erste untere Reihe nahe der Verbrennungskammer zuerst geöffnet wird, während die zweite obere Reihe erst nach einem weiteren Ventilnadelhub öffnet.
  • In EP-A-0789142 wird ein Mechanismus für eine variable Anzahl von Einspritzöffnungen einer Brennstoffeinspritzvorrichtung beschrieben, der eine Vielzahl von Einspritzöffnungen aufweist, deren Durchmesser kleiner ist als derjenige der konventioneller Einspritzöffnungen in einem zylindrischen Abschnitt, der an einem unteren Endteil der Einspritzdüse gebildet ist. Diese Einspritzöffnungen sind andererseits wieder derartig ausgebildet, dass ihr Gesamtöffnungsbereich größer wird als derjenige der konventionellen Einspritzöffnungen. Da die Einspritzöffnungen so konfiguriert sind, dass sie alle an einer äußeren Umfangsoberfläche des Nadelventils geschlossen sind, wenn die Ventilnadel mit dem Sitz in Eingriff gelangt, tritt kein oder wenig Nachtropfen auf.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß eine beliebige Kennlinie durch die Anordnung der Brennstoffkanäle bzw. ihre Anzahl erzeugt werden kann, so daß das Zumeßverhalten des Brennstoffeinspritzventils in Bezug auf die Öffnungs- und Schließzeiten verbessert wird.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterentwicklungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
  • Die hohlzylindrische Form der Ventilnadelführung ist einfach herstellbar und kann entweder einstückig mit dem Ventilsitzträger hergestellt oder an diesem befestigt sein.
  • Die Führung des Ventilschließkörpers in der Ventilnadelführung hat neben der Verbesserung und Steuerung der Zumeßeigenschaften eine stabilisierende Wirkung auf den Hubverlauf der Ventilnadel, da seitliche Versätze ausgeschlossen sind. Der Ventilschließkörper kann nach dem Schließvorgang sehr präzise auf dem Dichtsitz aufsetzen.
  • Die Lücken in den Reihen der Brennstoffkanäle sorgen für eine frei wählbare Einspritzdynamik und ein formbares Strahlbild, die durch das gezielte Einbringen von Brennstoffkanälen an einzelnen Stellen der Ventilnadelführung beeinflußbar sind.
  • Durch die Anordnung der Brennstoffkanäle mit einer tangentialen Komponente relativ zur Mittelachse des Brennstoffeinspritzventils erhält der Brennstoff einen Drall, welcher für eine gute Aufbereitung der Gemischwolke sorgt.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Fig. 1
    einen schematischen Schnitt durch ein Ausführungsbeispiel eines Brennstoffeinspritzventils gemäß dem Stand der Technik,
    Fig. 2
    einen schematischen Ausschnitt durch das Brennstoffeinspritzventil im Bereich II in Fig. 1,
    Fig. 3
    einen schematischen Schnitt entlang der Linie III-III in Fig. 2,
    Fig. 4A-B
    ein zweites Ausführungsbeispiel eines nicht erfindungsgemäßen Brennstoffeinspritzventils entsprechend einem Schnitt entlang der Linie III-III in Fig. 2 mit der dazugehörigen Kennlinie,
    Fig. 5A-B
    ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffeinspritzventils entsprechend einem Schnitt entlang der Linie III-III in Fig. 2 mit der dazugehörigen Kennlinie,
    Fig. 6A-B
    ein zweites Ausführungsbeispiel eines erfindungsgemäßen Brennstoffeinspritzventils entsprechend einem Schnitt entlang der Linie III-III in Fig. 2 mit der dazugehörigen Kennlinie, und
    Fig. 7A-B
    ein drittes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffeinspritzventils entsprechend einem Schnitt entlang der Linie III-III in Fig. 2 mit der dazugehörigen Kennlinie.
    Beschreibung der Ausführungsbeispiele
  • Bevor anhand der Figuren 5 bis 7 Ausführungsbeispiele eines erfindungsgemäßen Brennstoffeinspritzventils 1 näher beschrieben werden, soll zum besseren Verständnis der Erfindung zunächst anhand von Fig. 1 ein bereits bekanntes, abgesehen von den erfindungsgemäßen Maßnahmen zu den Ausführungsbeispielen baugleiches Brennstoffeinspritzventil 1 bezüglich seiner wesentlichen Bauteile kurz erläutert werden.
  • Das Brennstoffeinspritzventil 1 ist in der Form eines Brennstoffeinspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen ausgeführt. Das Brennstoffeinspritzventil 1 eignet sich insbesondere zum direkten Einspritzen von Brennstoff in einen nicht dargestellten Brennraum einer Brennkraftmaschine.
  • Das Brennstoffeinspritzventil 1 besteht aus einem Düsenkörper 2, in welchem eine Ventilnadel 3 angeordnet ist. Die Ventilnadel 3 steht mit einem Ventilschließkörper 4 in Wirkverbindung, der mit einer an einem Ventilsitzkörper 5 angeordneten Ventilsitzfläche 6 zu einem Dichtsitz zusammenwirkt. Bei dem Brennstoffeinspritzventil 1 handelt es sich im Ausführungsbeispiel um ein nach innen öffnendes Brennstoffeinspritzventil 1, welches über eine Abspritzöffnung 7 verfügt. Der Düsenkörper 2 ist durch eine Dichtung 8 gegen den Außenpol 9 einer Magnetspule 10 abgedichtet. Die Magnetspule 10 ist in einem Spulengehäuse 11 gekapselt und auf einen Spulenträger 12 gewickelt, welcher an einem Innenpol 13 der Magnetspule 10 anliegt. Der Innenpol 13 und der Außenpol 9 sind durch einen Spalt 26 voneinander getrennt und stützen sich auf einem Verbindungsbauteil 29 ab. Die Magnetspule 10 wird über eine Leitung 19 von einem über einen elektrischen Steckkontakt 17 zuführbaren elektrischen Strom erregt. Der Steckkontakt 17 ist von einer Kunststoffummantelung 18 umgeben, die am Innenpol 13 angespritzt sein kann.
  • Die Ventilnadel 3 ist in einer Ventilnadelführung 14 geführt, welche scheibenförmig ausgeführt ist. Zur Hubeinstellung dient eine zugepaarte Einstellscheibe 15. An der anderen Seite der Einstellscheibe 15 befindet sich ein Anker 20. Dieser steht über einen ersten Flansch 21 kraftschlüssig mit der Ventilnadel 3 in Verbindung, welche durch eine Schweißnaht 22 mit dem ersten Flansch 21 verbunden ist. Auf dem ersten Flansch 21 stützt sich eine Rückstellfeder 23 ab, welche in der vorliegenden Bauform des Brennstoffeinspritzventils 1 durch eine Hülse 24 auf Vorspannung gebracht wird.
  • Ein zweiter Flansch 31, welcher mit der Ventilnadel 3 über eine Schweißnaht 33 verbunden ist, dient als unterer Ankeranschlag. Ein elastischer Zwischenring 32, welcher auf dem zweiten Flansch 31 aufliegt, vermeidet Prellen beim Schließen des Brennstoffeinspritzventils 1.
  • In der Ventilnadelführung 14, im Anker 20 und am Ventilsitzkörper 5 verlaufen Brennstoffkanäle 30a bis 30c, die den Brennstoff, welcher über eine zentrale Brennstoffzufuhr 16 zugeführt und durch ein Filterelement 25 gefiltert wird, zur Abspritzöffnung 7 leiten. Das Brennstoffeinspritzventil 1 ist durch eine Dichtung 28 gegen eine nicht weiter dargestellte Brennstoffleitung abgedichtet.
  • Im Ruhezustand des Brennstoffeinspritzventils 1 wird der Anker 20 von der Rückstellfeder 23 entgegen seiner Hubrichtung so beaufschlagt, daß der Ventilschließkörper 4 am Ventilsitz 6 in dichtender Anlage gehalten wird. Bei Erregung der Magnetspule 10 baut diese ein Magnetfeld auf, welches den Anker 20 entgegen der Federkraft der Rückstellfeder 23 in Hubrichtung bewegt, wobei der Hub durch einen in der Ruhestellung zwischen dem Innenpol 12 und dem Anker 20 befindlichen Arbeitsspalt 27 vorgegeben ist. Der Anker 20 nimmt den Flansch 21, welcher mit der Ventilnadel 3 verschweißt ist, ebenfalls in Hubrichtung mit. Der mit der Ventilnadel 3 in Wirkverbindung stehende Ventilschließkörper 4 hebt von der Ventilsitzfläche 6 ab und der über die Brennstoffkanäle 30a bis 30c zur Abspritzöffnung 7 geführte Brennstoff wird abgespritzt.
  • Wird der Spulenstrom abgeschaltet, fällt der Anker 20 nach genügendem Abbau des Magnetfeldes durch den Druck der Rückstellfeder 23 vom Innenpol 13 ab, wodurch sich der mit der Ventilnadel 3 in Wirkverbindung stehende Flansch 21 entgegen der Hubrichtung bewegt. Die Ventilnadel 3 wird dadurch in die gleiche Richtung bewegt, wodurch der Ventilschließkörper 4 auf der Ventilsitzfläche 6 aufsetzt und das Brennstoffeinspritzventil 1 geschlossen wird.
  • Fig. 2 zeigt in einer auszugsweisen Schnittdarstellung den in Fig. 1 mit II bezeichnete dargestellte Ausschnitt des Brennstoffeinspritzventils 1.
  • Das in Fig. 2 darstellte Ausführungsbeispiel eines nicht erfindungsgemäßen Brennstoffeinspritzventils 1 weist eine Ventilnadelführung 31 auf, welche an einer zulaufseitigen Stirnseite 32 des Ventilsitzkörpers 5 ausgebildet ist. Die Ventilnadelführung 31 kann dabei mit dem Ventilsitzkörper 5 einstückig ausgebildet sein oder beispielsweise durch Schweißen, Löten oder ähnliche Verfahren mit dem Ventilsitzkörper 5 verbunden sein. Die Ventilnadelführung 31 ist hohlzylindrisch ausgebildet.
  • Im vorliegenden Ausführungsbeispiel weist die Ventilnadel 3 einen kugelförmigen Ventilschließkörper 4 auf. Der Ventilschließkörper 4 bildet mit der auf dem Ventilsitzkörper 5 ausgebildeten Ventilsitzfläche 6 einen Dichtsitz. Der Ventilschließkörper 4 wird durch die Ventilnadelführung 31 geführt, wobei der Ventilschließkörper 4 mit einer Führungslinie 33 an einer Innenwandung 38 der Ventilnadelführung 31 anliegt. Zwischen der Führungslinie 33 und dem Dichtsitz sind in der Ventilnadelführung 31 mehrere Reihen 34 von Brennstoffkanälen 35 angeordnet, welche sich von einer radial äußeren Seite 36 der Ventilnadelführung 31 zu einer radial inneren Seite 39 erstrecken.
  • Die Brennstoffkanäle 35 können dabei entweder senkrecht zu einer Mittelachse 37 des Brennstoffeinspritzventils 1 verlaufen oder unter einem Winkel α gegenüber der zur Mittelachse 37 senkrechten Ausrichtung in Abströmrichtung geneigt sein. Letzteres ist hydrodynamisch günstiger.
  • Sobald die Ventilnadel 3 durch Betätigung des Brennstoffeinspritzventils 1 entgegen der Strömungsrichtung des Brennstoffs bewegt wird, werden die Brennstoffkanäle 35 der Reihen 34 freigegeben. Brennstoff strömt von einer radial äußeren Seite 36 der Ventilnadelführung 31 durch die Brennstoffkanäle 35 in Richtung Dichtsitz.
  • Durch eine entsprechende Anordnung der Brennstoffkanäle 35 kann eine Kennlinie, welche den dynamischen Durchfluß von Brennstoff durch das Brennstoffeinspritzventil in Abhängigkeit von einem Hub der Ventilnadel 3 darstellt, eingestellt bzw. modelliert werden. Durch entsprechende Hubeinstellung der Ventilnadel 3 fließt dann so viel Brennstoff durch die Brennstoffkanäle 35, wie dies im Rahmen der zu erzielenden Durchflußgenauigkeit notwendig ist.
  • Fig. 3 zeigt einen schematischen Schnitt entlang der Linie III-III in Fig. 2 durch die Ventilnadelführung 31 im Bereich der Brennstoffkanäle 35. Die Brennstoffkanäle 35 der benachbarten Reihen 34 sind umfänglich zueinander versetzt angeordnet, um eine möglichst homogene Gemischwolke zu erzeugen. Die Brennstoffkanäle 35 können jedoch auch ohne umfänglichen Versatz angeordnet sein. Um die erforderliche Zumeßgenauigkeit zu erreichen, sollten die Brennstoffkanäle 35 einen sehr kleinen Durchmesser, beispielsweise kleiner als 100 µm, insbesondere kleiner oder gleich 70 µm, aufweisen. Die Herstellung solcher kleinkalibrigen Bohrungen kann beispielsweise mittels Laserbearbeitung erfolgen.
  • Da die Brennstoffkanäle 35 zur Erzeugung eines Dralls eine tangentiale Komponente relativ zur Mittelachse 37 des Brennstoffeinspritzventils 1 aufweisen, erscheint der Querschnitt der Brennstoffkanäle 35 in Fig. 3 oval. Die Orientierung der tangentialen Komponenten der Brennstoffkanäle 35 kann dabei in jeder Reihe 34 gleichsinnig relativ zu den übrigen Reihen 34 sein. Das vorliegende Ausführungsbeispiel eines nicht erfindungsgemäßen Brennstoffeinspritzventils 1 verbindet somit die Drallaufbereitung mit einer Verfeinerung der zugemessenen Brennstoffmenge.
  • Fig. 5 bis 7 zeigen in der gleichen Schnittebene wie Fig. 3 Ausführungsbeispiele des erfindungsgemäßen Brennstoffeinspritzventils 1 mit unterschiedlichen Anordnungen der Brennstoffkanäle 35 jeweils in Verbindung mit der durch die entsprechende Anordnung von Brennstoffkanälen 35 erzeugte Kennlinie.
  • Die Kennlinien stellen den Zusammenhang zwischen der dynamischen Durchflußmenge durch das Brennstoffeinspritzventil 1 während des Öffnungsvorgangs in Abhängigkeit vom Ventilnadelhub dar. Bei einer gleichförmigen Anordnung der Brennstoffkanäle 35 steigt der Durchfluß mit dem Hub der Ventilnadel 3 relativ gleichförmig an, um dann in einen konstanten Sättigungswert überzugehen, welcher den statischen Durchfluß durch das Brennstoffeinspritzventil 1 in geöffnetem Zustand repräsentiert.
  • Das in Fig. 4A dargestellte Ausführungsbeispiel weist eine ähnliche Anordnung der Brennstoffkanäle 35 wie das in Fig. 3 dargestellte auf, jedoch sind die Brennstoffkanäle 35 nicht umfänglich versetzt zueinander, sondern in einer gitterähnlichen Struktur unmittelbar untereinander angeordnet. Die Kennlinien der in Fig. 3 und Fig. 4A dargestellten Ausführungsbeispiele entsprechen der in Fig. 4B schematisch dargestellten Kennlinie.
  • Wird erfindungsgemäß die Anordnung der Brennstoffkanäle 35 verändert, indem z. B. die Reihen 34 nicht mehr vollständig mit Brennstoffkanälen 35 ausgestattet sind, sondern Lücken 40 aufweisen, verändert sich die Kennlinie. Wird beispielsweise, wie in Fig. 5A dargestellt, in zwei näher zum Dichtsitz angeordneten Reihen 34 jeder zweite Brennstoffkanal 35 ausgelassen, wird die Kennlinie, wie in Fig. 5B gezeigt, S-förmig verformt. Zu Beginn des Öffnungsvorgangs fließt also zunächst eine kleinere Brennstoffmenge durch das Brennstoffeinspritzventil 1, bis der Ventilschließkörper 4 auch die vollständigen Reihen 34 freigibt und nach einem steileren Anstieg als in Fig. 4B der Sättigungswert erreicht wird.
  • Das in Fig. 6A dargestellte Ausführungsbeispiel verzichtet auf weitere Brennstoffkanäle 35, so daß die Lücken 40 umfänglich länger werden, wobei außerdem die Anzahl der Reihen 34 reduziert ist. Durch die nun sehr vereinzelten Brennstoffkanäle 35 fließt zu Beginn des Öffnungsvorgangs nur noch eine sehr geringe Brennstoffmenge, die dann bei Freigabe der übrigen Reihen 34 sehr schnell auf den Sättigungswert ansteigt und beinahe einen stufenförmigen Verlauf erreicht, wie in Fig. 6B dargestellt.
  • Auch das in Fig. 7A dargestellte Ausführungsbeispiel führt zu einem schnellen Anstieg des Brennstoffdurchflusses, da die näher zum Dichtsitz liegenden Reihen 34 von Brennstoffkanälen 35 noch vollständig besetzt sind, während die übrigen Reihen 34 nur noch vereinzelte Brennstoffkanäle 35 bzw. große Lücken 40 aufweisen oder die Brennstoffkanäle 35 gänzlich fehlen. Die zugehörige Kennlinie ist in Fig. 7B dargestellt.
  • Insbesondere die in Fig. 6B und 7B gezeigten Kennlinien haben den Vorteil, daß die gewünschte Brennstoffmenge in einem kurzen Zeitraum zugemessen werden kann und der Durchfluß rasch in Sättigung geht, wodurch die Öffnungs- und Schließzeiten des Brennstoffeinspritzventils 1 günstig beeinflußt werden können.
  • Allen Ausführungsbeispielen ist gemeinsam, daß eine sehr kleine minimale Brennstoffmenge qmin erreicht werden kann, wodurch das Verhältnis qmax/qmin der maximal einspritzbaren Brennstoffmenge qmax zur minimal einspritzbaren Brennstoffmenge qmin erhöht wird.
  • Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt und z. B. auch für Brennstoffeinspritzventile 1 mit piezoelektrischen und magnetostriktiven Aktoren oder beliebige Anordnungen von Brennstoffkanälen 35 anwendbar.
  • Bezugszeichenliste
  • 1
    Brennstoffeinspritzventil
    2
    Düsenkörper
    3
    Ventilnadel
    4
    Ventilschließkörper
    5
    Ventilsitzkörper
    6
    Ventilsitzfläche
    7
    Abspritzöffnung
    8
    Dichtung
    9
    Außenpol
    10
    Magnetspule
    11
    Spulengehäuse
    12
    Spulenträger
    13
    Innenpol
    14
    Ventilnadelführung
    15
    Einstellscheibe
    16
    zentrale Brennstoffzufuhr
    17
    Steckkontakt
    18
    Kunststoffummantelung
    19
    elektrische Leitung
    20
    Anker
    21
    Flansch
    22
    Schweißnaht
    23
    Rückstellfeder
    24
    Hülse
    25
    Filterelement
    26
    Drosselspalt
    27
    Arbeitsspalt
    28
    Dichtung
    29
    Verbindungsbauteil
    30a-30c
    Brennstoffkanal
    31
    Ventilnadelführung
    32
    zulaufseitige Stirnseite des Ventilsitzträgers 5
    33
    Führungslinie
    34
    Reihen
    35
    Brennstoffkanäle
    36
    radial äußere Seite der Ventilnadelführung 31
    37
    Mittelachse des Brennstoffeinspritzventils 1
    38
    Innenwandung der Ventilnadelführung 31
    39
    radial innere Seite der Ventilnadelführung 31
    40
    Lücken zwischen den Brennstoffkanälen 35

Claims (10)

  1. Brennstoffeinspritzventil (1), insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine, mit einem Aktor (10) zur Betätigung einer Ventilnadel (3), wobei die Ventilnadel (3) an einem abspritzseitigen Ende einen Ventilschließkörper (4) aufweist, der zusammen mit einer Ventilsitzfläche (6), die an einem Ventilsitzkörper (5) ausgebildet ist, einen Dichtsitz bildet, und mit Brennstoffkanälen (35), die in einer mit dem Ventilsitzkörper (5) verbundenen oder einstückig ausgebildeten Ventilnadelführung (31) angeordnet sind, wobei die Brennstoffkanäle (35) in mehreren Reihen (34) umfänglich in der Ventilnadelführung (31) angeordnet sind, wobei die Anzahl der Brennstoffkanäle (35) und ihre Lage zueinander so gewählt ist, dass dadurch eine Kennlinie, die einen dynamischen Brennstofffluss (qdyn) durch das Brennstoffeinspritzventil (1) in Abhängigkeit von einem Hub (h) der Ventilnadel darstellt, eingestellt wird,
    dadurch gekennzeichnet,
    dass zumindest eine der Reihen vollständig mit Brennstoffkanälen (35) besetzt ist
    und dass mindestens eine der Reihen (34) Lücken (40) zwischen den Brennstoffkanälen (35) aufweist.
  2. Brennstoffeinspritzventil nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Ventilnadelführung (31) an einer zulaufseitigen Stirnseite (32) des Ventilsitzkörpers (5) ausgebildet ist.
  3. Brennstoffeinspritzventil nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die Ventilnadelführung (31) sich von der Stirnseite (32) des Ventilsitzkörpers (5) hohlzylindrisch erstreckt.
  4. Brennstoffeinspritzventil nach Anspruch 3,
    dadurch gekennzeichnet,
    dass der Ventilschließkörper (4) so ausgeformt ist, dass er im Bereich einer Führungslinie (33) an einer Innenwandung (38) der Ventilnadelführung (31) anliegt.
  5. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die Brennstoffkanäle (35) eine Tangetialkomponente gegenüber einer Mittelachse (37) des Brennstoffeinspritzventils (1) aufweisen.
  6. Brennstoffeinspritzventil nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Tangentialkomponenten der Reihen (34) gleichsinnig orientiert sind.
  7. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Reihen (34), welche Lücken (40) aufweisen, näher zum Dichtsitz hin angeordnet sind, als die Reihen, welche keine Lücken (40) aufweisen.
  8. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Reihen (34), welche Lücken (40) aufweisen, weiter vom Dichtsitz entfernt sind, als die Reihen, welche keine Lücken (40) aufweisen.
  9. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass die Lücken (40) umfänglich versetzt zueinander angeordnet sind.
  10. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass die Lücken unterschiedlicher Reihen (34) bezüglich Anzahl und/oder umfänglicher Länge unterschiedlich bemessen sind.
EP20010123836 2000-10-06 2001-10-05 Brennstoffeinspritzventil Expired - Lifetime EP1195516B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10049519 2000-10-06
DE2000149519 DE10049519B4 (de) 2000-10-06 2000-10-06 Brennstoffeinspritzventil

Publications (3)

Publication Number Publication Date
EP1195516A2 EP1195516A2 (de) 2002-04-10
EP1195516A3 EP1195516A3 (de) 2004-01-02
EP1195516B1 true EP1195516B1 (de) 2006-06-07

Family

ID=7658891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010123836 Expired - Lifetime EP1195516B1 (de) 2000-10-06 2001-10-05 Brennstoffeinspritzventil

Country Status (3)

Country Link
EP (1) EP1195516B1 (de)
JP (1) JP2002155834A (de)
DE (2) DE10049519B4 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650266B2 (ja) * 1987-08-12 1997-09-03 キヤノン株式会社 スチル・ビデオ再生装置
JP4529617B2 (ja) * 2004-09-24 2010-08-25 アイシン・エィ・ダブリュ株式会社 バルブ装置
DE102004060531B4 (de) * 2004-12-16 2020-04-16 Robert Bosch Gmbh Verfahren zum Justieren von hydraulischen Ventilen
DE102013204152A1 (de) 2013-03-11 2014-09-11 Robert Bosch Gmbh Ventil zum Steuern eines Fluids mit erhöhter Dichtheit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504849A1 (de) * 1995-02-15 1996-08-22 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP0789142B1 (de) * 1995-08-29 2003-02-05 Isuzu Motors Limited Kraftstoffeinspritzvorrichtung der speichergattung
DE19625059A1 (de) * 1996-06-22 1998-01-02 Bosch Gmbh Robert Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
US6125818A (en) * 1997-03-19 2000-10-03 Hiatchi, Ltd. Fuel injector and internal combustion engine having the same
JPH10281039A (ja) * 1997-04-02 1998-10-20 Hitachi Ltd 燃料噴射装置とその制御方法
US6572028B1 (en) * 2000-01-19 2003-06-03 Visteon Global Technologies, Inc. Combined needle guide, filter, and flow director for gasoline fuel injectors
DE10049518B4 (de) * 2000-10-06 2005-11-24 Robert Bosch Gmbh Brennstoffeinspritzventil

Also Published As

Publication number Publication date
EP1195516A2 (de) 2002-04-10
DE10049519B4 (de) 2006-01-12
DE50110018D1 (de) 2006-07-20
JP2002155834A (ja) 2002-05-31
DE10049519A1 (de) 2002-04-18
EP1195516A3 (de) 2004-01-02

Similar Documents

Publication Publication Date Title
WO2002006665A1 (de) Brennstoffeinspritzventil
WO2002029242A2 (de) Brennstoffeinspritzventil
EP1913254A1 (de) Brennstoffeinspritzventil und verfahren zur ausformung von abspritzöffnungen
WO2002012711A1 (de) Brennstoffeinspritzventil
WO2002084113A1 (de) Brennstoffeinspritzventil
EP1399669A1 (de) Brennstoffeinspritzventil
EP1303695A1 (de) Brennstoffeinspritzventil
EP1337752A2 (de) Brennstoffeinspritzventil und verfahren zur herstellung von ventilnadeln oder ventilschliesskörpern für brennstoffeinspritzventile
EP1474604B1 (de) Brennstoffeinspritzventil
EP1195516B1 (de) Brennstoffeinspritzventil
WO2002025100A1 (de) Brennstoffeinspritzventil
DE10118276A1 (de) Brennstoffeinspritzventil
DE10061571A1 (de) Brennstoffeinspritzventil
DE10063261B4 (de) Brennstoffeinspritzventil
EP1209353B1 (de) Brennstoffeinspritzventil
EP1328721B1 (de) Brennstoffeinspritzventil
WO2002033248A2 (de) Brennstoffeinspritzventil
EP1402173B1 (de) Brennstoffeinspritzventil
EP1260703B1 (de) Brennstoffeinspritzventil
EP1379777A1 (de) Brennstoffeinspritzventil mit einer zerstäuberscheibe
WO2002031351A2 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 02M 61/16 B

Ipc: 7F 02M 51/06 B

Ipc: 7F 02M 45/12 B

Ipc: 7F 02M 61/12 B

Ipc: 7F 02M 61/18 A

17P Request for examination filed

Effective date: 20040702

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20041021

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110018

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061024

Year of fee payment: 6

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071005

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061020

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101029

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101217

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50110018

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110018

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111005